
Slowdio: Audio Time-Scaling for
Slow Motion Sports Videos

Alexis Moinet
alexis.moinet@umons.ac.be

Thursday 26th September, 2013

A dissertation submitted to the Faculty of Engineering of the University of Mons,
for the degree of Doctor of Philosophy in Engineering Science

Supervisor: Prof. Thierry Dutoit

This work is supported by a public-private partnership between
University of Mons and EVS Broadcast Equipment SA, Belgium.

You float like a feather . . .

. . . in a beautiful world

Thomas E. Yorke

— iii —

Jury members

Prof. Marc Pirlot – Université de Mons, president

Prof. Thierry Dutoit – Université de Mons, supervisor

Prof. Werner Verhelst – Vrije Universiteit Brussel

Dr. Axel Röbel – Institut de Recherche et Coordination Acoustique/Musique

Dr. Nicolas d’Alessandro – Université de Mons

— v —

Abstract

Today, most of sports television broadcasts feature
slow motion playbacks. Until now, these have been
silent. In this thesis, we present several state of the

art methods for time-scaling of audio signals and study their
behavior when applied to a new database of sports record-
ings. We argue that the underlying models used to develop
these methods do not correspond to the noisy audio signals
recorded during sports events. Besides, transient sounds
need to be detected and processed separately from the rest
of the signal, which proves difficult in the typical noisy envi-
ronments of sports events. Based on hypotheses that better
fit the actual content of these recordings, we develop a new
method that produces convincing time-scaled audio signals
while implicitly handling transients. Furthermore, we intro-
duce a new time-scaling approach for harmonic sounds such
as speech and single-instrument music recordings.

— vii —

Acknowledgements

Promoteur n’est pas une tâche aisée, on fait face aux questionnements
d’un chercheur un peu paumé, on aiguille, on donne son avis, en espérant

ne pas l’envoyer dans un mur. Thierry, merci pour ta confiance, ton humour
accidentel (ou pas ?), tes conseils avisés . . . et pour New York :-)

La collaboration avec EVS n’aurait pu se faire sans la participation de
plusieurs personnes, tant du côté TCTS que chez EVS. Un tout grand merci

à Laurent Couvreur pour avoir mis ce projet sur les rails et m’avoir convaincu
d’y prendre part, aux membres du projet audioskimming qui fut le point de
départ de l’aventure, spécialement à Fredo pour la FFT ;-). Mille mercis à
Philippe pour ton accueil chez EVS, ton aide, les explications patientes et
détaillées, les idées et les conseils donnés, à Benoît Michel et Pierre L’Hoest
pour avoir cru en ce projet, à Céline pour son aide dans le monde labyrinthique
des brevets, à Guy pour le futur. À tous pour votre enthousiasme permanent.

Un cadre de vie et un environnement de travail agréables sont des atouts
majeurs pour mener à bien un tel projet. Je trouve les miens partic-

ulièrement débordants de bonne humeur et de générosité. En particulier, Nico
& Laurence, merci à vous deux pour tant de choses qu’il me faudrait une
thèse pour les expliquer. Au labo, au cours des années, nombreux sont partis,
d’autres restent, merci à tous. Sauf Ruru-les-pantoufles, évidemment, mais il
sait pourquoi. Onur, teşekkür ederim dude, it’s been a geeky pleasure.

Mαίρη, Joë e et Jér^me, en plus d’être des ami(e)s et collègues adorables,
ont eu l’immense gentillesse et le courage de lire et commenter cette chose.

Il y aurait bien plus d’erreurs et de non-sens sans leurs patientes relectures.
Mon estomac n’oubliera pas les sushis, frites et autres repas larmoyants. Ma
mémoire n’oubliera pas tout le reste. Merci, ευχαριστώ αστεράκι. You rock!

Enfin, il me reste à remercier toute une bande de keuns qui se reconnaitront
s’ils lisent jamais ces quelques lignes, mes parents1 et toutes celles et ceux

que j’aurais eu l’outrecuidance d’oublier dans un élan de nonchalance déplacée.

Thank you !

1Ça y est, vous pouvez arrêter de compter les années . . .

— ix —

Preface

December 2003, a group of 4th grade students in electrical en-
gineering are struggling with a new problem during a practical
session of signal processing. How can we change the duration of

a sound without altering its content? This was my first contact with a
phase vocoder. Moving fast forward to April 2008, the first numediart
workshop is hosted by Transcultures in an old slaughterhouse, Mons,
Belgium. Project #1.1 is named audioskimming . It consists in a real-
time implementation of a phase vocoder and can modify the playback
speed of an audio recording while preserving its acoustical properties.
The speed parameter obeys instantly the commands sent by a 3D con-
troller. I’m a member of the development team. A few weeks later, au-
dioskimming is presented by Laurent Couvreur, its project manager, and
Thierry Dutoit to Pierre L’Hoest, CEO of EVS Broadcast Equipment.
EVS is, among other things, producing storage servers for digital video
recordings. An important share of these servers is used for storage and
processing of live sports events. Those equipments create and broadcast
in realtime most of the slow motion videos that can be seen on television
today. Seen, not heard, they are silent. Our project might be a solution,
but the playback speed modification it creates was meant for speech and
music. It does not apply gracefully to the noisy audio recorded during a
football game . . . over? No, not yet. Pierre L’Hoest and Benoît Michel
support the idea. A 4-year collaboration begins between EVS and the
Signal Processing Department of Faculté Polytechnique de Mons. The
goal is simple: we want to add an audio stream to slow motion videos
while they are produced. It must create high-quality audio. It must
faithfully reproduce the event and its atmosphere to increase the feeling
of immersion for the viewers. It must be fast and interactive. Realtime.

— xi —

http://www.transcultures.net/
http://www.numediart.org/projects/01-1-audio-skimming/
http://www.evs.tv
http://tcts.fpms.ac.be
http://www.fpms.ac.be

Contents

Introduction 3

I Audio Time-Scale Modifications 9

1 Digital Audio Signal Processing 11
1.1 Digital Audio Signal . 12

1.1.1 Waveform . 13
1.1.2 Frame, Windowing and Energy 13

1.2 Spectral Analysis . 16
1.2.1 Fourier Transform . 17
1.2.2 Discrete Fourier Transform 18
1.2.3 Short-Time Fourier Transform 21

1.3 Cepstral Alanysis . 28
1.3.1 Definitions . 28
1.3.2 Properties . 30
1.3.3 Applications . 32

1.4 Cross-correlation . 32
1.4.1 Fast Computation . 32
1.4.2 Applications . 33

1.5 Linear Prediction . 33

2 Audio Time-Scale Modifications 35
2.1 Sinusoidal Model for Audio Signals 36

— xiii —

xiv Contents

2.2 Time domain . 37
2.2.1 Analog Domain . 37
2.2.2 Resampling . 38
2.2.3 SOLA . 39
2.2.4 SOLAFS and WSOLA 41
2.2.5 TD-PSOLA . 42

2.3 Frequency domain: the phase vocoder 43
2.3.1 Phase vocoder . 44
2.3.2 Phase-locked vocoder 48

2.4 Model-based . 51
2.4.1 Source-Filter Model . 51
2.4.2 Sinusoidal Model . 52
2.4.3 Physical Model . 55

2.5 Mixed methods . 56
2.6 Transient Detection and Time-Scaling 56

2.6.1 Definition . 56
2.6.2 Detection . 59
2.6.3 Peak Picking . 61
2.6.4 Processing . 62

2.7 Sound Textures . 65
2.7.1 Textures Synthesis . 66
2.7.2 Time-Scaling . 67

3 A Phase Vocoder with Synchronized OverLap-Add 69
3.1 PVSOLA . 70

3.1.1 Implementation details 71
3.1.2 Discussion . 75
3.1.3 Results . 76

3.2 PWSOLA . 82
3.2.1 Implementation details 82
3.2.2 Discussion . 84

3.3 Conclusions . 84

Contents xv

II Audio Time-Scaling for Slow Motion Sports Videos 85

4 Database and Tools 87
4.1 Recordings . 87

4.1.1 Football . 89
4.1.2 Rugby . 91
4.1.3 Cricket . 92
4.1.4 Ice Hockey . 93
4.1.5 Tennis . 93
4.1.6 Basketball . 94
4.1.7 Baseball . 94
4.1.8 Car Race . 95
4.1.9 Hurdles . 95

4.2 Tools . 96
4.2.1 MXF Library . 96
4.2.2 MXF Video Players . 97

4.3 Annotation . 97
4.3.1 Statistics . 98

5 On the Use of Old Recipes for New Material 101
5.1 Time-domain . 102
5.2 Frequency-domain . 103

5.2.1 Phase Vocoder . 103
5.2.2 Random Phase . 108

5.3 Model-based . 110
5.4 Transient Detection and Time-Scaling 111

5.4.1 Energy . 111
5.4.2 Spectral Flux . 113
5.4.3 Multi-Band Spectral Flux 114
5.4.4 Peak Detection . 115
5.4.5 Processing . 118

5.5 Sound Textures . 121
5.6 Conclusions . 123

6 Slowdio 125
6.1 Overview . 127

xvi Contents

6.2 Grain Extraction . 129
6.2.1 Segmentation . 130
6.2.2 Parameters . 131
6.2.3 Discussions . 132

6.3 Grain Shifting . 134
6.3.1 Shift . 135
6.3.2 Concatenation . 136
6.3.3 Parameters . 139

6.4 Filling Gaps . 140
6.4.1 Spectral Synthesis . 140
6.4.2 Linear Prediction Filtering 142
6.4.3 Self Cross-Synthesis . 148
6.4.4 Texture . 157

6.5 Variable Speed . 158
6.5.1 Speed Controlled . 158
6.5.2 Position Controlled . 159

6.6 Results . 160
6.6.1 Implementation . 160
6.6.2 Listening Tests . 164

6.7 Conclusions . 169

Conclusions 171
Future Works . 174

A Mel-Spaced Filter Bank 175
A.1 Mel Scale . 175
A.2 Filter Bank . 175

Bibliography 177

List of Figures 187

List of Tables 191

Introduction

An audio recording represents the evolution of the amplitude of an acoustic
wave. This representation can be used to reproduce the sound wave with a
certain accuracy. More exactly it can be used to produce a sound wave that
will be perceived by human ears as similar if not identical to the original sound.

Each audio recording contains a definite span of time of an acoustic wave am-
plitude evolution recorded at a given “speed” and the reproduction is usually
played back at the same speed so that the resulting sound has the same du-
ration as the original one. However, there are many reasons why one could
accidentally or purposefully change the duration. Time-scaling is the process
by which the duration of an audio signal is changed. The most widely accepted
definition for time-scaling adds a fundamental constraint to this though: the
perceived content should not be changed in the process. More specifically the
perceived content over the frequency domain should not vary.

For instance, in the case of a person talking, the perceived result of time-scaling
should be that it is the same person speaking although in a faster or slower
fashion. Similarly for a musical performance: the musicians are playing the
exact same musical score albeit at a different tempo. This point is important
since, as we will see later on, the most natural and obvious methods for slowing
down or speeding up an audio recording do change the perceived frequencies.

— 3 —

4 Introduction

Applications

Time-scaling can find applications in several domains: telecommunications,
education, music, entertainment, etc. We describe some of them hereafter.

Telecommunications

Historically, one of the first attempted application of time-scaling was to reduce
bandwidth usage in telecommunications. It drove some of the first researches
on the topic. The principle is that if the audio signal is shrunk by a certain
factor before transmission and then expanded by the same factor after recep-
tion, the bandwidth occupied by this signal can be reduced by said factor.
However, in order to keep distortions below an acceptable level, only a factor
two compression can be achieved, at best, which is on par neither with older
nor with current compression methods.

More recently, time-scaling found an application in Voice over IP. It permits
a reduction in glitches due to packet delay or loss. When an audio packet is
delayed, the last packet received can be stretched, up to a certain limit, until
the latecomer arrives. When the delayed packet is finally received it can be
scaled down to fit in the remaining time slot before the next packet. In case it
is never received, time-scaling can take care of ensuring the continuity between
its two surrounding packets.

Culture and education

Time-scaling can help improve the efficiency of teaching material. For instance,
students revising lessons recorded on video can skim through these much faster
than the teacher could actually speak. In the same way, decelerating speech
can help people learning a foreign language. They can listen to recorded
exercises (dialogs, oral reading, etc.) at a speed adapted to their level of
understanding and increase that speed as they progress. With the advent and
omnipresence of online (and preferably educational2) videos in our daily lives
this can make it faster to parse the often too abundant content.

2TED talks, Khan Academy, Stanford’s online courses, etc. You name it.

Introduction 5

In day-to-day voice-based interactions such as email automated reading, user
interfaces for blind people, museum audio guides, etc. time-scaling could adapt
the voice speed to the user’s preference. Accelerating speech is also of practical
use for audiobook listeners who want to reach the end of the current chapter
before they get out of the traffic jam and arrive at work.

Music

Another early usage of time-scaling is in music through varied approaches and
applications. For instance it can be used to apply special effects to sounds,
changing their time structure, or to create a musical piece from a small initial
set of audio blocks which are recombined with an infinite number of possible
variations of their length.

Time-scaling can be used to change the tempo of musical recordings. There-
fore, several musical loops with different beats can be resynchronized on a
common tempo and played simultaneously or one can switch from one music
to another while smoothing the abrupt tempo transition into a progressive
one. It can also be used by amateur musicians who want to learn a piece
and are thereby able to listen to the original recording at a much slower pace.
Conversely, it can be used to accelerate the playback speed and thus serve as
a tool to navigate quickly through a collection of musics and sounds.

Entertainment

In the world of broadcast, movies and television, time-scaling can be used
to ensure synchronization between images and sound in several situations.
For instance when a video is converted from one frame rate to another (e.g.
between 24 and 25 fps), the duration of the movie, and hence of the soundtrack,
changes and it is necessary to apply time-scaling to avoid frequency-shifting.
Another application is to fix non-linear time shifts between soundtracks and
images, such as the dubbing recorded for characters in animated movies where
the speaker can be slightly out-of-sync with the lips movements, or special
effects added to a scene during the post-production stage.

In a different domain, commercials usually have a fixed time span (e.g. 30 sec-
onds) where as much spoken information as possible must fit exactly. Time-

6 Introduction

scaling allows to increase the speech rate and therefore the amount of infor-
mation while preserving the intelligibility.

A somewhat new application of time-scaling, which is the one we plan to
address in this thesis, is the case of audio in slow motion during broadcasting
of sports events. Nowadays the slow motion videos featured during sports
events are silent. The only sounds that we hear come live from the public, the
commentators or the athletes. Adding a time-stretched audio channel could
improve the immersive sensations and emotions perceived by the viewers.

Organization of Part I

The first Part of this dissertation is dedicated to the various existing methods
that affect the temporal structure of a sound. Chapter 1 introduces the fun-
damental digital signal processing tools that are used throughout this work.
The experienced reader in audio signal processing can safely skip this chapter.
The modifications of the structure can take many aspects that are presented
in Chapter 2, with a strong emphasis on time-scaling, although it is only one
of the possible approaches for the transformation of the time organization
of audio recordings. Then our contributions to the domain are depicted in
Chapter 3 where we describe a phase vocoder with synchronized overlap-add
(PVSOLA), a new method we developed for time-scaling of harmonic signals,
and its variant based on waveform similarities, PWSOLA.

Organization of Part II

The second Part of the thesis addresses the specific problem of time-scaling ap-
plied to audio recordings of sports events with the goal to include the resulting
sounds during broadcast of slow motion videos. The fourth Chapter presents
the various software tools and sports video recordings that EVS Broadcast
Equipment SA has provided us with. These videos are used to test the at-
tempted adaptation of several state of the art algorithms in Chapter 5. They
are also used with a new time-scaling method, detailed in Chapter 6, developed
specifically for the audio signals typically recorded during sports events, and
for which we present the results of both formal and informal assessments as
well as a patent application and a publication in an international conference.

Introduction 7

Original Contributions

The original work presented in this thesis contains four novelties:

a new method for time-scaling of harmonic signals (Chapter 3)

a database of sports recordings, partly annotated (Chapter 4)

a study of the behavior of state of the art methods for time-scaling when
applied and adapted to this new category of signals (Chapter 5)

a new approach developed specifically with sports recordings in mind and
that implicitly preserves all the transient events (Chapter 6)

Part I

Audio Time-Scale Modifications

— 9 —

Chapter 1

Digital Audio Signal Processing

An audio signal or audio recording is a one-dimensional function of time repre-
senting the amplitude variations of an acoustic wave. In its original form it is
an analog signal, a continuous function of time, and it can be recorded and dis-
tributed on analog support such as LP records and magnetic tapes. Nowadays
however, most of the audio signals are stored, distributed and, more impor-
tantly, processed in the digital domain. For instance, the workflow in sports
broadcast switched to the digital domain many years ago. This chapter briefly
introduces some of the processing tools used in digital audio signal processing
and more specifically the ones that will be used in this thesis. Section 1.1
presents the notion of an audio signal in the digital domain and associated
concepts such as frame, grain, energy. Section 1.2 introduces the analysis of a
signal in the spectral domain and its applications. Section 1.3 goes one step
further with the cepstral alanysis of a signal, which is a derived form of spec-
tral analysis of its spectral analysis. Section 1.4 treats of the cross-correlation
which we use to measure the similarity between two waveforms. Finally, Sec-
tion 1.5 addresses the notion of linear prediction (LP) and more specifically
of LP filtering.

Obviously all of these tools can be used on any other one-dimensional signal.
Some of them were originally not even developed for audio signals but even-
tually found some use there. Nevertheless they will be presented with a point
of view biased toward audio signals.

— 11 —

12 Digital Audio Signal Processing

1.1 Digital Audio Signal

Given a one-dimensional analog audio signal xa(t), continuous over time t, one
obtains the discrete signal x(n) as:

x(n) = xa(nTs) (1.1)

where Ts is the sampling period and n is an integer sampling index. Put
differently, x(n) is a measure of xa(t) every Ts second with Ts usually taking
its value around a few dozen microseconds in the case of audio recordings.

Note that in audio signal processing it is often customary, though not neces-
sary, to consider the signals as causal, which means that xa(t) = 0 for t < 0
and thus x(n) = 0 for n < 0. In other words, the first “valid” sample of x(n)
corresponds to time instant 0.

The Nyquist-Shannon sampling theorem [1] implies that in order to be able
to reconstruct the analog signal from the discrete one, the former should not
contain any frequency information above Fs/2, the Nyquist frequency, with Fs
the sampling frequency equal to 1/Ts. If the bandwidth of xa(t) is larger than
Fs/2 the sampling causes a distortion called spectral aliasing in the resulting
x(n) and xa(t) cannot be recovered from it. If the distortion is too important,
x(n) is meaningless for any further analysis and processing, especially if the
goal is to resynthesize an analog signal at the end of said process, because any
signal based on an aliased x(n) would be distorted in an unwanted manner.

The second step in an analog to digital converter (ADC) is the quantization
of x(n). Indeed, it is not possible for a computer1 to represent and store
with an infinite precision the values that xa(t) can take from the continuum
of possible pressure variations that create the acoustic waves. Therefore, each
sample amplitude is digitized, approximated with a value from a discrete and
finite scale, introducing a quantization error. The representation of xa(t) thus
obtained is called a digital signal. It is discrete both in time and in amplitude
and, from now on, it is implied that x(n) is always a digital signal.

1 or a DSP or an FPGA or any other kind of digital processor.

Digital Audio Signal Processing 13

1.1.1 Waveform

A common representation of a digital audio signal is the so-called waveform, a
drawing of the quantized samples as a function of time. Although the signals
studied are discrete in time and amplitude and should therefore be represented
as sequences of regularly spaced pulses, their waveforms are generally drawn
as successions of lines joining subsequent samples as shown in Figure 1.1. This
thesis will use this convention when presenting audio signals, but it should not
be mistaken for working on continuous signals.

xa(t)

x(n)

waveform

1
Fs
/

continuous
time

0

1

1-

0

1

1-

0

1

1-

(t)

discrete
time(n)

discrete
time(n)

Figure 1.1. An analog signal xa(t), its sampled version x(n) and the waveform that
represents x(n). The time lapse between two samples of x(n) is 1/Fs.

1.1.2 Frame, Windowing and Energy

Frame and Grain

Most of the time methods for audio signal processing do not work on com-
plete audio recordings but rather on relatively small subsets lasting between a
few milliseconds and a few dozens milliseconds. Such a subset of consecutive
samples is called a frame or a grain.

These two terms can be used more or less interchangeably, although “frame” is
the most commonly encountered in the fields of audio time-scale modification

14 Digital Audio Signal Processing

and speech processing. “Grain”, on the other hand, is usually found in the
domains of texture and granular synthesis for musical composition, game or
movie soundtracks, etc. It is often associated with a notion of atomicity where
each grain represents an audio event isolated from any other whereas a frame
is a more general term denoting a set of successive samples whose time limits
do not necessarily have a specific meaning. A frame f(n) is written as

f(n) = x(n) for n = n1, . . . , n2 (1.2)

with n1 and n2 the boundaries of the frame in x(n) as shown in Figure 1.2.
Note that in schematic representations of methods for audio processing we
often use bare rectangles to represent frames and grains, instead of waveforms,
in order to lighten the figures.

0

1

-1

x(n)

discrete
time

n1 2n

f(n)

(n)

Figure 1.2. A frame f(n) is a finite-length subset of a discrete signal x(n).

For a simpler representation in the remaining of this dissertation a pseudo-
change of variable is applied so that the index n of f(n) starts at 0 and ends
at N − 1 where N = n2 − n1 + 1 is the number of samples in the frame. N is
called the frame length or frame size. From now on, whenever a finite-length
signal f(n) is used and its index n is out of boundaries2, it is supposed that
f(n) = 0.

Windowing

Let us consider a frame f(n). Its samples at both extremities do not present
any particular properties. However, there are several types of signal processing

2 in other words, if n < 0 or n > N − 1

Digital Audio Signal Processing 15

methods that work better when applied to frames with smoothly rising and
decreasing edges, akin to a fade-in and a fade-out of respectively the first and
last sets of samples of f(n).

Windowing is the process by which the samples of a frame f(n) are individually
multiplied (weighted) by the samples of another frame w(n), the window, as
per Equation 1.3. With an appropriate window function w(n), this creates
the desired fade-in/fade-out effect, as shown in Figure 1.3.

fw(n) = f(n) w(n) for n = 0, . . . , N − 1 (1.3)

The window can take many shapes and some have interesting properties in
the time [2] or frequency domain [3], but it is not the purpose of this work to
study them. The window used in the next chapters is usually the Hann (or
Hanning) window, defined in Equation 1.4.

h(n) =

{
0.5− 0.5 cos(2πnL) if n = 0, . . . , L− 1

0 otherwise
(1.4)

This definition is slightly different from the definition usually encountered
(the denominator in the fraction is L instead of L − 1), for the cumulated
windowing obtained would present a small ripple otherwise in the overlap-
add-based methods used in the next Chapters, as explained in [2].

It is also interesting to note that extracting a frame f(n) from a signal x(n)
is equivalent to the windowing of this signal by a rectangular window that is
equal to one within the boundaries [n1, . . . , n2] and zero everywhere else.

f(n)

w(n)

f (n)w

Figure 1.3. A frame f(n) is multiplied, sample by sample, by another frame w(n)
called the window function (here a Hann window). This is used, no-
tably, before a spectral analysis or during an overlap-add procedure, as
explained in later chapters.

16 Digital Audio Signal Processing

Energy

The energy E of a frame f(n), of length N , is defined as

E =
N−1∑
n=0

|f(n)|2 (1.5)

Note that for audio signals the samples of f(n) have real values and, therefore,
the absolute value |.| is not necessary.

From the point of view of the signal x(n) from which f(n) is extracted as per
Equation 1.2, E measures the local energy between samples x(n1) and x(n2).
It is convenient to link the value E with the sample index located midway
between n1 and n2. Then one can draw the evolution of the local energy of
an audio signal x(n) of length L as a function of time, as illustrated in Figure
1.4, using Equation 1.6:

E(m) =

m+N/2−1∑
n=m−N/2

|x(n)|2 for m = 0, . . . , L− 1 (1.6)

where x(n) is considered equal to zero for n < 0 and n > L − 1. Most of
the time N is an even integer, therefore each value E(m) corresponds to the
energy of a frame centered between samples x(m− 1) and x(m).

The only parameter that affects E(m) is the length N of each frame which
can be interpreted as a zoom factor. Indeed, if N = 1 the values of E(m)
are simply the squared values of the samples, and if N ≥ 2(L − 1), E(m) is
constant and equal to the energy of the whole signal x(n). In between these
two extrema the function E(m) gives an image of the evolution of the energy
of x(n) for as many levels of detail as there are possible values of N (fine
details for small values, gross approximations for high values).

1.2 Spectral Analysis

Chapter 2 introduces several time-scaling methods which all use the same
underlying model: an audio signal is a weighted sum of time-varying sinusoidal

Digital Audio Signal Processing 17

0

1

0
-1

(s)642

0

1

-1
(s)6420

0

1

0
-1

(s)642

0

1

0
-1

(s)642

49152=N

1024=N

16384=N

4096=N

Figure 1.4. Time evolution of the energy (red) of a signal (black) for various N ,
with Fs = 44.1 kHz. We can observe that for smaller values of N , more
details are present whereas larger values give a smoother evolution.

components at various frequencies.3 For an analog signal xa(t) or a digital
signal x(n), spectral analysis is a process by which one decomposes said signal
into a linear combination of basis functions, each representing a frequency
component. In the case of the Fourier transform, the basis functions are
orthonormal complex exponentials, respectively ejωt and ejωn in the analog and
the discrete case, where ω = 2πf and f is a continuous variable representing
the frequency of the complex exponential.

1.2.1 Fourier Transform

Given an analog signal xa(t), its Fourier transform Xa(ω) is written

Xa(ω) =

∫ +∞

−∞
xa(t)e

−jωt dt (1.7)

from which one can recover xa(t) with the inverse transform

xa(t) =
1

2π

∫ +∞

−∞
Xa(ω)ejωt dω (1.8)

3Although some methods feature an additional noise component.

18 Digital Audio Signal Processing

In the case of a discrete-time signal x(n), the integral sign is replaced by
a summation one and the discrete-time Fourier transform (DTFT) and its
inverse transform are written respectively

X(ω) =
+∞∑

n=−∞
x(n)e−jωn (1.9)

x(n) =
1

2π

∫ π

−π
X(ω)ejωn dω (1.10)

with X(ω) a periodic signal of period 2π.

1.2.2 Discrete Fourier Transform

When it come to digital signal processing the DTFT as written in Equation 1.9
has two fundamental drawbacks [4, 5]. On the one hand, it assumes that the
signal x(n) has an infinite length, and on the other hand it uses the continuous
variable ω. None of these can get along with a digital process which inherently
needs finite-length signals and discrete variables.

The discrete Fourier transform (DFT) is the “for-finite-length-signals and
discrete-in-frequency” approximation of the DTFT [6]. The solution to the
first problem seems obvious: the DFT works on a finite subset of samples
from the theoretically infinite signal x(n) or, in other words, a frame f(n)
as defined in Section 1.1.2, with f(n) equivalent to a windowing of x(n) by
a window w(n) called the analysis window. As for the second problem it is
solved by using a finite set of values ωk from ω

ωk =
2kπ

N
for k = 0, . . . , N − 1 (1.11)

so that values for ωk are within an interval [0, . . . , 2π[that matches the pe-
riodicity of X(ω). Each index k is called a frequency bin. It corresponds to
the range of frequencies wk ± π

N or, in hertz, fk ± Fs
2N , with fk = ωkFs

2π = kFs
N

the central frequency of bin k. Consequently, the N samples of the discrete
Fourier transform F (k) of a frame f(n) are computed as in Equation 1.12.

Digital Audio Signal Processing 19

F (k) =
N−1∑
n=0

f(n)e−jωkn for k = 0, . . . , N − 1 (1.12)

Note that each value of F (k) is the corresponding value of F (ω) for ω = ωk
and F (ω) the convolution of X(ω) and W (ω), with W (ω) the DTFT of the
window w(n) used to extract the frame f(n) from the signal x(n). Therefore,
as detailed in [3] the choice of the window according to its Fourier transform is
of great importance with regard to the quality of F (k). Besides, for some time-
scaling applications the window is required to have particular time-domain
properties that have been studied in [2].

The inverse discrete Fourier transform (IDFT) can be obtained with

f̂(n) =
1

N

N−1∑
k=0

F (k)ejωkn (1.13)

where f̂(n) is an infinite periodic signal with period N . Each period is an
approximation of f(n) since F (ω) has been sampled as F (k) [5]. However,
if N the number of points computed for F (k) is equal to or larger than the
number of samples in f(n), then the reconstruction is perfect and each period
of f̂(n) is equal to f(n). The notions of analog, discrete-time and discrete
Fourier transforms and their differences are illustrated in Figure 1.5.

Fast Fourier Transform

The DFT as such is a relatively heavy computation whose algorithmic com-
plexity has an order O(N2). The fast Fourier transform (FFT) is a family of
algorithms that reduce the complexity, and thus the computation times, to an
order O(N log(N)). Therefore, the gain is in the order O(N/log(N)), which is
significant for the values of N applied in audio signal processing. To give an
idea, N generally spans between a few dozens and a few thousands samples
for which the gain brought by the FFT is thus around 10 to 2500.

20 Digital Audio Signal Processing

0

1

-1

xa(t)

FsFs 2/
0

1

-1

x(n)

1
Fs
/

f(n)

X(w)

F(k)

FsFs 2/

0 N-1

0

0

FT

DTFT

DFT

Xa(w)

Figure 1.5. Top: an infinite analog signal xa(t) and Xa(w), its infinite Fourier
transform (FT); middle: an infinite digital signal x(n) and X(w), its
infinite periodic discrete-time Fourier transform (DTFT); bottom: a
frame f(n) and F (k), its finite N -sample discrete Fourier transform
(DFT) which is a sampling of an underlying DTFT. Note that the peak
corresponding to the sine is generally spread4, compared to X(w), since
f(n) has a finite length, consistently with Gabor uncertainty principle
explained in Section 1.2.3.

Without entering the details of their inner working, one can say that the FFT
algorithms use a divide and conquer approach by computing a N -length DFT
as two smaller DFTs of lengths N1 and N2, which can themselves be split into
smaller DFTs, and so on until N as been factorized into its prime factors.
Then other algorithms are used to speed up the computation of these smaller
DFTs, even for large prime factors [7, 8]. For sequences of real numbers such
as a digital audio signal, the computational load of the FFT can even be re-
duced further, approximately by a factor two, when considering the symmetry
properties of the resulting DFT [9].

Finally, note that given the similarity between Equation 1.12 and 1.13, the
principle of the FFT can be applied to obtain an inverse fast Fourier trans-

4Unless f(n) contains exactly one period of the sine, in which case there is no spread.

Digital Audio Signal Processing 21

form (IFFT) algorithm for the computation of the inverse DFT. Besides, an
optimization, similar to the one cited in the previous paragraph, exists when
the result of the IFFT is known to be a sequence of real values.

1.2.3 Short-Time Fourier Transform

If x(n) is a stationary signal and f(n) is long enough, F (k) makes sense as an
approximation of X(w). However, if it changes over time, for instance if x(n)
is made of speech or music, its spectral content changes as well. If f(n) is long
enough to contain these variations, F (k) is more of an averaged image of the
evolution of the spectrum for samples [x(n1), . . . , x(n2)], with n1 and n2 the
boundaries of f(n), as defined in Equation 1.2.

The short-time Fourier transform5 (STFT) [10] is a matrix S(n, k) represent-
ing the evolution over time of the spectrum of a signal x(n) with time (n) and
frequency (k) as the axes of the matrix. If the horizontal one, for instance, is
the frequency axis and the other, consequently, the time axis, the first row of
the matrix is obtained by extracting a frame at samples [0, . . . , N − 1] from
the signal and computing its DFT. Usually before computing the DFT, the
frame is multiplied by an analysis window w(n) so as to attenuate the spectral
leakage [3].6

Then by moving the position of the frame forward in the signal, the successive
values over the kth row of the matrix offer an image of the evolution of the
spectral content of the signal over time for frequency bin k. For a signal x(n)
with length L the STFT is

S(m, k) =
N−1∑
n=0

x(n+m)w(n)e−jωkn for m = 0, . . . , L−N (1.14)

where m is the index representing the digital time axis. However, this matrix
contains a lot of redundant information and usually only one out of every H
columns is computed, as in Equation 1.15.

5 Sometimes short-term Fourier transform.
6Also remember that “no windowing” is actually multiplying by a rectangular window
w(n) = 1 inside the range of indexes of the frame and zero outside of it.

22 Digital Audio Signal Processing

S(m, k) =
N−1∑
n=0

x(n+mH)w(n)e−jωkn for m = 0, . . . , bL−N
H
c (1.15)

where bac is the integer value of a (i.e. the largest integer not greater than a)
and H is the so-called frame shift or hop size and represents the interval in
number of samples between the samples of two successive frames.7 The number
of samples that two successive frames have in common is called the overlap
and is equal to N −H. It is often given as a percentage of N , N−H/N = 75%
for example when N = 4H as in Figure 1.6.

STFT

N

H

DFT
+

x(n)

S(0,k)

S(1,k)

S(2,k)

S(3,k)

Figure 1.6. Short-time Fourier transform of a waveform. First the input is divided
into overlapping frames. Then each frame is windowed and the discrete
Fourier transform (DFT) of the result is computed, producing a sequence
of amplitude (top) and phase (bottom) spectrums S(m, k)

Note that this is a direct downsampling by a factor H of each of the N fre-
quency bins of the STFT and as such it could create aliasing in each of these
bins. However, it can be shown [10] [11]8 that there is a limit value for H
under which the aliasing is reduced under a reasonable threshold. This limit
is a function of the window function w(n), more specifically of the bandwidth

7 In other words, each sample of one frame is H samples apart from the sample with the
same index in the next frame.

8 https://ccrma.stanford.edu/~jos/sasp/Choice_Hop_Size.html

https://ccrma.stanford.edu/~jos/sasp/Choice_Hop_Size.html

Digital Audio Signal Processing 23

of the first lobe of its spectrum. In this thesis H is usually no greater than
N/4 which is small enough to avoid the aliasing for the Hann windows, defined
in Equation 1.4, used during analysis.

The short-term Fourier transform is a useful tool to analyze and process a
signal over time. It can be used to detect and isolate events that could not
even be detected otherwise with time-domain-only analysis, it can be used for
digital filtering and it is the central tool used for time-scaling with a phase
vocoder as explained in Section 2.3. However powerful it is, one shortcoming
of the STFT must be carefully considered before relying upon this method for
audio signal processing, namely Gabor uncertainty principle.

Gabor Uncertainty Principle

Akin to Heisenberg principle for quantum mechanics (upon which D. Gabor’s
reasoning follows) that states one cannot simultaneously know with an infinite
precision the position and the momentum of a particle, Gabor principle states
that for a continuous signal one cannot simultaneously achieve an infinitely
precise resolution along the frequency and the time axis [12] following the
relation

∆t∆ω ≥ 1

2
(1.16)

with ∆t the effective duration or time resolution, and ∆ω the effective fre-
quency width or frequency resolution. Ideally these two values should be as
small as possible, but the condition makes it impossible: if one goes down (e.g.
better time resolution), the other must go up (i.e. worse frequency resolution).

When applied to discrete signals, as Figure 1.7 schematically explains for a sine
function, this principle means that even though using longer frames reduces
the uncertainty over the frequency values, it increases at the same time the
imprecision over the position since each value then corresponds to a wider
range of samples. Besides, when using the STFT to study time-varying data
such as audio signals, a smaller frame length is preferable in order to analyze
the signal over a pseudo-stationary region, longer frames presenting too many

24 Digital Audio Signal Processing

variations to obtain meaningful information.9 On the other extremity, the
finest possible time resolution is that of one sample, from which it is not
possible to deduce any frequency information.

0

1

-1

x(n)

DFT Δω

0 π

0

1

-1

x(n)

DFT Δω

0 π

Δn Δn

Figure 1.7. Left: the location of the analysis is known with a relatively high preci-
sion (small number of samples ∆n) but there are not enough samples
for a precise estimate of the frequency of the underlying signal (large
∆ω); right: there are more samples, and, therefore, the estimate of the
frequency of the sine is more precise (small ∆ω). However, the analysis
spans over a longer period of time (large ∆n) and, therefore, its location
is less precise. What has been gained on one side is lost on the other,
following the uncertainty principle.

Spectrogram

The spectrogram is a representation of the STFT that is widely used in audio
processing. It is (literally) an image of the STFT matrix where the color10

of the pixel at coordinate (m, k) of the image is a mapping of the amplitude
|S(m, k)| as illustrated in Figure 1.8.

This representation is used to visually analyze an audio signal. It can help, for
instance, in audio and speech processing to manually localize phonemes bound-
aries or transient events or to detect and isolate inaudible content. However,
its most widespread usage is to illustrate publications dedicated to audio pro-

9For instance a peak at a given frequency in the spectrum would only correspond to some
sort of average frequency over the frame, without giving any information about the actual
content.

10Note that the scale of “colors” used is as often as not a grayscale.

Digital Audio Signal Processing 25

0 (s)642

20

10

5

15

0

(kHz)

0 (s)6420 time

fr
eq

u
en

cy

time

am
p
li
tu
d
e

0

1

1-

0

1

1-

Figure 1.8. Left: a sinusoid with frequency increasing linearly with time (a chirp)
and its spectrogram in grayscale; right: a more complex music waveform
(intro of “Angie”) with its spectrogram in grayscale. In each spectrogram,
the larger the spectral amplitude, the darker the pixel. A sine is seen as
a thin line whereas complex signals draw more convoluted images.

cessing, such as the current work, as a complement to waveforms; the images
make up, in part, for the natural lack of sound in written material.

Inverse Short-Time Fourier Transform by OverLap-Add Synthesis

The STFT is usually a first step of a signal analysis before further processing
happens [11]11. The processing can be the transformation into other parame-
ters (MFCC, spectral flux, sine modeling, etc.), the detection of some features
(pitch, band energy, transients, etc.) or the modification of the values of
S(m, k) (filtering, time-scaling, etc.), the modified matrix being then used to
resynthesize a signal y(n).

11 https://ccrma.stanford.edu/~jos/sasp/Applications_STFT.html#chap:apps

https://ccrma.stanford.edu/~jos/sasp/Applications_STFT.html#chap:apps

26 Digital Audio Signal Processing

For a given signal x(n) whose STFT is S(m, k), we can invert the STFT using
Equation 1.17, a simple OverLap-Add (OLA) approach described in [10].

x̂(n) =

bn/Hc∑
m=dn−N+1

H
e

N−1∑
k=0

S(m, k)ejωk(n−mH) for n = 0, . . . , L− 1 (1.17)

where bac is the largest integer not greater than a and dae is the smallest
integer not smaller than a. In other words, each sample x̂(n) is the sum of all
the inverses of the DFTs of which it was part of the computation in Equation
1.15. This process is called overlap-add (OLA) synthesis [10]. Provided that
some conditions are met for the value of H, so that overlap-adding all the
analysis windows w(n) adds up to a constant value, the reconstruction is
perfect12 although scaled in amplitude by a constant factor κ: x̂(n) = κx(n).
For instance in the case of a Hann window, the condition is that H = L/2p
with p a positive integer [11]13. The factor κ is due to the fact that several
frames are used to reconstruct each sample x(n) by overlap-add and each of
these frames has been multiplied by an analysis window function. The value
of κ can be deduced from w(n):

κ =

bN−1
H
c∑

n=0

w(nH) (1.18)

and if H = 1, κ = W (0), with W (k) the DFT of w(n).

If the STFT S(n, k) is modified by some process into Ŝ(n, k) before applying
the inverse transform, it is possible [10,13] that there is no signal whose STFT
is Ŝ(n, k). In other words, if Equation 1.17 is applied to Ŝ(n, k) to obtain x̂(n),
the STFT of x̂(n) is not necessarily Ŝ(n, k). This does not mean that x̂(n)
is not a valid signal, but it is only an approximation of the desired output.
In [13], Griffin and Lim show that, using Equation 1.19, a signal x̂(n) can be
computed so that its STFT minimizes the least square error with Ŝ(n, k).

12This is not entirely true, as seen on Figure 1.9, the N −H first and last samples of x̂(n)
are multiplied respectively by an increasing and decaying windowing function, but this
is relatively insignificant.

13 https://ccrma.stanford.edu/~jos/sasp/Choice_Hop_Size.html

https://ccrma.stanford.edu/~jos/sasp/Choice_Hop_Size.html

Digital Audio Signal Processing 27

x̂(n) =

bn/Hc∑
m=dn−N+1

H
e

N−1∑
k=0

Ŝ(m, k)ejωk(n−mH) w(n−mH) for n = 0, . . . , L− 1

(1.19)

The difference with Equation 1.17 is that each frame obtained from the inverse
DFT is multiplied by a synthesis window function w(n), as illustrated in Figure
1.9. This affects the condition over the hopsize H and, for instance, if w(n) is
a Hann window, the condition becomes H = L/4p.

IDFT

x(n)

S(0,k)

S(1,k)

S(2,k)

S(3,k)

N

H

^

OLA

ISTFT

^

^

^

^

Figure 1.9. To inverse the short-time Fourier transform, an IDFT transforms each
frame of Ŝ(m, k) back into the time domain. Then the frames are win-
dowed and overlap-added (OLA) () into x̂(n), the output signal.

The analysis and synthesis windows are generally the same and, similarly to
Equation 1.18, the value of κ can be deduced from w(n):

κ =

bN−1
H
c∑

n=0

w2(nH) (1.20)

and if H = 1, κ = W (0), with W (k) the DFT of w2(n).

28 Digital Audio Signal Processing

1.3 Cepstral Alanysis

Cepstrum is defined for the first time in a 1963 publication by Bogert et
al. [14] as a tool to detect and measure echoes in seismic signals. At about
the same time Oppenheim [15] is working on homomorphic methods for signal
processing. Briefly, homomorphic systems “map” a non-linear operation in a
given space onto a linear operation in another space [16]. Therefore, in order
to apply the non-linear operation to a signal x(n), it is first transformed into
another space, then it is processed with the linear operation, for instance a
linear filtering, and it is finally transformed back into the original space.

Cepstral alanysis14 turns out to be an example of homomorphic system that
transforms a time-domain signal x(n), a convolution between two signals y(n)
and z(n), into a cepstral-domain signal cx(n), an addition of two signals cy(n)
and cz(n), with cy(n) and cz(n) respectively the cepstrums of y(n) and z(n).
The sum cy(n) + cz(n) can be processed and an output signal x̂(n), in the
time domain, is then computed with an inverse cepstral alanysis. The advan-
tage offered by this method is that often cy(n) and cz(n) can be processed
separately, which also means that one of them can be filtered out to obtain
x̂(n) = y(n), for example. This is explained with more details in Section 1.3.2

1.3.1 Definitions

As with the Fourier transform there are several forms of cepstrum: continu-
ous, discrete-time and discrete. Besides, it has several variations: real, com-
plex, power cepstrum, . . . not to mention linear prediction-based cepstrum and
mel-frequency cepstrum. This section focuses on the discrete cepstrum, but
generalization to discrete-time and continuous cases can be deduced easily
by making a parallel with similar developments for the Fourier transform in
Section 1.2.

For a finite-length digital signal x(n), the real cepstrum crx(n) is defined as

crx(n) =
1

N

N−1∑
k=0

log |X(k)|ejωkn (1.21)

14Any smeenilgy tnipyg erorr in Sceiton 1.3 is msot porablby vlonuraty.

Digital Audio Signal Processing 29

with X(k) the DFT of x(n) as defined in Equation 1.12 and |X(k)| its vector
of absolute values or magnitudes. In other words, crx(n) is the inverse Fourier
transform (Equation 1.13) of the logarithm of the magnitude of the Fourier
transform of x(n). The domain of the index n of the cepstrum is similar to a
time domain, but to differentiate it from the actual time domain, it is called
the quefrency domain.

In the same way the complex cepstrum cx(n) is defined as

cx(n) =
1

N

N−1∑
k=0

logX(k)ejωkn (1.22)

where “ log” is the complex logarithm function as defined in [16]

X(k) = |X(k)|ej6 X(k) (1.23)
logX(k) = log |X(k)|+ j 6 X(k) (1.24)

and 6 X(k) is the vector of phases ofX(k). Note that for both real and complex
cepstrum the definitions can vary, depending on the source in the literature.
Some use the inverse DFT as per Equations 1.21 and 1.22 whereas others
use the DFT itself, considering the vector log |X(k)| and logX(k) as if they
were time series, or the discrete cosine transform (DCT) or its inverse (IDCT)
[17].15 Basically, any transform can be used so long as it decorrelates the
samples to which it is applied. In the case of the complex cepstrum, the inverse
cepstral transform is obtained by applying the inverse chain of transforms. For
instance applying a DFT to c(n) followed by an exponentiation and an IDFT
if the computation of c(n) was made through DFT → log→ IDFT. Note that
the real cepstrum cannot be inverted since the phase information was lost in
the log |.| operation, only the spectral amplitude can be recovered. Also note
that if x(n) is made of real values, as is the case in an audio recording, both the
real and the complex cepstrum contain real values only, for the denomination
“complex” in the latter simply denotes the fact that it operates on the complex
spectrum, regardless of its resulting values.

15Note that the DFT of an even symmetrical signal is equivalent to the DCT applied to its
first half. In the case of the real cepstrum, the DCT is simply a straightforward way to
optimize the computation of the cepstral coefficients.

30 Digital Audio Signal Processing

It is interesting that the computation of the cepstrum of a signal implies the
computation of two DFTs or of a DFT and an IDFT and, therefore, that
the publication by Cooley and Tukey16 of the FFT algorithm in 1965 is quite
opportune as it makes the implementation of cepstral alanysis efficient enough
for all practical purposes. Besides, several successful applications followed,
especially in audio processing but not limited to it, that changed the cepstrum
from a spelling eccentricity into an essential instrument.

1.3.2 Properties

Let us consider a signal x(n), the result of the convolution between two signals
y(n) and z(n), for instance an excitation signal and a filter impulse response.
The homomorphic property as written in Equation 1.25 to 1.30 shows that
the cepstral transform permits to a certain extent to recover the spectral am-
plitudes |Y (k)| and |Z(k)| of each signal.

x(n) = y(n) ∗ z(n) (1.25)
X(k) = Y (k) Z(k) (1.26)

log |X(k)| = log |Y (k)|+ log |Z(k)| (1.27)
logX(k) = log Y (k) + logZ(k) (1.28)

crx(n) = cry(n) + crz(n) (1.29)

cx(n) = cy(n) + cz(n) (1.30)

Provided that cy(n) and cz(n) do not occupy the same band of quefrencies,
they can be extracted separately from cx(n) (a process called liftering akin to
a spectral filtering) as illustrated in Figure 1.10. From there, in the case of
the real cepstrum, the spectral amplitude |Y (k)| and |Z(k)| can be obtained
by inverting the last step of the cepstral transform. In other words, applying
a DFT to cry(n) and to crz(n) in the case of Equation 1.21 and 1.29. Note that,
in Figure 1.10, the amplitude spectrum obtained from cy (the first cepstral
coefficients of cx) corresponds to the envelope of the amplitude spectrum of
x(n). This property is detailed and used in Section 6.4.3.

16 Incidentally coauthor of Bogert’s paper on cepstrum. “It’s a small world”.

Digital Audio Signal Processing 31

? ?
log
10
DFT

cepstrum

inverse
cepstrum
inverse
cepstrum

? ?x(n)

y(n) z(n)

cx cy cz

Y Z(k)

X(k)

IDFT(10^) IDFT(10^)

(k)

dB

dB dB

Figure 1.10. In the time domain x(n) cannot be decomposed into y(n) and z(n).
However, in the cepstral domain, their cepstrums can be separated if
they occupy different quefrency regions. Then an inverse cepstral trans-
form gives the two signals y(n) and z(n) in the time domain.

Moreover, the complex cepstrum has the advantage that it permits to recover
the complex spectrum Y (k) and Z(k), and thus, using the inverse DFT on
these, y(n) and z(n) since the phase information is not lost during the pro-
cess. Therefore, it can theoretically perform a deconvolution, also known as
a source/filter separation. The information contained in cx(n), cy(n), cz(n),
|Y (k)|, |Z(k)|, Y (k), Z(k), y(n) and z(n) can be used in many of the applica-
tions mentioned in the next section.

32 Digital Audio Signal Processing

1.3.3 Applications

As explained at the beginning of Section 1.3, cepstrum has been developed
and used at first in seismology. Then it extended to speech, image, radar, etc.

Regarding audio signal processing, real or complex cepstrum can be used for
pitch and formant detection, cross-synthesis17, spectral smoothing, denoising,
restoration of damaged recordings, speech recognition, etc. In the present
work, cross-synthesis and spectral smoothing are the two aspects of cepstral
alanysis that will be used and explained thoroughly in Chapter 6.

1.4 Cross-correlation

The cross-correlation χ(n) of two finite-length digital signals x(n) and y(n)
measures the similarity between the two signals for each possible delay between
them. For two signals of length N , χ(n) has a length 2N − 1 and is defined as

χ(m) = x(n) ? y(n) =
N−1∑
n=0

x∗(n)y(n+m) for m = −(N − 1), . . . , N − 1

(1.31)

where ? is the cross-correlation operator and x∗(n) is the complex conjugate
of x(n), which for an audio signal is equal to x(n) since the signal is real. In
case x(n) and y(n) have different lengths Nx and Ny, N is set equal to the
length of the longest signal and the shortest signal is completed with zeros to
reach a length N . In this case, although χ(n) will have 2N − 1 values, only
Nx +Ny − 1 will be non-zero.

1.4.1 Fast Computation

The cross-correlation needs O(N2) operations for a direct computation. How-
ever, it can be reduced to O(N logN). By taking into account a property of

17Changing the spectral envelope of a signal for that of another signal.

Digital Audio Signal Processing 33

the Fourier Transform

DFT (x∗(−n)) = X∗(k) (1.32)

with X∗(k) the complex conjugate of the DFT of x(n), Equation 1.31 can be
rewritten as

χ(m) = x(n) ? y(n) = IDFT (X∗(k) Y (k)) (1.33)

where both X∗(k) and Y (k) are computed on 2N points. Each component of
the cross-correlation can thus be computed using the FFT algorithm.

1.4.2 Applications

As cross-correlation acts as a measure of similarity, it can be used to detect
the delay between two similar signals x(n) and y(n) since the cross-correlation
will exhibits an important peak at index m (or a periodic sequence of peaks at
indexes m+ kT0 if the two signals are periodic of period T0) corresponding to
the delay. Cross-correlation is used for instance in speech processing for pitch
detection in the voiced parts of speech, where it presents a periodic structure.
It is also used to minimize the acoustic discontinuities when concatenating two
audio frames by assembling them where they correlate best, as is explained in
Chapters 2 (Section 2.2), 3 (Figure 3.1) and 6 (Sections 6.3.1 and 6.4).

1.5 Linear Prediction

The linear prediction model attempts to approximate the nth sample of a signal
s(n) as a linear combination of the p previous samples {s(n−1), . . . , s(n−p)}
[18]. The coefficients ai of this weighted sum are computed so as to minimize
the prediction residual signal e(n) from Equation 1.34.

e(n) = s(n) +

p∑
i=1

ai s(n− i) (1.34)

The linear prediction coefficients (LPC) ai can be computed through different
methods, for instance solving the Yule-Walker equations [19]. When these

34 Digital Audio Signal Processing

ai are used as coefficients of an autoregressive (AR) filter, its frequency re-
sponse is an approximation of the spectral envelope of s(n) as shown in Figure
1.11. This property is used, notably, in speech processing to model the vocal
tract of a speaker. In that context, the filter or its derivative forms (LPCC,
LSP, etc.) can be used for different purposes: speech recognition, synthesis,
modification18, compression, transmission, pathology detection, etc.

(kHz)

am
p
li
tu
d
e LP

X(k)| |

86420

Figure 1.11. Amplitude spectrum (black) and frequency response of an LP filter
(red), for a 1024-sample frame of voiced speech. Fs = 16 kHz, p = 18.
The filter gain corresponds to the energy of the residual signal e(n).

Equation 1.35 represents the time-domain equation of the filtering of a signal
x(n) (usually a pulse train or a white noise) through an AR filter or LP
filtering. The coefficients values a1, . . . , ap are obtained from the analysis of
the signal s(n) or, more often, a frame extracted from a region of s(n).

y(n) = bx(n) +

p∑
i=1

ai y(n− i) (1.35)

with b the gain of the filter, usually a by-product of the computation of the LP
coefficients that corresponds to the energy of the residual signal e(n), and p
the order of the filter. The spectral envelope of y(n), the output signal of the
filter, is similar to the spectral envelope of the analysis signal s(n). Therefore,
the original content of s(n) can generally be perceived into y(n), although the
synthetic signal is often judged a poor approximation.

This method is used several times throughout this thesis to create synthetic
signals that approximate a real one. For instance in Sections 2.4.1 and 5.3
for direct time-scaling and in Section 6.4 to fill empty spaces between audio
grains to indirectly create a time-scaling effect.

18Time-scaling for instance.

Chapter 2

Audio Time-Scale Modifications

The modification of the time-scale of an audio signal is a subject that has been
thoroughly explored in the literature. This chapter reviews the existing tools
and methods in the domain, most of which have been tested on recordings of
sports events in Chapter 5 of this work. Most of these methods are based on
a sinusoidal model of speech and music presented in Section 2.1.

Time-scaling1 as studied in Sections 2.2 to 2.6 extends or reduces the duration
of an audio signal in a way that attempts to preserve the sequential order of
the acoustic events and the perception of the spectral content of the signal by
the listener. The methods usually belong to one of three categories [20, 21]:
time-domain (Section 2.2), frequency-domain (Section 2.3) and model-based
algorithms (Section 2.4), although some methods combine several approaches
and will be presented in Section 2.5. Finally, Section 2.6 details how the per-
ceptual properties of audio transients can be preserved by integrating transient
detection to those time-scaling algorithms.

However, there are other approaches which, while not respecting the initial
sequence of acoustic events, can create a sound that presents some similari-
ties, some common acoustical patterns, with the original one. Sound texture
synthesis belongs to this category of “non-linear” structure manipulation tools
and methods and is described in Section 2.7.

1Time-scaling and time-stretching are often used interchangeably, although time-stretching
is generally associated with the notion of extending the duration. Logically, time-
shrinking would be the appropriate corresponding term when reducing the duration,
but it is not in common use.

— 35 —

36 Audio Time-Scale Modifications

The dual operation to time-scaling is pitch-shifting, the change of the frequency
content without changing the duration of the signal. Each existing method
for time-scaling can be used as well to achieve pitch-shifting. However, it is
of little or no interest in the case at hand and it is, therefore, not explained
hereafter.

In the following, speed ratio or speed factor denote the factor α by which an
audio recording is time-scaled. A value of α > 1 means that the signal duration
is lengthened whereas a value of α < 1 corresponds to a shortened signal.

2.1 Sinusoidal Model for Audio Signals

The underlying hypothesis as presented by McAulay et al. in [22], upon which
current methods for time-scaling of a signal x(n) rely, is that the signal x(n),
sampled at frequency Fs, is a sum of P (n) sinusoids, called partials, with the
number of partials P (n) varying over time. It can be written as [23]:

x(n) =

P (n)−1∑
p=0

Ap(n) cos(
n

Fs
ωp(n) + φp) (2.1)

Each partial has its own angular frequency ωp(n) = 2πfp(n), amplitude Ap(n)
and phase φp. The parameters are presumed to vary relatively slowly over time
so that the signal is quasi-stationary over durations of a few milliseconds to
a few dozens milliseconds, which corresponds well to what we know of speech
and music.
According to this model, the goal of time-scaling is to change the rate at which
ωp(n) and Ap(n) vary as a function of n, the time index. In other words, it
is a resampling of each of these parameters by a factor equal to the speed
ratio which can be constant α or time-varying α(n). Note that in the case it
is time-varying, its variations are assumed to be relatively slow compared to
those of the signal [20].

Harmonic Signals

In the following sections the term harmonic, applied to an audio signal, in-
dicates that, at each instant n, the frequencies of all the partials ωp(n) are

Audio Time-Scale Modifications 37

integer multiples of ω0(n) = 2πf0(n), with f0(n) the fundamental frequency.
Examples of harmonic signals are single sound sources such as speech, singing,
some mono-instrumental music with the notes being played one at a time, etc.

2.2 Time domain

Time-domain methods such as synchronized overlap-add (SOLA) [24], wave-
form similarity-based synchronized overlap-add (WSOLA) [25], synchronized
overlap-add, fixed synthesis (SOLAFS) [26], time-domain pitch-synchronous
overlap-add (TD-PSOLA) [27] and their variants are usually applied to har-
monic signals, for instance speech and singing recordings. The basic principle
of these methods in order to extend the duration of a signal is to segment the
signal into overlapping frames and either duplicate some frames or increase
the shift between each frame, as illustrated in Figure 2.1. Conversely when
reducing the duration they either drop frames or reduce the frame shift. Most
of the methods use frames with constant duration, except for TD-PSOLA
and its variants which use frames centered on pitch-marks and whose dura-
tion is proportional to the fundamental period, hence the “pitch-synchronous”
denomination.

2.2.1 Analog Domain

The principle of frame duplication and discard behind time-domain time-
scaling was initially proposed in the analog domain more or less at the same
time by several researchers such as Fairbanks et al. [28] or Gabor [29]2. To put
it simply, in a mechanical embodiment of Figure 2.1, they modified magnetic
tape recorders so that it would drop or repeat chunks of sound while playing.
As a result the output audio would have a different duration than the original.

2Although, in all fairness, Gabor’s work is dedicated, among other things, to frequency-
shifting and bandwidth usage in sound transmission, and does not explicitly mention
time-scaling which is but a by-product of his method.

38 Audio Time-Scale Modifications

x(n)

y(n)

Figure 2.1. In its simplest and oldest implementation, time-scaling consists in di-
viding an input signal x(n) into frames and duplicating them to obtain
an output signal, y(n), with a different duration.

2.2.2 Resampling

A simple example of time-scaling in the analog domain is that of the vinyl
turntable when a disc is not played at the appropriate speed. However, this
cause a distortion in the frequency. For instance a 33rpm record played at
45rpm (or any speed faster than 33rpm for that matter) has all its frequency
content shifted toward higher frequencies.

In the digital domain this has an equivalent which is obtained by playing a
signal at a different sampling frequency than the one it was recorded at. It
causes a scaling of the frequencies, upward when accelerating (i.e. increasing
the sampling frequency and thus shortening the duration of the playback) and
downwards when decelerating (i.e. decreasing the sampling frequency and
thus extending the duration of the playback). In practice though, for a digital
signal x(n), instead of modifying the sampling rate, this is achieved through a
resampling of x(n) by a factor equal to the speed factor α as shown in Figure
2.2. The resampled signal is then played at the original sampling rate [30].

Audio Time-Scale Modifications 39

resampling

played sat F

splayed at 2F

splayed at F

Figure 2.2. A waveform (here a sine) is resampled by a factor α (here α = 2). If the
samples are played at twice the orignal sampling frequency, the sound
is the same. If it is played at the original sampling frequency, it lasts
twice as long. However, the frequency of the sine is divided by a factor
two and the resulting sound is different from the original.

This has been used frequently in movies as a special effect to arguably add
either drama or a comical effect to slow motion and “fast-forward” scenes,
hence with a shift of the frequencies. This is probably the reason why people
not familiar with the domain, when asked about speeding up or slowing down
a sound, mention the low-pitched voice of slow motion videos as the first
example that pops in mind, most of the time. It is also the only audio signal
currently available during a slow motion video in broadcast television, but it
is rarely used because of the frequency shift.

2.2.3 SOLA

In general, a time-scaling method implemented as shown in Figure 2.1 would
present discontinuities (clicks) at the junction between two frames. In the
third part of his Theory of Communication [29] Gabor proposes that each
frame fades in and out gradually, combined with a superposition (overlap)
and summation (addition) of several frames. In the digital world this is imple-
mented through a method called OverLap-Add (OLA), illustrated in Figure
2.3. Although this is an improvement over a simple concatenation of frames,
in the sense that there are no discontinuities anymore in the time domain be-
tween two successive frames, the resulting audio can still present important
acoustical discrepancies in the overlapping regions. Taking into account the

40 Audio Time-Scale Modifications

sinusoidal model from Section 2.1, this is due to phase discontinuities. In-
deed, as shown in Figure 2.4, the sinusoidal components of two overlapping
frames are not necessarily in phase and they may interfere destructively. For
human ears this translates into an audible and localized amplitude modulation
compared to the rest of the signal.

x(n)

y(n)

x(n)

y(n)

OLA
(frame

OLA
(frameduplication) shift)

Figure 2.3. Two different approaches to time-scaling using OverLap-Add synthesis.
In one case extra frames are inserted (left) whereas in the other case
existing frames are re-spaced (right) to match the stretching factor.

In [24] Roucos and Wilgus develop the Synchronized OverLap-Add (SOLA)
of time signals, schematized in the left graph of Figure 2.5. This algorithm
adds an extra step to OLA: instead of being overlap-added at an arbitrarily
fixed place, as it is in OLA, each frame is inserted at a time position located
around that fixed place so that it maximizes its correlation to the signal that
has already been generated, hence reducing the phase incoherences. In order
to do so, it uses the maximum of a cross-correlation measure between the
frame to be inserted in the output signal and the end of said output signal (in
practice the samples of the frame that was inserted just before). The position
of this maximum in the cross-correlation determines the optimal position for
the frame to be inserted.

Audio Time-Scale Modifications 41

shift

in phase out of phase

Figure 2.4. An input sinusoid is divided into overlapping frames. The chunks of
sinusoid in each frame are in phase with each other and if the frames
are overlap-added, the original sine is obtained. However, if the shift
between frames changes, the sines are now out-of-phase.

In the case of harmonic signals such as voiced regions of speech, this is equiv-
alent to a resynchronization of the frames with the pitch of the signal [31].
It also explains why time-domain algorithms are usually used only with har-
monic signals: with polyphonic signals only a part of the underlying harmonic
signals would be resynchronized by the cross-correlation. Other parts of the
signal would still produce a modulation that, if audible, reduces the quality of
the time-scaled signal.

2.2.4 SOLAFS and WSOLA

More or less simultaneously Hejna et al. [26, 32] and Verhelst et al. [25, 33]
developed an approach to time-scaling that is somewhat complementary to
SOLA. Hejna’s method is named Synchronized OverLap-Add, Fixed Synthe-
sis (SOLAFS) and Verhelst’s is described as a Waveform Similarity-based
OverLap-Add (WSOLA) method. In practice the two are all but identical3 [34]
and their principle is illustrated on the right graph of Figure 2.5.

During the synthesis, this algorithm overlap-adds frames at regular intervals,
like OLA, but these frames are chosen in the input signal in the neighborhood
of the frame that would have been used by OLA, using a cross-correlation

3WSOLA computes a correlation measure using only frames from the input signal whereas
SOLAFS computes the correlation measure between samples of the input signal and
samples from the overlap region of the output signal.

42 Audio Time-Scale Modifications

x(n)

y(n)

SOLA

x(n)

y(n)

WSOLA

Figure 2.5. In the SOLA method, each synthesis frame can be slightly translated
in time around its theoretical insertion position (dashed lines) to min-
imize discontinuities. In the SOLAFS/WSOLA method, it’s the oppo-
site, each analysis frame can be selected slightly around its theoretical
position (dashed lines), but the synthesis hopsize is constant.

measure just like SOLA. This contrasts with SOLA which divides the input
signal into regularly-spaced frames that are then reassembled at an irregular
pace to synthesize the output signal. In other words, SOLA uses constant
analysis frame shifts and variable synthesis frame shifts whereas SOLAFS and
WSOLA do the opposite.

2.2.5 TD-PSOLA

The Time-Domain Pitch-Synchronous OverLap-Add (TD-PSOLA) algorithm
is described by Moulines and Charpentier [27,31,35] in three steps.

The first step, the pitch-synchronous analysis, decomposes the signal into over-
lapping frames centered on so-called pitch marks. There is one pitch mark per
period of the speech signal and thus the spacing between two successive pitch
marks is equal to the local pitch period. Each frame has a length between 2
to 4 pitch periods and is windowed, often by a Hann window [36].

Audio Time-Scale Modifications 43

The second step, the pitch-synchronous modification, consist in creating a new
sequence of pitch marks that preserves the pitch spacing of the original pitch
marks, but extends or reduces the signal duration. In other words, pitch marks
are duplicated or dropped as a function of the time-scaling factor to create
the new sequence of pitch marks while preserving the pitch evolution over
time [36]. Each new pitch mark is thus linked to a pitch-synchronous frame.

Finally, the third step, the pitch-synchronous overlap-add synthesis, overlap-
adds the new sequence of pitch-synchronous frames in order to synthesize
the time-scaled signal. Since each frame is pitch-synchronous the parts that
overlap-add are, theoretically, perfectly in phase with each other and no de-
structive interferences can happen, hence leading to a high quality modification
of the time scale for factor 0.5 < r < 2. Larger factors are possible for the
slow down but require specific processing of the unvoiced regions.

Although previous algorithms are based on an underlying sinusoidal model,
they can still be applied to any kind of sound. However, the TD-PSOLA
algorithm is specifically targeted at signals presenting a pitch, such as speech
and singing. It is therefore not applicable to sports recordings such as those
presented in Chapter 4 which are mostly made up of noise.

2.3 Frequency domain: the phase vocoder

The basic idea of the method in the frequency domain is the same as for the
time-domain OLA: duplicating some frames or increasing the frame shift to
decelerate the recording, dropping some frames or reducing the frame shift
to accelerate the recording. However, instead of adjusting the position of
the frames in the time domain to reduce phase discontinuities, as it is done
in SOLA-like methods, the frequency-domain approach directly modifies the
phases of each frame in the spectral domain so that the OLA happens seam-
lessly. This method is called the phase vocoder and its implementation is
generally achieved through the short-time Fourier transform and its inverse,
which are defined in Section 1.2.3.

44 Audio Time-Scale Modifications

2.3.1 Phase vocoder

The phase vocoder is presented in 1966 by Flanagan and Golden [37] as an
evolution of the channel vocoder invented by Dudley [38, 39]. The approach
proposed by Flanagan et al. is the so-called “filter-bank” approach, where the
input signal x(n)4 is passed through a bank of band-pass filters, each filter
covering a different frequency band so that the parameters, amplitude and
phase5, representing each frequency band of the signal as a function of time can
be computed. In a sense, the parameters are similar to those of the parametric
representation in Equation 2.1 and an approximation of the original signal can
be resynthesized through additive synthesis using an oscillator bank.

In order to obtain a time-scaling effect, the frequencies and phases of the oscil-
lator bank are multiplied by a speed factor α and the signal is resynthesized.
Then the signal is played 1/α times faster. As explained in Section 2.2.2, this
multiplies the frequencies by a factor 1/α thus compensating for the previous
multiplication by α. Consequently the signal has the same spectral content
as the original one. However, since it is played at 1/α times the original speed
it has α times the original duration. In practice this is an inefficient imple-
mentation and, in 1973, Schafer and Rabiner [40] make use of the STFT to
implement the filter-bank6 analysis, followed by Portnoff [41], in 1976, who
improves over the method by using the inverse STFT for the synthesis as well.

Different implementations of the STFT-based vocoder exist and are described
in the following, but in all cases the audio signal x(n) is divided into over-
lapping frames fi(n) which are multiplied by a window function w(n). The
spectrum Fi(k) of each frame is computed to fill the analysis STFT matrix
Sa(i, k) and then, depending on the implementation, either the phases alone
or the phases, amplitudes and number of frames of Sa(i, k) are modified to
obtain Ss(i, k), the synthesis STFT, on which an inverse STFT is applied to
resynthesize a time-scaled audio signal. During the inverse STFT, each syn-
thesis frame computed is again multiplied by a window, generally the same
window w(n) that is used during the analysis. Note that in order to simplify

4Note that in [37] the reasoning is applied first to an analog signal x(t) before being
extended to a digital one.

5Whereas Dudley’s vocoder would only retain the amplitude, hence the name phase
vocoder.

6Hence benefiting from the speedup provided by the FFT.

Audio Time-Scale Modifications 45

the notation and because each frequency bin k is treated the same way in a
standard phase vocoder, the notations Sa(i) and Ss(i) represent respectively
Sa(i, k) and Ss(i, k) in the following.

Frame shifting

The most common implementation of the phase vocoder found in the literature
[2, 23, 42, 43] uses different sizes for the shift between frames (hopsize) during
the analysis and the synthesis steps. As is illustrated in Figure 2.6, the ratio
between these two frame shifts equals the desired slow-down/speed-up factor.
This means that in order to change the speed by a factor α, given a synthesis
hopsize Rs and an analysis hopsize Ra, they must verify Equation 2.2.

α =
Rs
Ra

(2.2)

As explained in Section 2.2.3, since the relative position of each frame in the
output signal is different from that of the frames in the input signal, a simple
overlap-add of the frames to generate that output causes phase discontinuities
and thus destructive interferences. The main idea behind the STFT implemen-
tation of the phase vocoder is to adapt the phase of each partial of Equation
2.1 according to the new hopsize Rs so that all the frames overlap seamlessly.
Roughly speaking the adaptation needs to keep the variation of phase constant
over time.

frame
shift

in phaseout of phase

phase
shift

Figure 2.6. When the hopsize changes, the frames become out of phase. The vocoding
modifies the phase of each frequency bin so that they are in phase again.

46 Audio Time-Scale Modifications

For each bin k of the STFT, the phase variation between input frames i and
i − 1 is compared to the expected phase variation for that bin (a function of
k and Ra). The difference between these two values (the heterodyne phase
increment) is converted to the range ±π (Equation 2.6), divided by Ra and
added to the theoretical phase variation for bin k in the output signal (a
function of k and Rs). Finally, this value is added to the phase of output
frame i − 1 to obtain the phase of output frame i (Equation 2.7). Note that
the input frame 0 is reused as output frame 0 (Equation 2.3) and that the
spectral amplitudes are not modified (Equation 2.4).

Ss(0) = Sa(0) (2.3)
|Ss(i)| = |Sa(i)| (2.4)

Ω = {0, . . . , k2π

L
, . . . , (L− 1)

2π

L
} (2.5)

∆φ(i) = [6 Sa(i)− 6 Sa(i− 1)−RaΩ]2π (2.6)

6 Ss(i) = 6 Ss(i− 1) +Rs(Ω +
∆φ(i)

Ra
) (2.7)

where Sa(i), Ss(i), Ω and ∆φ(i) are L-sample vectors with L the length of a
frame. []2π denotes the conversion of the phase to the range ±π [23].

Once the DFT of a synthesis frame has been calculated, it is overlap-added to
the output signal by an inverse STFT, using w(n) as the synthesis window.

Frame generation

Another implementation of the phase vocoder is proposed by Bonada in [44]
and Ellis in [45]. As Figure 2.7 shows, contrary to the previous method it uses
the same shift between the frames at analysis and synthesis time. Obviously
when doing time-stretching the number of frames used to synthesize the output
is different from the number of frames extracted from the input. Frames have
to be dropped or created one way or another. In the algorithm as implemented
by Ellis, all frames are generated by interpolating the spectral amplitudes and
accumulating the phase variations between the analysis frames.

Audio Time-Scale Modifications 47

frame
generation

Figure 2.7. In this case, the hopsize is constant and extra frames are generated (in
red) using the phase information contained in the two analysis frames.

The first step sets the initial synthesis frame spectrum Ss(0) equal to the initial
analysis frame spectrum Sa(0).

|Ss(0)| = |Sa(0)| (2.8)
6 Ss(0) = 6 Sa(0) (2.9)

For the following synthesis frames the analysis and synthesis indices, i and j,
are updated according to Equations 2.10 and 2.11, respectively.

i = i+
1

α
(2.10)

j = j + 1 (2.11)

i is generally not an integer value. For instance if the speed factor α is 2 (2×
slower), Ss(7) corresponds to a frame position, in the original audio, equal to
7/α = 3.5. In other words, a “virtual” frame located between Sa(3) and Sa(4).

The spectrum Ss(j) of the jth synthesis frame is a function of the amplitude
and phase variations of its “surrounding” analysis frames as well as 6 Ss(j−1):

λ = i− bic (2.12)
|Ss(j)| = (1− λ)|Sa(bic)|+ λ|Sa(bic+ 1)| (2.13)
∆φ(i) = [6 Sa(bic+ 1)− 6 Sa(bic)]2π (2.14)
6 Ss(j) = 6 Ss(j − 1) + ∆φ(i) (2.15)

48 Audio Time-Scale Modifications

where bic is the integer value of i. Finally, the inverse STFT over Ss(j, k)
overlap-adds every frame into the output signal.

This second implementation has some interesting advantages. For α > 1, the
matrix Sa(i, k) is smaller than the one computed in the first implementation,
thus requiring less DFT computation.7 Besides, it can interpolate as many
synthesis frames as needed at a given time position i, which means that it
can stay at that playback position for an infinite duration, literally pausing in
the signal while still playing it. The first proposed implementation based on
frame shifts does not make this possible. Also, note that if the speed factor
α is constant, the analysis indices i can be linearly mapped to the synthesis
indices j using Equation 2.16.

i =
j

α
(2.16)

2.3.2 Phase-locked vocoder

Compared to time-domain approaches, the phase vocoder has the advantage to
work with both mono and polyphonic signals. Besides, it theoretically overlaps
frames perfectly in phase with each other. In practice, however, it produces
a sound that can be perceived as muffled, reverberant and/or moving away
from the microphone [43, 46], especially for time-stretching. This distortion
is called phasiness [47] and the accepted explanation for its presence is a loss
of coherence between the phases across the bins of the short-time Fourier
transform over time, also called loss of vertical phase coherence.

Indeed, the methods presented in Section 2.3.1 are applied independently to
each bin k of the spectrum in order to keep intact the phase constraints along
the time (or horizontal) axis of the spectrogram. As a consequence there is
no constraint with regard to the frequency (or vertical) axis: if there is a
dependency between neighboring bins [. . . , k − 1, k, k + 1, . . .], in the input
signal it is lost in the process. This causes the phasiness artifact [47].

Several algorithms have been proposed in order to correct this problem. For
instance, Puckette [46] uses the phase of the sum of the spectral values from

7More exactly, the size of Sa(i, k) is constant in this case, it is the matrix Sa(i, k) used for
the frame shifting vocoder that grows in size with α.

Audio Time-Scale Modifications 49

bins k − 1, k, and k + 1 as the final phase value 6 S∗s (i) for bin k:

6 S∗s (i, k) = 6 (Ss(i, k − 1) + Ss(i, k) + Ss(i, k + 1)) (2.17)

Laroche and Dolson [43] proposed a somewhat more complex approach called
identity phase locking : the peaks in the spectrum are detected and the phases
6 Ss(i, k

i
p) of their corresponding maximum bins kip are updated normally by

the phase vocoder. The other bins located in the region of influence of kip have
their phases modified so as to keep constant their phase deviation from the
phase of kip. The phase propagation equations for these non-peak bins are

6 Ss(i, k) = 6 Ss(i, k
i
p) + 6 Sa(i, k)− 6 Sa(i, kip) (2.18)

6 Ss(j, k) = 6 Ss(j, k
i
p) + 6 Sa(i, k)− 6 Sa(i, kip) (2.19)

respectively for the “frame shifting” (Equation 2.18) and the “frame generation”
(Equation 2.19), with i and j the indices as defined in Equations 2.10 and 2.11
for the second case. As a result of these constraints, there is a horizontal phase
locking for the peaks and a vertical phase locking for all the other bins of the
spectrum.

A refinement of this method, also presented by Laroche and Dolson, is to
track the trajectories of the peaks over time and use the previous phase of
each maximum bin ki−1p to compute that of the next one kip. Equations 2.6
and 2.7 become

∆φ(i) = [6 Sa(i, k
i
p)− 6 Sa(i− 1, ki−1p)−RaΩ]2π (2.20)

6 Ss(i, k
i
p) = 6 Ss(i− 1, ki−1p) +Rs(Ω +

∆φ(i)

Ra
) (2.21)

where kip is the bin index of the pth peak in analysis frame i. This is important
if the bin indexes ki−1p and kip for peak p are different between analysis frames
i−1 and i as it prevents the phase of the peak at frame i from being based on
the phase of a non-peak bin at frame i−1. However, tracking peaks over time
is not always straightforward (peaks can appear, disappear, split or merge
which increases the complexity of the task).

For this Laroche et al. propose to consider that the peak ki−1p is the peak
to which bin kip belonged to at time i − 1. They also propose to update the

50 Audio Time-Scale Modifications

phases of the neighboring bins as

6 Ss(i, k) = 6 Ss(i, k
i
p) + β[6 Sa(i, k)− 6 Sa(i, kip)] (2.22)

where β is a scaling factor, giving the method the name scaled phase locking.

Note that in the implementation where the frames are generated, the inte-
gration of scaled phase-locking is a bit more tricky since the analysis frames
Sa(bic+ 1) and Sa(bic) can be the same for several synthesis frames Ss(j) in a
row, in which case no peak-tracking phase locking should happen, except for
each first new value of bic. In other word the value bic can remain the same
for successive values of j, and peak tracking should happen only whenever a
new value of j brings a new value of bic.

In [48], Karreer et al. refine the phase-locking with two improvements: mul-
tiresolution peak-picking and sinusoidal trajectory heuristics. On the one hand,
the peaks are detected with a multiresolution method, in other words, they
are picked within smaller regions in the lower frequencies of the spectrum than
in the high-frequency parts. As a result more peaks will be detected in the
low-frequency parts than in the high-frequency ones. On the other hand, they
define a set of additional rules for the tracking of spectral peaks across frames
in order to reduce the false detection of peak trajectories. Finally, they add
a third improvement, called silent passage phase reset which consists in set-
ting all the phases of a synthesis frame to those of the corresponding analysis
frame during silent part of the signal, hence cancelling any vertical phase in-
coherences. Such an abrupt reset of the phase should cause an audible click,
but since it happens in silent region of the signal it is not perceived by the
listeners.

For small lengthening ratios, Dorran et al. [49] recover phase coherence by
slightly adjusting the phase of each synthesis frames so that after a few frames
it converges to an almost perfect overlap with one of the analysis frames.
From that point on, a group of frames from the original signal can be added
directly to the output signal without any phase transformation. This results in
a (locally) perfect-quality audio signal. The gradual adjustment of the phases
is calculated in order to be imperceptible to human ear.

Other methods use the phase vocoder but mix it with approaches from different
domain. Those are introduced in Section 2.5. Among these, following upon

Audio Time-Scale Modifications 51

the idea of phase reset, we published in 2011 a novel approach to the problem
of phasiness [50] and, in 2012, Kraft et al. proposed an improved version of the
method [51]. We named the method PVSOLA and it is detailed in Chapter 3.

2.4 Model-based

Time-domain methods rely on the parametric model of Equation 2.1 but do
not directly use it in their inner working. Even TD-PSOLA only needs to
know the local pitch, which for normal speech is usually equal to ω0(n), but
none of the other parameters. The phase vocoder, on the other hand, processes
every bin k of the STFT as a sinusoidal component without discrimination,
although the phase lockings proposed by Laroche et al. make a distinction
between significant peaks and other bins.

In between these two extremes lies the model-based approach that analyzes
the input signal to extract the features of a parametric model, Equation 2.1
being just one example of such a model. From the model and its parameters a
signal can then be synthesized with as many alterations to the parameters as
needed, creating various effects such as time-scaling, for instance. Note that
in order to use a model-based approach one needs an a priori knowledge of
the signal to model. Modeling the percussion of a drum as if it were a flute
would make little sense. In the following sections we introduce some of the
most common models for analysis and resynthesis of sounds that can be used
for time-scaling.

2.4.1 Source-Filter Model

The source-filter model [52] represents a sound as the result of an excitation
signal, the source, passed through a filter that modifies its spectral envelope.
It is a widespread representation of voice signals in speech processing where
the source represents the action of the vocal folds and the filter that of the
vocal tract.

The source is usually modeled as either a sequence of harmonic signals (pulse
trains, glottal pulses, etc.) for voiced parts of speech or a white noise for
unvoiced parts, or a weighted mix of both (mixed excitation, CELP codebooks,

52 Audio Time-Scale Modifications

etc.). In source-filter models, filtering often implies time-domain filtering, but
it is also possible to apply filtering in the spectral domain. For instance, an
STFT of the source, followed by a modification of the spectrum according to
the spectral envelope of the filter and, finally, an inverse STFT synthesizes a
filtered signal.

In the time-domain type of filtering, the filter parameters are usually obtained
through a linear prediction analysis (or a variant of it) of each frame from
the original signal, whereas for spectral filtering, the envelope of the filter can
be obtained by an STFT analysis of the original signal, followed by either
a smoothing of its spectral amplitude, a measure of band-by-band spectral
energies, a peak-to-peak interpolation of the spectrum, etc.

As an example, the most common parameters used in speech analysis and
synthesis are the voiced/unvoiced decision, the pitch, the energy and the coef-
ficients of the linear filter. Afterwards, these parameters can be resampled by
a factor equal to the speed factor α so that a resynthesis using these resampled
parameters last α times longer.

Note though that linear interpolation is often preferred to resampling for the
pitch and energy since these parameters are assumed to vary slowly, at least
in speech, compared to the rate at which the frames are extracted from x(n).
As for the linear prediction filter, a resampling or an interpolation of its co-
efficients may result in unstable filters, therefore safer albeit convoluted in-
terpolation methods are generally applied. The coefficients are transformed
into others, more stable (parcor, cepstrum, line spectral pairs, etc.) which
can be interpolated more safely. Then these are transformed back into linear
prediction coefficients. In other words, the term “resampling” ought to be con-
sidered in its loosest acceptation (a change in the number of “samples” of each
parameter) as opposed to its strict Nyquist-Shannon-compliant definition.

2.4.2 Sinusoidal Model

The simplest form of a sinusoidal model is already presented in Section 2.1.
Most time-domain algorithms and the phase vocoder rely on it. In a model-
based time-scaling framework each of the parameters P (n), ωp(n), Ap(n) and
φp of Equation 2.1 is extracted from the signal, generally by spectral analy-
sis. From these parameters, it is possible to resynthesize an approximation

Audio Time-Scale Modifications 53

of the original signal8 or a time-scaled version of it, among other potential
transformations.

As an extremely simplistic example, a pure tone can be modeled with a single
sinusoid (P (n) = 1 ∀n), with a given frequency ω and amplitude A that can
be deduced, for instance, from a Fourier analysis of the tone. Using these
two parameters, one can generate a sinusoid that approximates the original
signal for as long as needed. Time-scaling a one-second pure tone is then just
a matter of synthesizing two seconds of the parametric sinusoid, changing the
pitch of the tone is a change of ω away, and so on.

Generalization to any constant value of P follows immediatly as each sinusoid
is processed independently. When the number of sinusoids vary over time or
when their frequencies change enough that they cross trajectory in the spectral
domain, advanced tracking heuristics must be put in place in the analysis
part [22, 53], similarly to what is needed for the phase-locking described in
Section 2.3.2.

Sine + Noise Model

In 1989, Serra published his PhD thesis [53] in which he presents a determin-
istic plus residual model (DR) and a deterministic plus stochastic model (DS),
later named spectral modeling synthesis (SMS), that take into account the
noisy components present in an audio signal x(n) as an additive component
e(n) to the sinusoidal model from Equation 2.1

x(n) =

P (n)−1∑
p=0

Ap(n) cos(
n

Fs
ωp(n) + φp) + e(n) (2.23)

where e(n) is named the residual or the stochastic part depending on the
method. In the first case, it is assumed to contain anything that is not a sine,
which may include non-stochastic events such as transients9, whereas in the

8 Synthesis of a sound by applying Equation 2.1 “as is” is a form of additive synthesis, as
opposed to the filtering of a source as described in Section 2.4.1 which is subtractive
synthesis.

9Note attacks, plosives, etc.

54 Audio Time-Scale Modifications

second case it is assumed to be completely stochastic. Also, note that for the
DS model, the phases of the partials are discarded.

In the case of the DR model, the spectral envelope of e(n) can be obtained
by first estimating the parameters of the sinusoidal components and then sub-
tracting the sum of these components from x(n). However, in the case of the
DS model, since the phases of these components are dropped, it is not pos-
sible to make the subtraction in the time domain. Therefore, the amplitude
spectrum of the sum of partials (i.e. A(k)) is subtracted from X(k), the am-
plitude spectrum of x(n), to obtain directly E(k), the spectral envelope of the
stochastic part e(n). From this spectral envelope it is possible to resynthesize
the residual/stochastic part using either a filtered white noise or an inverse
STFT of E(k) with random phases.

Time-scaling of the harmonic content is performed as explained in Section
2.4.2 whereas the noisy part is time-scaled by “resampling”10 the parameters
representing the spectral envelope of e(n) (whether it is the spectral envelope
E(k) itself or a time-domain filter) which can then be used to synthesize a
time-scaled version of e(n), as explained in Section 2.4.1.

Sine + Transient + Noise Model

The SMS model does not account for transient events such as a note attack
in a musical instrument, a plosive consonant in speech, a drum beat, etc.
Verma et al. proposed the transient modeling synthesis (TMS). TMS is an
improved version of SMS that models transients hence allowing time-scaling
of such signals [54].

The algorithm adds an intermediary step between the computation of parame-
ters of the partials and the extraction of the spectral envelope of the stochastic
component. Using a DCT analysis over the residual signal obtained by the
subtraction of the sinusoidal components from x(n), it identifies transients.
Indeed, according to Verma et al., a transient in the time domain is trans-
formed into a sinusoidal curve in the DCT domain (frequency). This sine
can therefore be modelized with the same sinusoidal model that is used for
the partials. These synthetic transients are then removed from the residual
to obtain the stochastic component of the signal, that is the component that
10For some loose definition of resampling, see Section 2.4.1.

Audio Time-Scale Modifications 55

contains neither partials nor transients. As for the resynthesis step, the sinu-
soids corresponding to each transient are generated using the sinusoidal model
an passed back as transients into the time domain by an inverse DCT.

Time-scaling of the partials and the stochastic part is performed as explained
in the previous sections. For transients, the time-scaling happens on the syn-
thetic sinusoids in the DCT domain, which are eventually transformed into the
time domain, thus becoming transients which are added to the signal made
of the time-scaled partials and stochastic part. The time-scaling of the sines
in the DCT domain ensures that each transient is translated to its proper
location in the time domain given a speed factor α.

Harmonic plus Noise Model

Introduced by Stylianou [55,56] in 1995, the harmonic plus noise model (HNM)
also represents a speech signal x(n) as the sum of a deterministic and a stochas-
tic part: up to a certain frequency Fmax(n), the maximum voiced frequency,
it models the spectrum of the signal with sinusoidal harmonics while above
that frequency the spectrum is modeled by a noise excitation passed through a
cascade of time-varying filters. The cascade is composed of a linear prediction
filter modeling x(n) and a high-pass filter whose cutoff frequency is Fmax(n).

The system is represented by the same Equation 2.23 as Serra uses, but the
constraints are that ωp(n) < Fmax(n) and e(n) is a filtered white noise whose
frequency content is negligible below Fmax(n), hence the high-pass filtering,
and matches the spectral envelope of x(n) above Fmax(n). Time-scaling the
harmonic content is performed as explained in Section 2.4.2 whereas the noisy
part is time-scaled by “resampling” the filter parameters as in Section 2.4.1.

2.4.3 Physical Model

Physical models can be either an actual physical reproduction of a system pro-
ducing a sound, such as a model of our vocal apparatus that mimics speech, or
a software implementing mathematical models of physical phenomenon (using
equations of sound propagation and reverberation in fluids, among others) to
synthesize sounds that ressemble the real ones. It does not seem realistic to us

56 Audio Time-Scale Modifications

to attempt to model a complete football stadium and its occupants, much less
in realtime. Therefore, the physical models are not addressed in this work.

2.5 Mixed methods

Some methods use a combination of ideas from several of the three different
domains. For instance, Dorran et al. [49], already introduced in Section 2.3.2,
use a modified phase vocoder but once in a while insert frames from the original
signal directly in the time domain. In 2010, Röbel presents an enhanced
version of SOLA [57] where a phase vocoder is used to modify the phases of
each frame so that they overlap properly instead of adapting their position in
the output audio signal thanks to a modified cross-correlation measure.

In 2011 we combined a phase vocoder with a SOLA method [50], in a way
that we see as orthogonal to Röbel’s approach, to regularly insert frames from
the original signal into the output signal, significantly reducing the phasiness
artifact for harmonic signals. Kraft et al. improved our method in [51] to
speed it up and generalize it to polyphonic signals.

Most arguably, PSOLA-based methods and the identity or scaled phase lock-
ing algorithms might be seen as mixed models. Although PSOLA itself is,
strictly speaking, a time-domain only algorithm, it needs pitch marks which
are often obtained through frequency analysis. Also phase locking is halfway
between a phase vocoder and a sinusoidal model, although no sinusoidal ad-
ditive synthesis happens.

Finally, note that the new method to time-scaling of sports event recordings
that we developed during our research and which is presented in Chapter 6
combines time and frequency-domain or time and model-based approaches.

2.6 Transient Detection and Time-Scaling

2.6.1 Definition

A transient signal is a perceptual and contextual concept, and as such a sub-
jective one, which makes it difficult to have a precise definition. In addition

Audio Time-Scale Modifications 57

to the tentative explanation hereafter, it is probably more appropriate to il-
lustrate it through simple examples and to present it from the point of view
of the time-scaling artifacts that we want to avoid.

From the signal processing perspective a transient signal could be defined as
any signal that is not stationary or pseudo-stationary, for instance a transition
region between two otherwise stationary signals11. However, and particularly
in the field of audio processing, a transient also denotes a sudden, sharp,
rapid12 and perceptible variation of the content of the signal. Therefore, be-
sides the non-stationary aspect, there is a speed aspect as well as a perceptual
aspect that both have to be taken into account.

Considering this “definition” it becomes obvious, from the point of view of
time-scale modifications, that a transient signal should not be time-scaled as
any other signal. Indeed, the purpose of time-scaling is to change the playback
speed of the signal without changing its spectral content whereas the way a
transient is perceived is deeply linked to both its duration (or playback speed)
and its frequency content. Therefore, transients are the parts of a signal that
must not be time-scaled but instead “translated” to a new position in time, as
opposed to quasi-stationary sinusoids and noise components.

In other words, time-scaling of transients does not have to consider the math-
ematical accuracy of the transformation, it just has to “sound right” to human
listeners [58]. It is usually decomposed into three steps explained in Sections
2.6.2 to 2.6.4: a step computing a measure of transientness of the input signal,
a step using this measure to detect the transients and their position and a step
that extract and processes them separately from the rest of the signal.

Examples

In speech, typical examples for transients sounds are stop consonnants such as
[p], [b], [t], [d], [k] and [g], glottal stops, etc. In music, signals to be preserved
are rapid transitions between notes, drum-like sounds, note onsets such as the
first milliseconds a piano note is hammered or a string of a guitar is plucked
as shown on Figure 2.8, etc.

11Or a transition from a region with a zero signal to one with a non-zero signal.
12Typically between a few milliseconds and a few dozens milliseconds.

58 Audio Time-Scale Modifications

0

1

(s)0.5 20 1
1

1.5

20

10

5

15

(s)0 1 20.5 1.5
0

(kHz)

-

Figure 2.8. Waveform (left) and spectrogram (right) of an attack (red boxes) for a
single guitar string (A3).

In sports recordings, impact sounds such as a kick in a ball, whistle or voice
onsets, footsteps, applauses, etc. have to sound similar to the original ones in
the time-scaled version. Besides, they have to be kept synchronous with the
image frames of the video. We address these issues in Chapter 5 and 6.

Artifacts

When processed normally with the methods described in Sections 2.2 to 2.5, a
transient can be subject to various artifacts illustrated in Figure 2.9, namely
duplication, disapperance, desynchronization and smearing. For instance, a
time-domain algorithm that repeats a frame to extend a signal also duplicates
any transient present in the frame. Similarly, a frame dropped may result
in the loss of the transients it contains, although in this case the transients
are probably present in neighboring frames if there is an overlap between
successive frames and might hence be preserved.

Algorithms such as SOLA and WSOLA may limit these problems for small
changes of duration, up to a certain extent, because the cross-correlation-based
resynchronization may happen to resynchronize a transient with itself across
several successive frames, but the larger the stretching factor the more likely
things are to go awry. On the other hand, these very same algorithms shift
frames around their theoretical position to reduce phase mismatches. Hence
transients can be shifted to slightly different positions than the one they should
have been placed at. If these transients set a tempo in a musical piece, for
instance drum beats, these slight variations may become annoyingly audible.

Audio Time-Scale Modifications 59

Another form of disapperance can occur in model-based time-scaling. Indeed,
if the model does not take them into account the synthetic time-scaled signal
most often lacks any transient. However, it might be modeled “accidentally”,
for instance if the variations of the parameters of the partials or the noise are
sampled at a fast enough rythm to approximately reproduce the transients.

Finally, transient smearing is a term used to denote a spread of the transient
energy over time and therefore a smoothing of its percussiveness, as opposed
to an instant and sharp attack. It is a typical artifact of time-stretching with
the phase vocoder and an example is shown in Figure 5.1.

duplication

?

disappearance

desynchronization smearing

Figure 2.9. Schematic representation of four artifacts for transients during time-
scaling: duplication, disappearance, desynchronization and smearing.

2.6.2 Detection

Most authors perform transient detection based on the selection of significant
peaks in a detection function which is representative of the transientness of the
signal over time. The function is obtained through various processings of the
audio signal and each peak of the function represents the position of a possible
transient. Whether a peak is significant depends mostly on the interpretation
of the definition of a transient.

Many different functions have been published [59], generally in the fields of
speech and music processing. It is not the intent of this section to detail them
all. They go from finding local maximums of the waveform above a constant
threshold to multi-band complex spectral analysis with adaptive thresholding

60 Audio Time-Scale Modifications

along with functions using perceptual models. Only the ones that are tested
in Chapter 5, for transient detection in sports events, are presented here.

Energy

The local energy over time E(n) as defined in Equation 1.6, its time derivative
D(n) = E(n) − E(n − 1) or its normalized form D(n) = 1 − E(n−1)

E(n) can be
used as detection functions. Peaks in D(n) correspond to sudden variation
in the energy E(n) with more abrupt variations corresponding to the higher
peaks. As we will show in Chapter 5 this function performs poorly in noisy
environment such as footbal stadiums, for instance.

Spectral Flux

The spectral flux is a measure of the positive variations of the spectral ampli-
tudes. It is computed directly from the short-time Fourier transform (STFT)
explained in Equation 1.15 of Section 1.2.3. Depending on the sources, one can
find different although closely related definitions, some of which are presented
in Equations 2.24 to 2.27

SF (n) =

N−1∑
k=0

H(|S(n, k)| − |S(n− 1, k)|) (2.24)

SF (n) =

∑N−1
k=0 H(|S(n, k)| − |S(n− 1, k)|)

E(n)
(2.25)

SF (n) =

N−1∑
k=0

H(|S(n, k)| − |S(n− 1, k)|)2 (2.26)

SF (n) =

N−1∑
k=0

H(|S(n+ 1, k)| − |S(n− 1, k)|) (2.27)

where S(n, k) is the STFT defined in Equation 1.15 and H(x) = x+|x|
2 , which

results in that only the positive variations of spectral content are taken into
account. We always use Equation 2.24 when refering to spectral flux later on.

Audio Time-Scale Modifications 61

Multi-Band Spectral Flux

A more advanced function that is used in Chapter 5 is a multi-dimensional one
where the spectrum is divided into different frequency bands and a spectral
flux is computed for each band b.

SF (n, b) =

N−1∑
k=0

H(|S(n, k)| − |S(n− 1, k)|) Ω(b, k) (2.28)

where Ω(b, k) is the bth band-pass “filter”. It is a weighting function akin
to the windowing functions used in the time domain. There are numerous
shapes of the weighting function and spacing of the bands in the literature.
In Section 5.4.3 we use a filter bank similar to the one illustrated in Figure
A.1. Each Ω(b, k) has a triangular shape inside the range of frequencies of
band b and is zeroed outside. The frequency bands are spaced according to
the mel-frequency distribution and each band starts and ends in the middle of
the previous and next bands. A more complete description of the mel-scaled
filter bank and its design can be found in Appendix A.

Transients (i.e. significant peaks) are detected separately in each band and
the information obtained is recombined. Usually this recombination takes
into account the duplicate detection of a same transient. For instance, the
same transient detected at slightly different positions in different bands is
detected as such and merged back as a single event. Besides, some approaches
count the number of time a transient is detected across frequency bands, and
consider it to be an actual transient if it is found, for instance, in more thanM
distinct bands. This multi-band approach is much more robust than the two
previous ones especially in noisy environments as we demonstrate in Chapter
5. Therefore, it is the method that is used for transient detection in noisy
sports such as football, rugby, basketball, etc.

2.6.3 Peak Picking

Identifying what is and what is not a significant peak is a subjective topic.
In general it is addressed in the literature using either a constant or an adap-
tive threshold [59]. A fixed threshold is usually chosen empirically and, as
Figure 2.10 shows, any peak of the detection function that is above the value

62 Audio Time-Scale Modifications

of the threshold is deemed a transient. Alternatively, adaptive thresholds
can be used: the value above which a peak is a transient evolves over time,
depending for instance on non-linear smoothing of the detection function or
on the preceding (or following) detection of another transient whose presence
psycho-acoustically masks the current peak.

(s)0 5
0

en
er
gy

constant
threshold

4321 (s)0 5
0
en
er
gy

adaptive
threshold

4321

Figure 2.10. Left: a constant threshold (red line) can miss some transient detection
(gray crosses) and mistake a region with constant higher energy for
a transient; right: an adaptive threshold can reduce the occurences of
such mistakes, although it can still miss transients.

Note, however, that many detection functions with so-called adaptive thresh-
old can be rewritten as more advanced detection functions with fixed threshold.
For instance an adaptive threshold proportional to the local energy of a signal
and applied to the spectral flux as defined in Equation 2.24 is equivalent to
a constant threshold applied to the normalized version of the spectral flux in
Equation 2.25. Chapter 5 details the adaptive peak picking approaches we put
in place to detect transients during sports events.

2.6.4 Processing

Once the transients are located, special care can be taken in the time-scaling
process to preserve them as much as possible. Different approaches exist [58]:
some split the transients and the remaining of the sound as two different signals
processed separately and recombined as one output signal [54, 60, 61]; others
adapt the speed factor α locally so that the transients are time-scaled with
a value α = 1 and compensate in non-transient regions so that the overall
speed factor corresponds to the given constraint [62]; the same result can be
obtained by adapting the frame rate locally as in [63]. In a modified phase
vocoder, Röbel [64] proposes to use the original phases of the frequency bins
detected as transients whereas Bonada [44] also resets the phases of all the

Audio Time-Scale Modifications 63

bins above a given frequency to the phases of the original signal. In Chapter
5 we tested two of these methods, described hereafter, to process transients in
recordings of sports events.

Transient Removal

One of the methods, detailed in Section 5.4.5, is derived from [60] and is
similar to a method developed in [61]. As schematized in Figure 2.11, it re-
moves the transients from the signal by replacing them with synthetic content.
The resulting transient-less signal is then time-scaled and the samples of the
transient sounds are added at the appropriate position into the output using
overlap-add. In our implementation, the synthetic content is filtered white
noise. The spectral envelope applied by the filter to the white noise is com-
puted as an average of the spectral envelopes of the frames surrounding the
transient. Note that an SOLA-like overlap-add method can be used to insert
the filtered white noise in place of the transient while reducing discontinuities.

As discussed in Section 5.4.5, this method gives the most interesting results
but suffers from the drawback that the acoustic contents located before and
after a transient in the input recording are mixed up in the time-scaled signal,
as Figure 2.11 shows. In case the sounds located before and after a transient
in the input signal are perceptually different, this causes an artifact in the
output signal. Indeed, content normally located after the transient can be
heard before it and content that should appear only before a transient can still
be heard after it. Obviously if the contents are similar, this is imperceptible.

Local Speed Variations

The second method presented in Figure 2.12 and discussed in Section 5.4.5, is
a modified implementation of the work of Masri et al. [63, 65] also described
in [58]. Each time a transient is encountered, we use the last transient-less
frame to time-scale the signal until the instant when the transient can be
inserted at its rightful position in the output signal. Then the transient is
copied from the input to the output, thus undergoing a time-scale factor α = 1,
and the first frame of sound located after the transient is used to start time-
scaling again. Since each transient is inserted precisely where it ought to be in

64 Audio Time-Scale Modifications

ideal

transient

time-stretching

transient

y(n)

y(n)

x(n)

x(n)

^

^

p
1

p
2

p
1

α p
2

α

removal

insertion

Figure 2.11. Transients located at p1 and p2 are replaced with non-transient content
in the original signal. The resulting signal is time-scaled by a factor
α and the transients are inserted back into the output. Contrary to an
ideal situation, content from after the transient influences the content
before it in the output, and vice versa. Therefore the region located
around the transient (blue) can sound as a disturbing artifact.

the time-scaled signal, there is no drift of the synchronization between images
and sound in sports videos, as long as every transient is properly detected.

Theoretically this method should give the best possible results. However, as
shown in Section 5.4.5, it is valid only for as long as the lapse of time between
two transients is large enough that the content generated has an acceptable
quality. We observe that this is regularly not the case for sports recordings,
especially since the frame length that we use is significantly larger than is
common in the literature about time-scaling of speech and music.

Audio Time-Scale Modifications 65

x(n)

p
1

p
2

p
1

α p
2

α

y(n)

Figure 2.12. x(n) Is divided into non-transient regions which are then time-scaled
separately. In the last step, transients are added back into the output
signal y(n). Non-transient signals are time-scaled with a speed factor
slightly different from α to compensate for the fact that the transients
are not time-scaled and obtain an overall speed factor equal to α.

2.7 Sound Textures
Sound [66] or audio [67] textures13 refer to a group of acoustical signals that
present some pseudo-stationarity of their spectral and perceptual characteris-
tics on a longer time-scale than the sinusoidal signals introduced in Section 2.1
and considered throughout Sections 2.2 to 2.6. “Longer” is usually in the order
of several hundreds milliseconds or more (up to a few seconds), as opposed to
the classical few dozens of milliseconds from speech and music processing.

Besides this quite comprehensive statement, there is no clear definition of
what a texture is [66,68]. The notion is typically explained through examples
such as the sound of rain, fire, wind, large crowd babblings, waves, applauses,
footsteps, car engines, breaking glass, etc. However, some part of the literature
with stricter definition do not consider all of them as such. In the context of
this thesis the broadest meaning is used as it refers to various signals, from the
continuous cheers and noises of the crowd in a football stadium to the brief
slide of a player’s feet on the clay during a tennis tournament14.
13 Sometimes named natural sounds or environmental sounds.
14 or on ice during a game of hockey, if you’re that way inclined.

66 Audio Time-Scale Modifications

2.7.1 Textures Synthesis

Texture synthesis is the attempt to reproduce ad infinitum a sound texture
based on a short example of it. It has applications in music composition,
video games, television or movie soundtrack creation. For instance it can gen-
erate hours of applauses, possibly with variations, from a two-second example.
This short example cannot be simply repeated in a loop because the human
ear notices such cyclic patterns, therefore numerous methods [69] have been
developed to generate natural-sounding textures based on minimal examples.
They generally belong to one of two categories: granular synthesis-based or
model-based.

Granular synthesis

Granular synthesis is based on Gabor’s theory [70] that a sound can be de-
composed into quantums of sound. These basic elements are called atoms or
grains and their duration is usually between 1 and 100 milliseconds. Every
sound is therefore the result of a combination, the so-called granular synthesis,
of one to many grains.

Texture synthesis based on granular synthesis decomposes the example sound
into its grains. The grains are then recombined either randomly [71] or ac-
cording to some empirical (e.g. through statistical learning [72]) or arbitrary
rules [66] or to match distance-based criterions [67, 73] or following the com-
poser’s will [74] in order to create a texture that sounds like the original but
never reproduces it exactly. Note that each grain can also be processed be-
forehand to achieve specific audio effects.

Model-based

Model-based texture synthesis uses exactly the same principles as model-based
time-scaling described in Section 2.4. The texture example is parametrized
and perceptually similar sounds can be generated at will by the model. Some
models, such as physical models, do not even need an example to train upon,
they apply equations of sound generation and sound propagation in fluids to
imitate the sound of a given physical phenomenon such as a water drop in a
sink or the vibrating strings of musical instruments.

Audio Time-Scale Modifications 67

2.7.2 Time-Scaling

Some publications on texture synthesis focus on time-scaling methods. A few
do so quite approximately while others, such as the work presented by Picard
et al. in [73,75], create realistic stretched versions of sound textures. We used
this as one of the bases to develop a new method for time-scaling of sports
recordings which is presented in Chapter 6 of this work.

The method detailed by Picard et al. decomposes a database of contact sounds
recordings into non-overlapping grains and retains only those whose energy
is above a given threshold to build a dictionary from these selected grains.
Then for each grain of the dictionary its cross-correlation function with each
recording is computed and the most significant peaks are located. As a result,
for each recording, a set of peak intensities and locations associated with
the different grains is created. In the final step of the algorithm, only the
information for the k largest peaks is preserved for each recording, creating
so-called correlation patterns.

This information can be used to resynthesize an approximate version of the
original sound, by combining15 the k grains, or a subset of them, at the lo-
cations tk corresponding to the peaks. It can also be used for time-scaling,
especially for time-stretching where the original signal is divided into non-
overlapping grains and the grains are shifted to new positions corresponding
to the stretching factor α > 1, leaving empty spaces between each grain. These
empty spaces are filled by the grains from the dictionary using the peaks from
the correlation patterns that correspond to the position of each gap for that
recording. Taking into account the time-scaling factor α, each time location
tk of a peak corresponds to a position αtk in the time-scaled signal. In other
words, if a gap in the extended signal covers a region that includes the sample
αtk, it means that the grain matching the peak around time tk can be used to
fill the gap, or at least part of it.

Since this method requires computation of correlation patterns over a complete
database and the use of these patterns to fill the empty spaces, it is not fit for
realtime live time-stretching of sounds. However, we developed a new method
suitable for realtime processing of sports recordings which is also based on
grain shifting. It is treated in Chapter 6 of this thesis.

15Generally through an overlap-add.

Chapter 3

A Phase Vocoder with Synchronized
OverLap-Add

The new methods presented in this chapter are an attempt at reducing the
phasiness distortion [47] already discussed in Section 2.3.2. The underlying
idea comes from an experimental observation we made on the phase vocoder,
using its implementation from [45], and on the phase-locked vocoder, using
Identity Phase Locking [43] as described in Section 2.3.2 and as implemented
in [23]. Our observation is that phasiness in the vocoder does not appear (or is
not perceived) immediately. It takes a few frames before becoming noticeable.

A simple experiment to observe this phenomenon is to alter a phase-locked
vocoder so that the phase-locking happens only once every C frames. The
other frames are processed with a normal phase vocoder. For small values
of C (typically 3 to 5 frames), the difference in phasiness with a fully locked
signal is barely noticeable at all (some artifacts/ripples may appear in the
spectrogram though). For larger values of C, phasiness becomes audible in the
vocoder output. The loss of vertical coherence is a slow phenomenon, it is not
instantaneous, and the spectral content also varies relatively slowly. Therefore,
every time a peak is detected and locked its neighboring bins undergo some
kind of phase reset: their final phase is only a function of the change of the
peak’s phase and their phase difference relatively to the peak’s original phase.
As for the peak, since the signal varies slowly it can be assumed that its
position remains more or less coherent from one frame to another (or even
across 3 to 5 frames) even if it changes of bin (the bin change is never an
important jump in frequency).

— 69 —

70 A Phase Vocoder with Synchronized OverLap-Add

Based on these observations we propose a new method that combines a time-
domain and a frequency-domain approach. The method consists in a periodic
reset of a phase vocoder by copying a frame directly from the input into the
output and using it as a new starting point for the vocoder. The insertion
point for the frame in the output is chosen by means of a cross-correlation
measure, as it is done in many time-domain time-scaling algorithms.

In the following sections we present two different possible implementations
for this idea. The first one, described in Section 3.1, uses an approach based
on synchronized overlap-add (SOLA, cf. Section 2.2.3). In other words, an
arbitrary frame is selected in the input and inserted at an optimal position
in the output. The second implementation is discussed in Section 3.2 and is
based on the same reasoning as the waveform similarity-based synchronized
overlap-add (WSOLA, cf. Section 2.2.4). This means that an optimal frame
is picked in the input and inserted at an arbitrary position in the output.
The two methods are named respectively PVSOLA and PWSOLA for they
combine a phase vocoder (PV) with either SOLA or WSOLA.

The present chapter, especially Section 3.1, is based on work we presented in
September 2011 at the 14th Digital Audio Effects Conference (DAFx-11) [50]
and for which we obtained the Best Student Paper Award – Bronze. It should
be noted that, in 2012, at the 15th Digital Audio Effects Conference (DAFx-
12), Kraft et al. published a paper [51] proposing several interesting and
meaningful improvements to our method, in particular for polyphonic signals.
These improvements are mentioned in the informal discussions of Section 3.1.3.

3.1 PVSOLA

The phase vocoder with synchronized overlap-add (PVSOLA) is a time-scaling
algorithm combining time-domain and frequency-domain methods. It is akin
to a phase-locked vocoder whose phase locking consists only to reset, on a
regular basis (every 3 or 4 frames for instance), the phase of the vocoder to
that of the original signal.

A Phase Vocoder with Synchronized OverLap-Add 71

3.1.1 Implementation details

We propose the following framework: first we generate C synthesis frames
(f0, . . . , fc−1) using one of the phase vocoder implementations described in
Section 2.3.1. Each frame fi is L-sample long and is inserted in the output
signal by overlap-add at sample ti with:

ti = iRs (3.1)

where ti is the position at which the first sample of the synthesis frame is
inserted and Rs is the hopsize used for synthesis. We choose Rs = L/4,
as is often done in the literature. Note that it is the largest possible value
for Rs that ensures that the Hann functions, used to window each frame
twice1, overlap-add to a constant amplitude. The last frame generated (fc−1)
is inserted at position tc−1 and the next one (fc) would be inserted at tc.
However, at tc, instead of another vocoded frame we want to insert a frame f∗

extracted directly from the input audio in order to naturally reset the phase of
the vocoder but we know2 that this would cause phase discontinuities between
the partials already synthesized in the output and those of the frame f∗.

In order to minimize such discontinuities we allow the position of f∗ to be
shifted around tc in the range tc ± T (T is called the tolerance). The optimal
shift δ is obtained by computing the cross-correlation between the samples
already in the output and the samples of f∗. However, some samples of the
output are “incomplete”. They still need to be overlap-added with samples that
would have been generated in the next steps of the phase vocoder. In other
words, the samples obtained by overlap-adding the next frames (fc, fc+1, . . .)
in a normally operating phase vocoder.

As a result, a frame overlap-added in another position than tc would cause a
variation in the otherwise constant3 time-envelope of the accumulated window-
ing functions of the time-scaled signal. Besides, the cross-correlation would
be biased toward negative shifts around tc. To overcome these problems addi-
tional frames (fc, fc+1, . . . , fF) are generated by the phase vocoder and tem-
porarily inserted so that tF is the smallest insertion point that respects the

1Once at analysis and once at synthesis, hence equivalent to a squared Hann window.
2 See Section 2.2.3.
3 cf. Figure 1.9.

72 A Phase Vocoder with Synchronized OverLap-Add

constraint in Equation 3.2:

tF > tc + L+ T (3.2)

which means that the first sample of the coming frame fF would be inserted
at least T samples after the end of fc and that the output signal is “complete”
up to sample tF. In other words, no samples would be overlap-added anymore
before tF in a normal phase vocoder.

Positioning of the reset frame f∗

Position tc corresponds to a position uc in the input signal:

uc =
tc
α

(3.3)

with α the speed factor. As previously explained in Chapter 2, α > 1 corre-
sponds to an extension of the signal whereas α < 1 accelerates it.

The next step consists in selecting a frame f∗ of length L starting at sample
uc

4 in the input signal and adding it in the output signal at position tc + δ
with −T ≤ δ ≤ T . We arbitrarily fix the value of the tolerance to T =
2Rs. Equation 3.6 defines χ, a cross-correlation measure between the frame
f∗ (Equation 3.4) and the output samples o (Equation 3.5) already generated:

f∗(n) = {x(uc)h
2(0), . . . , x(uc + L− 1)h2(L− 1)} (3.4)

o(n) = {y(tc − T), . . . , y(tc + L− 1 + T)} (3.5)
χ = o(n) ? f∗(n) (3.6)

where {} denotes a frame, h2(n) is the square of a Hann window, as defined in
Equation 1.4, and ? is the cross-correlation operator discussed in Section 1.4.
x(n) and y(n) are the original and time-stretched signal respectively, with y(n)
containing all the overlap-added synthesis frames until and including fF . The
optimal value of δ corresponds to the position of the maximum peak of |χs|,
the subset of χ, as defined in Equation 3.8, that corresponds to an insertion
of f∗ in the position range tc± T . Figure 3.1 shows an example of finding the
offset δ using Equations 3.7 to 3.10:

4 rounded to the nearest integer

A Phase Vocoder with Synchronized OverLap-Add 73

ε = L+ 2T (3.7)
χs = {χ(ε), . . . , χ(ε+ 2T)} (3.8)
p = arg maxpeak(|χs|) (3.9)
δ = p− T (3.10)

ε

δ

χ

40002000

(samples)

-T T

0

0

p

Figure 3.1. δ is computed from the position p of the maximum peak value of a subset
of |χ|. The dashed lines delimit the subset χs and the dash-dotted line
represents a positioning of f∗ exactly at t = tc. In this example δ is < 0
and χs(p) > 0. The frame length L is 1024.

Insertion of the reset frame f∗

Each frame processed through the phase vocoder undergoes two successive
Hann windowings: one before the DFT and one after the IDFT before being
overlap-added in the time-stretched signal. Consequently f∗ also has to be
windowed by the square of a Hann window, as Equation 3.4 shows, in order
to overlap-add properly with the output signal and the future frames.

74 A Phase Vocoder with Synchronized OverLap-Add

Then f∗ is multiplied by the sign of χs(p). Indeed, in case the maximum
peak in |χs| corresponds to a negative peak in χs, the samples of f∗ are “anti-
correlated” to the samples in the output signal. In other words, the samples
of −f∗, with a time shift δ, have the best correlation with the output signal.
Hence it is the frame −f∗ that is overlap-added to the output audio.

Before inserting f∗, the output samples between tc + δ and tc + δ + L − 1
are windowed by a function w(n) so that the overall accumulated windowing
of the output remains constant, taking into account the frames yet to come.
This also means that the samples of the output signal beyond tc + δ+L−Rs
that have been generated to compute the cross-correlation are set to zero.
The insertion of f∗ is schematized in Figure 3.2 and the computation of the
envelope w(n) applied to the time-stretched signal is presented in Figure 3.3
and Equation 3.11:

w(n) = h2(n+ 3Rs) + h2(n+ 2Rs) + h2(n+Rs) (3.11)

t c+δ t c+δ L+

Rs3Rs

Figure 3.2. Schematic view of the insertion of a frame f∗ at position tc + δ. Top:
output signal after insertion of additional frames for cross-correlation
computation. Middle: windowed output signal (solid line) and frame f∗
windowed by the square of a Hann window (dashed line). Bottom: re-
sulting signal before the next iteration. The upcoming windowed frames
will add to a constant time-envelope with this signal.

A Phase Vocoder with Synchronized OverLap-Add 75

=

t c

w(n)

3Rs
(n + 3Rh)

2
s

(n + 2Rh)
2

s

(n + Rh)
2

s

Figure 3.3. Schematic view of the computation process for the weighting function
w(n) that will be applied to the output signal after tc + δ. Top: in
a standard phase vocoder, the squared Hann windows would sum to a
constant value except for the last samples because there are frames not
yet overlap-added after tc. We want to reproduce that behavior at tc + δ
so that f∗ overlap-adds seamlessly. Bottom: The time envelope is the
sum of three squared Hann windows with a shift Rs between each one.

Finally, since frame f∗ has been inserted “as is”, the phase vocoder can be
reinitialized to start a new step of the time-scaling process as if f∗ were its
initial frame f0 and tc + δ were its initial time position t0. Note that each
analysis frame used during this new step must be inverted if χs(p) < 0 since
the frame overlap-added to the output is −f∗ instead of f∗.

3.1.2 Discussion

It is important to notice that due to the accumulation of shifts δ (one for each
iteration) a drift from the original speed factor α could occur if no measure
is taken to correct it. In our implementation we sum the values of δ for each
phase reset and obtain a drift ∆. When ∆ exceeds ±Rs the number of frames

76 A Phase Vocoder with Synchronized OverLap-Add

synthesized in the next iteration will be C ∓ 1 and the value of ∆ will change
to ∆∓Rs. Theoretically ∆ could even exceed ±2Rs, in which case the number
of frames synthesized will be C ∓ 2 and ∆ is changed by ∓2Rs.

Another interesting fact is that if we set C = 0, the resulting algorithm is close
to a SOLA-like method except that the additional frames used for the cross-
correlation are still generated by a phase vocoder. On the contrary, C = ∞
changes the method back into a non-locked standard phase vocoder.

In our publication [50], we used the maximum of the cross-correlation subset
χs, as opposed to its maximum peak, to determine the optimal shift δ. How-
ever, we noticed later that regularly5 the maximum corresponds to a value of
δ = −2Rs. In other words, the first sample of χs is the maximum value and
it is a sample from a slope of the correlation coming down from a peak in the
part of χ that we do not use (i.e. a peak in {χ(0), . . . , χ(ε− 1)}). Logically,
in voiced part of the signal, that peak is more optimal to use for the value
of δ as it corresponds to a synchronization point of the phases of the signal.
Two approaches are possible to fix this: either allow the algorithm to pick
δ outside of the range ±2Rs when this particular issue occurs, or force the
position selected by the algorithm to be a peak inside χs. In any case, this is
a rare event as most of the maximums selected were already not at δ = −2Rs,
and thus are actually peaks. Always using a peak to deduce δ instead of an
overall maximum simply removed some of the phase discontinuities that could
be heard in our original implementation hence improving the acoustic quality.

Finally, in Section 3.1.1 we consider the first sample of a frame as the reference
for positioning. One might use the middle sample of each frame instead. This
will not create any significant difference with the method proposed above.

3.1.3 Results

For the following tests we implemented a modified version of the algorithm [45]
based on frame generation and described in Section 2.3.1. We performed both
formal and informal assessments as presented hereafter.

5Often enough that we noticed the problem.

A Phase Vocoder with Synchronized OverLap-Add 77

Formal listening tests

We use sentences selected from the CMU ARCTIC databases [76] among the
four US speakers, namely clb, slt, bdl and rms (two female and two male
speakers). Fifty sentences are randomly picked for each speaker and each
sentence is processed by four different algorithms: a phase-vocoder, a phase-
locked vocoder, a time-domain method (SOLAFS) and our method PVSOLA.
Each process is applied with two speed factors: α = 1.5 and α = 3 (i.e. 1.5
and 3 times slower).

For the two phase vocoders we use the implementations available in [23] and
for SOLAFS we use the implementation from [77]. We empirically set L = 512
samples and Rs = L/4 for the vocoders and PVSOLA. In our informal tests
SOLAFS generally provided better quality with L = 256 so we kept that value.
The parameters specific to PVSOLA are C = 3 and T = 2Rs.

PVSOLA is compared to the other three methods via a Comparative Mean
Opinion Score (CMOS) test [78]. Participants are given the unprocessed audio
signal as a reference (R) and they are asked to score the comparative quality
of two time-stretched versions of the signal (both of them with the same speed
modification). One is PVSOLA, the other is randomly chosen among the three
state-of-the-art algorithms. The two signals are randomly presented as A and
B. Each listener takes 30 tests, 10 for each concurrent method. The question
asked is: “When compared to reference R, A is: much better, better, slightly
better, about the same, slightly worse, worse, much worse than B ? ”

Each choice made by a listener corresponds to a score between ±3. In case A
is PVSOLA, “much better” is worth 3 points, “better” 2 points and so on until
“much worse” which means -3 points. On the contrary when B is PVSOLA,
the scale is reversed with “much worse” worth 3 points and “much better” -3
points. In short when PVSOLA is preferred it gets a positive grade and when
it is not it gets a negative one. Sixteen people took the test (among which 9
are working in speech processing) and the results are shown in Table 3.1 and
Figure 3.4.

From these results one can see that for a speed slowdown factor of 1.5 our
method is globally preferred except for SOLAFS with female voices where
both methods are deemed equivalent. Besides, SOLAFS performs relatively

78 A Phase Vocoder with Synchronized OverLap-Add

Table 3.1. CMOS test results with 0.95 confidence intervals for female (clb and slt)
and male (bdl and rms) speakers. PVSOLA is compared to the phase
vocoder (pvoc), the phase-locked vocoder (plock) and SOLAFS.

female

α 1.5 3

pvoc 2.03 ± 0.3 0.66 ± 0.43

plock 0.97 ± 0.41 1.86 ± 0.3

solafs 0.14 ± 0.32 1.21 ± 0.27

male

α 1.5 3

pvoc 2.49 ± 0.32 1.05 ± 0.47

plock 1.78 ± 0.29 1.71 ± 0.3

solafs 1.13 ± 0.36 1.77 ± 0.27

CMOS

0

1

2

3

1

phase
vocoder
phase-locked
vocoder
SOLAFS

1.5
3
female

-

speakers

CMOS

0

1

2

3

1

phase
vocoder
phase-locked
vocoder
SOLAFS

1.5
3
male

-

speakers

Figure 3.4. Results for the CMOS test for female speakers clb and slt (left) and male
bdl and rms speakers (right). The dark and light gray bars represent
the mean CMOS score for a speed ratio of respectively 1.5 and 3. 0.95
confidence intervals are indicated for information.

A Phase Vocoder with Synchronized OverLap-Add 79

better than the phase-locked vocoder which in turn performs better than the
phase vocoder. This is an expected result as time-domain methods usually
give better results when applied to speech and the phase-locked vocoder is
supposed to be better than the phase vocoder.

For the higher slowdown factor 3, our method is again observed to outperform
other approaches, notably better than SOLAFS and the phase-locked vocoder
in both tables, but it has lost ground to the normal phase vocoder which has
a better score than the two other approaches. After the test we discussed this
with the listeners and we could establish that it was not a mistake. Indeed,
with this time-stretching ratio every method produces more artifacts (frame
repetition for SOLAFS, metallic sound for the phase-locked vocoder, phasiness
for the phase vocoder and some sort of amplitude modulations for PVSOLA).
The listeners said that in some cases they “preferred” the defect of the phase
vocoder to that of PVSOLA for a certain number of sentences of the dataset. It
is still a minority of files for which this happens and the overall result remains
in favor of PVSOLA but this is too significant to be simply shrugged off.

At the time, these tests were run with the original implementation using ab-
solute maximums of the cross-correlation. Later on, we ran the same listening
tests again, but using absolute maximum peaks instead, and obtained very
similar results presented in Table 3.2. Therefore, these new results do not
point to a significant improvement of our method when compared to state of
the art. However, informal comparisons of the two PVSOLA implementations
by experts in audio processing logically confirmed that using correlation peaks
reduced the amount of phase discontinuities without introducing new artifacts.

Table 3.2. CMOS test results with 0.95 confidence intervals for female and male
speakers. This time, contrary to the comparison in Table 3.1, PVSOLA
uses the absolute maximum peak of correlation.

female

α 1.5 3

pvoc 2.09 ± 0.3 1.29 ± 0.34

plock 0.87 ± 0.3 1.29 ± 0.34

solafs 0.92 ± 0.39 1.35 ± 0.3

male

α 1.5 3

pvoc 1.95 ± 0.33 1.57 ± 0.3

plock 1.77 ± 0.3 1.73 ± 0.3

solafs 1.08 ± 0.28 1.41 ± 0.32

80 A Phase Vocoder with Synchronized OverLap-Add

Informal tests and discussions

Several values for C and L have been tried and the best trade-off for harmonic
signals seems to be C = 3 and L = 512 samples for a sampling frequency Fs =
16 kHz (i.e. L = 32 ms). As for other sampling frequencies (in singing and
music data) we set L so that it also corresponds to about 30 ms. Nevertheless
we noticed that in general the algorithm is not overly sensitive to the value of
L (between 20 and 40 ms). For C = 3 and a reasonable speed factor (between
1 and 3 times slower, 1 ≤ α ≤ 3) we generally notice an important reduction
of the phasiness compared to the phase vocoder. We generated some test
samples for even slower speed factors (α = 5) with mixed results (some good,
others presenting many artifacts).

For values of C ≥ 5, perceptible phase incoherencies appear in the time-
stretched signals probably because the phases of the different partials are out-
of-phase with each other. It seems that the cross-correlation measure can help
to match some of these partials with the ones from the input frame f∗ but not
all of them, thereby creating artifacts that resemble an amplitude modulation
(the audio sounds “hashed”, sometimes a beat appears at a frequency corre-
sponding to CRs). Note that even for values of C ≤ 3 these mismatches may
still appear but to a lesser extent, they are often almost inaudible. However,
discussions with listeners have shown that in some worst-case scenarios they
can become a real inconvenience as explained in the previous section.

We applied the algorithm to various signals: speech, singing voice, mono and
polyphonic music and obtained improved results over all other methods for
harmonic signals (speech, singing and some music). One of the notable ad-
vantage of the process when applied on speech signals is that it preserves their
shape-invariance property [79]. As for polyphonic signals, the algorithm suf-
fers from audible phase mismatches that even small values of C cannot fix.
This issue is tackled by Kraft et al. in [51] by tracking sinusoidal peaks in
F ∗, the DFT of f∗, in the same way identity or scaled phase locking do in
Section 2.3.2. Then the shift δ is computed and the phases of all the non-peak
components of F ∗ are modified through phase vocoding, according to that
shift, while the phases of the detected peaks (and surrounding bins) are left
untouched. Eventually, a modified frame is obtained through inverse DFT of
the modified F ∗ and is inserted in the output signal. This ensures that the
phases of the detected dominant partials, which are more likely to be correctly
synchronized by the cross-correlation and thus by the shift δ, are reset properly

A Phase Vocoder with Synchronized OverLap-Add 81

while the other components remain in phase with the output signal thanks to
the phase vocoder, hence reducing the risk of amplitude modulations due to
phase discontinuities. This may also improve the precision of the shift δ if the
correlation is computed only for the detected partials.

As a side-effect of the algorithm, transients tend to be well-preserved contrary
to what happens with time-domain (transient duplication) or phase vocoder-
based algorithms (transient smearing). We argue that f∗ can be advanta-
geously positioned so that the transient is preserved due to the relatively large
value of T . Also Kraft et al. [51] suggest that the regular and frequent copy of
frames directly from the input signal makes it likely that a transient is included
in one of these frames and thus reproduced exactly in the output signal, but
that it also makes transient duplicate as probable.

The main drawback of our method lies in its computational complexity when
compared with time-domain or phase vocoder approaches. Indeed, not only
do we compute a cross-correlation every C frame but we also generate extra
frames for its computation that will be dropped eventually and replaced by
new ones. Roughly speaking we measured that our MATLAB implementation
was three to four times slower than a phase vocoder. A profiling of the process
shows that the most time-consuming task is by far the cross-correlation com-
putation (about 40%). However, results of benchmarking within MATLAB
must be considered with care since some operations (such as selecting a frame
in a signal) are not well-optimized. We estimate that a C implementation of
PVSOLA could be less than two times slower than that of a phase vocoder.

In [51], Kraft et al. address this issue by computing the cross-correlation only
between the last output frame fc of the vocoder and the input frame f∗ to be
inserted. This cross-correlation presents a bias, because fc is windowed, but it
is compensated by weighting the cross-correlation with the inverse of the auto-
correlation of the windowing function6. Besides, in order to compensate for
the accumulated drift ∆, the cross-correlation is further weighted to introduce
a bias in the shift δ so that it tends to bring ∆ back to 0. Finally the output
signal is divided7 by the global envelope w(n) in the region [tc, . . . , tc+3Rs] to
cancel out its influence and it is multiplied by the same envelope w(n) in the
region [tc+δ, . . . , tc+δ+3Rs] so that f∗ can be overlap-added while preserving
the signal envelope.

6 limited to the part where w(n) > 10−3 to avoid rounding errors and divisions by zero.
7Once again this is limited to its central part to reduce rounding errors

82 A Phase Vocoder with Synchronized OverLap-Add

3.2 PWSOLA

The phase vocoder with waveform similarity-based synchronized overlap-add
(PWSOLA) is a time-scaling algorithm combining time-domain and frequency-
domain methods. It uses the same underlying principle as PVSOLA and
periodically resets the phases of the vocoder to those of the original signal by
inserting frames from said signal. Contrary to the previous method though,
the position at which a frame is inserted is fixed. It is not adapted according
to some correlation measurement. Instead, the input frame is selected so as
to maximize that correlation, the same way it is achieved in methods such as
WSOLA [33] or SOLAFS [26].

3.2.1 Implementation details

We propose a framework similar to the one described in Section 3.1: first we
generate C synthesis frames (f0, . . . , fc−1) using a phase vocoder. Each frame
fi is L-sample long and is inserted in the output signal by overlap-add at
sample ti with:

ti = iRs (3.12)

where ti is the position at which the first sample of the synthesis frame is
inserted and Rs is the hopsize used for synthesis. We choose Rs = L/4 as
already mentioned in PVSOLA. The last frame generated (fc−1) is inserted
at position tc−1, the next one (fc) should be inserted at tc. Now instead of
another vocoded frame we want to insert a frame f∗ extracted directly from
the input audio in order to naturally reset the phase of the vocoder.

However, if f∗ is chosen arbitrarily it is likely that it will cause phase disconti-
nuities between the partials already synthesized in the output and those of the
frame f∗. Instead, we propose to select a frame from the input that maximizes
a correlation measure with the samples of the output signal located after tc.

Selection of the reset frame f∗

As in PVSOLA, tc corresponds to a position uc = tc/α in the input signal, with
α the speed factor. Therefore, f∗ corresponds to samples {x(uc+δ), . . . , x(uc+

A Phase Vocoder with Synchronized OverLap-Add 83

L − 1 + δ)}8 with −T ≤ δ ≤ T and T the tolerance. If we used PVSOLA
boundaries backwards, the tolerance would be T = ±2Rs/α. However, for large
values of α (e.g. α > 3), this would significantly reduce the number of possible
frames. Likewise, small values of α would increase unreasonably the range of
samples used for the search, although this is less important to us, since we are
focusing mainly on slow motion. We arbitrarily fixed T = Rs.

Equation 3.15 defines χ, a cross-correlation measure between the input samples
in which the frame lookup happens (Equation 3.13) and the output samples o
(Equation 3.14) already generated:

ι(n) = {x(uc − T), . . . , x(uc + L− 1 + T)} (3.13)
o(n) = {y(tc), . . . , y(tc + 3Rs − 1)} (3.14)
χ = o(n) ? ι(n) (3.15)

The optimal value of δ corresponds to the position of the maximum peak
of |χs|, the subset of χ, as defined in Equation 3.17, that corresponds to a
selection of the first sample of f∗ in the position range uc ± T .

ε = L (3.16)
χs = {χ(ε), . . . , χ(ε+ 2T)} (3.17)
p = arg maxpeak(|χs|) (3.18)
δ = T − p (3.19)
f∗ = {x(uc + δ), . . . , x(uc + L− 1 + δ)} (3.20)

Exactly like in PVSOLA, f∗ has to be windowed by the square of a Hann
window, defined in Equation 1.4, before being overlap-added so that the overall
signal amplitude is preserved. Also if χs(p) is negative, f∗ is changed to −f∗
before insertion and every frame generated by the vocoder during the next
iteration has to be inverted as well.

8with uc rounded to the nearest integer

84 A Phase Vocoder with Synchronized OverLap-Add

3.2.2 Discussion

Contrary to PVSOLA, no further step is required before inserting f∗. The
output is already windowed “naturally” so that the frame overlaps seamlessly,
and the phase vocoder can be immediately reset to start a new cycle of frame
generation. This makes the algorithm much faster than PVSOLA since no
extra frames have been computed for the cross-correlation computation, which
was one of the main drawbacks of PVSOLA.

Besides, there is no drift ∆ since each frame f∗ is overlap-added exactly at
sample tc. However, we think that this is also the cause of the major defect of
this method. Indeed, the output signal generally presents an audible periodic
amplitude modulation whose period is equal to CRs samples. We attribute
this pulse to the small phase discontinuities that happen9 each time a reset
frame f∗ is inserted and to the fact that the auditory system is sensitive to
such a regular pattern, absent from the PVSOLA algorithm.

For this reason we did not consider this algorithm for formal testings since its
quality is so obviously and objectively flawed.

3.3 Conclusions

PVSOLA is a new method for time-scaling that combines time-domain and
frequency domain approaches. It consists in a periodic reset of a phase vocoder
by copying a frame directly from the input into the output and using it as a
new starting point for the phase vocoder. The insertion point for the frame
in the output is chosen by means of a cross-correlation measure. Informal
listening tests have highlighted a reduction of the phase vocoder’s phasiness
and formal listening tests have shown that our method was generally preferred
to existing related state-of-the-art algorithms. Both formal and informal tests
have pointed out that under certain circumstances the quality of the time-
stretched audio could be perceived poorly because of phase discontinuities in
the signal. However, using maximum peaks of the correlation instead of abso-
lute maximums to choose the insertion position of each reset frame effectively
reduces the amount of discontinuities.

9Remember that the use of a cross-correlation measure is an attempt at minimizing the
discontinuities when inserting f∗, but it does not suppress them completely.

Part II

Audio Time-Scaling for Slow
Motion Sports Videos

— 85 —

Chapter 4

Database and Tools

EVS Broadcast Equipment provides its clients with hardware and sofware
tools to store, manage, process and broadcast thousands of hours of video
streams but, of course, EVS does not own any of the content. However, with
permission of the copyright owners, they made available for us dozens of short
excerpts of several sports of interest. The audio content of these videos is used
in Chapters 5 and 6 to assess the results of different time-scaling methods.

The current chapter describes this dataset in Section 4.1 in terms of content,
quality, duration and so on. EVS also provided us with video players, able to
play the proprietary MXF format of the sports videos, and a software library
with which we developed small utilities in order to extract the audio streams
from the original videos and, once processed, encapsulate them in slow motion
videos. All these tools are briefly presented in Section 4.2. Finally we describe
the manual annotations we made of some of the recordings in Section 4.3.

4.1 Recordings

Most of the original recordings come as Material eXchange Format (MXF)
videos. However, some are simple audio files. All the recordings are sampled
at 48 kHz for the sound and either 25 or 30 fps for the video. Their content
is unevenly distributed among nine different sports as follows:

football: 103 excerpts coming from 5 different games,

rugby: 30 excerpts of one game,

— 87 —

88 Database and Tools

cricket: 25 excerpts of one game,

ice hockey: 18 excerpts of one game,

tennis: 17 excerpts of one game on clay,

basketball: 16 excerpts of one game,

baseball: 12 excerpts of one game,

car race: 7 excerpts,

athletics: 1 complete recording of a 110 metres hurdles race.

Figure 4.1 contains spectrograms representative of some of the sports con-
tained in the database, to illustrate the variety of content at our disposal.

baseball

(s)

(kHz)

0

20

10

5

15

0
105 7.52.5 (s)

(kHz)

0

20

10

5

15

0
105 7.52.5

(s)

(kHz)

0

20

10

5

15

0
168 124 (s)

(kHz)

0

20

10

5

15

0
105 7.52.5

(s)

(kHz)

0

20

10

5

15

0
105 7.52.5 (s)

(kHz)

0

20

10

5

15

0
105 7.52.5

tennis

football cricket

hockey basketball

Figure 4.1. Examples of spectrograms extracted from the database.

Database and Tools 89

Note that some files are duplicates of each other with only the viewpoint
changing but not the audio, especially in football, as illustrated in Figure 4.2.
It is also important to know that the recordings have generally been created
by sound directors during the events, through professional audio mixing of one
or several sources. These are the sounds intended for live broadcast to viewers
and, as such, they are the audio signals that we want to time-scale. The raw
sounds coming directly from the on-field microphones are not available.

4.1.1 Football

Football is the first and main sport on which the different methods of time-
scaling have been tested and demonstrated during the research. It is also the
sport for which we have the most files at our disposal. This is because football
is the most popular sport with the largest potential audience worldwide. It is
also the first market that has shown concrete interest for adding audio to slow
motion videos.

The 103 files of the database belong to five different events, namely:

48 files from a match between Barcelona and Real Madrid on December
13th, 2008, 2008 – 2009 La Liga season, (BRM),

11 files from the Brazil – Argentina final of the 2005 FIFA Confederations
Cup (BA),

6 files from the 2007 Champions League Final between A.C. Milan and
Liverpool (CL),

32 files from a match between Saint-Étienne and Olympique Lyonnais,
February 12th, 2011, 2010 – 2011 Ligue 1 season (SEOL),

6 files from an unindentified match during the 2010 World Cup in South
Africa, as test cases for the now infamous vuvuzelas (VV).

However, for some of these events, only a part of the files are actual unique
recordings. The others are duplicates recorded with another camera but a
common audio content as illustrated with the penalty of Figure 4.2. These
duplicates can be useful when working on image/sound synchronization since
some events can be heard while not being seen from a given angle but are
visible from a different one. In the case of BRM’s 48 there are actually only

90 Database and Tools

17 different audio recordings, and 8 among SEOL’s 32, for a grand total of 48
different audio files among the five matches.

Figure 4.2. The same football action, a penalty, as seen in two different MXF files
corresponding to the same identification code, “548”, from the BRM sub-
set.

Most of the files are encapsulated in an MXF video container with audio as
4-channel 48kHz 24-bit/PCM waveforms without compression. Depending on
the event, the first two channels correspond either to the live sound of the
players, the stadium and the referees (ambient sounds) or to the voices of the
television commentators, which we never used, while the next two channels al-
ways contain the ambient sounds. The six VV files are mono WAVE files with-

Database and Tools 91

out images. They are recorded in 16-bit/PCM and sampled at 48kHz. Note
that all the 24-bit/PCM recordings were requantized down to 16-bit/PCM by
simple truncation of the 8 less significant bits, without dithering. The level
of noise of the recordings makes this truncation imperceptible. Besides, the
methods described in the following chapters can be applied to any type of
audio encoding regardless.

The processing of stereophonic or polyphonic sounds with time-scaling algo-
rithms is a whole problem in itself because any loss of synchronization between
the channels not only destroys the spatialization effect but also creates undesir-
able echoes. Besides, in every stereo recording at our disposal the two channels
are either identical (“fake” stereo) or all but the same. Therefore, we always
worked on the first channel of the file that corresponds to ambient sounds (i.e.
first or third channel depending on the recording).

Finally, in order to perform the tests detailed in Chapters 5 and 6, we selected
some relevant examples among the database. Mostly four files are used, one
from BA and three from BRM. The file from BA, identified by the code 625F,
has been selected because it features a lot of drums and applauses as well
as several whistling sounds from the audience and the referee. The three files
from BRM, identified by the codes 548, 549 and 554, have been chosen because
they contain significant acoustic events happening during interesting passages
of play which are visually meaningful for public demonstrations: a penalty
(shown in Figure 4.2), a dribble/shoot/save action and a goal.

Considering this, the 48 files from the complete test set account for a total
of 67,213,488 samples, or 1,400.281 seconds of recordings, whereas the four
files (625F, 548, 549 and 554) used during the development stage contain
respectively 2,944,320, 1,532,160, 1,269,120 and 2,382,720 samples or 61.34,
31.92, 26.44 and 49.64 seconds.

4.1.2 Rugby

The 30 rugby files come from a single event, a match between Wales and Italy
during the 2008 Six Nations championship, February 23rd. Like the football
recordings, they are encapsulated as MXF video containers with audio as
4-channel 48kHz 24-bit/PCM waveforms without compression, the first two
channels correspond to the voices of the television commentators which we

92 Database and Tools

never used while the next two channels are the live sound of the players, the
stadium and the referees. All the recordings are truncated to 16-bit/PCM and
only the third channel is used during the tests.

Among the 30 files, only 10 are unique, the others are duplicates from different
camera angles. Besides, five of these 10 recording are subsets of the other five
which brings the amount of original content down to five files. There is a total
of 6,664,320 samples in these five files which corresponds to 138.84 seconds of
recording.

The acoustical content of these files is similar to the content of the football
recordings (big stadium, thousands of people in the crowd, whistles, impact
sounds with the ball, etc.) and it became obvious from some informal exper-
iments that any observation made for the football recordings applied directly
to these rugby recordings as well. Therefore, these files have not been used
intensively during the research, only occasionally as a validation set.

4.1.3 Cricket

The 25 cricket files come from a single event whose competitors are unkown.
They are encapsulated as MXF video containers with audio as 4-channel 48kHz
24-bit/PCM waveforms without compression. As explained in the previous
sections, the audio samples are truncated to 16-bit/PCM. As for the channels,
the first one contains the voices of the commentators and is not used, the
second channel correspond to a microphone positionned behind the batsman
and the third and fourth channels are the recordings of the stadium ambience.
Note that, contrary to previous cases, channel 3 and 4 can present significant
differences.

The second channel is the most important for cricket specialists as it provides
the sound of the impacts of the ball, whether it is on the cricket bat or the
wickets behind the batsman. It allows them to deduce instantly several infor-
mation such as whether the ball touched the bat or the wickets, the position
of the impact on the bat and the direction the ball takes afterwards.

Therefore, it is important for that impact sound to be properly reproduced
during a slow motion video. Besides, for slightly different reasons, it is also
the most interesting channel for our research, since it contains not only the
impact sounds but also the footsteps of the players as well as their talks and

Database and Tools 93

cheers as opposed to the stadium recordings of the third and fourth channels
which present much less diversity in their sounds.

There is a total of 29,233,920 samples or 609.04 seconds of recording in each
channel of these 25 files. One file, identified by the code 130A, has been used
for most of the tests throughout the research, it contains 987,840 samples or
20.58 seconds of recording in each channel. It features several footsteps, a
throw and a subsequent impact, followed by cheers from the players.

4.1.4 Ice Hockey

The 18 files come from a single event, a ice hockey match between the Washing-
ton Capitals and New Jersey Devils during the 2003-2004 NHL championship.
They are encapsulated as MXF video containers with audio as 4-channel 48kHz
24-bit/PCM waveforms without compression, the first two channels corre-
spond to the voices of the television commentators which we never used while
the next two channels are the live sound of the players, the stadium and the
referees. All the recordings are truncated to 16-bit/PCM and only the third
channel is used for the tests.

There is a total of 18,018,001 samples or 375.375 seconds of recording, but
note that some of the 18 recordings overlap for a few seconds with their direct
neighbors in the database, so the global figures are approximative. During the
research we focused mostly on three non-overlapping files, with codes 615E,
617A and 617F. 1 The total duration of these three files is 2,596,995 samples
or 54.104 seconds. The three selected files contain events such as shoot, goal,
impact of the puck with a wall, impact of players with the wall, etc.

4.1.5 Tennis

The 17 files feature parts of the final match of the 2007 French Open, on
clay, opposing Justine Henin to Ana Ivanovic on June 9th, 2007. They are
encapsulated as MXF video containers with audio as 4-channel 48kHz 24-
bit/PCM waveforms without compression. Every channel contains the live
sound of the players, the stadium and the referees. All the recordings are
truncated to 16-bit/PCM and only the first channel is used for the tests.

1Tests were also conducted with files 615B and 615C, but to a much lesser extent.

94 Database and Tools

There is a total of 20,843,520 samples or 434.24 seconds of recording, but
during the research we focused mostly on two files, with codes 610C and
610D. The total duration of these files is 2,208,000 samples or 46 seconds.
Each recording features a complete rally with service, ball hits and bounces,
footsteps, slides and screams as well as referee shouts and scores and applauses
from the audience.

4.1.6 Basketball

The 16 basketball files come from a single event, a match between the Wash-
ington Wizards and Indiana Pacers during the 2004-2005 NBA championship.
They are encapsulated as MXF video containers with audio as 4-channel 48kHz
24-bit/PCM waveforms without compression. The first two channels corre-
spond to the live sound of the players, the stadium and the referees while
the next two channels are the voices of the television commentators which we
never used. All the recordings are truncated to 16-bit/PCM and only the first
channel is used for the tests.

There is a total of 16,273,856 samples or 339.039 seconds of recording, but
during the research we focused mostly on two files, with codes 618F and 619B.
The total duration of these files is 1,704,103 samples or 35.502 seconds. The
two selected recordings contain events such as dribbles, a slam dunk, a swish
field goal, footsteps and slides, whistles, etc.

4.1.7 Baseball

The 12 baseball files come from a single unknown event. They are encapsu-
lated as MXF video containers with audio as 4-channel 48kHz 24-bit/PCM
waveforms without compression. The first two channels correspond to the live
sound of the players, the stadium and the referees while the next two channels
are the voices of the television commentators which we never used. All the
recordings are truncated to 16-bit/PCM and only the first channel is used for
the tests.

There is a total of 10,780,372 samples or 224.591 seconds of recording, but
during the research we focused mostly on one file, with code 613B. The total
duration of this recording is 892,892 samples or 18.602 seconds and it contains

Database and Tools 95

a throw and a ball hit followed by the sound of crowd cheers and the stadium
commentator who can be heard in the background. Note that the baseball
recordings are generally quiet compared to all the other sports and, for in-
stance, makes the detection of the impact sound between the ball and the bat
much more reliable.

4.1.8 Car Race

The 7 files contains recordings of GT1 cars and are encapsulated within MXF
video containers with four audio channels encoded as 48kHz 24-bit/PCM wave-
forms without compression. All four channels have the same content and cor-
respond to the live sound either from outside the car (in the pit lane) or from
inside the car. All the recordings are truncated to 16-bit/PCM and only the
first channel is used for the tests.

These files have been obtained relatively late in the research. They have been
used to test algorithms developed beforehand for the other sports, and mainly
for demonstration purpose during the 2011 IBC Conference. However, the
overall quality is not as good as with the other sports and not much time has
been spent to specifically improve the results for this sport.

4.1.9 Hurdles

The file is a record of an almost complete race of 110 metres hurdles. It is
encapsulated in a MXF video container with four audio channels encoded as
48kHz 24-bit/PCM waveforms without compression. The first two channels
correspond to the live sound of the runners, the stadium and the stadium
speaker while the next two channels are the voices of the television commen-
tators which we never used. All the recordings are truncated to 16-bit/PCM
and only the first channel is used for the tests. The file contains 622,080 sam-
ples or 12.96 seconds of recording. The first second of the race is missing and
thus the starting “gunshot”.

96 Database and Tools

4.2 Tools

4.2.1 MXF Library

EVS provided us with a C++ software library for Windows with which we can
extract all the metadata and the audio and video streams from the MXF files.
Thanks to this library, we wrote several applications:

mxf2audio.exe extracts the audio content of a given channel of an MXF
file into a binary file where each pair of bytes represents a sample (i.e.
a file containing only the audio samples in 16-bit/PCM, without any
header),

mxfx3.exe creates a time-scaled MXF file from an input MXF file (for
the video stream) and an input binary audio file which is the time-scaled
version of the file obtained through mxf2audio.exe. Constant and vari-
able speed factors are supported by the application, but, obviously, it has
to match the time-scaling of the input audio otherwise image and sound
will not be synchronized.

mxf2stdout.exe extracts the video frames and write the 8-bit RGB val-
ues of each pixel to stdout. Some videos have frames with only half
the number of lines of a HD video (540 instead of 1080), an option
of mxf2stdout.exe compensates this by duplicating every line sent to
stdout.

mxf2avi.exe reads values from stdin as video frames whose dimensions
are given as parameters and encodes them into an MPEG file. This
creates video files that can be played with most video players. The speed
factor of the file generated can be set as with mxfx3.exe to create silent
slow motion videos that can then be multiplexed with time-scaled audio.
This is a more practical substitute to mxfx3.exe to perform quick tests
since generating an MXF file with mxfx3.exe takes up to several minutes
whereas generating the equivalent MPEG file lasts only a few seconds.
Besides, the MPEG files are heavily compressed which makes it easier to
transfer and manipulate them.2

2A time-scaled MXF file is often larger than 1GB whereas the compressed files only takes
a few MBs.

Database and Tools 97

mxf2avi.exe does not actually depend on the MXF manipulation library and
mxf2stdout.exe and mxf2avi.exe were initially meant to be a single exe-
cutable. Nevertheless the extraction and the MPEG compression steps have
been split because of incompatibilities between the MXF library and FFmpeg
for Windows which is used for the MPEG encoding in mxf2avi.exe. The two
utilities communicate through the pipe operator “|” as the following example
shows

C:\> mxf2stdout.exe -i "foot-548.mxf" | mxf2avi.exe \
-w 1920 -h 1088 -r 3 -o "foot-548-slow-motion.mpeg"

In this case the resulting HD (1920x1088) MPEG file is three times slower
(option -r 3) than the original video foot-548.mxf. It does not have any
sound yet, the time-scaled audio channel has to be added to the video in a
further step that is achieved using the ffmpeg command-line application.

4.2.2 MXF Video Players

Besides the MXF library, EVS also provided us with three different video
players, illustrated in Figure 4.3, to visualize and navigate into the original
and processed MXF files.

4.3 Annotation

An effort to annotate the database was started and full annotations exist for
the baseball, the rugby and the BRM subset of the football database. The
tennis file 610C, which is the most used for the tests on tennis, is annotated
as well.

Each annotation of an audio file consists of two text files. The first file describes
the ambient sounds (applause, speech, cheers, whistles, etc.) over time and
the second one contains the positions of beginning and end of each transient,
with each transient that could be identified (shoot in a ball, hand claps, drum,
etc.) labelled as such.

98 Database and Tools

Figure 4.3. Screen captures of the three players at our disposal, with different sports:
tennis, baseball and ice hockey.

4.3.1 Statistics

Baseball

224.591 seconds (10,780,372 samples), containing 115 transients of which 83
are identified: 10 drums, 50 isolated applauses, 18 ball hits, 4 echoes of the
bat/ball impacts and one attack of speech.

Football

444.8 seconds (21,350,400 samples), containing 297 transients of which 275 are
identified: 57 ball impacts, 184 drums, 33 onsets/releases of whistles or horns.

Database and Tools 99

Rugby

138.84 seconds (6,664,320 samples), containing 130 transients of which 99 are
identified: 78 isolated applauses, 3 ball impacts and 18 onset/releases of whis-
tles.

Tennis

25.6 seconds (1,228,800 samples), containing 55 transients of which 43 are
identified: 11 footsteps, 11 ball rebounds, 8 ball/racket impacts, 5 isolated
applauses, 5 echoes of impacts, 1 slide on the clay, 1 speech onset and 1 racket
hitting the ground.

Chapter 5

On the Use of Old Recipes for New Material

In Chapter 2 we presented various state of the art methods of time-scaling
targeted to speech and music audio signals. The current chapter studies the
outcome of adapting and applying these approaches to the recordings of live
sports events introduced in Chapter 4. We focus almost exclusively on time-
stretching results as the main objective of the research is to add an audio
channel to slow motion videos, especially for speed factor α = 3 which is
currently the most commonly used in standard1 slow motion videos.

As explained in Section 2.1, time-scaling methods rely on two fundamen-
tal hypotheses: the sinusoidal model and the local stationarity or pseudo-
stationarity. The first condition is almost never met in the recordings at our
disposal which contain mostly noise, even for regions where speech or har-
monic sounds such as whistles are present. As for the second hypothesis,
many signals studied hereafter present some form of pseudo-stationarity, but
not necessarily on the same scale as usually encountered in time-scaling appli-
cations. For instance the background noise created by the crowd in a football
stadium is mostly a locally stationary colored noise with slow amplitude vari-
ations. However, that local stationarity cannot be perceived on a classical
time span of a few milliseconds. Instead it is observed within frames whose
duration is longer by at least one order of magnitude.

As we explain in Sections 5.1 and 5.3 these differences with speech and music
signals render many methods inadequate for time-scaling of sports recordings,
particularly the time-domain and model-based ones, even when tuning their

1As opposed to more recent Hyper/Ultra/Extreme/Super slow motion videos with speed
factor going as high as α = 12 or even more.

— 101 —

102 On the Use of Old Recipes for New Material

parameters accordingly. However, we describe in Section 5.2 interesting results
that have been obtained when working in the frequency domain with phase
vocoders or white noise spectral modification. These methods are significantly
improved in Section 5.4 when combined with transient processing. Finally, we
present in Section 5.5 some promising experiments with a sound texture syn-
thesis method tweaked to mimic audio time-stretching. Note that subjective
perceptual evaluations are presented in Section 6.6.2 of the next chapter along
with the results of these tests for the new method detailed in chapter 6.

5.1 Time-domain

The SOLA and WSOLA methods described respectively in Sections 2.2.3 and
2.2.4 both rely on duplication of blocks of samples to create a time-stretching
effect. In the case of harmonic signals, this repetition reproduces an existing
periodic pattern. However, in the case of noise signals, it creates a local peri-
odicity that is not present in the original signal. This periodicity is perceived
as an annoying buzz by the listeners. Besides, time-domain methods generally
cause metallic distortion, even when applied to clean speech signals. These
major defects do not allow the methods to be used in front of public audiences
who expect at least standard quality audio from their television set.

Only a few parameters can be modified in SOLA: the length of each frame, the
synthesis hopsize and the allowed shift around the theoretical overlap position
in the output. As for WSOLA, the latter is replaced by the allowed shift
around a theoretical position in the input. During the experiments several
combination of these parameters have been tested to no avail. Notably, the
length of the frames has been increased from the more common 10-20 ms up
to an unusual 341.33 ms (16384 samples at 48 kHz) to take into account the
fact that the stationarity in the noisy signal is maintained over longer periods
than speech and music. Different synthesis hopsizes of 1/4, 1/8 and 1/16 of the
frame length have also been tried. Note that in the case of SOLA, this must
be understood as the theoretical hopsize around which the frame is shifted,
since the actual synthesis hopsize is variable.

Given the poor results obtained during the preliminary tests on the various
sports available, research to adapt existing time-domain time-scaling algo-
rithms has been abandoned early on. However, note that the novel mixed
approach detailed in Chapter 6 is also, to some extent, a time-domain one.

On the Use of Old Recipes for New Material 103

5.2 Frequency-domain

Two approaches in the frequency domain are tested in the following with
positive results in both cases. The first one is a phase vocoder with frame
generation or, in other words, an inversion of a short-time Fourier transform
(STFT) with its phases adapted to the given speed ratio α, as described in
Section 2.3.1. The second method is also based on the inversion of an STFT
but with random phases.

5.2.1 Phase Vocoder

As a reminder, the phase vocoder based on frame generation [44,45] computes
the STFT of the input signal, creates as many new intermediate synthesis
frames as needed following Equation 2.13 and adapts the phases of all the
frames according to Equation 2.15. It then proceeds to synthesize a time-
stretched version of the original sound using the inverse STFT presented in
Section 1.2.3. We prefer this vocoder implementation over the most common
“frame shifting” because it is less computationally intensive for time-stretching
than the latter. Besides, as explained in Section 2.3.1, it can stay at a playback
time position for an infinite duration, literally pausing in the signal while
still playing it. In any case, note that informal listening tests involving both
methods have been performed regularly during this research to make sure that
there is no distortion specific to the chosen approach in the results.

In order to reduce the amount of iterations needed to test the many different
parametric possibilities for the phase vocoder, we used only powers of two for
the frame length L. Moreover, the hopsize Rs is always set at L/4, although
some minor tests not reported below have been conducted with Rs = L/8
without noticeably improving the results.

Frame Length

An immediate observation is that, with standard short-term analysis frame
lengths in the order of 10 to 40 ms or more exactly 512, 1024 and 2048 audio
samples at 48 kHz, there is a lot of distortion present in the extended signal,
even for relatively small values of 1 < α ≤ 1.5. The artifacts sound as if

104 On the Use of Old Recipes for New Material

fast-changing harmonics were added randomly across the frequency content
of the input signal [80]. Listeners describe it as reminiscent of the noise of
a little waterfall. It seems to match Boll’s description in [81] and is referred
to as musical noise in [82] and later publications. Although musical noise
is a typical artifact of spectral subtraction used for speech denoising, which
does not correspond to our use case, we borrow this term nonetheless in the
following to designate the similar distortion we observe in time-stretching of
sports recordings and noisy environment in general.

For background noises such as the crowd during a football game, another ob-
servation is that for two of these short-term analysis frames, taken close in
time, their spectral contents can be different enough that, for instance, if they
are used to filter white noise, they produce two sounds that are perceptually
different. On the contrary, if we consider two neighboring long-term analy-
sis frames, whose length is in the range of a few hundreds milliseconds, their
spectral content is very similar and filtered white noises sound perceptually
identical. Over even longer span of time, it becomes difficult to obtain rela-
tively homogen background signals as multiple events arise, such as footstep,
ball impacts, referee whistles, etc.

Consequently, we consider that the background signals of sports recordings
are pseudo-stationary on a long-term time-scale, long-term being understood
as a few hundreds milliseconds, as opposed to the classical short-term analysis
frame length used in speech and music processing. Therefore, we progressively
lengthen the analysis frames of the phase vocoder and, as a matter of fact,
musical noise steadily decreases as the frame length increases, until it becomes
inaudible. Depending on the sport considered and the type of sound within
this sport, the frame length above which the distortion cannot be heard varies
from 4096 to 16384 samples (about 85 to 341 ms). Quiet sports such as
baseball or cricket can be processed reasonably well with a frame length of
4096 to 8192 samples whereas the noisiest sports like football or rugby often
require a frame length of at least 16384 samples. It is not clear whether the
distortion observed is directly linked to the level of noise or to the distribution
of the frequency content for a given sport or even to another unknown factor.

On the Use of Old Recipes for New Material 105

Results and Discussions

Such long frames have a strong smoothing effect on the quick variations in
the spectrum of the signal. Typically, for football, most details and small
or quick variations of the spectrum, such as ball impacts, drums or whistle
onsets for example, are lost or averaged, smeared across the spectrum, as the
example of Figure 5.1 shows. Only the long-term parts of the signal are kept
more or less intact2. For instance the background noise of the crowd cheers
and their relatively slow variations of amplitude are well preserved, as Figure
5.2 illustrates. Likewise horns continuously playing the same frequencies in
the background and stable parts of referee whistles resemble their original
version although some more reverberation is present. Speech parts are more
uneven in their results. Indeed, the sounds are merged into each other making
some parts unintelligible whereas long and stable screams, for instance the
players or referees in the tennis match, pass through the time-stretching mostly
unimpacted except once more for an additional reverberation3.

(s)

(kHz)

0 1 20.5 1.5

20

10

5

15

0
(s)

(kHz)

0 1 20.5 1.5

20

10

5

15

0

Figure 5.1. Left: spectrogram of a ball hit by a baseball bat; right: spectrogram of
the same sound time-stretched three times using a phase vocoder and a
frame length of 16384 samples. The time-stretched transient is spread
across several hundreds of milliseconds whereas the original one occupies
about ten milliseconds. Example from file 613B.

A potential drawback of the method is that the length of the frame creates
important delays when working in realtime. Indeed, if the operator wants
to start a slow motion effect directly during the live event at time t0 then

2 Intact as in α times slower.
3Note that, in most sports, the original input audio already presents some reverberation,
but it is accentuated by the time-stretching.

106 On the Use of Old Recipes for New Material

(s)10 300 20 (s)30 900 60

x(n) y(n)

0

1

1-

0

1

1-

Figure 5.2. Left: waveform of an original football recording; right: its time-stretched
version. The overall shape of the amplitude over time is preserved on the
long-term (on the scale of a second, or more), although slightly smoothed.

the frame of sound that corresponds should contain the sample in the range
[t0−L/2, . . . , t0+L/2+H−1] to be able to initialize the phase vocoder. However,
audio samples [t0 + 1, . . . , t0 + L/2 + H − 1] are not yet available at time t0.
Therefore, the algorithm must wait for these samples before it can generate
sound. When L is relatively small (a few milliseconds), the delay between
audio and image is generally not noticeable on television4, but for L = 16384
samples, the delay would be easily noticeable and unacceptable.

However, most of the time a slow motion video is created moments after the
action is over. The operator selects a part of the video recording, creates a clip
and then the director decides whether to broadcast it. In such a configuration
the problem does not exist since all the samples are already recorded and
thus available for the algorithm to work with. Besides, in the occasional
case of “on-the-fly” slow motion, since the audio is played at a slower rate
than it is recorded the problem appears only at the beginning of the slow
motion sequence. For instance after one second of slow motion at a third of
normal speed, only about 333 ms of sound have been used and 666 ms are still
available (roughly speaking), enough to fill the 16384-sample (341 ms) audio
frames completely. Therefore, a solution to this issue is to start with a small
value of L, hence an imperceptible initial delay, and increase it progressively as
more and more samples are available. Normally, since this has to be done for
less than a second, the distortion should not be perceived. However, special
care must be taken when modifying the frame size during a phase vocoder
operations to avoid any discontinuities in the time envelope or the phases.

4Which sometimes presents other delays of its own.

On the Use of Old Recipes for New Material 107

Another possible delay related to the increased frame length is the slow reac-
tivity of the algorithm. Indeed, a new frame is computed every H samples,
with H the hopsize. Each synthesis frame is computed according to the posi-
tion of the slow motion playback relatively to the input signal. If the playback
speed factor α is constant, the frames synthesized correspond to the position
in the input signal. But if the value of α changes over time, the adaptation of
the time position in the audio can only happen every H samples. Therefore,
in a worst case scenario, if the change occurs just after a frame is synthe-
sized, the resynchronization between the image and the sound will happen
H samples later, at the next frame. In our most common configuration with
L = 16384 and H = L/4, this comes down to a delay of about 85 ms, or two
video frames at 25fps. If the change happens during a stable region of back-
ground noise, it will not be perceived, but if it happens simultaneously with
an action causing an acoustic transient (e.g. an impact with a ball), it may
become noticeable. This problem can be solved by reducing the hopsize H,
but it increases the computational cost of the algorithm proportionally which
may not be acceptable for a realtime system.

Finally, as we will see in Section 5.4.5, large frames are also impractical to use
for transient processing. As a matter of fact transients less than 16384 samples
apart, for instance, are a common thing in many sports recordings but they
need to be processed separately. This implies using smaller frame lengths,
smaller than the minimal possible time span between two distinct transients
and, therefore, re-introducing musical noise.

Phase Locking

Using any of the vertical phase locking methods described in Section 2.3.2
does not affect the acoustic quality of the output. This is an unsurprising and
expected result since these methods have been developed specifically for signals
following the sinusoidal model from Section 2.1. For instance, a peak present
in the spectral amplitude of a recording does not necessarily correspond to
a partial. Besides, for the most advanced approaches, tracking of sinusoidal
component trajectories is necessary, which is not a trivial problem in noisy
environments such as the ones present in the database of Chapter 4.

108 On the Use of Old Recipes for New Material

Transient Processing

For standard audio signals, adding transient detection and processing greatly
improves the results for the phase vocoder. In the same way we expect it
to improve the results for sports recordings. The process handling the tran-
sients and the results obtained are identical to those of the inverse STFT with
random phases explained in Section 5.2.2 and, therefore, they are presented
together in Section 5.4.5.

5.2.2 Random Phase

Since the major part of the signal is composed of background noise, we at-
tempted a different approach to the phase generation than the vocoded phases
of Equation 2.15. Indeed, we divide a Gaussian white noise into overlapping
frames, each with the same length L and hopsize H as the analysis frames
of the input signal, and compute the spectral phases of each frame. These
phases are then used as the phases of the synthesis frames overlap-added into
the output signal by an inverse short-time Fourier transform, as shown in
Figure 5.3. As for the amplitude spectrums, they are computed through inter-
polation using Equation 2.13, as is done in the phase vocoder of Section 5.2.1.

Frame Length

As with the phase vocoder the level of distortion is not acceptable for standard
frame sizes of 512 to 2048 samples. However, the level of distortion is lower and
sounds slightly different from the “musical noise” of the phase vocoder. With
this approach it sounds buzzier and metallic although it is not that far from
the distortion observed using the phase vocoder. We use the term “musical
noise” later, notably in Sections 6.4.1 and 6.4.3, to designate this distortion
as well. Once more increasing the length of the frames reduces the distortion
until is vanishes for frame lengths above 4096 to 16384 samples, depending on
the recording that is processed.

On the Use of Old Recipes for New Material 109

(IFFT + OLA)

H

amplitude
interpolation

ISTFT

STFT STFT

random signal audioinput

output audio

Figure 5.3. A random signal is used to generate as many phases as necessary for
the inverse short-time Fourier transform while the amplitudes are inter-
polated (in red) from the input signal. In the above example, α = 2 as
there are twice as many frames in the output as in the input signal.

Results and Discussions

Although the phases are computed from a Gaussian white noise, with large
frames the resulting audio sounds similar to the input. Even whistles and
speech are barely degraded, and these few artifacts are acceptable because
almost inaudible in the context of noisy sports. All observations and reasonings
that have been made for the phase vocoder in Section 5.2.1 are applicable to
this method as well, including artifacts such as transient smearing.

Note that in order to reduce the computational cost of generating random
numbers and computing their FFTs, we pre-generate a few seconds of random
signal and compute and store their spectral phases beforehand. Then, during
the process, the algorithm uses these phases one after the other and when it
has used all of them, it loops back to the first phases. We tested this approach
with as little as one second of random signal without the loop being noticeable.
With smaller length we start perceiving a cyclic pattern in the output audio.

110 On the Use of Old Recipes for New Material

5.3 Model-based

Different source-filter approaches have been tested, in all of them we use a
white noise as the source signal, only the filter used changes. We tested stan-
dard linear prediction (LP) as well as mel-log spectrum approximation (MLSA)
filtering [83] using time-varying filters obtained by analyzing the input audio
frame by frame over time with various standard values from the literature as
parameters. Filtering modifies the spectral envelope of the white noise so that
it matches the spectral envelope of the input signal, only varying at a slower
rate corresponding to the required time-stretching factor α. To reproduce the
frame by frame variations of the filter without creating sudden changes, an
interpolation is made sample after sample from the coefficients of one filter to
those of the next one.

The results obtained are approximate at best and most often present many
distortions. They obviously lack harmonics since the source is white noise but
“fake” harmonics are created when interpolating from one filter or spectral
envelope to the next between successive frames. They also lack most of the
transients from the original recordings but this could be addressed with appro-
priate transient detection and processing. Increasing the length of the frame
significantly reduces harmonic distortions but, as is always the case, smears
the fast variations of the signal and makes the boundaries between otherwise
separate events blurry.

We also increased the order of the filters so that they capture more of the
content of the input sounds. For instance an order of about 200 for an LP
filter is enough to model the presence of harmonics (referee whistle, speech,
. . .) for Fs = 48 kHz, but such a high order can make the filter close to
unstable, enough to cause important resonances, and, as such, unusable for all
practical purpose.

As it is the case for time-domain approaches the results are not good enough
to pursue in that direction. However, linear prediction filtering is one of the
possibilities that we use to fill the gap between shifted grains in the new
method presented in Chapter 6.

On the Use of Old Recipes for New Material 111

5.4 Transient Detection and Time-Scaling

In this section, we test three detection functions presented in Section 2.6.2,
namely energy, spectral flux and multi-band spectral flux. Each function is
tested on different categories of sports: quiet (baseball, cricket), intermediate
(tennis) and noisy (football). The files used are the ones selected for each
sport as described in the relevant subsections of Section 4.1. In the three
approaches the signal is divided into frames of 1024 samples with a hopsize
of 256 samples or, in other words, an overlap of 75 % (i.e. 768 samples).
Each frame is windowed by a Hann weighting function as defined in Equation
1.4. These parameters have been selected empirically, in the range of values
usually found in state of the art publications, as a compromise between the
precision of the measure and its computational cost. Indeed, although it is
equivalent to a resampling of the detection functions by a factor 256, basic
comparison experiments, with and without anti-aliasing filter, showed that
the aliasing is all but nonexistent as each detection function occupies a very
small bandwidth. Therefore, aliasing in the resulting downsampled detection
functions is extremely limited and acceptable without the need for a low-pass
filtering. With a larger frame shift of 512 samples, CPU usage is halved but
aliasing becomes noticeable.

5.4.1 Energy

The energy of each frame of length N , windowed by a Hann function w(n), is
computed according to Equation 1.5 to obtain a measure E(n) of the evolution
of energy over time. For a digital signal x(n) of length L, with an analysis
hopsize H, this measure can be derived from Equation 1.6 as

E(m) =

N−1∑
n=0

|x(mH − N

2
+ n)w(n)|2 for m = 0, . . . , bL−

N/2

H
c (5.1)

The four graphs in Figure 5.4 illustrate the results obtained when applying
this estimation to various sports with the chosen parameters. One can see that
transients present in quiet sports such as baseball are outstandingly visible and
their detection poses no particular problem. As far as tennis is concerned, the
main transients are clearly identified. However, some peaks appear where no

112 On the Use of Old Recipes for New Material

transient is actually audible and “minor” transients such as ball rebounds or
echoes have a lesser amplitude which can make them hardly detectable even
though they are perfectly audible in the audio recordings. Noisier regions cor-
responding to referees speaking or audience applauding present many peaks,
some of which cannot be paired with actual transients in the signal.5 Lastly,
football and rugby recordings, the noisiest type, highlight either no identifi-
able peaks or only the most significant ones. Therefore, most, if not all, events
cannot be detected in this kind of audio content.

(s)100 5
0

en
er
gy

(s)100 5
0

en
er
gy

(s)100 5
0

en
er
gy

(s)100 5
0

en
er
gy

baseball

football

football

tennis

(a) (b)

(c) (d)

Figure 5.4. Energy examples that are representative of the various types of sports
encountered in the database. Each gray dot represents a transient. We
can see that football is the noisiest sport, with cases (graph d) where
no information about transients can be deduced whereas baseball (a) is
much quieter and could use the energy as an impact detector. Tennis
(b) is in the middle between these two extremes as it features large peaks
for each ball hit, but some of the footsteps and rebounds are missing.

The measure of energy is extremely sensitive to the amount of environmental
noise. When noise occupies enough frequency bands with a level equivalent
to the other sounds, it is not possible to make a difference between them.
However, energy seems to be an appropriate tool for transient detection in
sports similar to baseball for which the multi-band spectral flux presented in
Section 5.4.3 would probably be an overkill.

5Although the definition of transient is highly subjective as explained in Section 2.6.1.

On the Use of Old Recipes for New Material 113

5.4.2 Spectral Flux

Using spectral flux, as defined in Equation 2.24 and explained in Section 2.6.2,
on the same test set of sports recordings as in the previous section, we obtain
the results presented in Figure 5.5.

(s)100 5
0

(s)100 5
0

(s)100 5
0

(s)100 5
0

baseball

football

football

tennis

(a) (b)

(c) (d)

sp
ec
tr
al

fl
u
x

sp
ec
tr
al

fl
u
x

sp
ec
tr
al

fl
u
x

sp
ec
tr
al

fl
u
x

Figure 5.5. Spectral flux for various sports from the database. Each gray dot rep-
resents a transient. Compared to the energy evolution of Figure 5.4,
there is a denoising effect that highlights the transient compared to the
background noise. However, the noisiest football recording (graph d)
still cannot be searched for transients. Besides, noisier region of ten-
nis recordings (b) have too much noise energy to allow a detection of
transient.

We observe that the peaks matching transient events are sharper and relatively
larger than when using energy, compared to the spectral flux of the noisy parts
of the signal which are lowered. For tennis recordings, peaks corresponding to
false detection of transients in the speech regions (referees) are less pronounced
than their energy counterparts. In the case of football, depending on the level
of noise, some transients can be detected, but in the noisiest condition (which
are commonplace during a football broadcast) most transients are still hidden
by the crowd noise.

114 On the Use of Old Recipes for New Material

5.4.3 Multi-Band Spectral Flux

The third detection function used to detect transients in sports recordings
is the multi-dimensional spectral flux defined in Equation 2.28 in which the
spectrum of the signal is divided into bands spaced according to mel-scale and
a spectral flux is computed for each band. For a sampling frequency of 48
kHz, we set the number of bands to B = 42.

(s)100 5

band (a)

(s)100 5

1

(b)
42 20

23

Figure 5.6. Multi-band spectral flux. Each graph features a different subset of bands,
to highlight the interesting part of the detection functions. Both excerpts
come from the same signal (625F) but not the same time slot. Figure
(a) corresponds to the bottom-right football example in Figures 5.4 and
5.5. It features a shoot in a ball visible only in the highest frequencies
whereas Figure (b) shows regularly-spaced peaks representing drum beats
in the crowd in the bands corresponding to low frequencies.

The results for quiet sports such as baseball and cricket are not really interest-
ing as they do not highlight any previously undetected transients. For these
signals it makes more sense to use energy or spectral flux-based solutions in
order to reduce the computational cost of the transient detection. However,
the peaks are even more marked than with the other approaches and thus
easier to locate. Therefore, the choice of a detection function depends on a
compromise between the accuracy needed and the higher computational cost
of a multi-band approach.

Conversely, for noisier signals, the multi-band approach highlights many events
invisible in the previous detection functions and the choice of this method over

On the Use of Old Recipes for New Material 115

the mono-dimensional ones is necessary. This applies especially to football
signals where audible transients that are not detectable with the preceding
approaches are clearly visible in different regions and bands of this measure.
Figure 5.6 (a) shows the detection function for the bottom right example (d) of
football from Figures 5.4 and 5.5. Each band of the spectral flux is normalized
on the figure but only for illustration purpose. It is not normalized during
the actual process of transient detection, in order to preserve the relative
importance of each band with regard to the others. In Figure (a), we observe
a peak, coming from a shoot, visible across several bands corresponding to
higher frequencies. Drum attacks can be seen in the lowest frequency bands of
(b), apart from the noisy content of the crowd which lays in the intermediate
and low frequencies.

For peak detection as explained in the next section, various approaches exist.
On the one hand, we can consider all the bands as possibly containing tran-
sients, which means that the detection process must be robust to noise and
not detect transients where there is actually only fast variation of noise that
human ears do not perceive as transient. On the other hand, one could process
only some frequency bands that are known to contain significant transients.
For instance, in football the peaks corresponding to drums are in the lowest
frequency bands and those for the ball shots are located in the highest bands.
The middle frequency bands could be ignored in the processing. However,
the peaks for the applause claps are positioned in these bands and would be
discarded as well, so the choice, if any, would depend on which transients the
user (director, sound engineer, . . .) wants to preserve when creating a slow
motion video.

5.4.4 Peak Detection

The large variety of signals encountered in sports recordings makes it impos-
sible to use a constant threshold on the detection function. Such a threshold
would need to be modified for every sports event, and most likely “on-the-fly”
during a given event, depending on the evolution of the noise and environmen-
tal conditions. In other words, only an adaptive threshold seems suitable to
the problem of transient detection within recordings of sports events.

116 On the Use of Old Recipes for New Material

Peak detection is divided into two parts. The first one finds all the significant
peaks in a detection function, and the second one compares each peak to a
threshold computed as a function of the neighboring values of the detection
function. In the case of multi-dimensional functions, peaks are detected and
compared to the threshold separately in each band. The information obtained
is then recombined in a third complementary step.

Significant Peak

We define a sample E(n) of a detection function as a significant peak, and
thus as a transient candidate, if its value is larger than that of its 2N closest
neighboring samples {E(n−N), . . . , E(n+N)}. N is usually set to approxi-
mately take into account the masking effect of transients on each other. Since
each sample E(n) represents H samples, the farthest samples E(n ± N) are
NH samples away from E(n). For a value of H = 256, we set the value in the
range 8 ≤ N ≤ 16 which corresponds to 2048 to 4096 samples or about 43 to
85 ms at 48 kHz, reasonably close to the estimated range of duration of the
temporal masking effect of a transient [84]. In practice this means that if two
transients are less than NH samples apart, the smallest of the two is ignored
by the algorithm.

Adaptive Threshold

When a peak at sample n is selected as a transient candidate, it is considered
as a transient if its value E(n) is higher than an adaptive threshold T (n).
Various approaches for the threshold have been tested during the research and
are presented in Equations 5.2 to 5.4. They are based on statistics extracted
from a set of values e(n) of the detection function surrounding the candidate
peak, with e(n) = {E(n−N), . . . , E(n− 2), E(n+ 2), . . . , E(n+N)}.

T (n) = λµe(n) (5.2)
T (n) = µe(n) + λσe(n) (5.3)

T (n) = λ
mine(n) + maxe(n)

2
(5.4)

On the Use of Old Recipes for New Material 117

where λ is a “sensitivity” tuning parameter and µe(n), σe(n), mine(n) and
maxe(n) are respectively the mean, standard deviation, minimum and maxi-
mum values of frame e(n). λ can be adjusted so that the detection algorithm
is more or less sensitive. Comparing the different thresholds, we found ex-
perimentally that T (n) from Equation 5.3 with 10 ≤ λ ≤ 20 is giving the
most acceptable and consistent results across all sports. A large value of λ
(e.g. λ > 40) means that less transients are detected and possibly that some
corresponding to visually significant events in the video are missed, whereas
too small a value (e.g. λ < 5) can turn every peak from E(n) into a transient.
Figure 5.7 shows examples with different values of λ.

(s)0 21

(s)0 21

(s)0 21

spectral flux
detection function λ = 3

λ = 10

λ = 40

(a)

(b)

(c)

Figure 5.7. Adaptive threshold (red) applied to spectral flux (blue) of a cricket ex-
ample (130A), for various values of λ. The file contains six transients
(footsteps, ball hit and rebound, etc.). In Figure (a), they are all detected
(gray circles) as well as two false detections (gray squares), whereas in
Figure (b) four are detected and two are missed (gray crosses). In Fig-
ure (c), only one is detected, corresponding to the ball-bat impact which
is the loudest and most visually significant transient.

118 On the Use of Old Recipes for New Material

Although it could be optimized for each recording, this parameter needs much
less modification and adaptation than a constant threshold and can be used
across many recordings of different sports with relatively little tweaking. Nev-
ertheless we consider it a liability as it reduces the capacity of a time-stretching
algorithm to automatically handle several types of sports in many different
recording conditions. This is one of the reasons that led us to develop a new
method, presented in Chapter 6, which does not rely on an explicit transient
detection step.

Multi-Band Adaptive Threshold

In the case of the multi-band spectral flux, after each band has been processed
as explained in the previous section, for each sample n, the amplitude of the
peaks detected in each band are summed. Therefore, from B signals Eb(n),
each compared with adaptive thresholds Tb(n), this creates a one-dimensional
signal E(n) whose values are either zero, if no peaks were found at instant n
in any of the bands, or the sum of the amplitude of the peaks detected.

A second pass of peak picking is made on this signal which implicitly “merges”
the peaks that are too close to be considered separately by human ears but
that were located at slightly different samples in the B frequency bands. Note
that no thresholding is strictly necessary in this second step since all the peaks
present have already been identified as transient in the first step. However,
in a post-processing step, we can decide to discard some peaks, for instance if
a peak is detected in only one band across the B bands (taking into account
the peaks that are merged in the last step), it could be considered as a false
detection and ignored in the time-scaling process. Unless its amplitude is
outstandingly high compared to those of the other bands.

5.4.5 Processing

Once transients have been located using the method described in Section 5.4.4,
they need to be processed separately from the stable part of the signal. In
the following we assume that these stable regions are processed using a phase
vocoder with a frame length of 16384 samples and a hopsize of 4096. As we
will see in this section, the unusually large frames that we use impair the

On the Use of Old Recipes for New Material 119

standard processes that would otherwise manage the transients properly. Two
approaches described in Section 2.6.4 are tested, each with its own drawbacks
explained hereafter.

Transient Removal

In this method, schematized in Figure 2.11, each transient is removed from
the input signal x(n) and its samples are replaced by filtered white noise.
The spectral envelope of the noise is computed as an average of the spectral
amplitude of the frames directly before and after the transient. In our im-
plementation these two frames have a length N = 4096 and are centered at
p ± 3N/4, with p the position of a transient and center of a N -sample frame
{x(p−N/2), . . . , x(p+N/2− 1)}. The samples {x(p−N/2), . . . , x(p+N/2− 1)}
of the input signal are multiplied by 1−w(n) where w(n) is the Hann window
defined in Equation 1.4. Then a N -sample frame of filtered noise windowed
by w(n) is overlap-added into the input signal at the same positions to create
a transientless signal x̂(n). Eventually, an energy normalization ensures that
the insertion of the filtered noise does not create amplitude variations in x̂(n).

In the second part of the algorithm, x̂(n) is time-scaled with a speed ratio α
to obtain a signal ŷ(n). Then the windowed frame containing the transient
{x(p−N/2)w(0), . . . , x(p+N/2− 1)w(N − 1)} is overlap-added to the samples
{ŷ(αp − N/2), . . . , ŷ(αp + N/2 − 1)} multiplied by the function 1 − w(n) and
thus inserting the original transients into ŷ(n) to obtain the final output signal
y(n), a time-scaled version of x(n) with intact transients.

However, this method has a major drawback illustrated in Figure 2.11. When
x̂(n) is time-scaled, samples located before and after the transient are used
simultaneously to create the output samples. Therefore, sounds that ought
to be heard only before the transient are still audible after it and vice versa.
Obviously this mix also occurs in the stable parts of the signal but it is barely
noticeable for sports recordings and causes little to no trouble, especially when
the stable part is made of slowly varying crowd noise as in football. Conversely
it can cause important artifacts around transient events.

An outstanding example we encountered during the tests, is the case of a
tennis service, where the impact sound is preceded by the whooshing sound of
the racket slicing the air and followed by a wobbling sound. When this method

120 On the Use of Old Recipes for New Material

is applied to this signal, the two sounds get mixed up and the resulting signal
is perceived as different from the sound expected from a service. Another
example is the beginning of a referee whistling where a pre-echo of the whistle
can be heard before the referee actually starts blowing.

We argue that this artifact is perceptible because of the oversized frames used
within the phase vocoder. Indeed, with standard frame sizes, as used in speech
processing, it would happen only for a few milliseconds before and after a tran-
sient and, as such, it would generally be perceptually hidden by the transient
sound. In our configuration though, the duration over which the problem oc-
curs is in the order of a hundred milliseconds because of the frame length used.
As such, it is too large to benefit from this masking effect.

Another problem arises when the algorithm does not process a transient be-
cause it is too close to another one and thus perceptually masked. If the
transient that is ignored lies within one of the two frames used to replace the
transient that is processed, it means that the algorithm replaces a transient
with another one, albeit less significant, which will be smeared by the phase
vocoder step. Finally a related problem is the case when a sound contains
many transients over a short span of time. Replacing them with filtered noise
creates a section of signal with high density of artificial sounds which generates
poor quality audio once processed.

However, this approach gives better results in general than the one described
in the following section. Moreover, the perceptual tests presented in Section
6.6.2, as well as informal discussions with viewers, show that the various ar-
tifacts inherent to this method remains often acceptable, as long as the most
visually significant transients are correctly reproduced.

Local Speed Variations

In this method, illustrated in Figure 2.12, the regions surrounding a transient
are extended more than necessary (i.e. with a stretching factor larger than the
actual α) to compensate for the fact that the transient region is not extended
(i.e. it uses a stretching factor equal to 1). In theory, this should give an
output signal as close as possible to an ideal time-scaled signal. In practice
though, this makes it impossible to process transients less than L+H samples
apart, with L the frame size of the phase vocoder and H the hopsize. In our

On the Use of Old Recipes for New Material 121

configuration, this means for transients less than 20,480 samples or 427 ms
apart. Even if the hopsize is changed to a much smaller fraction of L in this
particular case, the condition is still that no transient should be closer than
about 350 ms. By using a value of 8192 samples for L, we can possibly reduce
this minimum spacing to about 175 ms, but it is still too large compared to
the minimum perceptible spacing between two transients.

In all cases, transients closer than these values is a condition frequently met
with sports audio signals. Of course, a solution to this problem is to temporar-
ily reduce L to a value smaller than the time lapse between two successive
transients. But then musical noise distortions reappear and although it is for
relatively small durations, they can become clearly noticeable and annoying.

However, an advantage of this method compared to the previous one is that
the sounds positioned after a transient in the original signal do not affect the
sound before a transient in the time-stretched signal. Consequently in every
portion of sports recordings where transients are more than L + H samples
apart, the acoustic quality of the transients is correctly preserved.

5.5 Sound Textures

In [71], Parker et al. propose a method for sound texture synthesis that we
modified to generate an audio texture that mimics the effect of audio time-
scaling. Their method consists first in dividing an audio signal into frames
and then in reorganizing and duplicating these frames almost randomly for as
long as needed. The sequence of frames obtained is not completely random as
Parker et al. add a continuity constraint over frame selection. In the output
audio, the mth frame fm is selected so as to maximize similarity between the
overlapping part of fm−1 and fm. Note that the frame that follows fm−1 in the
original audio is discarded from selection to avoid reproducing the input audio.
Besides, an integer value called “selection cost” is added to each selected frame
so that it is not selected again immediately. This cost is then decremented at
every iteration until it is back to zero and the frame can be used again.

We modify several aspects of this algorithm to adapt it to our need of time-
scaling and to fix some of its limitations. A first change is that we pick the

122 On the Use of Old Recipes for New Material

selection cost of each frame randomly in a range of values [C1, . . . , C2], as
opposed to setting it to a constant value in [71]. This makes it impossible
for the selection process to be stuck in a loop over a few frames, as it can
happen in the original method, instead of parsing the whole set of frames.
A second change is that we use cross-correlation to detect the best matching
frame whereas Parker et al. use a least-square similarity measure. The last and
most fundamental change we make to obtain a time-scaling effect on a signal
x(n) is that instead of selecting frames in a set created from the whole x(n),
our method goes forward in x(n) and modifies the set of frames over time so
that it contains only the frames surrounding the current position in x(n) over
a relatively short span of time (in the order of a few hundred milliseconds).
This way we can generate local textures of arbitrary length for each region of
the input signal and create a new signal that imitates the time structure of
the input signal but with a different duration.

The method has been tested on football and tennis recordings with frames
selected over a span of time of one second. Informal listening tests showed
that it correctly synthesizes the stable part of signals such as the crowd or the
referee whistle but creates artifacts around transients and quick variations. For
instance when a referee starts whistling, the whistle attack can be followed by
one of the frame of noise located around the attack in the input signal. Besides,
the main artifact of the method is that events are not actually slowed down;
instead, they last longer. For instance during the applause period in tennis
file 610C, for a time-scaling by a factor α > 1, people applaud α times longer
instead of α times slower. The nuance is that there are more claps in the
pseudo time-stretched version than in the original signal. This is of course
an unwanted effect since the extra claps do not correspond to actual events
in the original recordings. However, the good results in stable parts of the
signal, such as background crowd noises, show that sound texture synthesis
is a potentially interesting solution for creation of artificial ambient noises of
arbitrary length for sports recordings.

On the Use of Old Recipes for New Material 123

5.6 Conclusions

Among the methods introduced in Chapter 2 and tested in the present chap-
ter, the most promising results have been obtained using spectral-domain ap-
proaches with large analysis frame size, combined with transient detection and
processing. The results obtained in stable sound sections or sections with few
transients have a high quality, most probably adequate for broadcast televi-
sion. Baseball recordings, for instance, can generally be time-stretched with
a phase vocoder combined with transient detection through spectral flux and
local speed variations, without the need for further processing, as the results in
Table 6.4 (Section 6.6.2) show. Besides, these tests and informal discussions
from Section 6.6.2 have shown that viewers are generally satisfied with the
results as long as transients linked with the most visually significant events
are handled correctly.

For most sports however, occasional or recurrent artifacts are caused on the
one hand by the difficulty to detect all transients in noisy recordings and across
many varieties of signals, and on the other hand by oversized frames. This led
us to the conclusion that another approach is needed to process such transients
properly. We think that the direction taken in Chapter 6, which implicitly
manages transients without actually detecting them, is more adapted to the
kind of signals recorded during sports events.

Chapter 6

Slowdio

In this chapter we detail an original approach based on relevant hypotheses
about the audio content in sports recordings. We coined the term slowdio to
designate our method and its outcome. It is the contraction of slow and audio,
in reference to slowmo which is used to casually refer to slow motion videos.

In Chapter 2 we presented state of the art algorithms for time-scaling and ap-
plied them in Chapter 5 to a new type of data, the sports recordings presented
in Chapter 4, in order to assess their capacity to adapt to audio signals that do
not fit with their underlying hypotheses. Both the phase vocoder and white
noise filtering show interesting results when used with oversized frames, for
stable or slowly evolving parts of the example signals. When combined with
transient detection and processing, the resulting sounds present an acceptable
quality as long as transients are relatively sparse. Of course, this also implies
that all transients and their position are correctly detected. This is rarely
the case in real-life conditions, as sports recordings often exhibit rapid suc-
cessions of transients in extremely noisy environments, making their detection
and processing unreliable and prone to distortion.

The method presented in the following sections assumes that most of the signal
is made of noise and contains a significant amount of transient events that have
to be preserved, as opposed to the sinusoidal model of Section 2.1. Besides,
contrary to most state of the art time-scaling methods, we consider that frames
with variable size, which we call grains from now on, are more adapted in
order to handle properly the diversity of sounds, and especially transients,
that can be produced and recorded during a sports event. Finally, we reckon
that the large overlap between analysis frames used in all the methods from

— 125 —

126 Slowdio

the state of the art is not adapted to our situation. The overlap works with
speech-like signals because of their pseudo-periodicity. Indeed, two successive
and overlapping frames contain at least 75% of samples in common, albeit
time shifted, and the remaining samples are usually similar in both frames
due to the pseudo-periodicity. The time-stretching methods make use of this
redundancy and of the pseudo-periodicity to stretch the signal into a similar
sound of longer duration. We have explained in Chapter 5 that using the same
approach for sports signals can create cyclic patterns that are absent from
the original signal and distort the time-stretched sound. Moreover, it is one
of the causes of transient duplication, an artifact described in Section 2.6.1,
since a transient, like any other part of the signal, is present across several
overlapping frames1 and, if not detected and processed properly, is reproduced
at various positions in the output signal. Therefore, in the following, we choose
to extract, from the sports recordings, audio grains that do not overlap and
that are used only once in the output.

In the next section, we give a general overview of the principles behind this
time-scaling method. The process can be decomposed in three parts, which we
detail in Sections 6.2, 6.3 and 6.4 with various possible approaches in each case.
Section 6.5 introduces the notion of a variable speed factor α, as is generally
used in practice for slow motion videos of sports events. Finally, Section 6.6
discusses the different results obtained, such as a C++ implementation and
formal and informal tests.

A publication entitled “Audio Time-Scaling for Slow Motion Sports Videos”
has been accepted for publication at the 16th Digital Audio Effects Conference
(DAFx-13) [85]. It describes the general principle of the method as explained
in Section 6.1 and its implementation using cepstral self cross-synthesis from
Section 6.4.3, as well as the results of the MOS and CMOS tests as detailed in
Section 6.6.2. Moreover, on April 7, 2011, we applied for a European patent
entitled Time-Stretching of an Audio Signal [86]. This was later extended, on
April 6, 2012, for a worldwide protection [87]. The two applications have been
published in October 2012, respectively on the 10th and the 11th. At the time
of writing their status is pending (A1). The scope of the patent covers the
various approaches described in this chapter.

1For instance it is contained in four successive frames if the overlap is 75%.

Slowdio 127

6.1 Overview

Section 2.7.2 introduced a method for time-scaling presented by Picard et al.
in [73, 75]. This method decomposes a database of sounds into grains and
computes so-called correlation patterns between each grain and the recordings
in the database. A time-stretching method is then proposed by Picard et al.
that shifts the grain of a recording to new positions, corresponding to the
desired speed factor α and inserts other grains from the database in between,
selecting those that maximize the correlation pattern with the sound that
is processed. This method cannot be used in realtime because it needs to
compute the correlation patterns of every grain of the database with every
file. This is very time consuming and, as such, cannot be implemented within
a realtime application. Besides, it supposes that a set of recordings is already
available as opposed to our situation where we start “from scratch” for each new
slow motion excerpt. Adding the necessity to keep a database of recordings
in memory is too strong a constraint for our goal of embedding audio in the
realtime slow motion videos as generated by EVS systems.

We propose a new method that also decomposes the input file into non-
overlapping grains that are re-spaced according to a speed factor α, and then
the empty spaces left between two grains are filled with content generated “on-
the-fly”. Furthermore, each grain has a certain “freedom of movement” around
its theoretical position in order to minimize artifacts.2 This approach can be
summarized as a three-step “split-shift-fill” algorithm illustrated in Figures 6.1
and 6.2 and whose steps are detailed in the following sections.

Note that with this approach, the entirety of the input signal is reproduced
exactly in the output signal, grain by grain, only with empty spaces to be
filled in between. For instance a time scaling by a factor α = 1.25 has 80%
of its samples coming directly from the original recording. Even for α = 3,
the audio of the input sound still occupies a third of the output audio. This
is similar to standard time-domain algorithms. However, contrary to these,
there is neither grain duplication nor change of hopsize, hence no transient
duplication. This means that all the transients, attacks and transitions are
preserved in the time-scaled version, avoiding an unreliable transient detection
in noisy environments. Besides, as we show in Section 6.4, the inter-grain gaps

2As will be explained in Section 6.3.

128 Slowdio

input

output

α = 2

split

shift

fill

Figure 6.1. An input signal is split into non-overlapping variable-length frames, the
so-called grains. Empty spaces are inserted between grains to match the
speed factor α (equal to 2 in this example). Finally, synthetic content
(dashed blocks) is generated to fill the gaps in the output signal.

are filled with content that, for most scenarios, is not generated using a time-
domain approach. Instead, the best results are obtained by filtering white
noise either with a linear prediction filter or by modification of the spectral
amplitude. In both cases, the filtering is based on analysis of the audio samples
around the segmentation point between the two grains surrounding the gap.

Figures 6.1 and 6.2 illustrate the method from the signal and process point of
views, respectively. Figure 6.1 is an over-simplification since the actual process
presents significant improvements that are detailed hereafter. Figure 6.2 sum-
marizes schematically the ordering of each step of the method for one iteration
of the algorithm (i.e. the life cycle of a grain). First a grain is extracted as
described in Section 6.2, then we test whether it can be concatenated directly
to the previous grain or it has to be shifted as Section 6.3 explains. If it has
to be shifted, content is generated beforehand, using one of the approaches

Slowdio 129

no

yes
concatenate

ggandgg-1

split gggrain

shift gggrain

concatenation ?

ggandgg-1

fill gap between

Figure 6.2. Life cycle of the gth grain gg during the process. After a grain gg is
extracted from the input, it is either concatenated to the previous grain,
gg−1, or shifted. In case it is shifted, synthetic samples are first gen-
erated and inserted to fill the gap after the previous grain and then the
new grain is positioned and inserted.

detailed in 6.4 and then the grain can finally be shifted in time and inserted
at an optimal position in the output signal.

6.2 Grain Extraction

The first part of the algorithm consists in dividing the input audio into grains
whose boundaries are located at stable or non-transient samples. In other
words, the segmentation samples should never belong to a transient and a grain
should always contain either one or several complete transients or no transient
at all. Picard et al. [73] propose to place segmentation points at minimums of
the spectral flux of the audio signal. However, when applying this approach to
databases of sports recordings, we observed several segmentation errors3 and
found that segmentation based on the energy followed by a search for either
the closest zero-crossing or a close minimum in the audio waveform is more
adapted to our needs, as explained in more details below.

3For some subjective definition of error, obviously. Something we deem a mistake may or
may not be considered as such in another context.

130 Slowdio

6.2.1 Segmentation

The first step in the segmentation process of a signal x(n) is to compute a
transientness function as explained in Sections 2.6.2 and 5.4.4. In the present
case however, our goal is to detect non-transient parts of the signal, in order
to place the grain boundaries at location where they do not split a transient
into two successive grains. As we show later on, spectral flux is sometimes
unreliable and we obtain more correct segmentations using the energy measure
E(n) as defined in Equation 5.1.

In a second step, the gth grain gg is defined by two parameters, the position
tg of its first sample4 and its length Lg, in number of samples. The length Lg
of a grain is simply equal to the distance between its starting point and the
starting point of the next grain

Lg = tg+1 − tg (6.1)

The computation of tg is illustrated in Figure 6.3 and complete details of the
process can be found in Equations 6.2 to 6.7.

Bmin = b tg−1 + Lmin
H

c (6.2)

Bmax = b tg−1 + Lmax
H

c (6.3)

Es(m) = {E(Bmin), . . . , E(Bmax)} (6.4)
p = (arg min(Es(m)) +Bmin) H (6.5)

xs(m) = {x(p− N

2
), . . . , x(p+

N

2
− 1)} (6.6)

tg = arg min(|xs(m)|) + p− N

2
(6.7)

with the first grain starting at the first sample of the signal and thus t0 = 0.
Lmin and Lmax respectively correspond to the lower and upper limit of a grain
length, in number of samples. N is the frame length and H the frame hopsize,

4Other meaningful options that could be considered are the middle sample of each grain or
the one corresponding to the maximum of energy inside the grain (i.e. the most likely to
be a transient that we want to keep synchronized with the video). However, these would
add a slight overhead to the method without changing the practical results much.

Slowdio 131

time

energy
x(n)

segmentation
marks

0

Lmin

Lmax

tg -1tg -2 p

tg
xs

Figure 6.3. The energy of an audio signal x(n) is computed and its local minimums
are used to place temporary segmentation points p which are then refined
into actual segmentation points tg. Example from tennis file 610C.

as used in Equation 5.1 to compute the energy function E(n). p as computed
in Equation 6.5 is the position of the minimum of E(n) located between Lmin
and Lmax samples after tg−1, the beginning of grain gg−1. This position is
then refined in Equation 6.7 by looking for the value of x(n) closest to zero in
a N -sample neighborhood around x(p). This last step can be replaced with no
important impact by a search for the closest zero-crossing. Note that we do
not look for the minimum peak in Es(m)5 because the absolute minimum is
more likely to not be part of a transient than any other local minimum. Note
also that since the limit of xs(m) are set ±N/2 samples around p, it means
that the final value of Lg is actually in the range [Lmin−N/2, . . . , Lmax +N/2].

6.2.2 Parameters

We empirically set the computation parameters for E(n) to N = 256 for the
frame length and H = 4 for the hopsize, which for a sampling rate Fs = 48

5As opposed to what is done in Equation 3.9 of Section 3.1.1, for instance.

132 Slowdio

kHz corresponds respectively to 5.3 ms and 83.3 µs. The value of H is of little
importance, as the cost of computing E(n) is relatively low, but it could be
increased to further reduce that cost, if need be. On the other hand, the low
value of N , compared to usual lengths found in the literature, is important
since, for longer frame sizes, each transient would influence E(n) over a larger
span. This, in turn, would blur the location of minimal values that are essential
to the segmentation method. To put it differently, reducing N makes it more
likely that some of the frames used to compute E(n) are devoid of any transient
and, as such, are neat and valid segmentation points. However, too small a
value for N produces a noisy E(n) (closer and closer to x(n)2 as N decreases)
that is also inappropriate for segmentation.

The other constraint applied during segmentation is related to the duration
of grains. In the literature on granular synthesis, grains typically have a
variable length in a range somewhere between 1 and 100 ms. We arbitrarily
fixed the minimum duration of a grain in our implementation to 10 ms and
decided for a maximum length of 40 ms which corresponds to the duration
of a video frame at 25 fps and, based on prior study of the test database,
seems a reasonable maximum duration for transients. In number of samples,
this translate into Lmin = 480 and Lmax = 1920 samples. Note that, as
explained in the previous section, these constraints are applied loosely and in
some specific cases the grain size can be slightly out of these limits, within the
range [Lmin − N/2, . . . , Lmax + N/2]. Therefore, it may happen that a grain is
shorter than 10 ms or longer than 40 ms by 2.67 ms (i.e. N

2Fs
). Nevertheless,

this has no consequences on the remainder of the process which can handle
any grain size.

6.2.3 Discussions

In a first implementation of the segmentation algorithm, we used spectral flux
instead of energy, following the idea of Picard et al. [73]. However, we encoun-
tered occasional errors where a transient with duration significantly longer
than N was split between two grains because it had few spectral variations lo-
cally and thus exhibited a minimum in its spectral flux as illustrated in Figure
6.4. This happened for instance with some tennis services or some impacts
with a football ball. Such transient signals have significant energy all along, in-

Slowdio 133

cluding within their “stable” sections. Therefore, the search for a minimum of
energy is more adapted to their segmentation while avoiding unwanted splits.

energy
x(n)

spectral

transient

flux

17.010 17.04017.020 17.030 time (s)

Figure 6.4. Spectral flux as defined in Equation 2.24 presents a local minimum (cir-
cled) during an important transient thus potentially triggering a false de-
tection of “non-transientness” while the energy level remains high enough
to avoid the error. Example from football 548D around t = 17.03 s.

Another approach we tested is to use a spectral flux measure to locate a first
position and then to search for an energy minimum close to that position
and eventually for zero-crossing or waveform minimum nearby that energy
minimum. This approach seemed unnecessarily complicated and, in practice,
results are close to those obtained using only energy. However, if segmentation
problems appear in the future due to the use of energy alone, this may be a
good alternative and we will reconsider our decision of not using it.

Finally, contrary to state of the art methods, this approach does not require an
explicit detection of transient events and thus eliminates the need for thresh-
olding which is usually specific to the recording processed and has to be con-
stantly re-adapted. Indeed, as long as transients are not split between suc-
cessive grains, all transients that may appear in the input signal x(n) are
implicitly processed in the next stages of the algorithm.

134 Slowdio

6.3 Grain Shifting

In the second part of the method, grains are shifted from their initial position
tg in the input x(n) to a new position ug in the output signal y(n), in order
to create the time-scaling effect. Theoretically, for a constant6 speed factor α,
the new position ought to be

ug = ug−1 + αLg−1 (6.8)

However, although this places the grains exactly where they belong, it adds a
strong constraint whether α is larger or smaller than 1. As a matter of fact
in case α > 1, the methods detailed in Section 6.4 have to generate content
that fits perfectly into the gap created between two grains. Conversely, in the
case of α < 1, it forces an overlap-add between gg−1 and gg at a position that
is likely to be suboptimal, in the same way the time-domain method OLA
does as explained in Section 2.2.3. Our experimental observations show that
such an approach is both prone to artifacts and unnecessarily restrictive. To
overcome this issue, we apply two improvements.

On the one hand, as presented in Section 6.3.1, we use the principle from
SOLA [24] detailed in Section 2.2.3 and that we already applied to PVSOLA
[50] in Chapter 3. We allow grains to be shifted around position ug, by δg
samples with |δg| ≤ ∆, in order to minimize discontinuities when grains are
overlap-added with the content already in y(n). For reasonable values of ∆, the
change in synchronization between the sound and the image in a slow motion
video cannot be perceived while the acoustic quality, especially in region with
harmonic content7, is significantly increased.

On the other hand, as introduced in Figure 6.2, we show in Section 6.3.2 that,
provided some conditions are met, the insertion method of Section 6.3.1 can
be advantageously replaced by a concatenation between two successive grains.
This reduces the computational cost of the algorithm and increases its acoustic
quality by removing as many possible discontinuities.

6Variable speed factors are discussed in Section 6.5.
7Referee wistles, player’s voices, vuvuzelas, etc.

Slowdio 135

6.3.1 Shift

The computation of the insertion positions of each grain resembles that of the
reset frames in PVSOLA, using a cross-correlation measure χ(n), defined in
Equation 6.11, to choose a value of δg that minimizes discontinuities. χ(n) is
computed between ι(n), the first h samples of grain gg, and o(n), the samples
of y(n) located ±∆ samples around sample ug.

ι(n) = {x(tg), . . . , x(tg + h− 1)} = {gg(0), . . . , gg(h− 1)} (6.9)
o(n) = {y(ug −∆), . . . , y(ug + ∆− 1)} (6.10)
χ(m) = o(n) ? ι(n) (6.11)

where h is the number of samples at the beginning of gg that are going to
be overlap-added with the output signal y(n). Note that the computation
of χ(n) supposes that the output samples {y(ug − ∆), . . . , y(ug + ∆)} exist.
In other words, if, as is often the case for α > 1, some of these samples are
located after gg−1, that is after sample y(ug−1+δg−1+Lg−1), the gap between
y(ug−1 + δg−1 +Lg−1) and y(ug + ∆) has been previously filled with generated
content obtained from one of the methods described in Section 6.4. Once
cross-correlation has been computed, a search for an absolute maximum peak
is made on a subset χs(n) corresponding to a shift |δg| ≤ ∆ of gg around ug

δ0 = 0 (6.12)
ε = 2∆ (6.13)

χs(n) = {χ(ε), . . . , χ(ε+ 2∆− 1)} (6.14)
p = arg maxpeak(|χs(n)|) (6.15)
δg = p−∆ (6.16)

OverLap-Add

Grain gg is inserted into y(n) at position ug + δg through overlap-add (OLA).
The first h samples of gg are windowed by w(n), the left half of a 2h-sample
Hann window, as defined in Equation 1.4, and the last h samples of the output
signal are windowed by the complementary window 1−w(n), which also hap-
pens to be the right half of the 2h-sample Hann window. Figure 6.5 and Equa-
tions 6.17 to 6.19 present the overlap-add procedure. Note that in case the

136 Slowdio

maximum peak of correlation is negative (i.e. the samples are anti-correlated),
the values of the grain samples are sign-inverted before OLA.

y(n)
gg

ug δg+ ug δg+ +Lg -1

h

y(n)

y(n)

ug+Δug -Δ ug

o(n)

ι(n)

Figure 6.5. The gth grain and the current y(n) are windowed by half of a 2h-sample
Hann window and its complement, respectively. Samples of y(n) located
after ug+δg+h are discarded. Then gg is overlap-added to y(n), starting
at position ug + δg, to obtain the next version of y(n).

m = ug + δg + n (6.17)
ςg = sgn(χs(p)) (6.18)

y(m) =

{
y(m)(1− w(n)) + ςg gg(n)w(n) if n = 0, . . . , h− 1

ςg gg(n) if n = h, . . . , Lg − 1
(6.19)

where ςg is equal to either 1 or −1 depending on the sign of χs(p). The second
case of Equation 6.19 is equivalent to a windowing by a rectangular window.
This combination of a Hann window for the first h samples and a rectangular
window for the remainder corresponds to the first half of a Tukey window.

6.3.2 Concatenation

If ug is less than ∆ samples away from the end of the previous grain, gg−1,
inserting gg into y(n) becomes a simple concatenation of the two grains. In-

Slowdio 137

deed, if Equation 6.20 is verified, the optimal location for gg is to put it right
after gg−1 in y(n), as illustrated in Figure 6.6, just like they follow each other
in the input signal x(n), ensuring perfect continuity in the output signal.

ug −∆ ≤ ug−1 + δg−1 + Lg−1 ≤ ug + ∆ (6.20)

with ug−1+δg−1 the index at which the first sample of gg−1 has been previously
inserted in y(n). This double condition checks that ug−1 + δg−1 + Lg−1, the
first sample after gg−1 in y(n), is within ug±∆, the range of available positions
for insertion of gg. Note that only the first inequation is useful when α > 1
and, likewise, the second is a necessary and sufficient condition when α < 1.

+ +
+

y(n)

L
ug

ug δg+

Δ Δ

gg

y(n)

ug

δg

δ
g -1

u δ u g -1g -1g -1g -1

Figure 6.6. Theoretically, grain gg should be inserted at position ug. However, a
shift ∆ is allowed and, in some cases, it is possible to append gg directly
to gg−1 in the output signal y(n). This reduces the computational cost.

Taking Equation 6.8 into account, Equation 6.20 can be rewritten indepen-
dently from grain gg as

(α− 1)Lg−1 −∆ ≤ δg−1 ≤ (α− 1)Lg−1 + ∆ (6.21)

which, in turn, can be finally simplified into

|δg−1 − (α− 1)Lg−1| ≤ ∆ (6.22)

The condition depends only on the shift applied to gg−1, on its length Lg, and
on the speed factor α. It is independent of any parameter from gg. However,

138 Slowdio

as discussed in Section 6.5, this is only valid for a constant speed factor or a
value of α that is updated once per grain. If the condition is respected, the
grain is added directly into the output as per Equations 6.23 to 6.25. Note,
however, that it is multiplied by ςg−1, as computed for gg−1 during the previous
iteration of the algorithm. Indeed, grain gg−1 has actually been multiplied by
ςg−1 before insertion and thus may have been inverted. There would be a
discontinuity in case ςg−1 = −1 and gg is inserted without being inverted.

m = ug−1 + δg−1 + Lg−1 + n (6.23)
ςg = ςg−1 (6.24)

y(m) = ςg gg(n) for n = 0, . . . , Lg − 1 (6.25)

In the concatenation case, as opposed to Equations 6.12 to 6.16, δg is computed
using Equation 6.26, where it is the only unknown. Equation 6.26 can be
simplified into Equation 6.27 by subtracting the terms of Equation 6.8. The
value of δg that is obtained has no immediate use, but it is needed in the next
iteration of the algorithm, when grain gg+1 is added to y(n).

ug + δg = ug−1 + δg−1 + Lg−1 (6.26)
δg = δg−1 + (1− α)Lg−1 (6.27)

This simplification of the grain insertion algorithm by means of direct con-
catenation is especially useful for values of α close to one since it both reduces
the computational cost and improves the acoustic quality of y(n). Indeed,
for such ratios, concatenation happens frequently and each time it happens
the algorithm avoids the computation of cross-correlation χ from Equation
6.11 and the generation of content to fill8 a gap, as detailed in Section 6.4.
Computationally-wise, these two operations are the most expensive of the
whole algorithm and the speed gain is significant, especially for values of α ≤ 3,
as shown in Table 6.1.

On the other hand, each replacement of an overlap-add by a concatenation
step increases the overall acoustic quality. Indeed, it reduces the number of
potential discrepancies due to poor overlap-add conditions. It also suppresses

8Note that in the method we use in the tests, the cross-synthesis approach from Section
6.4.3, there is another cross-correlation in Equation 6.42 in order to find the best insertion
location for the synthetic content. This is avoided as well when concatenating grains.

Slowdio 139

Table 6.1. Percentage of grains that are concatenated as a function of α for a file
with 966 grains. Values of α are typical of sports slow motion videos and
correspond respectively to 24/25, 90%, 80%, 2/3, 50%, 33%, 25% and 20%.

α 1 1.042 1.11 1.25 1.5 2 3 4 5

% 100 94.7 86.2 71.8 52.7 28.7 8.3 2.3 0.5

cases where a grain gg could be shifted at a position located before ug−1+δg−1
9

or, in other words, before gg−1, thus inverting some sounds in the output
signal compared to the input. Besides, in the case α = 1, the algorithm is
transparent and y(n) = x(n), which is not necessarily the case when only the
cross-correlation-based OLA approach is used.

Table 6.1 shows the average percentages of frames that are concatenated for
various typical values of α for one tennis file, identified as 610C, which is di-
vided into 966 grains. Since the content filling inter-grain gaps is generated
from filtering a random Gaussian signal, as explained in Section 6.4, the posi-
tion of each grain is different every time the program is run and, consequently,
the concatenations do not always occur for the same grains. Therefore, the
measurements reported in Table 6.1 are made five times for each value of α
and the results are averaged in the table. Note that the variance of these
measurements is relatively weak.

As we can see, for values of α ≤ 1.5, more than 50 % of the grains are directly
concatenated, up to about 95 % for a speed ratio of 25/24. This translates into
an equivalent speed up of the method as the computational cost of concate-
nation is negligible when compared to that of overlap-add.

6.3.3 Parameters

The two parameters of this part of the algorithm are ∆ and h. In the same
way that we decide the maximum length Lmin of each grain, we choose a value
of ∆ that corresponds more or less to 20 ms, for a total span [−∆, . . . ,∆] close
to the 40 ms duration of a video frame at 25 fps, so that a shift δg does not
perceptibly desynchronize the audio and image streams. Initially, we fixed

9 i.e. if αLg−1 < ∆ and cross-correlation detects an optimum there.

140 Slowdio

∆ = 1024 samples at Fs = 48 kHz, i.e. about but not exactly 20 ms, to keep
a power-of-two value in order to have the fastest possible computation of χ
using FFTs.10 It is of minor importance though, as the acoustic quality of the
output is not overly sensitive to that value, as long as it allows a reasonable
shift. The second parameter is set to h = N/2 = 128, with N the frame size
used in Section 6.2.2.

6.4 Filling Gaps

After grain extraction, when a grain gg has to be positioned, the concatenation
condition of Equation 6.20 or one of its variants is computed. Then, as shown
in Figure 6.2, if gg cannot be concatenated, the third part of the time-scaling
process is to synthesize and insert content in the output signal y(n) to fill
the gap between gg−1 and gg. Samples need to be generated until at least
sample ug + ∆ + h − 1, so that o(n), and thus cross-correlation χ(n), can
be computed properly in Equations 6.10 and 6.11, respectively. In order to
create and insert the content that fills the inter-grain empty spaces, we tested
different approaches that are detailed in the following sub-sections.

6.4.1 Spectral Synthesis

Since the sports recordings in the database are mainly made of noise, we
considered filtering Gaussian white noise as an option to fill the inter-grain
spaces between gg−1 and gg. The method from Section 5.2.2 explains how to
use white noise to generate a random signal with a given spectral amplitude
using the inverse STFT. To compute this spectral amplitude, we use the DFT
of a Hann-windowed N -sample analysis frame {x(tg−N/2), . . . , x(tg+N/2−1)}
centered on tg. Then we generate Z samples of colored noise, z(n), with Z
equal to

Z = (α− 1)Lg + h+ ∆− δg−1 + Θ (6.28)

10However, with the most performing solutions for the FFT algorithm, it is possible to use
almost any size while partly preserving the high speed of computation, so this decision
may be modified in future implementations.

Slowdio 141

where h, ∆ and δg−1 correspond to the parameters already defined in Sec-
tion 6.3. The actual insertion position for gg (i.e. ug + δg) is still un-
known, since it cannot be inserted until the gap is filled with content. How-
ever, we know its upper limit since δg < ∆, which explains the “+∆” in
Equation 6.28. Compared to the actual number of samples needed to fill
the largest possible gap between gg−1 and gg, there are Θ extra samples.
This is because we compute a cross-correlation measure between samples
{y(ug−1 + Lg−1 − h), . . . , y(ug−1 + Lg−1 − 1)} and the first Θ samples of the
synthetic content. This measure is used to find the shift θ of z(n) that min-
imizes the discontinuities with the current last h samples from y(n). Then,
samples {z(θ), . . . , z(θ + (α − 1)Lg + h + ∆ − δg−1)} are multiplied by −1 if
the correlation value was negative in θ and eventually inserted into the out-
put signal, starting at position ug−1 + Lg−1 − h. Note that in the region
[ug−1 +Lg−1−h, . . . , ug−1 +Lg−1− 1], the content of z(n) is overlap-added to
the existing samples in y(n).11 Then, starting from sample ug−1 + Lg−1, the
samples are simply set to the values of z(n).

Once colored noise has been added to y(n), the next grain can be positioned
and inserted as well, following the overlap-add method in Section 6.3.1. More
details about the computation of the cross-correlation and the overlap-add
used in the previous paragraph are given in Section 6.4.3 and Figure 6.14 as
the insertion process used there is exactly the same.

Discussions

The value for Θ is set arbitrarily to 4096 samples (about 85 ms). We tested
this method for various size N of the analysis frame centered in tg. Similarly
to the filtered white noise in Section 5.2.2, N = 512 creates strong distortions
(musical noise). Increasing the value of N progressively reduces this distor-
tion which becomes mostly inaudible for N ≥ 8192. At N = 8192, according
to several informal listening tests, the results for this method present a good
quality in stable regions. All the minor events and slow transitions are cor-
rectly preserved and the background noises sound similar to the input signal,
especially in football and rugby.

11which, incidentally, are the last h samples of gg−1.

142 Slowdio

However, in sections where there is one or several significant transients, or
other important variations, these interfere with the computation of the content
that fills the gaps. Indeed, for N = 8192 the duration of the analysis frames
is about 170 ms. Even a transient located 80 ms away from tg

12 still has an
influence on the content inserted between gg−1 and gg, as a comparison of
the spectrograms between an input signal and a slowdio shows, respectively
in Figures 6.7 and 6.8. We can see that the main transient is surrounded by
vertical stripes in the slowdio image. These represent the spectral amplitudes
of the synthetic content that is used to fill the gaps between grains and they
are clearly not in the continuity of the original spectrogram.

0 1 20.5 1.5

20

10

5

15

0

frequency (kHz)

time(s)

Figure 6.7. Excerpt of a spectrogram of a baseball recording (613B, see Section 4.1.7)
at the moment a ball is hit by a bat. The hit is represented by the darkest
vertical line around 0.8 s.

6.4.2 Linear Prediction Filtering

As an alternative to spectral synthesis we propose to use linear prediction
filtering as defined in Section 1.5 to create the filling content with the required
spectral envelope. This method has the advantage that it can ensure perfect

12 and, as such, not belonging to gg−1 or gg whose maximum length is about 40 ms.

Slowdio 143

0 1 20.5 1.5

20

10

5

15

0
time(s)

frequency (kHz)

Figure 6.8. Excerpt of a spectrogram of a time-stretched (α = 3) version of the
recording of baseball from Figure 6.7, showing synthetic content between
0.8 and 1.4 s (marked with horizontal bars). The content in between
each is a grain coming directly from the original signal. Note that there
is no link between the time axes of this figure and Figure 6.7.

continuity between either grain gg−1 or grain gg or both and the synthetic
content. As opposed to spectral synthesis which uses overlap-add for insertion,
creating the possibility for a small glitch each and every time.

One-sided

In the so-called “one-sided” approach, the content is generated in the continuity
of the samples of one of the two grains, gg−1 or gg. The following explanation
is for a continuation of gg−1 as the principle for gg is exactly the same, only
applied time-reversed, as we mention at the end of the section.

The first part of the process is similar to the spectral method with the ex-
traction of an N -sample analysis frame centered at tg. The p linear prediction
coefficients for this frame are computed and are used as the coefficients of an
AR filter to filter Gaussian white noise. A simple way to obtain samples in
the continuity of the last samples of gg−1 is to use the values of these samples

144 Slowdio

in Equation 1.35 for y(n < 0), as per Equation 6.29

y(n) = gg−1(Lg + n) if − p < n < 0 (6.29)

where y(n) refers here to the output of the LP filter in Equation 1.35, not
the output signal of the time-scaling process. Using Equation 6.29 means
that the value of y(0), for instance, is computed as the sum of bx(0), i.e. a
random value, and

∑p
i=1 ai gg−1(Lg − i). In other words, the filter uses the

last p samples of gg−1 as its past outputs and continues to synthesize samples
starting from that point on. This guarantees the continuity between the end
of gg−1 and the beginning of the synthetic content. Therefore, there is no
need for an overlap-add or a correlation-based adjustment of the position of
the synthetic samples as it is the case in Sections 6.4.1 and 6.4.3. Then gg can
be positioned and overlap-added as explained in Section 6.3.1 and Figure 6.9.

+ +
+

y(n)

L
ug

y(n)

δu δ u ug+Δ

gg

ug δg+

y(n)

ug -Δ

synthetic

u δg+ +Lgg

Δ2
h

g -1 g -1 g -1 g -1

g -1

Figure 6.9. y(n) is continued by content synthesized by LP filtering of a Gaussian
white noise. The optimal insertion position for gg (red bar) is then
found using a cross-correlation measure between the last 2∆ samples of
the synthetic content and the first h samples of gg.

If this process is applied using the first p samples of gg, time-reversed as in
Equation 6.30, as the values for y(n < 0) and then the output of the filter

Slowdio 145

is reversed along the time axis, we obtain a signal whose last13 samples are
continued by the first samples of gg.

y(n) = gg(−n− 1) if − p < n < 0 (6.30)

In this case, as illustrated in Figure 6.10, it is the whole set of samples “syn-
thetic + gg” that must be positioned and inserted at the end of gg−1 using
the correlation-based method. There is no particular reason to use this second
method, except in the context of the so-called “two-sided” method explained
in the next section.

+ +
+

y(n)

L
ug

y(n)

δu δ u ug+Δ

gg

ug δg+

y(n)

ug -Δ

u δg+ +Lgg

ggsynthetic

h

Δ2

g -1 g -1 g -1 g -1

g -1

Figure 6.10. gg is “pre-completed” by LP filtering of a Gaussian white noise to fill
the gap between its farthest possible position (ug + ∆) and y(n). h
extra samples are generated for the overlap-add with gg−1. The grain
and the synthetic content optimal insertion position (red bar) is then
found using a cross-correlation measure between the first 2∆ samples
of the synthetic content and the last h samples of y(n).

13 In other words, the first output samples of the filter before time-reversal.

146 Slowdio

Two-sided

Another way to use LP filtering is to perform the two filtering steps explained
hereinabove and then to overlap-add the two blocks of samples obtained as
schematized in Figure 6.11. As in other parts of this work, a cross-correlation
measure is used to minimize the discontinuities in the overlapping regions.
This method ensures the continuity between the grains and the synthetic con-
tent on both sides of an inter-grain gap. However, it requires twice as much
filtering as in the one-sided version. Besides, the potential discontinuities
are not completely suppressed. Instead they are only moved from the grain
boundaries into the overlapping region between the two synthetic contents.
This can be advantageous when the overlapping region is much larger than h
as it reduces the perception of discontinuities.

+ +
+

y(n)

L
ug

y(n)

δu δ u ug+Δ

gg

ug -Δ

synthetic

ug δg+ u δg+ +Lgg

ggsynthetic

y(n)

Δ2

g -1 g -1 g -1 g -1

g -1

Figure 6.11. y(n) and gg are both “continued” by content synthesized by LP filtering
of a Gaussian white noise. The synthetic signals are then overlap-
added at a position that minimizes discontinuities.

Slowdio 147

Discussions

As far as the length of the analysis frame is concerned, the same observations
as for the spectral synthesis can be made about this method and the length
of the frame has to be at least N = 8192 to reduce the typical musical noise
artifact. As for the order p of the LP filter, in most cases, when used in speech
processing, it is chosen according to the arbitrary rule p = Fs + 2, where the
sampling frequency Fs is in kHz. However, in the present situation, an order
p = 50 is not enough to reproduce the fine details of the audio content and the
synthetic signal is only a poor approximation of it. It results in strong audible
artifacts in the time-stretched signals. The transition between grains, which
are high-quality samples from the original signal, and the synthetic content,
which is of a lesser quality, are clearly audible. Increasing significantly the
value of p, up to 250, can reduce most of the discrepancies. As an interesting
consequence of such a high value for p, the harmonic content is modeled as
well while it is almost lost for LP filter with a lower order. This means that
speech and whistle parts of the original signal are reproduced in a better way
in the output signal. Nevertheless, some discontinuities remain, especially in
the voice parts.

The use of LP filtering has several drawbacks. The first one is that the sound
has a typical metallic characteristic which is particularly audible and annoying
in the noisiest sports such as football and rugby. The second is that a high-
order LP filter can more easily be subject to instabilities than a low-order
one. Even though methods exist to keep it stable, the time response of such
a filter can present sudden rises of energy locally. This overflows the 16 bits
audio dynamic range.14 Besides, this method has the same artifacts around
transients as the spectral method since the analysis frame length is the same.

14Note that switching to 24 bits would not reduce the annoying acoustic artifact caused by
such bursts in the energy of the synthetic signal.

148 Slowdio

Note on Direct and Backward Linear Prediction filtering

When using linear prediction, the grains are neither overlap-added nor exactly
concatenated15 with the synthetic content. Instead one could say they are
“continued” by that content, as opposed to the description of Section 6.3.

6.4.3 Self Cross-Synthesis

The results from spectral synthesis and LP filtering, respectively in Sections
6.4.1 and 6.4.2, are promising, but suffer from major artifacts, mainly around
transients. To tackle this issue, we propose a new approach to generate the
gap-filling synthetic content, without the need to detect the transient events.
We make the hypothesis that we can combine the advantages of short-term
and long-term analyses through a form of cross-synthesis. Indeed, on the one
hand, a short-term frame extracted around time tg has a spectral envelope
devoid of the influence of surrounding transients. Unfortunately, it causes
musical noise. On the other hand, a long-term frame does not create that
artifact but its spectral amplitude is distorted by nearby transients. Cross-
synthesis is a process by which the spectral amplitude of a carrier or source
signal s(n) is modified into that of a modulating or target signal t(n) [11]16.
However, in the method that we propose, the source and target signals are the
same input signal x(n), only the time resolution of the analysis is different,
hence the name self cross-synthesis.

Overview

The principle of the self cross-synthesis method is illustrated in Figure 6.12.
In order to fill the empty space between gg−1 and gg, two analysis frames fs
and fl are built from the input signal x(n), both centered at tg, as written in
Equations 6.31 and 6.32. The lengths of the frames are respectively Ns and
Nl, with Ns << Nl. Therefore, fs is called the short-term analysis frame and

15Note that the concatenation between grains explained in Section 6.3.2 happens also with
this method, when possible. The current section is only about cases when content has to
be inserted between two grains.

16 https://ccrma.stanford.edu/~jos/sasp/Cross_Synthesis.html

https://ccrma.stanford.edu/~jos/sasp/Cross_Synthesis.html

Slowdio 149

fl the long-term analysis frame.

fs(n) = {x(tg −
Ns

2
), . . . , x(tg +

Ns

2
− 1)} (6.31)

fl(n) = {x(tg −
Nl

2
), . . . , x(tg +

Nl

2
− 1)} (6.32)

For both frames, spectral envelopes are extracted and the spectral envelope of
fl is compensated for. Therefore, it is “whitened” into a signal whose spectral
amplitude is globally horizontal while still containing all its local details. Then
this “whitened” signal is “re-colored” using the spectral envelope of fs, the
short-term analysis frame. Finally, the signal resulting from this self cross-
synthesis is used to synthesize the content to fill the inter-grain empty space.

x(n)

short-term
analysis

long-term
analysis

spectral
envelope

spectral
envelope

fs

f
l

Figure 6.12. Process of cross-synthesis of a signal with itself at different time reso-
lutions. The contribution of the long-term spectral envelope is removed
() from long-term amplitude spectrum and the contribution of the
short-term spectral envelope is added back (). The artifacts caused
by a nearby transient in the long-term analysis (dashed blue circles)
are absent from the cross-synthesized amplitude spectrum on the right.

For each part of this process, different implementations can be used. The
computation of the spectral envelopes can be achieved either through spectral
or LP analysis17. Likewise whitening and re-coloring can be performed with
LP inverse and direct filtering or with modifications of the spectrum. Finally,
synthesis can also be done using either spectral or LP filtering from Sections
6.4.1 or 6.4.2. Obviously, from the performance point of view it is much
17Remember that the frequency response of an LP filter obtained by analyzing a frame f(n)

is the spectral envelope of that frame, see Section 1.5.

150 Slowdio

more efficient to use either an LP-only or a spectral-only approach instead
of switching from one to the other between two steps of the process. Given
the metallic artifact and the potential for quasi-instabilities of LP filtering, a
spectral-only framework seems more appropriate to us. In the next section we
detail a way to carry out this spectral-only self cross-synthesis process using
the cepstral domain.

Cepstral cross-synthesis

Cross-synthesis in the spectral domain is usually achieved by division and
multiplication of |Fl(k)| with the spectral envelopes of |Fl(k)| and |Fs(k)|,
respectively [11]18. However, when the spectral envelope are computed us-
ing cepstral liftering, it is possible to implement this directly in the cepstral
domain using cepstral concatenation [88]. Both implementations are mathe-
matically equivalent but the concatenation is less computationally intensive.
Indeed, not only does it replace multiplication and division operations with a
simple concatenation but it also operates only one inverse cepstral transform
instead of two to convert the resulting cepstrum back into the spectral domain.

For a given signal x(n), an interesting property of its real cepstrum cx(n),
briefly introduced in Section 1.3.1, is that each cepstral coefficient represents
a different “level” of detail of |X(k)|, its amplitude spectrum. More exactly,
the first coefficients, the lower quefrencies, represent a gross approximation of
the amplitude, as can be seen on Figure 1.10, for the computation of y(n). The
higher the quefrency, the finer the details. In other words, the low quefren-
cies are representative of the spectral envelope. Therefore, if one keeps only
the first C coefficients, sets the values of cx(n) to zero for n ≥ C and then
transforms this biased cepstrum back into the spectral domain, the result-
ing amplitude spectrum is an envelope of |X(k)|. The value of C determines
the level of details, or coarseness, of the envelope with higher values meaning
more details. This is the property that we use to compute |Fχ(k)|, the spec-
tral cross-synthesis between the two amplitude spectrums |Fs(k)| and |Fl(k)|
of frames fs and fl, as illustrated in Figure 6.13.

First we compute Fs(k) and Fl(k), the discrete Fourier transforms (DFTs) over
Nl points of fs(n) and fl(n), both weighted by Hann windows. Nl −Ns zeros

18 https://ccrma.stanford.edu/~jos/sasp/Cross_Synthesis.html

https://ccrma.stanford.edu/~jos/sasp/Cross_Synthesis.html

Slowdio 151

DCT

IDCT

DCT

j log Fsj

j log Fl j

cs

cl

cχ
j log Fχj

Figure 6.13. The short-term (top) and long-term (bottom) amplitude spectrums are
cross-synthesized through concatenation of the first C cepstral coeffi-
cients of the short-term real cepstrum (blue) and the Nc−C coefficients
of the long-term one (red).

are appended at the end of the windowed fs(n) before computing its DFT, so
that Fs(k) is also Nl-sample long. Then, from |Fs(k)| and |Fl(k)|, we compute
cs(n) and cl(n), the cepstral transforms, using the discrete cosine transform
(DCT) of their logarithms, as presented in Equations 6.33 and 6.34. We then
proceed in Equation 6.35 to the creation of a new cepstrum by concatenation
of the first C quefrencies of cs(n) and the last Nc − C of cl(n). Finally, we
compute the cross-synthesized amplitude spectrum |Fχ(k)| by inverting the
DCT and exponentiation, as shown in Equation 6.36

cs(n) = DCT (log10 |Fs(k)|) (6.33)
cl(n) = DCT (log10 |Fl(k)|) (6.34)
cχ(n) = {cs(0), . . . , cs(C − 1), cl(C), . . . , cl(Nc − 1)} (6.35)
|Fχ(k)| = 10ˆ(IDCT (cχ(n))) (6.36)

with Nc equal to the number of cepstral coefficients. Note that the DFTs
Fs(k) and Fl(k) have Nl frequency bins but are symmetrical since they are
obtained from real-valued samples. Therefore, to reduce the computational
cost of the cepstral transform, we compute only the first half of each DFT in
Equations 6.33 and 6.34 and Nc = Nl/2 cepstral coefficients. Consequently, the
inverse DCT in Equation 6.36 returns only a half-spectrum, but the complete
amplitude spectrum |Fχ(k)| is easy to obtain as it can be assumed to be
symmetrical as well. As explained in Section 1.3.1, the use of the DCT on
the first half of the spectral log-amplitudes is simply an optimization to the
computation of the cepstral coefficients, dividing the cost by a factor two.

152 Slowdio

For some appropriate values of C discussed later, the resulting set of ampli-
tudes |Fχ(k)| has the spectral envelope of fs, hopefully free from any artifact
caused by the surrounding transients. It also has the fine details from fl,
which better capture details such as whistles, speech, and the long-term sta-
tionarity of the background noise of most sports such as football. Note that
for C = 0, the transformation does nothing and is equivalent to the spectral
synthesis of Section 6.4.1 with a long frame fl. Similarly for C = Nc − 1,
the process is equivalent to spectral synthesis, but using a very short frame fs
and, consequently, exhibiting the musical noise that goes with it.

Low-Pass Filter

In practice, we noticed that when applying this self cross-synthesis method,
the spectrogram of the time-scaled signals around transients has the expected
aspect but the musical noise is present again. It is lighter than with small
values of N using spectral synthesis, but audible enough to be annoying. Since
it does not appear when using only fl (i.e. C = 0) as is done in Section 6.4.1,
it is certainly due to the replacement of the first C cepstral coefficients with
{cs(0), . . . , cs(C − 1)} in Equation 6.35. In order to remove this last defect,
we add one more step to the process which smoothes the evolution over time
of the short-term cepstral coefficients, cs(n), using a first order low-pass filter.

Let us consider cs,g(n) the nth cepstral coefficient computed from the short-
term frame fs,g centered at instant tg. The low-pass filter is written

ĉs,0(n) = cs,0(n) (6.37)
ĉs,g(n) = (1− λ) ĉs,g−1(n) + λ cs,g(n) (6.38)

and for each gap between gg−1 and gg, Equation 6.35 is rewritten into 6.39.

cχ(n) = {ĉs,g(0), . . . , ĉs,g(C − 1), cl(C), . . . , cl(Nc − 1)} (6.39)

Of course, it is only necessary to apply Equation 6.38 to the first C coefficients
of cs. Besides, it is important to note that the low-pass filtering must be used
at every segmentation point tg, including those between grains that are directly
concatenated in the output signal19. This means that the optimization brought

19 See Section 6.3.2 for more details about grain concatenation.

Slowdio 153

by the concatenation step becomes only a partial one. Indeed, there is still no
need to compute any cross-correlation or to generate a synthetic gap-filling,
but the cepstrum of fs has to be computed and added to Equation 6.38. This
is not a very expensive operation though, and the gains in terms of quality
and computational cost, obtained by concatenating grains whenever possible,
are preserved overall.

Note that in 2007, Breithaupt et al. published an article [89] about using
cepstral smoothing for speech denoising without musical noise. This cepstral
smoothing is all but identical to the low-pass filtering we apply to the short-
term cepstrum cs in Equation 6.38. The only difference is that they apply the
smoothing to the coefficients above a given quefrency kmin, where we apply
it to the ones below C. However, kmin is set to 4 where we use larger values
of C, so all the coefficients that we smooth (and use in Equation 6.39) are
low-passed as well in their implementation, but for the first four. Note that
their smoothing parameter 1−β, equivalent to our λ, is set to 0.2 (or β = 0.8),
with some tests conducted at 0.3. This is coherent with the value λ = 0.25
that we selected20. Note also that for some quefrencies, corresponding to the
cepstrum of the pitch excitation, they use a different value of β = 0.4.

Insertion

Once the spectral envelope |Fχ(k)| is computed, it is used in an inverse short-
time Fourier transform with phases from a Gaussian white noise to synthesize
the content filling the inter-grain space. The insertion method is the same as
the one used in Section 6.4.1 and is illustrated in Figure 6.14. Z samples of
colored noise, z(n), are generated, with Z defined in Equation 6.28 already
used in Section 6.4.1.

Z = (α− 1)Lg + h+ ∆− δg−1 + Θ (6.28)

20 See subsection Discussions hereafter.

154 Slowdio

Then we compute the cross-correlation measure χ between the first Θ samples
of z(n) and the last h samples of gg−1.

ι(n) = {z(0), . . . , z(Θ− 1)} (6.40)
o(n) = ςg−1 {gg−1(Lg−1 − h), . . . , gg−1(Lg−1 − 1)} (6.41)

= {y(ug−1 + δg−1 + Lg−1 − h), . . . , y(ug−1 + δg−1 + Lg−1 − 1)}
χ(m) = o(n) ? ι(n) (6.42)

In the same way it is done in Sections 3.1.1 and 6.3.1, the maximum peak of
the absolute value of χs, a subset of χ, defines the position θ of the part of
z(n) that overlaps best with the end of gg−1 in the output signal.

ε = Θ (6.43)
χs(n) = {χ(ε), . . . , χ(ε+ 2Θ− 1)} (6.44)

θ = arg maxpeak(|χs(n)|) (6.45)

Finally, the selected part of z(n) is multiplied by ς, the sign of χs(θ), and
overlap-added to the output signal at the end of grain gg−1, following Equa-
tions 6.46 to 6.48.

m = ug−1 + δg−1 + Lg−1 − h+ n (6.46)
ς = sgn(χs(θ)) (6.47)

y(m) =

{
y(m)(1− w(n)) + ςz(θ + n)w(n) if n = 0, . . . , h− 1

ςz(θ + n) if n = h, . . . , Z − θ − 1
(6.48)

with w(n) a 2h-sample Hann window, already introduced in Equation 6.19 and
defined in Equation 1.4. Note that, contrary to what happens in the overlap-
add and concatenation processes, the sign ς does not need to be propagated.
Indeed, the next thing to be inserted will be grain gg with the overlap-add
method and, thereby, with its own sign ςg, as computed in Equation 6.18.

Discussions

There are several constant parameters to take into account in this method: Ns,
Nl, λ and Θ. The parameters used during formal tests are Ns = 1024, Nl =

Slowdio 155

+ +
+

y(n)

L
ugδu δ u ug+Δug -Δ

y(n)

h

ΘδL(-α 1) - Δ

z(n)

ι(n)

y(n)

ο(n)

g -1 g -1 g -1 g -1

g -1

g -1 g -1

Figure 6.14. Z samples of a signal z(n) are synthesized and overlap-added at the end
of y(n). A cross-correlation between o(n) and ι(n) is used to select the
part of z(n) that minimizes discontinuities in the overlap-add region.
The extra samples at the end of z(n) (after ug + ∆) will be discarded
when inserting grain gg as shown in Figure 6.5 of Section 6.3.1.

8192, λ = 0.25 and Θ = 4096. All but Θ, which is set arbitrarily, have been
chosen experimentally through trial and error during informal tests. Note that,
according to these preliminary tests, the sensitivity of the method to changes
of these values is acceptable as they can vary in a relatively large span without
affecting the acoustic quality of the time-stretched audio. For instance, the
most critical parameter is probably λ and it can vary with few noticeable
effects, in a range [0.15, . . . , 0.35] inside its complete range of possible values
[0, . . . , 1]. The other parameters are set to power-of-two values in order to
speed up the computations but can take other values without altering much
the quality of the results. However, reducing Θ too much could limit the
possibilities to find a region of z(n) that overlaps with gg−1 well enough that
the junction is inaudible. Likewise, reducing Nl will induce more and more
musical noise.

Another fundamental parameter is C. Contrary to the preceding parame-
ters, it has been found to be dependent from the type of sound that is time-
stretched. For quieter sports such as baseball, tennis and cricket a value
15 ≤ C ≤ 25 generally gives the best results, whereas for noisy sports like

156 Slowdio

football and rugby, a higher value of 45 ≤ C ≤ 55 gives better results. It must
be noted that these values are valid only for Nl = 8192. Indeed, the coarse-
ness of the spectral envelopes obtained through cepstral transform depends on
C/Nc, the percentage of coefficients that are retained and Nc, the total number
of cepstral coefficients, is a function of Nl, with Nc = Nl/2.

In order to reduce the computational cost of generating the Gaussian white
noise used in this process, we apply the same optimization that is described
in the subsection Results and Discussions of Section 5.2.2. We generate a
few seconds of random signal and compute and store their spectral phases
beforehand. These phases are then used during the cross-synthesis process.

Results

As we can see in Figure 6.15, this method creates realistic spectrograms, as
opposed to the artifact seen in Figure 6.8. We study more deeply the acoustic
quality of theses results through subjective listening tests in Section 6.6 and
show that it is acceptable for public broadcast.

0 1 20.5 1.5

20

10

5

15

0

frequency (kHz)

time(s)

Figure 6.15. Spectrogram of a time-stretched baseball recording (613B) already used
to illustrate Figures 6.7 and 6.8. Here the self cross-synthesis method
with low-pass post-filtering from Section 6.4.3 is applied. We observe
that the regions around the transient do not seem to be distorted any-
more by its nearby presence, as opposed to Figure 6.8.

Slowdio 157

6.4.4 Texture

We explained in Section 5.5 how an algorithm for sound texture synthesis [71]
can be turned into a time-scaling method. We used this approach to generate
sound textures that fill each space left between two grains. When content is
needed to fill a gap between gg−1 and gg, we use other grains in their direct
surrounding in the input signal x(n) to generate a given length of sound texture
which is then inserted in y(n), after gg−1, in the same way that the content
generated through spectral synthesis is inserted in Sections 6.4.1 and 6.4.3.

In practice, the grains used to generate the texture are selected from x(n) in
a range [tg −M1, . . . , tg + M2] and only some of them are actually used. In-
deed, the grains are tested with a transient detection method and the adaptive
thresholding function used is set relatively low so as to discard as many tran-
sient grains as possible. Besides, only the G grains whose spectral envelopes
are the closest to the spectral envelope of x(n) around position tg are used.
The texture is synthesized using the method from Section 5.5 and it is inserted
after gg+1 using a cross-correlation measure to reduce the discontinuities.

Discussions

We tested this approach with various combinations ofM1+M2, corresponding
to a total time span equal to 500, 1000 and 2000 milliseconds. Usually M2

is chosen smaller than M1 so that the delay for a realtime implementation
would remain reasonable. The resulting sounds, especially for sports such as
football and rugby, have been judged as very hashed through informal tests
with several listeners. Therefore, an energy normalization step has been added
so that all the grains inserted have similar energy per sample but this only
marginally improved the results. Another problem with this approach is that,
at sudden changes between two different audio contents in the input signal,
grains from both types of sounds are mixed up. This is the same problem
that was noted in Section 5.5, for instance when a referee starts whistling.
Besides, in regions with many transients, this methods either discards all but
a few grains, and thus cannot synthesize textures of an acceptable quality, or it
keeps some grains containing transients and, therefore, it adds new transients

158 Slowdio

to the signal. For instance, as already described in Section 5.5, applause parts
last longer instead of being slower.21

As for the performance aspect, the search for the G closest grains and their
combination into a texture is so computationally heavy that it barely qualifies
as “realtime”. Given this important drawback and the poor quality of the
results, especially compared to the other approaches, the investigations on
this method have not yet been pushed any further.

6.5 Variable Speed

When creating a slow motion video live, the speed factor α is not always
constant. In EVS’s systems, it is continuously controlled through a lever and
a typical slow motion sequence usually presents, for instance, a first part played
at 1 ≤ α ≤ 1.25 (100 to 80% of normal speed), followed by a gradual slow
down to reach α = 3 at the crucial instant of the action replay, and then the
speed is progressively increased until it is back to 80-100%.

6.5.1 Speed Controlled

The various Equations involving α hereinabove can be rewritten using a vari-
able grain-dependent speed factor αg22, which means that each grain can be
time-scaled according to a different speed factor. This is included in our
current implementation and allows us to create realistic variable speed slow
motion videos. However, it is important to note that the value of αg is updated
only once per grain and thus unevenly since the length of each grain is differ-
ent. Consequently, it would ignore some of the commands from the control
lever or react with a delay due to the asynchronicity of the two processes.

This can lead to a perceptible offset between the two streams, audio and image,
and therefore, for the time being, we inverted the controller-controlled relation-
ship. We apply a time-scaling to the image stream that corresponds exactly
to the asynchronous speed command applied to the audio, thus preserving,
within acceptable margins, the synchronization between the two. Although it
allows us to create variable speed slow motion videos with correct sound syn-
chronization, this solution is used as a proof-of-concept and is obviously not
21 It may prove interesting for some other applications, but not from our current perspective.
22To be accurate, in Equation 6.8, and its derivatives, it is in fact αg−1 that must be used.

Slowdio 159

usable within EVS’s system as it is the audio time-scaling that should answer
the command from the image slow motion, and not the other way around.
However, solving this problem and integrating the method within EVS’s slow
motion solution is among the planned improvements to our method.

6.5.2 Position Controlled

Another approach to tackle this issue is to directly control the theoretical posi-
tion ug of each grain in the output, as a function of the command given by the
control lever, as opposed to ug being a function of ug−1, αg−1 and Lg−1. This
guarantees a permanent synchronization between audio and video, and the
impact on the method is relatively limited. It invalidates Equation 6.8 and,
consequently, Equations 6.21, 6.22 and 6.27, used in the context of the “con-
catenation” case. Therefore, in order to determine whether a concatenation is
possible, one uses directly Equation 6.20, or its simplified form, Equation 6.49

|ug−1 + δg−1 + Lg−1 − ug| ≤ ∆ (6.49)

If this condition is respected, gg is concatenated and δg is computed from
Equation 6.26 in which it is the only unknown.

However, an issue arises with this method. Indeed, the condition in Equation
6.49 cannot be tested as long as the control system does not send the value for
ug. If the value is not known by the time the last valid samples of y(n) (i.e.
samples up to y(ug−1 +Lg−1−h)) have been sent to the audio output stream,
the algorithm must start synthesizing gap-filling content, using one of the
method in Section 6.4. Then, when ug is finally sent by the control system, gg
must obviously be overlap-added since concatenation is not possible anymore.
Waiting until ug is known before outputting the audio samples that are after
gg−1 is not an option as it may create a perceptible delay between the image
and sound streams.

A solution to this problem is most probably to combine speed and position
control, anticipating a temporary value of ug as a function of the last known
speed (a function of ug−2, Lg−2 and ug−1), and to act accordingly. This has
not been investigated further yet but is part of future developments.

160 Slowdio

6.6 Results

In this section we present the different results obtained based on the new
method described in this chapter. A first result presented in Section 6.6.1 is
a C++ implementation of slowdio that, when combined with the video extrac-
tion tools developed in Chapter 4, allows us to create slow motion videos with
embedded audio. Although most of the research has been assessed through
informal viewings of these slow motion videos by experts from the domain
of sports broadcast, we also measured and compared the quality of our slow-
dio method through the more conventional MOS and CMOS subjective tests
whose results are detailed in Section 6.6.2.

6.6.1 Implementation

We wrote a C++ library that incorporates all the signal processing tools from
Chapter 1, needed to create a slowdio. This library can manipulate frames
from a sound and compute their energy, FFTs, cepstrums, their respective
inverse transforms, and so on. It can also compute an FFT-based cross-
correlation between two frames and perform windowing and overlap-add. It
has been used to implement the algorithm described in this Chapter, picking
the following options: energy-based segmentation with search for nearby close-
to-zero sample, cross-correlation-based grain shift with possible concatenation
and cepstral self cross-synthesis to fill the inter-grain spaces.

This program implementing the slowdio method has been used to generate all
the slow motion videos used in the subjective tests of Section 6.6.2.

Performance

We measured the average execution time of the slowdio method for the same
tennis file 610C as in Table 6.1. It has 1,228,800 samples which corresponds
to 25.6 seconds at 48 kHz. Table 6.2 presents the average results obtained
over 5 runs of the application for different common values of α. The processor
is an Intel Core 2 Duo P9700 at 2.80GHz (only one core was used) and the
operating system is Linux (Ubuntu 10.04 64 bits).

Slowdio 161

Table 6.2. Average runtime of the C++ application as a function of α for a file
duration of 25.6 seconds. Values of α are typical of sports slow motion
videos and correspond respectively to 24/25, 90%, 80%, 2/3, 50%, 33%,
25% and 20%. “% (in)” gives the relative runtime of the process as a
percentage of the input duration (25.6 s). “% (out)” gives the relative
runtime of the process as a percentage of the output duration (α · 25.6 s).

α 1.042 1.11 1.25 1.5 2 3 4 5

t̄ (s) 1.358 2.104 3.324 5.01 7.084 9.226 10.002 10.498

% (in) 5.3 8.2 13.0 19.6 27.7 36.0 39.1 41.0

% (out) 5.1 7.4 10.4 13.0 13.8 12.0 9.8 8.2

About two-thirds of the processing time is spent in the self cross-synthesis step
and the generation of Z(n), the remainder corresponds to the computation of
cross-correlations and sample manipulations (windowing, overlap-add, etc.).

Note that the current implementation of the algorithm is not realtime, in the
sense that it is not interactive and does not answer commands from users
during runtime. It processes one input file to create a time-scaled version of it
as its output. However, the results from Table 6.2 show that it could perform
the same operation in a realtime context, as far as the computational cost is
concerned. Indeed, the duration of one run is smaller than that of both the
original recording and its time-scaled version. In other words, the process has
more time available to run than necessary. For instance, to compute a signal
extended by a factor α = 3, it needs about 9.2 s whereas the playback duration
of the resulting signal is 76.8 s.

Realtime implementation

In the previous section, we have shown that the computational cost of the al-
gorithm is low enough to consider a realtime re-implementation of the method.
However, computational cost is not the only factor to take into account when
switching to the world of realtime sound processing.

For instance, one might rightfully argue that not all of the playback time
span (e.g. 76.8 s in the above example) is available to compute the signal.

162 Slowdio

As a matter of fact, ι(n), the Θ-sample synthetic content needed to compute
the correlation of Equation 6.42, must be generated in advance so that it is
ready to be inserted when all samples of the preceding grain have been used.
But it should not be computed too much in advance, to preserve the system
responsiveness to modifications of the synthesis parameters. Good scheduling
and thorough optimization of each step of the algorithm are thus necessary so
that all the samples are generated and output to the sound card just in time.

A possible approach would be to compute it while the preceding grain is played.
In that case, the heaviest part of the computation23 would happen during the
playback of the grains, thus limiting the actual available computation time to
the total length of the grains, i.e. the initial duration of the file, 25.6 s. This
is still larger than the necessary 9.2 s but, locally, the algorithm might run
out of time when a grain has a short duration.

Besides a proper time scheduling, a realtime application as we envision it
should be able to receive and process input audio samples “on-the-fly”, and
adapt itself to user’s inputs as opposed to the current state where a complete
file is available and processed at once.24 Three parameters define the potential
delays in slowdio. The first one is Nl since, in order to generate the gap-filling
content Z(n), Nl/2 samples need to be known in advance at time tg before the
computation can start. The other parameters are Lmax and N as Lmax +N/2
samples are needed at time tg to compute the value of tg+1. The largest of Nl/2
or Lmax +N/2, will define the minimum time delay between the first sample
received and the first sample output by slowdio.

In practice, however, the computation time of these two parts of the algorithm
(split and fill) must also be taken into account. Therefore, the Nl/2 samples
necessary for the generation of Z(n) must be known several milliseconds before
tg so that the computation ends before the audio reaches tg. To give an idea
of the duration for that computation, it is usually below 20 milliseconds in
our experiments. In other words, around sample tg - 0.02Fs, the samples up
to tg +Nl/2 must be known. As for the grain extraction, the computation time

23Namely, a self cross-synthesis, creating at least Θ samples of Z(n) and computing the cross-
correlation in Equation 6.42 for positioning of Z(n). The other steps of the computation
(e.g. synthesizing the content of Z(n) after Z(Θ), positioning the next grain, etc.) would
happen during the time the synthetic content is played.

24 Some methods, such as [73] for instance, need a whole recording to be able to process it
and, as such, cannot be re-written in a realtime framework.

Slowdio 163

is much shorter, in the order of 0.1 to 0.5 millisecond per grain. Therefore,
the computation could happen while the first Lmin -N/2 samples of grain gg
are sent to the sound card, since Lmin is usually set to 10 milliseconds. As a
result, the fill step is generally the one to be studied to measure algorithmic
delays, as opposed to the split part.

Note that this could only create a delay for the computation of the audio when
a change of playback speed is applied directly to the live video stream, which
is uncommon in sports broadcast, and again only if the live broadcast has
no buffering and a zero-sample delay (i.e. image and sound are sent to the
viewers as soon as recorded). In most cases anyway, the slow motion is a replay
that highlights some past event and all samples are available beforehand, thus
introducing no other delay than the lookup and access times for the samples in
the recording (playing the first grain while the synthetic samples are computed
in the background). Moreover, even in the case of a live slow motion, the
algorithm would quickly accumulate enough samples from the live stream since
it is “using” the samples at a slower rate than they are arriving in the system.
Therefore, the problem could likely be dealt with by beginning with a relatively
small value of Nl and increasing it progressively.

Variable speed

The program has also been successfully adapted to create slow motion videos
with varying speed, following the approach suggested in Section 6.5.1, using
a text file as the input parameter. Each line of the file contains two values:
an integer representing the index g of a grain and a floating point value rep-
resenting the percentage of the original speed at which gg and the following
grains must be played. For instance, a file containing

0 100.0
50 80.0
100 50.0
150 33.33
250 50.0
300 80.0
...

means that the first 50 grains are played at normal speed, α = 1, that the
speed ratio of each grain from the 51st until the 100th is set to α = 1.25, and
so on for the next lines of the file. In order to be of any practical use, this

164 Slowdio

requires that the segmentation into grains is known beforehand and as such it
can only be used in a non-interactive framework. However, this is a first step
towards a more responsive interface controlling playback speeds “on-the-fly”.

6.6.2 Listening Tests
During the research, most of the assessment has been performed in an infor-
mal way. Slow motion videos with time-stretched audio have been regularly
created, using the excerpts listed in Chapter 4, and sent to EVS. These videos
have then been presented to selected experts in the field of sports broadcast
(sound engineers, directors, etc.), notably during conferences such as the In-
ternational Broadcasting Convention (IBC). This allowed us to obtain a direct
feedback from actual potential customers about the qualities and defects of
the various methods tested as well as the commercial viability of embedding
an audio channel in a slow motion video.

However, in order to measure in a more formal manner the subjective apprecia-
tion of the different methods by viewers, we performed two series of tests. The
first one measures the mean opinion scores (MOS) of the time-scaled sounds
generated by either the slowdio method or a phase vocoder with automatic
transient detection and processing. The second test is a comparative MOS
(CMOS) between slowdio and that phase vocoder. For slowdio, we use the
C++ implementation from Section 6.6.1. In the phase vocoder approach, we set
an analysis frame length of 16,384 samples with a frame shift of 4096 samples
and transients are detected using the multi-band spectral flux as described
in Sections 2.6.2 and 5.4.3, with N = 16 and λ = 10. Once detected, tran-
sients are processed using the transient removal method from Section 2.6.4.
In the following, the term “phase vocoder” is used loosely and implies a step
of transient detection and processing.

Mean Opinion Scores

For each test, viewers are presented with two videos: an original sport record-
ing, used as a reference, and its slow motion version. They are asked to judge
the quality of the audio in the slow motion video on a scale between 0 (very
bad) and 5 (excellent). The slow motion is randomly chosen among three pos-
sible speeds (α = 1.5, 2 or 3) and the audio is processed using either slowdio
or a phase vocoder; which process is used is chosen randomly. Fifteen viewers

Slowdio 165

participated and each took 20 tests whose results are shown in Tables 6.3 and
6.4, and Figure 6.16.

Table 6.3. average MOS results (with 0.95 confidence intervals), as a function of α,
for the phase vocoder (ph. voc.) and the slowdio method.

MOS overall α = 1.5 α = 2 α = 3

ph. voc. 3.3± 0.18 3.4± 0.25 3.6± 0.35 2.9± 0.3

slowdio 3.5± 0.16 3.9± 0.22 3.8± 0.23 2.9± 0.27

Results considered sport-by-sport in Table 6.4 are consistent with the overall
results from Table 6.3, with the exception of baseball which obtains an over-
average score of 4.4 using slowdio and tennis which get an under-average score
of 2.3 when using the phase vocoder. Note also that informal tests have pointed
that slowdio seems perceptually transparent or nearly transparent for α ≤ 1.25
whereas the phase vocoder can still produce reverberation and smearing. This
may prove a solid advantage, notably in conversion of videos between the 24
and 25 frame per second formats.

Table 6.4. average MOS results (with 0.95 confidence intervals), as a function of the
type of sport, for the phase vocoder (ph. voc.) and the slowdio method.

MOS baseball basketball cricket football hockey tennis

ph. voc. 3.9± 0.4 3.1± 0.3 3.5± 0.4 3.6± 0.3 3.4± 0.3 2.3± 0.5

slowdio 4.4± 0.3 3.3± 0.4 3.4± 0.3 3.3± 0.3 3.5± 0.4 3.4± 0.5

Comparative Mean Opinion Scores

For each test, viewers are presented with three videos: an original sport record-
ing, used as a reference, and two slow motions A and B, with the same speed
factor randomly chosen among α = 1.5, 2 or 3. One of A or B is processed
using slowdio, the other with the same phase vocoder as in the MOS test,
which one is A or B is random. Viewers are asked to choose which video has

166 Slowdio

0

20

40

60

3210 54 MOS

slowdio phase vocoder

0

20

40

60

3210 54 MOS

0

20

40

60

3210 54 MOS
0

20

40

60

3210 54 MOS

α = 1.5

α = 2 α = 3

overall
% %

%%

Figure 6.16. Normalized histograms of the answers to the MOS tests globally and as
a function of α. We can see that the results for both slowdio and the
phase vocoder are similar, with a small overall preference for slowdio
(more “4”, less “2”, no “0”). However, this preference decreases as α
increases. For the two methods, most of the results fall in the range
3-4 and are concentrated above the threshold of poor quality (2).

the best audio quality and how much better it is on a three-point scale (slightly
better, better or much better); the option “They are the same” is also provided.
Fifteen viewers participated and each took 10 tests whose results are shown
in Tables 6.5 and 6.6, respectively as a function of α and as a function of the
sport considered.

Similarly to the MOS test, we observe on the histograms of Figure 6.17 that
slowdio is globally considered as slightly better than the phase vocoder. Even
though the mean and confidence intervals from Table 6.5 indicate that the
advantage can be considered as significant overall and for α = 1.5 and 3,
it is not as large a preference as we expected. Indeed, it does not seem to

Slowdio 167

slowdiophase vocoder vs.

CMOS
0

10

20

30

32101-2-3-

40 overall

CMOS32101-2-3-
0

5

10

15

α = 1.5

CMOS32101-2-3-

α = 3

0

5

10

15

CMOS32101-2-3-

α = 2

0

5

10

15

Figure 6.17. Histograms of the answers to the CMOS tests globally and as a function
of α. Positive values on the horizontal axis (1, 2 and 3) correspond to
a preference for slowdio, respectively slightly better, better and much
better, as given by the viewers. Likewise, negative values indicate a
preference for the phase vocoder. We can observe a small but clear bias
in favor of slowdio (e.g. the small amount of −3 overall).

fit what we observe, especially in the histogram for α = 3 which exhibits a
relatively strong bias in favor of slowdio. The skewness parameter for that
histogram, also given in Table 6.5 confirms the asymmetry in favor of slowdio
and, therefore, a possible inadequacy of the normal model.

Results considered sport-by-sport in Table 6.6 show a slight preference for
slowdio over the phase vocoder for football and tennis recordings. Slowdio is
preferred for the other sports as well but not significantly.

168 Slowdio

Table 6.5. average CMOS results (with 0.95 confidence intervals) as a function of
α. The range of values is −3 ≤ CMOS ≤ 3. A positive value means that
slowdio was preferred over the phase vocoder. Medians and skewnesses
are also given as indicators of the bias of the histograms of Figure 6.17.

CMOS overall α = 1.5 α = 2 α = 3

µ± c.i.0.95 0.6± 0.25 0.9± 0.44 0.4± 0.42 0.5± 0.4

median 1 1 1 1

skewness −0.27 −0.18 −0.38 −0.53

Table 6.6. average CMOS results (with 0.95 confidence intervals) as a function of
the type of sport. The range of values is −3 ≤ CMOS ≤ 3. A positive
value means that slowdio was preferred over the phase vocoder.

CMOS baseball basketball cricket football hockey tennis

µ± c.i.0.95 0.3± 0.6 0.6± 0.7 0.2± 0.5 0.8± 0.5 0.6± 0.8 1.2± 0.6

median 0 0 0 1 0.5 2

skewness −0.5 0.1 −5 · 10−5 −0.2 0.08 −1.34

Informal Discussions

Informal discussions with viewers highlighted that slowdio handles transients
much better, as expected, and is favored over the phase vocoder whenever
a visually significant event (shoot, goalkeeper save, tennis service, etc.) is
missed or mishandled by the transient processing integrated within the phase
vocoder. However, it can also present discrepancies, such as a residual musical
noise in crowd sounds or ripples in speech parts, when compared to the phase
vocoder. Note that with C = 0, the method is equivalent to spectral synthesis
as described in Section 6.4.1. As such, the quality of background noises is
comparable to that of the phase vocoder, but causes artifacts in synthetic
content inserted between grains around transients as shown in Figure 6.8.

Slowdio 169

6.7 Conclusions

In this chapter we presented a new method for time-scaling of audio recordings
from sports events, in order to add an audio channel to slow motion videos.
The method, named slowdio, combines time-domain and spectral-domain or
model-based approaches. Tests have shown that the quality is acceptable for
the viewers and similar or slightly superior to that obtained with state of
the art approaches. Contrary to these, our approach is not based on sinu-
soidal and pseudo-periodical hypotheses and preserves transient events from
the input signal without having to actually detect them. However, the results
for background noises need to be improved, notably for large time-stretching
factors. The algorithm is fast enough to consider a realtime interactive im-
plementation for which various delays and the amount of samples needed in
advance have to be carefully considered. However, slow motion videos are
usually a playback of a past action for which all audio samples are already
available. As a consequence, the only delays to be actually considered would
be the duration of each computation.

Conclusions

In this work we described the various aspects of our research on time-scaling
carried out in collaboration with EVS Broadcast Equipment SA. Time-scaling
is the process that enables us to modify the duration of an audio signal without
altering its acoustic content. The project has focused mainly on extending the
duration of sports recordings to add an acoustic dimension to slow motion
videos which are as silent today as they are omnipresent. In our scenario, the
goal is that events such as ball impacts, footsteps, crowd noises, whistles, etc.
remain simultaneously synchronized with the image stream and perceptually
identical to the sound in the original video. Or, at the very least, they should
not be perceived by the viewers as missing or distorted.

Besides two opening chapters dedicated to digital audio signal processing and
to a state of the art of time-scaling for audio recordings, four new contributions
related to time-scaling have been presented in as many chapters:

PVSOLA, a new method for time-scaling of harmonic signals

a database of sports recordings, partly annotated

a study of the behavior of state of the art methods for time-scaling when
applied and adapted to sports recordings

slowdio, a new approach developed specifically for sports recordings and
that implicitly preserves all the transient events

The first contribution, PVSOLA, has not been developed directly in relation
with the problem of extending the duration of sports recordings. However,
it is a new method that improves the acoustic quality of time-scaling when

— 171 —

172 Conclusions

applied to harmonic signals such as speech or singing. It combines a frequency-
domain approach, the phase vocoder, with a time-domain one, SOLA. This
significantly reduces the phasiness, a common artifact of the phase vocoder,
and is preferred by listeners to various related time-scaling methods.

The second contribution has been to assemble, aurally and visually analyze,
and partly annotate a database of video recordings of various sports. To
the best of our knowledge, no such database existed beforehand and ours
contains 229 excerpts or about 1.5 hour of various popular sports. Moreover,
using software libraries put at our disposal by EVS, several tools have been
developed. With these, we can process the videos, extract audio and image
streams, and create new slow motion excerpts. The resulting videos with
time-scaled audio have notably been demonstrated at IBC.

The third contribution has consisted in studying the effect of applying var-
ious existing time-scaling methods to sports recordings, which do not fit the
underlying hypothesis of these algorithms. Despite this, we have tried to ad-
just the different parameters of each approach to obtain the best possible
results. In many cases, such as time-domain and model-based approaches, the
time-scaled audio signals exhibit poor quality or the processes have a high sen-
sitivity to their parameters, hence requiring fine tuning of these. This strongly
reduces the possibility to generalize their use to the huge variety of recording
conditions encountered in sports broadcast.

Nevertheless, we have obtained interesting results with the phase vocoder (or,
alternatively, the spectral synthesis method based on the modification of a
Gaussian noise spectral amplitude through STFT), especially when combined
with proper processing of transient events. The detection of these transients
has proved to be challenging, especially for sports where the level of back-
ground noise makes it all but impossible to detect them all correctly. Besides,
in some cases, the density of transient events is too high to be able to process
them all accurately anyway. However, as we pointed out in the first para-
graph, what is important is how viewers perceive the videos. As a matter of
fact, subjective tests have shown that a good enough detection usually sat-
isfy viewers, as long as the most visually significant transients are kept intact
and correctly synchronized with the images in the video stream. Likewise, we
observe strong rejection from the viewers in case an important transient goes
missing or is exaggeratedly distorted.

Conclusions 173

With our fourth and last contribution, we have tried to address these
issues. We introduced slowdio, a new approach based on realistic hypotheses
about the audio in sports recordings. It produces pleasant time-scaled sounds
while preserving all the transients and fine details of the original recordings.
Its main advantage over the previous methods is that it does not need a
transient detection step as it implicitly handles them in the time-domain with
no modifications apart from their shifted time position.

The principle of this new method can be decomposed in three steps “split-
shift-fill”. In a first step, the input audio is divided into non-overlapping
frames of variable size, called grains. The boundaries of these grains are
put at minimums of energy or spectral flux of the signal to ensure that no
transients are harmed in the process. In a second step, the grain positions
are shifted to match the required speed factor. Then, if the shift process has
created gaps between grains, these are filled with content that can be generated
with various methods, such as spectral-domain, model-based or texture-based
approaches. The actual position of each grain in the output is eventually
adjusted around its new location to minimize discontinuities while preserving
sufficient synchronization with the video stream.

Filling the inter-grain gaps generates time-scaled audio of excellent quality
in stationary parts of the signal but the long-term analysis frames required
to produce an acceptable acoustic quality cause artifacts around important
transients that get enclosed within those analysis frames. We proposed a new
approach, named self cross-synthesis, that combines short-term and long-term
analysis to create spectral amplitudes with reduced transients interferences.

Finally, we compared our method to a phase vocoder with transient process-
ing and obtained slightly better or comparable results while not requiring
transient detection. Two series of tests have been run, one that independently
measures the quality of each method compared to the original video recordings
(MOS tests) and one that directly compares the two methods with each other
(CMOS tests). Slowdio systematically performed slightly better with regard
to the mean scores and histograms, although only a few cases showed actual
statistical significance when considering confidence intervals. Further informal
discussions have pointed out that our method is appreciated by the viewers for
the quality of the transients and lesser reverberation whereas the time-scaling
provided by the phase vocoder with transient processing is preferred for its
smoother background noise.

174 Future Works

Future Works

In the continuation of the collaboration with EVS, a public-private partnership
has begun mid-2013. Its goal is to develop a version of slowdio that can
eventually be interfaced within EVS’s systems. In order to do so, different
aspects of the current system have to be worked on.

First, the algorithm has to be implemented and optimized in a realtime and
interactive framework so that it can be tested in real-life production envi-
ronments. This implies to study the different computing bottlenecks of our
approach and to find the best scheduling for each task over time to ensure a
continuous and seamless time-scaled audio signal while featuring instant reac-
tivity to speed variations. We will also work on improving the overall acoustic
quality, especially reducing the ripples in the synthetic background noises, and
the generalization of the slowdio method to new sports. Indeed, until now only
the most popular sports have been tested, but time-scaled audio could be an
interesting extension for others.

A major improvement that has not been considered in this thesis is time-
scaling of stereophonic signals. Spatialized audio, in particular, requires a
special attention as the slightest change of timing between the audio chan-
nels can destroy the spatialization effect. The shift allowed for each grain
around its theoretical position and the occasional amplitude inversion in case
of negative correlation will be as many challenging issues to the preservation
of spatialization.

Finally, we plan to make the opposite journey that led us to slowdio and try to
adapt its reasoning to time-scaling of speech signals. Preliminary tests have
shown that, although the time-domain part of the algorithm (the grain ex-
traction and displacement) fits perfectly with speech-like signals, the spectral-
domain part is currently ill-adapted as it creates noisy segments in otherwise
clean speech. However, for small ratio (α < 1.25), slowdio already produces re-
sults of reasonable quality, although not completely clean, that let us think it is
an interesting path to follow. For instance, using synthetic samples generated
by a phase vocoder could give improved results but self cross-synthesis cannot
reduce transient interferences in the phase component of the spectrum.

Appendix A

Mel-Spaced Filter Bank

A.1 Mel Scale

The mel scale is a non-linear mapping of the frequency axis that matches the
human perception of these frequencies better than their linear distribution.
Different mappings exist, but the most commonly used is

m = mel(f) = 2595 log10 (1 +
f

700
) (A.1)

f = mel-1(m) = 700(10
m

2595 − 1) (A.2)

where f is the frequency value, in hertz, and m its corresponding number of
mels. The formula is built so that a frequency of 1000 Hz corresponds exactly
to 1000 mels. Note that for frequencies below 1000 Hz the mapping is often
replaced by a linear one, m = f , since the human perception of frequencies is
closer to linear than logarithmic below 1 kHz [90].

A.2 Filter Bank

A mel-spaced filter bank is a bank of B passband filters whose center frequen-
cies are spaced apart non-linearly following the logarithmic mel-scale distri-
bution. In other words, the centers of the B filters are spaced linearly in the
mel domain. The shape we use for the filters is the triangle, as illustrated in
Figure A.1, although other shapes, such as raised cosines, could be used. Each
filter band starts at the center frequency of the previous filter and ends at the

— 175 —

176 Mel-Spaced Filter Bank

center frequency of the next one. The position of the center frequency fb of
each filter is computed using Equations A.3 and A.4.

frequency

am
p
li
tu
d
e

f
1
0 f
2
f
3
f
4
f
5
f
6
f
7
f
8
F
s 2/

1

0

Figure A.1. Example of triangular filter bank for B = 8 with frequencies spaced
apart following a logarithmic progression.

∆m =
mel(Fs

2)

B + 1
(A.3)

fb = mel-1(b∆m) (A.4)

with b = [1, . . . , B]. Note that f0 = 0 and fB+1 = Fs/2, but these do not
correspond to the central frequencies of any filter. They are only used to
compute the first and last filters of the filter bank Ω(b, k) in Equation A.5

Ω(b, k) =

0 if 0 ≤ k ≤ kb−1
k−kb−1

kb−kb−1
if kb−1 ≤ k ≤ kb

k−kb+1

kb−kb+1
if kb ≤ k ≤ kb+1

0 if kb+1 ≤ k ≤ kB+1

(A.5)

where k is a frequency bin of the discrete Fourier transform (DFT), kb = N fb
Fs
,

and N is the total number of points of the DFT on which we want to apply
the filter bank. Note that the number of points of the bank as computed in
Equation A.5 is equal to N/2 + 1 as we usually work only on the first half of
the DFT since it is symmetrical.

Bibliography

[1] C. E. Shannon, “Communication in the presence of noise”, Proc. Institute
of Radio Engineers, vol. 37, no. 1, pp. 10–21, January 1949, reprint as
Classic Paper in: Proc. IEEE, Vol. 86, No. 2, (February 1998).

[2] A. D. Götzen, N. Bernardini, and D. Arfib, “Traditional (?) implemen-
tations of a phase-vocoder: the tricks of the trade”, in Proc. of the 3rd
International Conference on Digital Audio Effects (DAFx-00), Verona,
Italy, December 7–9, 2000, pp. 37–44.

[3] F. J. Harris, “On the use of windows for harmonic analysis
with the discrete fourier transform”, Proceedings of the IEEE,
vol. 66, no. 1, pp. 51–83, January 1978. [Online]. Available:
http://dx.doi.org/10.1109/PROC.1978.10837

[4] S. J. Orphanidis, Introduction to Signal Processing. Prentice Hall, Upper
Saddle River, NJ 07458, August 1995.

[5] R. Boite and M. Kunt, Traitement de la parole. Presses polytechniques
romandes, 1987, ch. Traitement Numérique des Signaux, pp. 15–53.

[6] A. V. Oppenheim and R. W. Schafer, Digital Signal Processing. Prentice–
Hall, 1975, ch. The Discrete Fourier Transform, pp. 87–135.

[7] ——, Digital Signal Processing. Prentice–Hall, 1975, ch. Computation
of the Discrete Fourier Transform, pp. 284–336.

[8] B. Gold and N. Morgan, Speech and Audio Signal Processing – Processing
and Perception of Speech and Music. John Wiley & Sons, Inc., 2000, ch.
Digital Filters and Discrete Fourier Transform, pp. 83–102.

— 177 —

http://dx.doi.org/10.1109/PROC.1978.10837

178 BIBLIOGRAPHY

[9] H. Sorensen, D. Jones, M. Heideman, and C. Burrus, “Real-valued fast
fourier transform algorithms”, IEEE Transactions on Acoustics, Speech
and Signal Processing, vol. 35, no. 6, pp. 849–863, June 1987.

[10] J. B. Allen and L. R. Rabiner, “A unified approach to short-time fourier
analysis and synthesis”, Proceedings of the IEEE, vol. 65, no. 11, pp.
1558–1564, November 1977.

[11] J. O. Smith, Spectral Audio Signal Processing.
https://ccrma.stanford.edu/~jos/sasp/, accessed 2012-12-03,
online book.

[12] D. Gabor, “Theory of communication. part 1: The analysis of informa-
tion”, Journal of the Institution of Electrical Engineers - Part III: Radio
and Communication Engineering, vol. 93, no. 26, pp. 429–441, November
1946.

[13] D. W. Griffin and J. S. Lim, “Signal estimation from modified short-time
fourier transform”, IEEE Transactions on Acoustics, Speech and Signal
Processing, vol. 32, no. 2, pp. 236–243, April 1984.

[14] B. Bogert, M. Healy, and J. W. Tukey, “The quefrency alanysis of time
series for echoes: Cepstrum, pseudo-autocovariance, cross-cepstrum and
saphe cracking”, in Proc. Symp. on Time Series Analysis, 1963, pp. 209–
243.

[15] A. V. Oppenheim and R. W. Schafer, “From frequency to quefrency: a
history of the cepstrum”, IEEE Signal Processing Magazine, vol. 21, no. 5,
pp. 95–106, September 2004.

[16] ——, Digital Signal Processing. Prentice–Hall, 1975, ch. Homomorphic
Signal Processing, pp. 480–531.

[17] P. Mermelstein, “Distance measures for speech recognition–psychological
and instrumental”, in Proceedings of the Joint Workshop on Pattern
Recognition and Artificial Intelligence, Hyannis, Massachusetts, USA,
June 1–3, 1976, pp. 374–388.

[18] P. Strobach, Linear Prediction Theory – A Mathematical Basis for Adap-
tive Systems. Springer-Verlag, 1990, ch. The Linear Prediction Model,
pp. 13–36.

[19] T. Dutoit, N. Moreau, and P. Kroon, Applied Signal Processing – A

https://ccrma.stanford.edu/~jos/sasp/

BIBLIOGRAPHY 179

Matlab-Based Proof of Concept. Springer Science+Business Media, 2009,
ch. How is speech processed in a cell phone conversation ?, pp. 1–31.

[20] J. Laroche, Applications of Digital Signal Processing to Audio and Acous-
tics. Kluwer Academic, 1998, ch. Time and Pitch Scale Modification of
Audio Signals, pp. 279–309.

[21] J. Bonada, “Audio time-scale modification in the context of professional
audio post-production”, Universitat Pompeu Fabra, Barcelona, research
work for PhD program, Fall 2002.

[22] R. McAulay and T. Quatieri, “Speech analysis/synthesis based on a si-
nusoidal representation”, IEEE Transactions on Acoustics, Speech and
Signal Processing, vol. 34, no. 4, pp. 744–754, August 1986.

[23] T. Dutoit and J. Laroche, Applied Signal Processing – A Matlab-Based
Proof of Concept. Springer Science+Business Media, 2009, ch. How does
audio effects processor perform pitch shifting ?, pp. 149–185.

[24] S. Roucos and A. M. Wilgus, “High quality time-scale modification for
speech”, in Proc. of International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), Tampa, Florida, USA, April 26–29, 1985,
pp. 493–496.

[25] W. Verhelst, “Overlap-add methods for time-scaling of speech”, Speech
Communication, vol. 30, no. 4, pp. 207–221, April 2000.

[26] D. Hejna and B. Musicus, “The SOLAFS time-scale modification algo-
rithm”, BBN Technical Report, Tech. Rep., July 1991.

[27] E. Moulines, F. Charpentier, and C. Hamon, “A diphone synthesis sys-
tem based on time-domain prosodic modifications of speech”, in Proc.
of International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), Glasgow, Scotland, May 23–26, 1989, pp. 238–241.

[28] G. Fairbanks, W. Everitt, and R. Jaeger, “Method for time or frequency
compression-expansion of speech”, Transactions of the IRE Professional
Group on Audio, vol. 2, no. 1, pp. 7–12, January 1954.

[29] D. Gabor, “Theory of communication. part 3: Frequency compression
and expansion”, Journal of the Institution of Electrical Engineers - Part
III: Radio and Communication Engineering, vol. 93, no. 26, pp. 445–457,
November 1946.

180 BIBLIOGRAPHY

[30] P. Dutilleux, G. D. Poli, A. von dem Knesebeck, and U. Zölzer, DAFX:
Digital Audio Effects, Second Edition. John Wiley & Sons, Ltd., 2011,
ch. Time-segment processing, pp. 185–217.

[31] F. Charpentier and E. Moulines, “Pitch-synchronous waveform process-
ing techniques for text-to-speech synthesis using diphones”, in Proc. of
the First European Conference on Speech Communication and Technol-
ogy (Eurospeech), Paris, France, September 27–29, 1989, pp. 2013–2019.

[32] D. J. Hejna, B. R. Musicus, and A. S. Crowe, “Method for time-scale
modification of signals”, Patent US 5 175 769, July 23, 1991. [Online].
Available: http://www.google.com/patents?id=_igoAAAAEBAJ

[33] W. Verhelst and M. Roelands, “An overlap-add technique based on wave-
form similarity (WSOLA) for high quality time-scale modification of
speech”, in Proc. of International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), vol. 2, April 1993, pp. 554–557.

[34] G. Pallone, “Dilatation et transposition sous contraintes perceptives des
signaux audio : Application au transfert cinéma-vidéo”, Ph.D. disserta-
tion, École Doctorale de Mécanique, Physique et Modelisation, Université
d’Aix-Marseille II, pp. 72–73, 2003.

[35] E. Moulines and F. Charpentier, “Pitch-synchronous waveform pro-
cessing techniques for text-to-speech synthesis using diphones”, Speech
Communication, vol. 9, no. 5–6, pp. 453–467, 1990. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/016763939090021Z

[36] E. Moulines and J. Laroche, “Non-parametric techniques for pitch-
scale and time-scale modification of speech”, Speech Communication,
vol. 16, no. 2, pp. 175–205, 1995. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/016763939400054E

[37] J. L. Flanagan and R. M. Golden, “Phase vocoder”, Bell System Technical
Journal, vol. 45, no. 9, pp. 1493–1509, November 1966.

[38] H. Dudley, “The vocoder”, Bell Labs Record, vol. 17, no. 2, pp. 122–126,
1939.

[39] D. Tompkins, How to Wreck a Nice Beach: The Vocoder from World War
II to Hip-Hop, The Machine Speaks. Melville House, 2010, p. 40.

[40] R. Schafer and L. Rabiner, “Design and simulation of a speech analysis-

http://www.google.com/patents?id=_igoAAAAEBAJ
http://www.sciencedirect.com/science/article/pii/016763939090021Z
http://www.sciencedirect.com/science/article/pii/016763939400054E
http://www.sciencedirect.com/science/article/pii/016763939400054E

BIBLIOGRAPHY 181

synthesis system based on short-time fourier analysis”, IEEE Transactions
on Audio and Electroacoustics, vol. 21, no. 3, pp. 165–174, June 1973.

[41] M. R. Portnoff, “Implementation of the digital phase vocoder using the
fast fourier transform”, IEEE Transactions on Acoustics, Speech and Sig-
nal Processing, vol. 24, no. 3, pp. 243–248, June 1976.

[42] M. Dolson, “The phase vocoder: A tutorial”, Computer Music Journal,
vol. 10, no. 4, pp. 14–27, Winter 1986.

[43] J. Laroche and M. Dolson, “Improved phase vocoder time-scale modifica-
tion of audio”, IEEE Transactions on Speech and Audio Processing, vol. 7,
no. 3, pp. 323–332, May 1999.

[44] J. Bonada, “Automatic technique in frequency domain for near-lossless
time-scale modification of audio”, in Proc. of the International Computer
Music Conference (ICMC), Berlin, Germany, 27 August – 1 September
2000, pp. 396–399.

[45] D. P. W. Ellis, “A phase vocoder in Matlab”, 2002, web re-
source, last consulted in March 2011. [Online]. Available:
http://www.ee.columbia.edu/~dpwe/resources/matlab/pvoc/.

[46] M. Puckette, “Phase-locked vocoder”, in Proc. of IEEE ASSP Workshop
on Applications of Signal Processing to Audio and Acoustics, Mohonk,
NY, USA, October 15–18, 1995, pp. 222–225.

[47] J. Laroche and M. Dolson, “Phase-vocoder: about this phasiness busi-
ness”, in Proc. of 1997 IEEE ASSP Workshop on Applications of Signal
Processing to Audio and Acoustics, New Paltz, NY, USA, October 19–22,
1997, pp. 55–58.

[48] T. Karrer, E. Lee, and J. Borchers, “PhaVoRIT: A phase vocoder for real-
time interactive time-stretching”, in Proc. of the International Computer
Music Conference (ICMC), New Orleans, USA, November 6–11, 2006,
pp. 708–715.

[49] D. Doran, E. Coyle, and R. Lawlor, “An efficient phasiness reduction
technique for moderate audio time-scale modification”, in Proc. of the 7th
International Conference on Digital Audio Effects (DAFx-04), London,
UK, October 5–8, 2004, pp. 83–88.

[50] A. Moinet and T. Dutoit, “PVSOLA: A phase vocoder with synchronized

http://www.ee.columbia.edu/~dpwe/resources/matlab/pvoc/

182 BIBLIOGRAPHY

overlap-add”, in Proc. of the 14th International Conference on Digital
Audio Effects (DAFx-11), Paris, France, September 19–23, 2011, pp. 269–
275, [DAFx Best Student Paper Award - Bronze].

[51] S. Kraft, M. Holters, A. von dem Knesebeck, and U. Zölzer, “Im-
proved PVSOLA time-stretching and pitch-shifting for polpyhonic audio”,
in Proc. of the 15th International Conference on Digital Audio Effects
(DAFx-12), York, UK, September 17–21, 2012.

[52] G. Fant, Acoustic Theory of Speech Production. The Hague: Mouton,
1960.

[53] X. Serra, “A system for sound analysis/transformation/synthesis based on
a deterministic plus stochastic decomposition”, Ph.D. dissertation, Stan-
ford University, Department of Music, 1989.

[54] T. S. Verma and T. H. Y. Meng, “Time scale modification using
a sines+transients+noise signal model”, in Proc. of the 1st Interna-
tional Conference on Digital Audio Effects (DAFx-98), Barcelona, Spain,
November 19–21, 1998, pp. 49–52.

[55] Y. Stylianou, J. Laroche, and E. Moulines, “High-quality speech modifica-
tion based on a harmonic noise model”, in Proc. of the Fourth European
Conference on Speech Communication and Technology (Eurospeech’95),
Madrid, Spain, September 18–21, 1995, pp. 451–454.

[56] Y. Stylianou, “Harmonic plus noise models for speech combined with sta-
tistical methods, for speech and speaker modifications”, Ph.D. disserta-
tion, École Nationale Supérieure des Télécommunications, 1996.

[57] A. Röbel, “A shape-invariant phase vocoder for speech transformation”,
in Proc. of the 13th International Conference on Digital Audio Effects
(DAFx-10), Graz, Austria, September 6–10, 2010.

[58] T. Karrer, “PhaVoRIT: A phase vocoder for real-time interactive time-
stretching”, Master’s thesis, RWTH Aachen University, Aachen, Ger-
many, November 2005.

[59] J. P. Bello, L. Daudet, S. Abdallah, C. Duxbury, M. Davies, and M. B.
Sandler, “A tutorial on onset detection in music signals”, IEEE Trans-
actions on Speech and Audio Processing, vol. 13, no. 5, pp. 1035–1047,
September 2005.

BIBLIOGRAPHY 183

[60] S. N. Levine and J. O. S. III, “A sines+transients+noise audio representa-
tion for data compression and time/pitch scale modifications”, in Proc. of
the 105th Audio Engineering Society Convention (AES), San Francisco,
California, US, September 26–29, 1998.

[61] F. Nagel and A. Walther, “A novel transient handling scheme for time
stretching algorithms”, in Proc. of the 127th Audio Engineering Society
Convention (AES), New-York, USA, October 9–12, 2009.

[62] I. Damnjanovic, D. Barry, D. Dorran, and J. D. Reiss, “A real-time frame-
work for video time and pitch scale modification”, IEEE Transactions on
Multimedia, vol. 12, no. 4, pp. 247–256, June 2010.

[63] P. Masri and A. Bateman, “Improved modeling of attack transients in
music analysis-resynthesis”, in Proc. of the International Computer Music
Conference (ICMC), Hong Kong, August 19–24, 1996, pp. 100–103.

[64] A. Röbel, “A new approach to transient processing in the phase vocoder”,
in Proc. of the 6th International Conference on Digital Audio Effects
(DAFx-03), London, UK, September 8–11, 2003.

[65] P. Masri, “Computer modeling of sound for transformation and synthesis
of musical signal”, Ph.D. dissertation, University of Bristol, 1996.

[66] N. Saint-Arnaud and K. Popat, Computational auditory scene analysis.
Hillsdale, NJ, USA: L. Erlbaum Associates Inc., 1998, ch. Analysis and
Synthesis of Sound Textures, pp. 293–308.

[67] L. Lu, L. Wenyin, and H.-J. Zhang, “Audio textures: Theory and applica-
tions”, IEEE Transactions on Speech and Audio Processing, vol. 12, no. 2,
pp. 156–167, March 2004.

[68] J.-J. Filatriau, “Analysis, synthesis and gestural control of expressive sonic
textures in musical contexts”, Ph.D. dissertation, Université catholique de
Louvain, École polytechnique de Louvain, June 2011.

[69] G. Strobl, G. Eckel, and D. Rocchesso, “Sound texture modeling: A sur-
vey”, in Proc. of the Sound and Music Computing Conference (SMC),
Marseille, France, May 18–20, 2006.

[70] D. Gabor, “Acoustical quanta and the theory of hearing”, Nature, vol.
159, no. 4044, pp. 591–594, May 1947.

184 BIBLIOGRAPHY

[71] J. Parker and B. Behm, “Creating audio textures by example: tiling and
stitching”, in Proc. of International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), vol. 4, no. iv, May 17–21, 2004, pp. 317–320.

[72] S. Dubnov, Z. Bar-Joseph, R. El-Yaniv, D. Lischinski, and M. Werman,
“Synthesizing sound textures through wavelet tree learning”, IEEE Com-
puter Graphics and Applications, vol. 22, no. 4, pp. 38–48, July/August
2002.

[73] C. Picard, N. Tsingos, and F. Faure, “Retargetting example sounds to
interactive physics-driven animations”, in Proc. of the 35th International
Conference on Audio for Games (AES), London, UK, February 11-13
2009. [Online]. Available: http://www.aes.org/e-lib/browse.cfm?elib=
15179

[74] D. Schwarz, “Corpus-based concatenative synthesis”, IEEE Signal Pro-
cessing Magazine, vol. 24, no. 2, pp. 92–104, March 2007.

[75] C. Picard, “Expressive sound synthesis for animation”, Ph.D. dissertation,
Université de Nice - Sophia Antipolis / Ecole Doctorale STIC, Décember
2009.

[76] J. Kominek and A. W. Black, “CMU arctic databases for speech syn-
thesis”, Language Technologies Institute, School of Computer Science,
Carnegie Mellon University, Tech. Rep., 2003.

[77] D. P. W. Ellis, “SOLAFS in Matlab”, 2006, web resource, last consulted
in March 2011. [Online]. Available: http://www.ee.columbia.edu/-

~dpwe/resources/matlab/solafs-matlab.html.

[78] V. Grancharov and W. Kleijn, Handbook of Speech Processing. Springer,
2007, ch. Speech Quality Assessment, pp. 83–99.

[79] T. Quatieri and R. McAulay, “Shape invariant time-scale and pitch modi-
fication of speech”, IEEE Transactions on Signal Processing, vol. 40, no. 3,
pp. 497–510, 1992.

[80] W.-H. Liao, A. Röbel, and A. W. Su, “On stretching gaussian noises
with the phase vocoder”, in Proc. of the 15th International Conference on
Digital Audio Effects (DAFx-12), York, UK, September 17–21, 2012.

[81] S. Boll, “Suppression of acoustic noise in speech using spectral subtrac-
tion”, IEEE Transactions on Acoustics, Speech and Signal Processing,

http://www.aes.org/e-lib/browse.cfm?elib=15179
http://www.aes.org/e-lib/browse.cfm?elib=15179
http://www.ee.columbia.edu/~dpwe/resources/matlab/solafs-matlab.html
http://www.ee.columbia.edu/~dpwe/resources/matlab/solafs-matlab.html

BIBLIOGRAPHY 185

vol. 27, no. 2, pp. 113–120, April 1979.

[82] Y. Ephraim and D. Malah, “Speech enhancement using a minimum-mean
square error short-time spectral amplitude estimator”, IEEE Transactions
on Acoustics, Speech and Signal Processing, vol. 32, no. 6, pp. 1109–1121,
December 1984.

[83] K. Tokuda, T. Kobayashi, T. Masuko, and S. Imai, “Mel-generalized cep-
stral analysis — a unified approach to speech spectral estimation”, in Proc.
of International Conference on Spoken Language Processing (ICSLP94),
vol. 3, September 1994, pp. 1043–1046.

[84] E. Ambikairajah, A. G. Davis, and W. T. K. Wong, “Auditory masking
and mpeg-1 audio compression”, Electronics & Communication Engineer-
ing Journal, vol. 9, no. 4, pp. 165–175, August 1997.

[85] A. Moinet, T. Dutoit, and P. Latour, “Audio time-scaling for slow motion
sports videos”, in Proc. of the 16th International Conference on Digital
Audio Effects (DAFx-13), Maynooth, Ireland, September 2–6, 2013.

[86] ——, “Time-stretching of an audio signal”, Patent EP 2 509 073,
October 10, 2012. [Online]. Available: http://www.google.com/patents/
EP2509073A1

[87] ——, “Time-stretching of an audio signal”, Patent Application
WO 2012/136 380 (PCT), October 11, 2012. [Online]. Available:
http://www.google.com/patents/WO2012136380A1

[88] R. Burr and D. Lytle, “Comments on “a general method of minimum cross-
entropy spectral estimation””, IEEE Transactions on Acoustics, Speech
and Signal Processing, vol. 34, no. 5, pp. 1324–1326, October 1986.

[89] C. Breithaupt, T. Gerkmann, and R. Martin, “Cepstral smoothing of
spectral filter gains for speech enhancement without musical noise”, IEEE
Signal Processing Letters, vol. 14, no. 12, pp. 1036–1039, December 2007.

[90] L. Rabiner and B.-H. Juang, Fundamental of Speech Recognition.
Prentice-Hall, Englewood Cliffs, NJ, 1993, ch. Pattern-Comparison Tech-
niques, pp. 183–190.

http://www.google.com/patents/EP2509073A1
http://www.google.com/patents/EP2509073A1
http://www.google.com/patents/WO2012136380A1

List of Figures

1.1 Examples of waveform plot . 13

1.2 A frame from a signal . 14

1.3 Frame windowing . 15

1.4 Energy of a signal as a function of time and the frame length . 17

1.5 Fourier transform, discrete-time Fourier transform and discrete
Fourier transform . 20

1.6 The short-time Fourier transform 22

1.7 Gabor uncertainty principle . 24

1.8 Waveforms and their spectrograms 25

1.9 Inverse STFT and OLA synthesis 27

1.10 Example of cepstral deconvolution 31

1.11 AR filter approximation of a signal 34

2.1 Time-domain time-scaling – basic principles 38

2.2 Time-scaling through resampling and frequency scaling 39

2.3 Time-scaling with overlap-add (OLA) 40

2.4 Out-of-phase sinusoids . 41

2.5 Time-scaling with SOLA and WSOLA 42

— 187 —

188 LIST OF FIGURES

2.6 Phase vocoder with frame shifting 45

2.7 Phase vocoder with frame generation 47

2.8 Note onset for guitar . 58

2.9 Various time-scaling artifacts for transients 59

2.10 Fixed and adaptive thresholding functions 62

2.11 Substitution of a transient . 64

2.12 Transient processing through variable speed 65

3.1 Computation of δ from the cross-correlation 73

3.2 Schematic view of the insertion of f∗ 74

3.3 Schematic view of the computation process for w(n) 75

3.4 CMOS test results for female and male voices 78

4.1 Spectrograms of various sports excerpts 88

4.2 A penalty – one action, different camera angles 90

4.3 Screenshots of three MXF video players 98

5.1 Transient smearing for ball impact 105

5.2 Amplitude variations: original and time-stretched 106

5.3 Time-stretching with random phases 109

5.4 Energy in various sports . 112

5.5 Spectral flux in various sports 113

5.6 Multi-band spectral flux in football examples 114

5.7 Adaptive threshold for peak detection 117

6.1 General overview of slowdio time-scaling (signal) 128

6.2 General overview of slowdio time-scaling (process) 129

6.3 Algorithm for grain extraction 131

LIST OF FIGURES 189

6.4 Error during grain extraction with spectral flux 133

6.5 Overlap-add of grain gg into the output signal 136

6.6 Concatenate grains instead of shifting them 137

6.7 Spectrogram of a baseball hit 142

6.8 Spectrogram of a distorted slowdio baseball hit 143

6.9 Insertion of grain when using LP filtering 144

6.10 Insertion of grain when completed by LP filtering 145

6.11 Continuity on both sides between LP filtering and grains 146

6.12 Self cross-synthesis principle . 149

6.13 Self cross-synthesis with cepstrum 151

6.14 Overlap-add of z(n) into y(n) 155

6.15 Spectrogram around transient with self cross-synthesis 156

6.16 Histograms of MOS test . 166

6.17 Histograms of CMOS test . 167

A.1 Mel-spaced filter bank . 176

List of Tables

3.1 CMOS test results for female and male voices 78

3.2 CMOS test results using maximum peak of correlation 79

6.1 Percentage of concatenated grains as a function of α 139

6.2 Average runtime as a function of α 161

6.3 Mean Opinion Scores as a function of α 165

6.4 Mean Opinion Scores for various sports 165

6.5 Comparative Mean Opinion Scores as a function of α 168

6.6 Comparative Mean Opinion Scores for various sports 168

— 191 —

This thesis was written using a modified version of
the hepthesis style, on a Linux computer, with Kile
as an editor, Inkscape to draw most of the images
and git for versioning and backups. About 84 kg of
fruits were necessary as well as a helluva mountain
of daily spamsTM . And it was really fun . . .

. . . except for the LATEX part anyway . . . grumble.

“Whatever doesn’t kill me . . .
. . . had better start running”

	Introduction
	Audio Time-Scale Modifications
	Digital Audio Signal Processing
	Digital Audio Signal
	Waveform
	Frame, Windowing and Energy

	Spectral Analysis
	Fourier Transform
	Discrete Fourier Transform
	Short-Time Fourier Transform

	Cepstral Alanysis
	Definitions
	Properties
	Applications

	Cross-correlation
	Fast Computation
	Applications

	Linear Prediction

	Audio Time-Scale Modifications
	Sinusoidal Model for Audio Signals
	Time domain
	Analog Domain
	Resampling
	SOLA
	SOLAFS and WSOLA
	TD-PSOLA

	Frequency domain: the phase vocoder
	Phase vocoder
	Phase-locked vocoder

	Model-based
	Source-Filter Model
	Sinusoidal Model
	Physical Model

	Mixed methods
	Transient Detection and Time-Scaling
	Definition
	Detection
	Peak Picking
	Processing

	Sound Textures
	Textures Synthesis
	Time-Scaling

	A Phase Vocoder with Synchronized OverLap-Add
	PVSOLA
	Implementation details
	Discussion
	Results

	PWSOLA
	Implementation details
	Discussion

	Conclusions

	Audio Time-Scaling for Slow Motion Sports Videos
	Database and Tools
	Recordings
	Football
	Rugby
	Cricket
	Ice Hockey
	Tennis
	Basketball
	Baseball
	Car Race
	Hurdles

	Tools
	MXF Library
	MXF Video Players

	Annotation
	Statistics

	On the Use of Old Recipes for New Material
	Time-domain
	Frequency-domain
	Phase Vocoder
	Random Phase

	Model-based
	Transient Detection and Time-Scaling
	Energy
	Spectral Flux
	Multi-Band Spectral Flux
	Peak Detection
	Processing

	Sound Textures
	Conclusions

	Slowdio
	Overview
	Grain Extraction
	Segmentation
	Parameters
	Discussions

	Grain Shifting
	Shift
	Concatenation
	Parameters

	Filling Gaps
	Spectral Synthesis
	Linear Prediction Filtering
	Self Cross-Synthesis
	Texture

	Variable Speed
	Speed Controlled
	Position Controlled

	Results
	Implementation
	Listening Tests

	Conclusions

	Conclusions
	Future Works

	Mel-Spaced Filter Bank
	Mel Scale
	Filter Bank

	Bibliography
	List of Figures
	List of Tables

