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a b s t r a c t

For the last decades, computer-based visual attention models aiming at automatically
predicting human gaze on images or videos have exponentially increased. Even if several
families of methods have been proposed and a lot of words like centre-surround
difference, contrast, rarity, novelty, redundancy, irregularity, surprise or compressibility
have been used to define those models, they are all based on the same and unique idea of
information innovation in a given context.

In this paper, we propose a novel saliency prediction model, called RARE2012, which
selects information worthy of attention based on multi-scale spatial rarity. RARE2012 is
then evaluated using two complementary metrics, the Normalized Scanpath Saliency
(NSS) and the Area Under the Receiver Operating Characteristic (AUROC) against 13
recently published saliency models. It is shown to be the best for NSS metric and second
best for AUROC metric on three publicly available datasets (Toronto, Koostra and Jian Li).

Finally, based on an additional comparative statistical analysis and the effect-size
Hedge' gn measure, RARE2012 outperforms, at least slightly, the other models while
considering both metrics on the three databases as a whole.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

There is no common definition of human attention, and
it can differ depending on the domain (psychology, neu-
roscience or engineering) or the considered approach.
But, in a general sense, human attention can be defined
as the natural capacity to prioritize the incoming stimuli
and selectively focus on part of them. The goal of the
attentional process is to identify as quickly as possible
those parts of our environment that are key to our
survival. Humans but also all animals use this mechanism
in their daily life and even during dreams when the rapid
All rights reserved.
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eye movements occur (REM stage), which are saccades and
fixations on the dream scene.

The interest of attention prediction is more and more
understood by the scientific community with an exponen-
tial number of papers dealing with saliency algorithms.
Attention modeling has very wide applications such as
machine vision, surveillance, data reduction and compres-
sion, human computer interfaces, advertising assessment
or robotics. In this context, efficient attention models are
of great importance for vision and signal processing
algorithms improvements in the future.

In computer science, attention modeling is mainly based
on the concept of “saliency maps”, which provides, for each
pixel, its probability to attract human attention. The idea is
that the gaze of people will direct to areas which, in some
way, stand out from the background. Saliency implies
a competition between an objective “bottom-up” attention
and a subjective “top-down” information. Bottom-up
attention is a generic approach also known as stimulus-
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driven or exogenous attention. Furthermore, it relies on the
information innovation that the features extracted from the
image can bring in a given spatial context. The top-down
component of attention, which is also known as task-driven
or endogenous attention, integrates specific knowledge that
the viewer could have in specific situations (tasks, models
of the kind of scene, recognized objects, etc.). The eye
movements are not a direct output of the algorithms, but
they can be computed from the saliency map by using
winner-take-all [1] or more dynamical algorithms [2].

In this paper we present a novel attention algorithm
and we focus on a fair comparison with other state of the
art attention models. The algorithm proposed which we
will call “RARE2012” is purely bottom-up. This is an
important point for model evaluation as top-down infor-
mation can drastically increase a model performance.
Indeed, several models use additional post-processing
which provide top-down information like centred Gaus-
sians which leads to an artificial increase of their results.
Moreover, several saliency models have a lot of para-
meters, which make fair comparison very difficult. Some
research, like Borji and Itti [3] or Judd et al. [4], attempts to
provide a benchmark between bottom-up models using
several similarity measures and sometimes several data-
sets of images. We based our validation on Borji and Itti
approach and codes [3]. A complementary statistical
evaluation has also been added. The codes of the model
proposed in this paper are freely available online [5].

The paper is organized as follows. Section 2 contains an
overview of recent saliency models and more specifically
of methods used in our comparative study. In Section 3,
the architecture of our method is described in detail.
The results are presented in Section 4: after a qualitative
evaluation on psychophysical observations and three data-
bases, two metrics are used to quantify the prediction of
the proposed method. Section 5 details an additional two-
metric based statistical analysis of the results showing the
overall effectiveness of RARE2012. Finally, Section 6 pro-
vides a discussion and conclusion.

2. Related work

It is very hard to find an optimal taxonomy, which
classifies all the saliency approaches. The literature is very
active concerning still images saliency models. While some
years ago only some labs in the world were working on the
topic, nowadays a hundred different models have been
published. Those models have various implementations and
technical approaches despite that they all derive from the
same idea of information innovation in a given context.

Some attempts of taxonomies proposed an opposition
between “biologically driven” and “mathematically based”
methods. Unfortunately, the biological plausibility of the
methods is a difficult point to judge. Another criterion is
the computational time or the algorithmic complexity, but
it is very difficult to make this comparison as all the
existing models do not provide cues about their complex-
ity. Moreover, the implementations can be found in several
programming languages. Finally a classification of models
based on centre-surround contrast compared to informa-
tion theory methods do not include different approaches
as spectral residual for example. Although several taxo-
nomies can coexist, we propose an original context-based
taxonomy. In this framework, there are three classes of
models with different contexts which are mostly local,
global and normality.

In this section, we define the proposed saliency models
categories and provide a brief overview of the recent
saliency models that are used for the evaluation in this
study. We focus on the models used for our evaluation and
do not intend to provide an overview of all existing
saliency models. For this purpose, we selected most
recently published models which are also available online
and classify them using the proposed taxonomy. We also
focused on models which use eye-tracking as gold stan-
dard and not the models which use manual segmentation
as evaluation. Some models obviously use both local and
global information. In this case, the classification is made
on the primary considered context.

2.1. Local context: salient objects are contrasted compared
to their surroundings

The first approach, called local context, is about pixels
surroundings: here a pixel or patch is compared with its
surroundings at one or several scales like in [6]. Five
models from this context are proposed for the study and
described in the following subsections.

2.1.1. AIM: Attention Based on Information Maximization
(2005)

AIM was created by Bruce and Tsotsos in 2005 [7]. The
principle of this bottom-up attention model aims at max-
imizing information sampled from a scene. Shannon's self-
information measure is computed by using patches from
the image and their surrounding patches projected on a
new basis obtained by performing an ICA (Independent
Component Analysis) on a large sample of 7�7 RGB
patches drawn from natural images. Overall, this approach
quantifies how unexpected the content in a local patch is
based on its surrounding.

2.1.2. STB: Saliency ToolBox (2006)
This toolbox [8,9] is a partial reimplementation of the

Neuromorphic Vision Toolkit (iNVT) from Laurent Itti [1].
His model is composed of three steps: feature extraction,
centre-surround inhibition and feature maps fusion.
First, three types of static visual features are selected
(colours, intensity and orientations) at several scales. The
second step is the centre-surround inhibition which will
provide high response in case of high contrast, and low
response in case of low contrast. The third step consists in
an across-scale combination, followed by normalization to
form “conspicuity” maps which are single multi-scale
contrast maps for each feature. Finally, a linear combina-
tion is made to achieve inter-features fusion.

2.1.3. GBVS: Graph-Based Visual Saliency (2006)
Harel et al. introduced the Graph-Based Visual Saliency

(GBVS) model [10]. In this model, they first extracted
similar feature maps to Itti's maps (see previous subsec-
tion) leading to three multi-scale feature maps (intensity,
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colour and orientation). Then, a fully connected graph over
all grid locations of each features map is built and a weight
is assigned between each nodes. This weight depends on
the spatial distance and features of nodes. Finally, each
graph is treated as Markov chains to build an activation
map and all activation maps are merged into the final
saliency map. Here only locally contrasted features are
integrated all over the image, thus the model is mainly
based on local context.

2.1.4. YINLI: Visual Saliency Based on Lossy Coding (2009)
In 2009, Yin Li proposed a new saliency model inspired

by biological vision [11,12]. In this model, the approach
is strictly local and based on conditional entropy, which
is computed by the lossy coding length of multivariate
Gaussian data. The final saliency map is generated by
accumulating the coding length. Local information has a
priority on the global information integration.

2.1.5. SEO: Saliency Detection by Self-resemblance (2009)
The bottom-up Saliency Detection by Self-resemblance

(SDSR) model implemented by Seo and Milanfar consists
of two parts [13,14]. First, they propose to use local
regression kernels as features (matrix of local descriptors).
The underlying hypothesis is that eye fixations are driven
by local feature contrast. In a second step, they want to
quantify the likeness of each pixel to its surroundings and
use a non-parametric kernel density estimation for such
features, which results in a saliency map consisting of local
“self-resemblance” measure. Even if patches of the image
are compared on a wider space than only surround, this is
not computed on the entire image.

2.2. Global context: salient objects are different from all the
others in the image

The second approach considers the entire image as a
context and compares pixels or patches of pixels with any
other pixels or patches from any location in the image.
There are a lot of recent work in this category like [15,16]
or [17], but in the following subsection we will further
describe only the models used for our evaluation.

2.2.1. TORRALBA: Saliency Detection by using Local Features
(2006)

Torralba stated that saliency is defined in terms of the
probability of finding a set of local features within the
image as derived from the Bayesian framework [18].
Local image features are salient when they are statistically
distinguishable from the background on the rest of the
image, i.e. the whole image is considered. In addition to
the purely bottom-up approach, two parallel pathways are
included in the model: one pathway computes local
features (saliency) and the other computes global (scene-
centred) features. The contextual guidance model of atten-
tion combines bottom-up saliency, scene context and top-
down mechanisms at an early stage of visual processing,
and predicts the image regions likely to be fixated by
human observers performing natural search tasks in real
world scenes. The model considered here for validation is
the purely bottom-up model without the task scene priors.
2.2.2. AWS: Adaptive Whitening Saliency (2009)
This model of bottom-up saliency is based on the varia-

bility in local energy as a measure of salience [19,20]. To do
this, first, RGB image is transformed into Lab colour space.
In the next step, the luminance is transformed into a multi-
oriented multi-resolution representation by using Gabor
filters. Each representation is then decorrelated by using
a principal component analysis (PCA) and a statistical distance
is computed to the centre of the distribution. The final salie-
ncy map is obtained by summing the extracted maps. The
decorrelation is a global operation which considers the
whole image.

2.2.3. CASD: Context Aware Saliency Detection (2010)
In 2010, Goferman et al. have introduced context-aware

saliency detection based on four principles [21]. First, local
low-level considerations, including factors such as contrast
and colour are used. Second, global considerations, which
suppress frequently occurring features, while maintain-
ing features that deviate from the norm are taken into
account. Higher level information as visual organization
rules, which state that visual forms may possess one or
several centres of gravity about which the form is orga-
nized are then used. Finally, human faces detection is also
integrated into the model which brings partly top-down
information.

2.3. Normal context: salient objects imply differences
to what the normal image would be

Finally, the third saliency category takes into account a
context which is based on a model of what the normality
should be like in [22]. In the following subsections, we
briefly explain the five normality-based models which are
used in our evaluation.

2.3.1. HZ: Spectral residual approach (2007)
The authors, Hou and Zhang, proposed a model that is

independent of any feature in 2007 [23]. In this method,
the first step is to compute the image Fourier spectrum
(the amplitude and phase maps). Then, they computed the
log-spectrum of the amplitude map. They also computed a
filtering amplitude map by multiplying the log-spectrum
map with a local average filter. The spectral residual map
can be obtained by subtracting these last two maps. The
saliency map is achieved through Fourier transform inver-
sion. It should be noted that the phase spectrum is
preserved during the process. The idea is that if the image
log-spectrum is far from the 1/f of natural images (image
filtered spectrum), there is something abnormal which
deserves attention.

2.3.2. SUN: Saliency Using Natural Image Statistics (2008)
Another model is SUN (for Saliency Using Natural

statistics) from Butko et al. (2008) that proposes a Baye-
sian framework to compute a saliency map [24,25]. In their
paper, two methods are implemented. First, the features
are calculated as responses of biologically plausible linear
filters, such as DoG (Differences of Gaussians) filters.
Second, the features are calculated as the responses to
filters learned from natural images using independent
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component analysis (ICA). SUN with ICA (Method 2) out-
performs SUN with DoG filters (Method 1) but both
methods predict well people fixations during free viewing.
The self-information measure is not applied to the current
image statistics but on statistics from a database of natural
images (among which the current image is not present).
Those images act like typical “normal” images and differ-
ence from the statistics of those images might attract
attention.

2.3.3. FTSRD: Frequency-Tuned Salient Region Detection
(2009)

In 2009, Achanta proposed a very simple model [26]
based on local colour and luminance feature contrast.
First, the input RGB image is transformed to Lab colour
space. Second, the Lab image is blurred with a Gaussian
kernel to eliminate noise and texture details from the
original Lab image. Finally, the saliency map is computed
by using an euclidean distance between the Gaussian-
filtered and the original image. The Gaussian-filtered
image eliminates small objects and provide an idea about
how the image appears to the eyes at a first glance. Objects
which are very different from this “normal” image will
attract attention.

2.3.4. JIANLI: Frequency and Spatial Saliency (2011)
Jian Li proposes a saliency detection model based on

the combination of the global information from the
frequency domain analysis and local information from
the spatial domain analysis [27]. By using the frequency
domain, the spectral residual approach is applied. In the
spatial domain analysis, Jian Li enhances those regions that
are more informative by using a centre-surround mechan-
ism. The final step is a merge of these two channels to
produce the saliency map. This method is a hybrid combi-
nation between a local method and a normal context
method, and could be located in both sections.

2.3.5. QDCT: Saliency Detection Using Quaternion DCT
(2012)

This model applies a spectral saliency method to predict
human gaze. More precisely, the authors integrate and
evaluate quaternion DCT-based spectral saliency map [28].
They utilize weighted quaternion colour space components
and multiple resolutions. Furthermore, they propose the use
of the eigen-axes and eigen-angles for spectral saliency
models that are based on the quaternion Fourier transform.
As HZ, QDCT uses a model of what image should globally be.

3. RARE2012: our proposed saliency model

In this section, the architecture of our method (Fig. 1) is
described in detail. There are three main steps. First, we
extract low-level colour and medium-level orientation
features. Afterwards, a multi-scale rarity mechanism is
applied. Finally, we fuse rarity maps into a single final
saliency map. A comparison is then made with the RARE
algorithms family. In the proposed taxonomy of Section 3,
RARE2012 is a part of the second category as it considers
information at several scales but globally on the whole
image.
3.1. Feature extraction

The first stage of RARE2012 assumes that features can
be extracted and processed in parallel or sequentially
depending on their complexity.

Contrary to RGB color space, some alternative colour
spaces (like Lab, YCbCr, etc.) better uncorrelate colour
information. Moreover, the nonlinear relations between
their component are intended to mimic the nonlinear
response of the eye. To obtain a maximum colour features
decorrelation, we transform the RGB colour space into
three linearly uncorrelated maps by using Principal Com-
ponent Analysis (PCA) decomposition. Similar to the other
spaces, the first map contains mainly information about
the luminance while the two others contain information
about the chrominance.

At this stage, the algorithm split in two pathways. The
first one, mainly deals with colours (low-level features)
while the second one with textures (medium-level fea-
tures). While the first pathway directly uses the PCA-based
colour transformation and computes its rarity, the second
pathway extracts orientation features maps by using a set
of Gabor filters. These filters were chosen because they are
similar to simple cells of the visual cortex (V1) in the brain
[29]. As you can see in Eq. (1), a Gabor filter (assumed to be
centred at zero) is the product of a sinusoid and a Gaussian
where ϕ is the phase offset, λ represents the wavelength of
the sinusoidal factor, θ is the orientation (the angle of the
normal to the sinusoid), γ is the spatial aspect ratio and s is
the sigma of the Gaussian envelope. In the implementation
of these filters, 8 orientations (01, 22.51, 451, 67.51, 901,
112.51, 1351 and 157.51), are used at 3 different scales.
As any convolution filters, Gabor filters induce side effects,
so for each of the 24 resulting maps, a border attenuation
is applied.

gðx; y; λ; θ;ϕ; γÞ ¼ exp −
x′2 þ γ2y′2

2s2

� �
cos 2π

x′
λ
þ ϕ

� �
ð1Þ

where

x′¼ ðx cos θ þ y sin θÞ and y′¼ ð−x sin θ þ y cos θÞ:

The decomposition at several scales is recombined in a
single map for each orientation. To combine data informa-
tion for each channel, a selection algorithm is applied to
the 8 orientation maps. The first step is to compute for
each map an efficiency coefficient, ECi, which is higher
if the map has important peaks compared to its mean
(see Eq. (2)). These coefficients let us sort the different
maps (mapi) based on each map efficiency coefficient ECi.
Each map is than multiplied by a fixed weight defined as
i=N where N is the number of maps to mix (here N¼8) and
i the rank of the sorted maps as shown in the first line of
Eq. (3).

ECi ¼ ðmaxi−meaniÞ2 ð2Þ

∀i∈½1 N�;
IF
ECi

ECN
≥T Mi ¼

i
N
�mapi

IF
ECi

ECN
oT Mi ¼ 0

8>>><
>>>:

ð3Þ



Fig. 1. Diagram of our proposed model. First, from the input image, colour and orientation features are extracted in parallel or sequentially. Then, for each
feature, a multi-scale rarity mechanism is applied. Finally, two fusions (intra- and inter-channel) are made from the rarity maps to provide the final
saliency map.
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where mapN is the most efficient map and map1 is the less
efficient one. Finally the less efficient maps are fully
eliminated if they are under an empirical threshold of
T¼0.3 as shown in the second line of Eq. (3).

The fusion is then the sum of all the weighted maps Mi:

M¼ ∑
N

i ¼ 1
Mi ð4Þ

To conclude this first stage of the algorithm (step 1
from Fig. 1), we obtain six feature maps: three low-level
(which are the colours from the first path) and three
medium-level (the orientation and texture information
coming from the Gabor filters).

3.2. Multi-scale rarity mechanism

The rarity mechanism is the key of RARE2012. Indeed,
a feature is not necessary salient alone, but only in a specific
context. The mechanism of multi-scale rarity allows to
detect both locally contrasted and globally rare regions in
the image. First, a Gaussian Pyramid decomposition pro-
vides six feature maps at four different scales. A second step
consists, for each feature, to compute the cross-scale
occurrence probability of each pixel. It is obtained by the
normalization of the sum of the occurrence probabilities of
the pixel at all scales as shown in Eq. (5) where the ni is the
occurrence value of the current pixel j computed using a
histogramwithin the i th scale or resolution level. Then, the
self-information is used to represent the attention score for
the pixel. This mechanism provides higher scores for con-
trasted and rare regions. This idea is illustrated for a single
scale in Fig. 2: the dark object from the initial feature (left
image) is considered as rare and displayed on the right
image with a high amplitude. The rarity range can be set
between 0 (all the pixels are the same) and 1 (one pixel
different form all the others).

AttentionðIjÞ ¼ − log
1

SnjIjj
∑
S

i ¼ 1
ni

 !
ð5Þ

The output of the multi-scale rarity step (step 2 in
Fig. 1) consists in a set of six maps called rarity maps.
3.3. Fusion

After the multi-scale rarity mechanism, the 6 rarity
maps are fused together into a single saliency map (step 3



Fig. 2. Illustration of the rarity mechanism on a single scale. Rarity function (green curve in the middle graph) is computed from a histogram (blue curve)
of a feature map (left image) to a given scale. This process is repeated at several scales. Output is a reconstruction of the map where high values are given
for the most “rare” areas (right image).
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in Fig. 1). This fusion is achieved in two main steps: an
intra-channel fusion followed by an inter-channel one.

First, an intra-channel fusion (called combination in
Fig. 1, step 3) is computed between colour and orientation
rarity maps by using the fusion method provided by Itti
et al. [30]. The idea is to provide a higher weight to the
maps which have important peaks compared to their
mean (Eq. (6))

S¼ ∑
N

i ¼ 1
ECinmapi ð6Þ

where N¼2 for each channel and ECi is the efficiency
coefficient computed as in Eq. (2). At the end of this first
process, the model provides 3 channel saliency maps, one
per colour channel.

In a second step, the final inter-channel fusion between
those three maps (called selection algorithm in Fig. 1,
step 3) is achieved to obtain the final saliency map. This
final fusion uses exactly the same method as the one
explained in Section 3.1 which uses Eqs. (2)–(4). The
parameter T¼0.3 is the same, but N¼3 as there are 3
maps to fuse.

The output saliency map is now unique and of the same
size that the original image provided to the algorithm.

3.4. The RARE family

RARE2012 is the latest development around the idea of
multi-scale rarity-based saliency detection which begun
with RARE2007 [31] and followed by RARE2011 [32].
Each one of these steps brought major changes in the
algorithm pipeline and performance improvements.

RARE2007 extracts only colour information maps
which are quantized into 11 classes of pixels each. A rarity
mechanism is then applied. Finally, a NS (normalized and
sum) fusion is made between rarity maps to output
saliency map. Compared to RARE2007, RARE2011 mainly
introduced the Gabor filtering to also extract the image
orientation information. An optimal Otsu's quantization is
then performed to separate each map into 8 classes of
pixels. A rarity mechanism and a NS (normalized and sum)
fusion are also applied. RARE2012 which is presented in
this paper brought changes compared to RARE2011 (a) in
the algorithm pipeline introducing serial and parallel
features extraction which computes rarity on both color
and texture instead of only texture, (b) in the rarity
algorithm which is a new version which does not use
any quantification, (c) in the colour space which is PCA-
based and (d) in the fusion algorithm (Eq. (3)) which is
modified to be more selective.

RARE2012 is also faster and provides better results than
RARE2011 and RARE2007 as it will be shown in Section
4.3.

4. Saliency model evaluation

In this section, we compare our method with the 13
saliency models presented in related work on three
datasets. After the dataset presentation, qualitative and
quantitative results are detailed and explained.

4.1. Evaluation databases

Three recent eye-tracking datasets available online are
used (Fig. 3). The first one, that we will call Toronto
dataset, was made by Bruce and Tsotsos [7]; it includes
120 images with 20 viewers per image. The second,
Kootstra dataset [33], provides 100 images with 31 viewers
per image. Finally, we use Jian Li dataset [27], which
provides eye-tracking data on 235 images with 19 viewers
per image.

The Toronto dataset includes images of both outdoor
and indoor scenes. A particularity of this database is that a
large subset of images does not contain specific regions of
interest like semantic objects or faces. Each image has
been freely viewed by participants during 4 s.

In the Kootstra dataset, there are mainly images of
outdoor scenes. This dataset is split into five different
categories like images with animals, street scenes, build-
ings, natural symmetrical shapes, mainly flowers and
plants and natural scenes. The viewing time was of 5 s
for each image.

Finally, the last dataset used here has been published
by Jian Li. One interesting property of this dataset is that it



Fig. 3. Sample representative images of the three datasets (first row: Toronto dataset, second row: Kootstra dataset, third row: Jian Li dataset) are
displayed.
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is organized in six different groups of images which are
different from the ones of Kootstra (large objects, inter-
mediate objects, small objects, cluttered backgrounds (CB),
repeating distractors (RD) and large and small salient
regions (LSSR)). The images were presented for a short
time duration, sufficient for actually seeing the image.

4.2. Qualitative evaluation

Some qualitative results on synthetic patterns and
selected images from the three datasets are presented
here. The goal of this section is to visually show the results
of RARE2012 on simple and more complex images.

4.2.1. Synthetic patterns
Psychophysical observations are synthetic stimuli showing

a particular object (the target) among other objects (the
distractors). All stimuli presented here have been widely used
by the community [3,20]. Nevertheless, RARE2012 does not
intend to fully explain human behaviour and the dataset
shown here is not large enough and it has no eye-tracking
data for an efficient comparison. The goal is to see if the global
rarity and local contrast idea behind RARE2012 make sense
compared with human behaviour which will fixate the pop-
out target. There are two parts in this section. First, eight
synthetic patterns are selected for the specificity of their
targets which are linked to RARE2012 features: colour and
orientation. In the second part, the selected targets are more
complex. They are not necessarily directly linked to the
features extracted by RARE2012.

In Fig. 4, RARE2012 suitably reproduces pop-out phe-
nomena related to colour and orientation targets. Indeed,
the saliency is high (in red) on the targets. These results
are expected due to the nature of the targets. For the
colour/luminance differences, they are well detected even
if the colour difference is not very important. This is due to
the nature of the proposed model which is based on global
rarity. Even if an object has a low contrast, and there are no
other high contrast objects, it will be well highlighted.
Concerning the combination of colour and orientation
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Fig. 4. Rows 1–2: Stimuli and RARE2012 saliency maps for colour and orientation targets presented separately. Rows 3–4: Stimuli and related saliency
maps for colour and orientation mixed targets. Globally, RARE2012 works as desired.
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targets, it is interesting to see the influence of mixed
targets or the heterogeneity of distractors. Indeed, the
more the distractors, the less selective the saliency map,
even if the pop-out target is still detected as the maximum
of the saliency map. This is again a consequence of the
global rarity part of the algorithm.

In Fig. 5, our model points out all of the selected targets
even if the features used here are more complex. The
selection of targets includes: (1) luminance, (2) intersec-
tion and curvature, (3) density target and (4) visual search
examples where all previous targets can be present. Our
saliency maps are more noisy than in Fig. 4 but replicate
the expected human behaviour.

4.2.2. Visualization result
In addition to synthetic patterns, Fig. 6 displays selected

images from the three eye-tracking datasets. The eye-tracking
results on these images which are superimposed to the
images on rows one, three and five are compared to
RARE2012 saliency maps on the same images on rows two,
four and six. The peak value of the saliency maps fits to the
maximum of the eye-tracking maps. This shows a subjective
good prediction of the saliency maps of RARE2012.

Fig. 8 shows six images from different databases
(first row). The second row contains the corresponding
eye-tracking heatmaps. The following rows show the
saliency maps of all the compared models beginning with
RARE2012.

Fig. 7 shows six images from different databases
(first row). The second row contains the corresponding
eye-tracking heatmaps. The following 3 rows show the
saliency maps of RARE2012, AWS and GBVS models.
RARE2012 works well in the 3 first images and seems
more selective than AWS and GBVS. The last three images
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Fig. 5. Rows 1–2: Stimuli and RARE2012 saliency maps for targets with different specificities. Rows 3–4: Stimuli and related saliency maps for synthetic
patterns come from visual search task. Overall, RARE2012 works slightly worse than in the first part. However, it also points out all targets.
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are examples where RARE2012 fails to estimate people
gaze position. AWS and GBVS do not seem to work
especially better. This is mainly due to the fact that here
the bottom-up cues do not match with top-down informa-
tion (mainly faces). This example also shows that purely
bottom-up models are nowadays good enough and they
mainly fail when top-down information is present. Thus,
future improvements will certainly come from more and
more top-down information integration.

4.3. Quantitative evaluation

4.3.1. Metric definition
There are several similarity measures proposed in the

literature to compare saliency and fixation maps. These
measures include the Area Under Receiver Operating
Characteristic (AUROC) [34], the Normalized Scanpath
Saliency (NSS) metric [35] or the least square index [36].
Three other metrics namely the correlation-based mea-
sures as Correlation Coefficient (CC), dissimilarity mea-
sures like KL-divergence (KLD) and the string-edit distance
are described in [37].

Among those similarity measures, two metrics have
been chosen: the NSS and AUROC for their complementar-
ity [38]. Indeed, contrary to the NSS measure which
compares values or amplitudes of the maps, AUROC
mainly measures the order and locations of the fixations.
Moreover, the use of two complementary metrics ensures
that the quantitative conclusions are much more robust
from the choice of the metric.



Fig. 6. Qualitative results from the three databases show that RARE2012 can reliably predict where people look in images. Rows 1–2: Eye-tracking and
RARE2012 saliency map from Toronto dataset. Rows 3–4: from Kootstra dataset. Rows 5–6: from Li dataset.

N. Riche et al. / Signal Processing: Image Communication 28 (2013) 642–658 651
The NSS metric represents the average of the response
values at human eye positions in a model's saliency map.
For this purpose, the saliency maps are normalized to have
zero mean and unit standard deviation. The fixation map
can then be thresholded to become a binary mask. The
second evaluation is made by using the area under the
receiver operating characteristics curve (AUROC). The first
step is a normalization of the saliency map. Then, this map
is thresholded to create binary masks that separate the
positive samples called True Positive Rate (TPR) from the
negatives called False Positive Rate (FPR). By thresholding
the saliency map with several different thresholds and



Fig. 7. Qualitative results for six images (first row) of RARE2012 and the two other best models (AWS and GBVS). RARE2012 works well in the first three
images and less well in the three last images.
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plotting TPR versus FPR, a ROC curve is computed. Once
the curve is computed, the area under this curve can be
quantified.

Two well-known problems for fair comparisons are the
centre-bias and border effect. Centre-bias means that a lot of
fixations from natural images databases are located near the
image centre because when taking pictures, the amateur
photographer often places salient objects in the image
centre. The computational saliency models which include a
centred Gaussian use the prior knowledge of working on
natural images which is not a general assumption, and
therefore can be considered as top-down information.
Indeed, other categories of images (as advertisements or
websites have very different behaviour as demonstrated in
[31]). As the three datasets taken into account here provide
only natural images, the use of centred weight within the
saliency models will artificially improve their results if using
the classical AUROC measures. Moreover, Zhang et al. [25]
showed that AUROC scores are also corrupted by edge
effects. If we remove edges of an image, AUROC scores
increase as well. Indeed, human eye fixations are rarely near
the edges of test images.

In [39], Borji suggests three possible remedies: (1) add
a centred Gaussian to the output of every saliency model
to obtain a fair comparison; (2) make the quantitative
comparison on a dataset with no centre-bias; (3) design a
suitable evaluation metrics. It is not fair to add centred
Gaussians to some models while those weights are already
included with other parameters in others. Getting datasets
with no centre biases is almost impossible as all of them
contain natural images. In this paper, the third solution is
adopted by using the shuffled AUROC metric proposed by
Zhang et al. [25]. In AUROC, saliency values and random
points from the image are taken into account to create a
binary mask. In the shuffled AUROC metric, saliency values
and fixations from another image (instead of random) of
the dataset are taken into account. We used the freely
available Matlab implementation of Borji [40] for our
quantitative evaluation.

Unfortunately, the shuffle AUROC idea cannot be applied to
the NSS metric which suffers from the centre-bias issue. To
quantify this issue, we introduce baseline model in our
comparison called “Gauss”. This model is a centered Gaussian
and can be seen like a baseline algorithm to have an idea of
the impact of centre-bias. The codes used for NSS computa-
tion are also the freely available Matlab implementation of
Borji [40].

4.3.2. Performance evaluation
Fig. 9 displays the results for the three datasets and two

metrics of RARE2012 compared to the other 13 saliency
models. For all models including RARE2012, we use the
default parameters. The mean results are shown along
with their standard deviations and RARE2012 is shown in
purple. For the AUROC metric, RARE2012 performs second
best for the three datasets after the AWS model and
followed by QDCT for the Toronto dataset, SEO for Kootstra
dataset and CASD for Jian Li dataset.

For the NSS metric, RARE2012 is the best followed by
GBVS and AWS for Toronto dataset, the best followed by
GBVS and YINLI for Koostra dataset and the best followed
by GBVS and AWS for Jian Li dataset.



Fig. 8. Qualitative comparison of thirteen models and our RARE algorithm for 6 images (columns) compared with the eye-tracking ground truth
(second row).
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Concerning the other models from the RARE family
[31,32], RARE2012 is faster (Fig. 10). It needs 1.97 s
while RARE2007 needs (as a mean) 10.95 s to pro-
cess an image and RARE2011 needs 29.48 s on the
same platform and with Matlab implementations. The
speed of the algorithm poorly depends on the initial
image size as this one is anyway resized within the
algorithm.
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Fig. 9. Comparison of our model with 13 state-of-the-art saliency models and a centred Gaussian. The first two graphs display the NSS and AUROC metrics
for the Toronto dataset. Graphs 3–4: for Kootstra dataset. Graphs 5–6: for the Jian Li dataset. RARE2012 outperforms the other models for the NSS metric
and is the second best for AUROC metric.
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Moreover, regarding the models results, for the three
datasets Fig. 11 displays a comparison of the three models.
For each metric RARE2012 provides better results than
RARE2011 and RARE2007.
5. Additional statistical validation

In this section, the statistical validation is studied. First, the
statistical approach is carefully detailed. Its interest compared
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to a standard ANOVA test is exposed. The importance of
effect sizes is highlighted. Then, the results are exposed and
explained.

5.1. Statistical framework

In order to detect whether our model is competitive
with respect to other state-of-the-art models, our statis-
tical assessment is only focusing on comparisons including
RARE2012. Indeed, the null hypothesis H0 assumes that
our model is the best one. Then, we are looking for
evidence of rejecting it meaning that at least one other
model is likely to outperform ours.
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Although our design follows a repeated measure ana-
lysis of variance (ANOVA), i.e. the structure of the collected
data and the analyzed factors, for each performance
measure [41,42], the ANOVA analysis and its omnibus
F test were not performed in our procedure. Contrary to
what a lot of researchers usually think, the omnibus
ANOVA F test is not a necessary condition to control
Family-Wise Error Rate (FWER) whatever the applied
post-hoc tests [42,43]. If computed, the degrees of freedom
are wasted for somehow useless statistical tests. Even
worse, with this approach, an overall decrease of power
could be observed. More precisely, omnibus F test might
show no significativity while some of the underlying
t-tests are significant. In this procedure, we did not
compute power a priori because (1) there was a limited
amount of images and if an insufficient number of images
was detected, we were unable to increase their number,
and (2) given their huge number, the observed power
should be high enough.

We thus defined only a limited amount of a priori
comparisons by applying the prescription of [42,43]. First,
we defined all the pairwise comparisons with our model
before data collection in a similar way to the Dunnet test,
which compares a control group to other alternatives to
detect whether they significantly compete this control
group. Obviously, training data that were used for optimi-
zation purposes do not have to be fed in the model
assessment process to avoid data snooping bias. This bias
typically overestimates p-values and leads to spurious
conclusions. Second, we performed the standard paired
t-tests, whose single assumption is data normality, with a
standard alpha level of 2.5% for each performance measure
(computing a simple Bonferonni adjustment). Given that
those comparisons equal the degrees of freedom, we make
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Table 1
The AUROC distribution is quasi-normal. However, the NSS curve fits at
best a log-normal distribution. Therefore, before statistical analysis,
a logarithmic transformation was performed.

Statistics AUROC NSS

Mean 0.63 0.98
Mediane 0.62 0.93
Mode 0.2 −1.16
Kurtosis 2.73 4.11
Skewness −0.005 0.71
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sure to control FWER inflation without any further adjust-
ments, which leads to a much more powerful test. In
our case, given that the observed correlation between
performance measures is around ρ¼ 0:57, the multivariate
Hotelling T2 test could be useful to study performance
model as a whole. Nevertheless, a gain in power is
theoretically not always ensured, especially when post-
hoc analysis needs to be computed to detect the incrimi-
nated measure of a significant effect. Furthermore, we
intentionally want to decouple both performance mea-
sures in the analysis to get specific conclusions on both of
them while being able to combine these conclusions [43].

However, significant results are not enough and effect-
size is at least as important [42,44]. Nevertheless, although
effect size has become a major interest in biomedical/
psychology/medicine studies, in computer sciences, this
importance has not really been pointed out. Significativity
only assesses if there is enough evidence to determine
whether there is a likely effect between two or more
groups. It does not provide information about the size of
this effect. If the difference is significant but trivial in
terms of practical differences, the best method is not really
outperforming the other ones.

The normalized unbiased Hedge' gn effect-size measure
somehow tackles this problem. Basically, the Hedge' g
value is computed as

g ¼ X1−X2

sn
ð7Þ

where X1;X2 are sample distributions and the
pooled standard deviation is defined as sn ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1−1Þs21 þ ðn2−1Þs22=ðn1 þ n2−2

q
Þ with standard devia-

tions s1; s2. The precise correction for paired data of the
unbiased Hedge' gn is not given as it does not modify the
interpretation.

As depicted in Fig. 12, this measure allows to evaluate
this effect in a standard way. Furthermore, it provides
some rules of thumb of how big the effect-size is. For
instance, an absolute Hedge' gn value around 0.1 (≤0:16),
0.2 (0.17–0.32), 0.5 (0.33–0.55) or 0.8 (0.56–1.2) respec-
tively mean a trivial, small, medium or a large effect
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Fig. 12. Given two standard normal distributions, with means m1 of 0
and m2 of 2.2, and a standard deviation of 1 (identical for both
distributions). Accordingly, in this example, Hedge' gn ¼ ð1:1−ð−1:1Þ

1 ¼ 2:2
[44].
according to [45,46]. To help interpretation, small, medium
and large size-effects can be found in the American girl
population height differences between 15 and 16, 14 and
18 and 13 and 18 respectively [45].

Furthermore, a single value effect size is not sufficient
and a 95% interval should be studied. This helps to provide
information about how the current effect size is a good
estimation of the underlying one. Obviously, if more data
are used, a more precise interval is provided allowing
more reliable conclusions. To compute all these values,
Matlab and a famous neuroscience toolbox were used [44].

5.2. Statistical results

Preliminary to the analysis, we checked by visual inspec-
tion if the normality assumption was met. Indeed, this was
ensured for the AUROC measure (although also close to a
log-normal curve) but not for the NSS indicator. Hopefully,
the later distribution fits a log-normal curve and we
considered a simple logarithmic transformation to compute
our statistical analysis [43]. Detailed statistics are depicted
in Table 1.

Regarding the p-values, results do not really provide
additional information than a mean based-comparison as
shown in Tables 2 and 3. Relying on the AUROC measure,
there is sufficient evidence only for the AWS model to
likely outperform our model. Based on the NSS measure,
none of the alternative models show a significant better
performance. Given the observed p-values, the power of
the statistical test appears to be very high.

What concerns the Hedge' gn, results show that our
model is likely to have the best overall behaviour.
The AUROC outperforming AWS model has only a trivial
better performance than our model, whose tiny under-
performance is observable in the confidence interval
depicted in Table 2. However, RARE2012 is likely to only
slightly outperform the CASD, JIANLI, QDCT, HZ and SEO
models with a trivial to small effect-size. Basically, given
the observed confidence interval, one can say that all those
competitor models, including the AWS, depict similar
performance whose differences could be explained, at
least partially, by statistical fluctuations.

On the other hand, the NSS results are more successful as
shown in Table 3. The GBVS model is the only one
to compete our model. However, given the confidence
interval, one can conclude that both models provide
quasi-identical performance. The following other close per-
formers are the AWS and JIANLI models. But, the correspond-
ing effect-sizes at least indicate a small effect size. Except the



Table 2
Our model is slightly under-performing the AWS model with a trivial
effect-size using the AUROC performance measure. Other competitors are
close to our model with a trivial to small effect-size.

AUROC

Models p-values Hedge g

Lower bound Mean Upper bound

AIM 1.00 0.19 0.25 0.32
AWS 0.00 −0.14 −0.09 −0.05
CASD 1.00 0.03 0.09 0.15
FTSRD 1.00 1.01 1.14 1.26
GAUSS 1.00 1.43 1.59 1.75
GBVS 1.00 0.38 0.45 0.52
HZ 1.00 0.11 0.18 0.25
JIANLI 1.00 0.05 0.11 0.17
QDCT 1.00 0.08 0.14 0.20
SEO 1.00 0.08 0.14 0.20
STB 1.00 1.42 1.56 1.71
SUN 1.00 0.48 0.57 0.66
TORRALBA 1.00 0.26 0.34 0.41
YINLI 1.00 0.44 0.53 0.62

Table 3
Based on the NSS performance measure, our model equals the GBVS
model. Amongst the AUROC competitors, the closest one is the AWS
model with a small effect-size under-performance.

NSS

Models p-values Hedge g

Lower bound Mean Upper bound

AIM 1.00 0.74 0.82 0.90
AWS 1.00 0.24 0.29 0.34
CASD 1.00 0.27 0.33 0.38
FTSRD 1.00 1.40 1.54 1.69
GAUSS 1.00 0.84 0.94 1.05
GBVS 0.97 0.00 0.05 0.10
HZ 1.00 0.54 0.62 0.70
JIANLI 1.00 0.23 0.30 0.36
QDCT 1.00 0.36 0.42 0.49
SEO 1.00 0.65 0.72 0.80
STB 1.00 1.04 1.15 1.26
SUN 1.00 1.04 1.16 1.27
TORRALBA 1.00 0.83 0.93 1.02
YINLI 1.00 0.29 0.36 0.44
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AWS model, none of the AUROC-based competitors is
performing well enough compared to our model.

In conclusion, it appears that several alternative models
are strong competitors for our model based on the AUROC
measure. Nevertheless, a global assessment should con-
sider several measures and, considering two complemen-
tary ones (AUROC-NSS), RARE2012 appears to be slightly
better than the AWS model, which is the best performing
alternative model.

6. Conclusion and future work

This paper presents a novel multi-scale rarity-based sal-
iency model for still images called RARE2012. An extensive
evaluation and statistical analysis are carried out to compare
this model with other important models of the state of the art.
RARE2012 presents major changes compared to the
previously published models of the RARE family [31,32].
First, the colour and orientation features are extracted in
parallel or sequentially depending of their complexity.
Colours are based on a PCA analysis to optimize informa-
tion decorrelation. A new version of the rarity algorithm
has been implemented and the inter- and intra-maps
fusion has been changed to provide more reliable weights.
These algorithmic innovation significantly improved the
results on NSS and AUROC metrics along with computa-
tional efficiency.

After a qualitative evaluation of the model on both
synthetic and real-life images, where RARE2012 predicts
well the human gaze as desired, a quantitative study
including three images datasets of a total of 455 images,
13 other saliency models and two comparison metrics
(AUROC and NSS) is performed. RARE2012 outperforms all
the other models for the NSS metric and is the second best
for the AUROC metric. An assessment with these metrics
used alone is not fair and complete enough to efficiently
compare saliency models. Indeed, each metric will focus
on a particular view of the comparison like the amplitude
for the NSS and the order of the fixations for the AUROC.
In addition, each metric can be influenced or not by
top-down information like centered Gaussian that some
models integrate and others not.

Finally, to determine the robustness of ranking with
respect to statistical fluctuation, an additional analysis is
applied. Therein, RARE2012 at least slightly outperforms the
other models while considering both metrics and the three
databases as a whole. Relying on the effect-size Hedge' gn

measure, the AUCROC outperforming AWS model has only a
trivial better performance than RARE2012 while our model
outperforms all other models at least with a small effect size
observed for the GBVS model.

While bottom-up models are now well established and
their results convincing, the best way to go further in eye
motion modeling is to use top-down information to tune
the models to specific classes of images or to add informa-
tion about semantic objects. A perspective for RARE2012 is
to use top-down information to modulate the salient
regions with context-driven attention.
Acknowledgements

N. Riche is supported by the “Fonds pour la formation a
la Recherche dans Industrie et dans Agriculture” (FRIA).
N. Riche and M. Mancas contributed equally to this work.
M. Duvinage is a FNRS (Fonds National de la Recherche
Scientifique) Research Fellow and the corresponding
author for statistical analysis. Thierry Dutoit is member
of EURASIP. This work is also funded by the Belgian
Walloon region NumediArt project.

This paper presents research results of the Belgian
Network DYSCO (Dynamical Systems, Control, and Opti-
mization), funded by the Interuniversity Attraction Poles
Programme, initiated by the Belgian State, Science Policy
Office. The scientific responsibility rests with its author(s).

Part of the study was funded by LinkedTV EU FP7
project.



N. Riche et al. / Signal Processing: Image Communication 28 (2013) 642–658658
References

[1] L. Itti, C. Koch, E. Niebur, A model of saliency-based visual attention
for rapid scene analysis, IEEE Transactions on Pattern Analysis and
Machine Intelligence 20 (11) (1998) 1254–1259.

[2] M. Mancas, F. Pirri, M. Pizzoli, From saliency to eye gaze: embodied
visual selection for a pan-tilt-based robotic head, Advances in Visual
Computing (2011) 135–146.

[3] Ali Borji, Laurent Itti, State-of-the-art in visual attention modeling,
IEEE Transactions on Pattern Analysis and Machine Intelligence,
in press, http://ilab.usc.edu/publications/doc/Borji_Itti12pami.pdf.

[4] T. Judd, F. Durand, A. Torralba, A benchmark of computational
models of saliency to predict human fixations, IEEE Transactions
on Pattern Analysis and Machine Intelligence (2012).

[5] Matei Mancas, Nicolas Riche, Computational attention website,
2012.

[6] Y.F. Ma, H.J. Zhang, Contrast-based image attention analysis by using
fuzzy growing, in: International Multimedia Conference: Proceed-
ings of the Eleventh ACM International Conference on Multimedia,
vol. 2, 2003, pp. 374–381.

[7] N. Bruce, J. Tsotsos, Saliency based on information maximization,
in: Advances in Neural Information Processing Systems, vol. 18,
2006, pp. 155–162.

[8] D. Walther, Interactions of Visual Attention and Object Recognition:
Computational Modeling, Algorithms, and Psychophysics, PhD Thesis,
California Institute of Technology, 2006.

[9] D. Walther, C. Koch, Modeling attention to salient proto-objects,
Neural Networks 19 (9) (2006) 1395–1407.

[10] C. Koch J. Harel, P. Perona, Graph-based visual saliency, in: Proceed-
ings of Neural Information Processing Systems (NIPS), 2006.

[11] Lei Xu Yin Li, Yue Zhou, Xiaochao Yang, Incremental sparse saliency
detection, in: IEEE International Conference on Image Processing
(ICIP), 2009.

[12] Junchi Yan Yin Li, Yue Zhou, Visual saliency based on conditional
entropy, in: The Asian Conference on Computer Vision (ACCV), 2009.

[13] Hae Jong Seo, Peyman Milanfar, Nonparametric bottom-up saliency
detection by self-resemblance, in: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 1st International Workshop
on Visual Scene Understanding (ViSU), June 2009.

[14] Hae Jong Seo, Peyman Milanfar, Static and space-time visual
saliency detection by self-resemblance, Jounal of Vision 9 (12–15)
(2009) 1–27.

[15] M. Cheng, et al., Global contrast based salient region detection, in:
IEEE Conference on Computer Vision and Pattern Recognition, June
2011, pp. 409–416.

[16] Z. Liu, et al., Unsupervised salient object segmentation based on
kernel density estimation and two-phase graph cut, IEEE Transac-
tions on Multimedia 14 (August (4)) (2012) 1275–1289.

[17] F. Perazzil et al., Saliency filters: contrast based filtering for salient
region detection, in: IEEE Conference on Computer Vision and
Pattern Recognition, June 2012, pp. 1–8.

[18] Antonio Torralba, Aude Oliva, Monica Castelhano, John Henderson,
Contextual guidance of eye movements and attention in real-world
scenes: the role of global features on object search, Psychological
Review 113 (October (4)) (2006) 766–786.

[19] A. Garcia-Diaz et al., Saliency based on decorrelation and distinc-
tiveness of local responses, in: Proceedings of 13th International
Conference on Computer Analysis of Images and Patterns, 2009,
pp. 261–268.

[20] A. Garcia-Diaz, et al., Decorrelation and distinctiveness provide with
human-like saliency, in: J. Blanc-Talon, et al., (Eds.), Proceedings of
11th International Conference on Advanced Concepts for Intelligent
Vision Systems, 2009, pp. 343–354.

[21] Ayellet Tal Stas Goferman, Lihi Zelnik-Manor, Context-aware sal-
iency detection, in: IEEE Conference on Computer Vision and Pattern
Recognition, 2010.

[22] B. Schauerte, G.A. Fink, Focusing computational visual attention in
multi-modal human-robot interaction, in: International Conference
on Multimodal Interfaces and the Workshop on Machine Learning
for Multimodal Interaction, ACM, 2010, p. 6.

[23] X. Hou, L. Zhang, Saliency detection: a spectral residual approach,
in: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2007.

[24] C. Kanan, et al., Sun: top-down saliency using natural statistics,
Visual Cognition 17 (6/7) (2009) 979–1003.

[25] L. Zhang, et al., Sun: A Bayesian framework for saliency using natural
statistics, Journal of Vision 8 (7) (2008) 1–20.

[26] F. Estrada R. Achanta, S. Hemami, S. Susstrunk, Frequency-tuned
salient region detection, in: IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR), 2009.

[27] Jian Li, et al., Saliency detection based on frequency and spatial
domain analyses, in: Jesse Hoey, Stephen McKenna, Emanuele
Trucco (Eds.), Proceedings of the British Machine Vision Conference,
2011, pp. 86.1–86.11.

[28] B. Schauerte, R. Stiefelhagen, Predicting human gaze using quater-
nion dct image signature saliency and face detection, in: Proceed-
ings of the 12th IEEE Workshop on the Applications of Computer
Vision (WACV)/IEEE Winter Vision Meetings, Breckenridge, January
2012, pp. 9–11.

[29] J.G. Daugman, Uncertainty relation for resolution in space, spatial
frequency, and orientation optimized by two-dimensional visual
cortical filters, Journal of the Optical Society of America 2 (July (7))
(1985) 1160–1169.

[30] L. Itti, C. Koch, Comparaison of feature combination strategies for
saliency-based visual attention systems, SPIE Human Vision and
Electronic Imaging (HVEI'99) 3644 (1999) 473–482.

[31] M. Mancas, Relative influence of bottom-up and top-down attention,
Attention in Cognitive Systems (2009) 212–226.

[32] N. Riche, M. Mancas, B. Gosselin, T. Dutoit, Rare: a new bottom-up
saliency model, in: Proceedings of the IEEE International Conference
of Image Processing (ICIP), 2012.

[33] Gert Kootstra, Bart de Boer, Lambert Schomaker, Predicting eye
fixations on complex visual stimuli using local symmetry, Cognitive
Computation 3 (1) (2011) 223–240.

[34] D. Green, J. Swets, Signal Detection Theory and Psychophysics,
John Wiley, New York, 1966.

[35] L. Itti, R.J. Peters, A. Iyer, C. Koch, Components of bottom-up gaze
allocation in natural images, Vision Research 45 (18) (2005)
2397–2416.

[36] J.M. Henderson, et al., Visual saliency does not account for eye
movements during visual search in real-world scenes, Eye Move-
ments: A Window on Mind and Brain (2007) 537–562.

[37] Olivier Le Meur, Thierry Baccino, Methods for comparing scanpaths
and saliency maps: strengths and weaknesses, Behavior Research
Methods (2012) 1–16.

[38] Qi Zhao, Christof Koch, Learning a saliency map using fixated
locations in natural scenes, Journal of Vision 11 (2011) 1–15.

[39] Ali Borji, et al., Quantitative analysis of human-model agreement in
visual saliency modeling: a comparative study, in: IEEE Transactions
on Image Processing, in press.

[40] Ali Borji, Evaluation measures for saliency maps: AUROC and NSS.
〈https://sites.google.com/site/saliencyevaluation/
evaluation-measures〉.

[41] F. Sawyer Steven, Analysis of variance: The fundamental concepts, The
Journal of Manual and Manipulative Therapy, 17 (2) (2009) 27E–38E.

[42] David C. Howell, Statistical Methods for Psychology (Psy 613
Qualitative Research and Analysis in Psychology), Wadsworth Pub-
lishing, 2012.

[43] Barbara G. Tabachnick, Linda S. Fidell, Using Multivariate Statistics,
6th ed. Prentice Hall, 2012.

[44] H. Hentschke, M.C. Stüttgen, Computation of measures of effect size
for neuroscience data sets, European Journal of Neuroscience, 2011.

[45] Jacob Cohen, Statistical Power Analysis for the Behavioral Sciences,
2nd ed. Routledge Academic, 1988.

[46] Mark W. Lipsey, Design Sensitivity: Statistical Power for Experi-
mental Research (Applied Social Research Methods), Sage Publica-
tions Inc., 1989.

http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref1
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref1
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref1
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref2
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref2
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref2
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref4
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref4
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref4
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref9
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref9
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref14
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref14
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref14
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref16
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref16
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref16
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref18
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref18
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref18
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref18
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref24
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref24
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref25
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref25
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref29
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref29
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref29
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref29
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref30
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref30
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref30
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref31
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref31
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref33
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref33
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref33
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref34
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref34
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref35
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref35
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref35
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref36
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref36
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref36
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref37
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref37
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref37
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref38
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref38
https://sites.google.com/site/saliencyevaluation/evaluation-measures
https://sites.google.com/site/saliencyevaluation/evaluation-measures
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref42
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref42
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref42
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref43
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref43
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref45
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref45
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref46
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref46
http://refhub.elsevier.com/S0923-5965(13)00048-9/sbref46

	RARE2012: A multi-scale rarity-based saliency detection with its comparative statistical analysis
	Introduction
	Related work
	Local context: salient objects are contrasted compared to their surroundings
	AIM: Attention Based on Information Maximization (2005)
	STB: Saliency ToolBox (2006)
	GBVS: Graph-Based Visual Saliency (2006)
	YINLI: Visual Saliency Based on Lossy Coding (2009)
	SEO: Saliency Detection by Self-resemblance (2009)

	Global context: salient objects are different from all the others in the image
	TORRALBA: Saliency Detection by using Local Features (2006)
	AWS: Adaptive Whitening Saliency (2009)
	CASD: Context Aware Saliency Detection (2010)

	Normal context: salient objects imply differences to what the normal image would be
	HZ: Spectral residual approach (2007)
	SUN: Saliency Using Natural Image Statistics (2008)
	FTSRD: Frequency-Tuned Salient Region Detection (2009)
	JIANLI: Frequency and Spatial Saliency (2011)
	QDCT: Saliency Detection Using Quaternion DCT (2012)


	RARE2012: our proposed saliency model
	Feature extraction
	Multi-scale rarity mechanism
	Fusion
	The RARE family

	Saliency model evaluation
	Evaluation databases
	Qualitative evaluation
	Synthetic patterns
	Visualization result

	Quantitative evaluation
	Metric definition
	Performance evaluation


	Additional statistical validation
	Statistical framework
	Statistical results

	Conclusion and future work
	Acknowledgements
	References




