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Abstract—In this paper, we study the nonnegative matrix factorization problem under the separability assumption (that is, there exists

a cone spanned by a small subset of the columns of the input nonnegative data matrix containing all columns), which is equivalent to

the hyperspectral unmixing problem under the linear mixing model and the pure-pixel assumption. We present a family of fast recursive

algorithms and prove they are robust under any small perturbations of the input data matrix. This family generalizes several existing

hyperspectral unmixing algorithms and hence provides for the first time a theoretical justification of their better practical performance.

Index Terms—Nonnegative matrix factorization, algorithms, separability, robustness, hyperspectral unmixing, linear mixing model, pure-pixel

assumption
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1 INTRODUCTION

A hyperspectral image consists of a set of images taken
at different wavelengths. It is acquired by measuring

the spectral signature of each pixel present in the scene, that
is, by measuring the reflectance (the fraction of the incident
electromagnetic power that is reflected by a surface at a
given wavelength) of each pixel at different wavelengths.
One of the most important tasks in hyperspectral imaging is
called unmixing. It requires the identification of the consti-
tutive materials present in the image and estimation of their
abundances in each pixel. The most widely used model is
the linear mixing model: the spectral signature of each pixel
results from the additive linear combination of the spectral
signatures of the constitutive materials, called endmembers,
where the weights of the linear combination correspond to
the abundances of the different endmembers in that pixel.

More formally, let the m-by-n matrix M correspond to a
hyperspectral image with m spectral bands and n pixels,
and where each entry Mij � 0 of matrix M is equal to the
reflectance of the jth pixel at the ith wavelength. Hence,
each column mj of M corresponds to the spectral signature
of a given pixel. Assuming the image contains r constitutive
materials whose spectral signatures are given by the vectors
wk 2 IRm

þ 1 � k � r, we have, in the noiseless case,

mj ¼
Xr

k¼1

wk hkj; for j ¼ 1; 2; . . . ; n;

where hkj � 0 is the abundance of the kth endmember in the
jth pixel, with

Pr
k¼1 hkj ¼ 1 8j. Defining the m-by-r matrix

W ¼ ½w1 w2 � � �wk� � 0 and the r-by-n matrix H with
Hkj ¼ hkj 8j; k, the equation above can be equivalently written
as M ¼WH where M, W and H are nonnegative matrices.
Given the nonnegative matrix M, hyperspectral unmixing
amounts to recovery of the endmember matrix W and the
abundance matrix H. This inverse problem corresponds to
the nonnegative matrix factorization problem (NMF), which
is a difficult [27] and highly ill-posed problem [17].

However, if we assume that, for each constitutive mate-
rial, there exists at least one pixel containing only that
material (a ‘pure’ pixel), then the unmixing problem can be
solved in polynomial time: it simply reduces to identifying
the vertices of the convex hull of a set of points. This
assumption, referred to as the pure-pixel assumption [13], is
essentially equivalent to the separability assumption [14]:
a nonnegative matrix M is called separable if it can be writ-
ten as M ¼WH where each column of W is equal, up to a
scaling factor, to a column of M. In other words, there
exists a cone spanned by a small subset of the columns of
M containing all columns (see Section 2.1 for more details).
It is worth noting that this assumption also makes sense
for other applications. For example, in text mining, each
entry Mij of matrix M indicates the ‘importance’ of word i
in document j (e.g., the number of appearances of word i
in text j). The factors ðW;HÞ can then be interpreted as fol-
lows: the columns of W represent the topics (i.e., bags of
words) while the columns of H link the documents to these
topics. Therefore,

� Separability of M (that is, each column of W appears
as a column of M) requires that, for each topic, there
exists at least one document discussing only that
topic (a ‘pure’ document).

� Separability of MT (that is, each row of H appears
as a row of M) requires that, for each topic, there
exists at least one word used only by that topic (a
‘pure’ word).

These assumptions often make sense in practice and are
actually part of several existing document generative mod-
els, see [3], [4] and the references therein.
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1.1 Previous Work

We focus in this paper on hyperspectral unmixing algo-
rithms under the linear mixing model and the pure-pixel
assumption, or, equivalently, to nonnegative matrix fac-
torization algorithms under the separability assumption.
Many algorithms handling this situation have been devel-
oped by the remote sensing community, see [5] for a com-
prehensive overview of recent hyperspectral unmixing
algorithms. Essentially, these algorithms amount to iden-
tifying the vertices of the convex hull of the (normalized)
columns of M, or, equivalently, the extreme rays of the
convex cone generated by the columns of M. However, as
far as we know, none of these algorithms have been
proved to work when the input data matrix M is only
approximately separable (that is, the original separable
matrix is perturbed with some noise), and many algo-
rithms are therefore not robust to noise. However, there
exists a few recent notable exceptions:

� Arora et al. [3, Section 5] proposed a method which
requires the resolution of n linear programs in OðnÞ
variables (n is the number of columns of the input
matrix), and is therefore not suited to dealing with
large-scale real-world problems. In particular, in
hyperspectral imaging, n corresponds to the number
of pixels in the image and is of the order of 106.
Moreover, it needs several parameters to be esti-
mated a priori (the noise level, and a function of the
columns of W ; see Section 2.4).

� Esser et al. [16] proposed a convex model with n2

variables (see also [15] where a similar approach is
presented), which is computationally expensive. In
order to deal with a large-scale real-world hyper-
spectral unmixing problem, the authors had to use
a preprocessing, namely k-means, to select a subset
of the columns in order to reduce the dimension n
of the input matrix. Their technique also requires a
parameter to be chosen in advance (either the noise
level, or a penalty parameter balancing the impor-
tance between the approximation error and the
number of endmembers to be extracted), only
applies to a restricted noise model, and cannot
deal with repeated columns of W in the data set
(i.e., repeated endmembers).

� Bittorf et al. [6] proposed a method based on the res-
olution of a single convex optimization problem in
n2 variables (cf. Section 5.2). In order to deal with
large-scale problems (m � 106, n � 105), a fast incre-
mental gradient descent algorithm using a parallel
architecture is implemented. However, the algo-
rithm requires several parameters to be tuned, and
the factorization rank has to be chosen a priori.
Moreover, it would be impractical for huge-scale
problems (for example, for web-related applications
where n � 109), and the speed of convergence could
be an issue.

1.2 Contribution and Outline of the Paper

In this paper, we propose a new family of recursive algo-
rithms for nonnegative matrix factorization under the sepa-
rability assumption. They have the following features:

� They are robust to noise (Theorem 3).

� They are very fast, running in approximately
6mnr floating point operations, while the memory
requirement is low, as only one m-by-n matrix
has to be stored.

� They are extremely simple to implement and would
be easily parallelized.

� They do not require any parameter to be chosen a
priori, nor to be tuned.

� The solution does not need to be recomputed from
scratch when the factorization rank is modified, as
the algorithms are recursive.

� A simple post-processing strategy allows us to iden-
tify outliers (Section 3).

� Repeated endmembers are not an issue.

� Even if the input data matrix M is not approximately
separable, they identify r columns of M whose con-
vex hull has large volume (Section 4.1).

To the best of our knowledge, no other algorithms
share all these desirable properties. The weak point of our
approach is that the bound on the noise to guarantee
recovery is weaker than in [3], [6]; see Section 2.4. Also,
we will need to assume that the matrix W is full rank,
which is not a necessary condition for the approaches
above [3], [6], [16]. However, in practice, this condition is
satisfied in most cases. At least, it is always assumed to
hold in hyperspectral imaging and text mining applica-
tions, otherwise the abundance matrix H is typically not
uniquely determined; see Section 2.1. Moreover, in Sec-
tion 5.2, our approach will be shown to perform in aver-
age better than the one proposed in [6] on several
synthetic data sets.

The paper is organized as follows. In Section 2, we
introduce our approach and derive an a priori bound on
the noise to guarantee the recovery of the pure pixels. In
Section 3, we propose a simple way to handle outliers. In
Section 4, we show that this family of algorithms general-
izes several hyperspectral unmixing algorithms, including
the successive projection algorithm (SPA) [2], the auto-
matic target generation process (ATGP) [24], the succes-
sive volume maximization algorithm (SVMAX) [11], and
the p-norm based pure pixel algorithm (TRI-P) [1]. There-
fore, our analysis gives the first theoretical justification of
the better performances of this family of algorithms com-
pared to algorithms based on locating pure pixels using
linear functions (such as the widely used PPI [7] and
VCA [23] algorithms) which are not robust to noise. This
was, until now, only experimentally observed. Finally, we
illustrate these theoretical results on several synthetic
data sets in Section 5.

Notation. Given a matrix X, xk, X:k or Xð:; kÞ denotes its kth
column, and Xik, xik or xkðiÞ the entry at position ði; kÞ (ith
entry of column k). For a vector x, xi or xðiÞ denotes the
ith entry of x. The unit simplex in dimension n is denoted
Dn ¼ fx 2 IRn j x � 0;

Pn
i¼1 xi � 1g. We use the MATLAB

notation ½A; B� ¼ ðA BÞ and ½A;B� ¼ ðABÞ. Given a matrix
W 2 IRm�r, m � r, we denote siðWÞ the singular values of
W in non-decreasing order, that is,

s1ðW Þ � s2ðW Þ � � � � � srðWÞ � 0:
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The m-by-n all-zero matrix is denoted 0m�n while the n-by-n
identity matrix is denoted In (the subscripts m and n might be
discarded if the dimension is clear from the context).

2 ROBUST RECURSIVE NMF ALGORITHM UNDER

SEPARABILITY

In this section, we analyze a family of simple recursive
algorithms for NMF under the separability assumption;
see Algorithm 1. Given an input data matrix M and a
function f , it works as follows: at each step, the column of
M maximizing the function f is selected, and M is
updated by projecting each column onto the orthogonal
complement of the selected column.

Remark 1 (Stopping criterion for Algorithm 1). Instead
of fixing a priori the number r of columns of the input
matrix to be extracted, it is also possible to stop the
algorithm whenever the norm of the residual (or of the
last extracted column) is smaller than some specified
threshold.

In Section 2.1, we discuss the assumptions on the input
separable matrix M ¼WH and the function f that we will
need in Section 2.2 to prove that Algorithm 1 is guaranteed
to recover columns of M corresponding to columns of the
matrix W . Then, we analyze Algorithm 1 in case some noise
is added to the input separable matrix M, and show that,
under these assumptions, it is robust under any small per-
turbations; see Section 2.3. Finally, we compare our results
with the ones from [3], [6] in Section 2.4.

2.1 Separability and Strong Convexity Assumptions

In the remainder of the paper, we will assume that the origi-
nal data matrix M ¼WH is separable, that is, each column
of W appears as a column of M. Recall that this condition is
implied by the pure-pixel assumption in hyperspectral
imaging; see Introduction. We will also assume that the
matrix W is full rank. This is often implicitly assumed in
practice otherwise the problem is in general ill-posed,
because the matrix H is then typically not uniquely deter-
mined; see, e.g., [3], [25].

Assumption 1. The separable matrix M 2 IRm�n can be written
as M ¼WH ¼W ½Ir;H 0�, where W 2 IRm�r has rank r,
H 2 IRr�n

þ , and the sum of the entries of each column of H 0 is
at most one, that is,

Pr
k¼1 H

0
kj � 1 8j, or, equivalently,

h0j 2 Dr 8j.
The assumption on matrix H is made without loss of gen-

erality by

1. Permuting the columns of M so that the first r col-
umns of M correspond to the columns of W (In fact,
Algorithm 1 is not sensitive to permutation of the
columns of M, while this ordering will make the
proofs simpler to present.).

2. Normalizing M so that the entries of each of its col-
umns sum to one (except for its zero columns). In
fact, we have that

M ¼WH ,MD	1
M ¼WD	1

W

�
DWHD

	1
M

�
;

where

ðDXÞij ¼
kX:jk1 if i ¼ j and X:j 6¼ 0;

1 if i ¼ j and X:j ¼ 0;
0 otherwise:

8
<

:

By construction, the entries of each column of MD	1
M

and WD	1
W sum to one (except for the zero columns

of M), while the entries of each column of
ðDWHD

	1
M Þ have to sum to one (except for ones cor-

responding to the zero columns of M which are
equal to zero) since M ¼WH.

In the hyperspectral imaging literature, the entries of
each column of matrix H are typically assumed to sum to
one, hence Assumption 1 is slightly more general. This has
several advantages:

� It allows the image to contain ‘background’ pixels
with zero spectral signatures, which are present, for
example, in hyperspectral images of objects in outer
space (such as satellites).

� It allows us to take into account different intensities
of light among the pixels in the image, e.g., if there
are some shadow parts in the scene or if the angle
between the camera and the scene varies. Hence,
although some pixels contain the same material(s)
with the same abundance(s), their spectral signature
could differ by a scaling factor.

� In the noisy case, it allows us to take into account
endmembers with very small spectral signature as
noise, although it is not clear whether relaxing the
sum-to-one constraint is the best approach [5].

Remark 2. Our assumptions actually do not require the
matrix M to be nonnegative, as W can be any full-rank
matrix. In fact, after the first step of Algorithm 1, the
residual matrix will typically contain negative entries.

We will also need to assume that the function f in Algo-
rithm 1 satisfies the following conditions.

Assumption 2. The function f : IRm ! IRþ is strongly convex
with parameter m > 0, its gradient is Lipschitz continuous
with constant L, and its global minimizer is the all-zero vector
with fð0Þ ¼ 0.
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Notice that, for any strongly convex function g whose
gradient is Lipschitz continuous and whose global mini-
mizer is x, one can construct the function fðxÞ ¼ gðxþ xÞ 	
gðxÞ satisfying Assumption 2. In fact, fð0Þ ¼ 0 while
fðxÞ � 0 for any x since gðxþ xÞ � gðxÞ for any x. Recall
that (see, e.g., [21]) a function is strongly convex with
parameter m if and only if it is convex and for any
x; y 2 domðfÞ

fðdxþ ð1	 dÞyÞ � dfðxÞ þ ð1	 dÞfðyÞ 	 m

2
dð1	 dÞkx	 yk2

2;

for any d 2 ½0; 1�. Moreover, its gradient is Lipschitz continu-
ous with constant L if and only if for any x; y 2 domðfÞ

krfðxÞ 	 rfðyÞk2 � Lkx	 yk2:

Convex analysis also tells us that if f satisfies Assumption 2
then, for any x; y,

fðxÞ þ rfðxÞT ðy	 xÞ þ m

2
kx	 yk2

2 � fðyÞ;

and

fðyÞ � fðxÞ þ rfðxÞT ðy	 xÞ þ L
2
kx	 yk2

2:

In particular, taking x ¼ 0, we have, for any y 2 IRm,

m

2
kyk2

2 � fðyÞ � L

2
kyk2

2; (1)

since fð0Þ ¼ 0 and rfð0Þ ¼ 0 (because zero is the global
minimizer of f).

The most obvious choice for f satisfying Assumption 2 is
fðxÞ ¼ kxk2

2; we return to this matter in Section 4.1.

2.2 Noiseless Case

We now prove that, under Assumption 1 and 2, Algorithm 1
recovers a set of indices corresponding to the columns of W .

Lemma 1. Let Y ¼ ½W; 0m�ðr	kÞ� ¼ ½w1 w2 . . . wk 0m�ðr	kÞ� 2
IRm�r with wi 6¼ 0 8i and wi 6¼ wj 8i 6¼ j, and let f : IRm !
IRþ be a strongly convex function with fð0Þ ¼ 0. Then

fðY hÞ < max
i
fðwiÞ for all h 2 Drsuch that h 6¼ ej8j;

where ej is the jth column of the identity matrix.

Proof. By assumption on f , we have fðwÞ > 0 for any w 6¼ 0;
see Equation (1). Hence, if Y h ¼ 0, we have the result
since fðY hÞ ¼ 0 < fðwiÞ for all i. Otherwise Y h ¼Pk

i¼1 wihi where hi 6¼ 0 for at least one 1 � i � k so that

fðY hÞ ¼ f
Xk

i¼1

hiwi þ 1	
Xk

i¼1

hi

 !
0

 !

<
Xk

i¼1

hif wið Þ � max
i
fðwiÞ:

The first inequality is strict since h 6¼ ej8j and hi 6¼ 0
for at least one 1 � i � k, and the second follows from
the fact that

Pk
i¼1 hi �

Pr
i¼1 hi � 1. tu

Theorem 1. Let the matrix M ¼WH satisfy Assumption 1 and
the function f satisfy Assumption 2. Then Algorithm 1
recovers a set of indices J such that Mð:; JÞ ¼W up to
permutation.

Proof. Let us prove the result by induction.

First step. Lemma 1 applies since f satisfies Assump-
tion 2 while W is full rank. Therefore, the first step of
Algorithm 1 extracts one of the columns of W . Assume
without loss of generality the last column wr of W is
extracted, then the first residual has the form

Rð1Þ ¼ I 	 wrw
T
r

kwrk2
2

 !
WH ¼ ½W 0 0m�1�H ¼W ð1ÞH;

i.e., the matrix Rð1Þ is obtained by projecting the columns
of M onto the orthogonal complement of wr. We observe
that W ð1Þ satisfies the conditions of Lemma 1 as well
because W 0 is full rank since W is. This implies, by
Lemma 1, that the second step of Algorithm 1 extracts
one of the columns of W 0.

Induction step. Assume that after k steps the residual
has the form RðkÞ ¼ ½W 
 0m�k�H with W 
 full rank. Then,
by Lemma 1, the next extracted index will correspond to
one of the columns of W 
 (say, without loss of generality,
the last one) and the next residual will have the form R ¼
½W y;0m�ðkþ1Þ�H where W y full rank since W 
 is, and H is
unchanged. By induction, after r steps, we have that the
indices corresponding to the different columns of W
have been extracted and that the residual is equal to zero
(R ¼ 0m�rH). tu

2.3 Adding Noise

In this section, we analyze how perturbing the input data
matrix affects the performances of Algorithm 1. We are
going to assume that the input perturbed matrix M 0 can
be written as M 0 ¼M þN where M is the noiseless origi-
nal separable matrix satisfying Assumption 1, and N is
the noise with knik2 � � for all i for some sufficiently
small � � 0.

2.3.1 Analysis of a Single Step of Algorithm 1

Given a matrix W , we introduce the following notations:
gðWÞ ¼ mini6¼j kwi 	 wjk2; nðWÞ ¼ mini kwik2; vðW Þ ¼
minfnðWÞ, 1ffiffi

2
p gðWÞg, and KðW Þ ¼ maxikwik2.

Lemma 2. Let Y ¼ ½W;Q� whereW 2 IRm�k andQ 2 IRm�ðr	kÞ,
and let f satisfy Assumption 2, with strong convexity parame-
ter m and its gradient having Lipschitz constantL. If

nðWÞ > 2

ffiffiffiffi
L

m

s

KðQÞ ;

then, for any 0 � d � 1
2,

f
 ¼ max
x2Dr

fðY xÞ such that xi � 1	 d for 1 � i � k; (2)

satisfies f
 � maxi fðwiÞ 	 1
2 m ð1	 dÞ d vðWÞ2.

Proof. By strong convexity of f , the optimal solution x
 of
(2) is attained at a vertex of the feasible domain
fx 2 IRr jxi � 08i;

Pr
i¼1 xi � 1; xi � 1	 d 1 � i � kg, that

is, either

a. x
 ¼ 0,
b. x
 ¼ ei for kþ 1 � i � r,

GILLIS AND VAVASIS: FAST AND ROBUST RECURSIVE ALGORITHMS FOR SEPARABLE NONNEGATIVE MATRIX FACTORIZATION 701



c. x
 ¼ ð1	 dÞej for 1 � j � k,
d. x
 ¼ dei þ ð1	 dÞej for 1 � i; j � k; or
e. x
¼ deiþð1	 dÞej for kþ 1 � i � r and 1 � j � k.

Before analyzing the different cases, let us provide a
lower bound for f
. Using Equation (1), we have

fðð1	 dÞwiÞ �
1

2
mð1	 dÞ2kwik2

2:

Since ð1	 dÞwi is a feasible solution and 0 � d � 1
2, this

implies f
 � m
8 KðWÞ

2. Recall that since f is strongly con-
vex with parameter m, we have

fðdyþ ð1	 dÞzÞ � dfðyÞ þ ð1	 dÞfðzÞ

	 1

2
mdð1	 dÞ

��y	 z
��2

2
:

Let us now analyze the different cases:

a. Clearly, x
 6¼ 0 since fð0Þ ¼ 0 and fðyÞ > 0 for all
y 6¼ 0, cf. Equation (1).

b. Y x
 ¼ qi for some i. Using Equation (1), we have

f
 ¼ fðqiÞ �
L

2
KðQÞ2 < m

8
nðWÞ2 � m

8
KðWÞ2 � f
;

since nðWÞ > 2
ffiffiffi
L
m

q
KðQÞ, a contradiction.

c. Y x
 ¼ ð1	 dÞwi for some i :

f
 � ð1	 dÞfðwiÞ 	
1

2
mdð1	 dÞkwik2

2: (3)

By strong convexity, we also have fðwiÞ � m
2 kwik

2
2 �

1
2 mð1	 dÞkwik2

2. Plugging it in (3) gives

f
 � fðwiÞ 	 dfðwiÞ 	
1

2
mdð1	 dÞkwik2

2

� fðwiÞ 	 mdð1	 dÞkwik2
2

� max
i
fðwiÞ 	 mdð1	 dÞnðW Þ2:

d. Y x
 ¼ dwi þ ð1	 dÞwj for some i 6¼ j :

f
 � dfðwiÞ þ ð1	 dÞfðwjÞ 	
1

2
mdð1	 dÞkwi 	 wjk2

2

� max
i
fðwiÞ 	 mdð1	 dÞ 1ffiffiffi

2
p gðWÞ
� �2

:

e. Y x
 ¼ dqi þ ð1	 dÞwj for some i, j. First, we have

f
 � dfðqiÞ þ ð1	 dÞfðwjÞ 	
1

2
mdð1	 dÞkqi 	 wjk2

2

� fðwjÞ þ dfðqiÞ 	 dfðwjÞ

	 1

2
mdð1	 dÞðnðW Þ 	KðQÞÞ2 :

In fact, kqi 	 wjk2 � kwjk2 	 kqik2 � nðW Þ 	KðQÞ.
Then, using

fðqiÞ �
L

2
kqik2

2 �
L

2
KðQÞ2 < 1

4

m

2
nðWÞ2 � 1

4
fðwjÞ;

nðW Þ	KðQÞ> ð1	 1
2

ffiffiffi
m
L

p
ÞnðW Þ � 1

2 nðWÞ and fðwjÞ�
m
2 ð1	 dÞnðWÞ2, we obtain

f
 < fðwjÞ 	
3

4
dfðwjÞ 	

1

8
mdð1	 dÞnðWÞ2

� fðwjÞ 	
1

2
mdð1	 dÞnðWÞ2:

tu
Lemma 3. Let the function f : IRm ! IRþ satisfy Assumption 2,

with strong convexity parameter m and its gradient having
Lipschitz constant L. Then, for any x; n 2 IRm and any
�;K � 0 satisfying kxk2 � K and knk2 � � � K, we have

fðxþ nÞ � fðxÞ þ �KLþ L
2
�2

� �
� fðxÞ þ 3

2
�KL; and (4)

fðxþ nÞ � fðxÞ 	
�
�KL	 m

2
�2
	
� fðxÞ 	 �KL: (5)

Proof. For the upper bound (4), we use the fact that the gra-
dient of f is Lipschitz continuous with constant L

fðxþ nÞ � fðxÞ þ rfðxÞTnþ L
2
knk2

2

� fðxÞ þ �KLþ L
2
�2 � fðxÞ þ 3

2
�KL;

for any kxk2 � K, knk2 � � � K. The second inequality
follows from the fact that rfð0Þ ¼ 0 and by Lipschitz
continuity of the gradient: krfðxÞ 	 0k2 � Lkx	 0k2 �
LK for any kxk2 � K.

For the lower bound (5), we use strong convexity

fðxþ nÞ � fðxÞ þ rfðxÞTnþ m

2
knk2

2

� fðxÞ 	KLknk2 þ
m

2
knk2

2

� fðxÞ 	 �KL	 m

2
�2

� 	
;

for any kxk2 � K, knk2 � � � K. The third inequality fol-
lows from the fact that

max
0�y��

�
yKL	 m

2
y2
	
¼ �KL	 m

2
�2;

since K � � and L � m. tu
We can now prove the theorem which will be used in the

induction step to prove that Algorithm 1 works under small
perturbations of the input separable matrix.

Theorem 2. Let

� f satisfy Assumption 2, with strong convexity parame-
ter m, and its gradient have Lipschitz constant L.

� M 0 ¼M þN with M ¼ YH ¼ ½W Q�H, where W 2
IRm�k, KðNÞ � �, nðWÞ > 2

ffiffiffi
L
m

q
KðQÞ, and H ¼ ½I;

H 0� 2 IRr�n
þ where the sum of the entries of the col-

umns of H 0 is at most one. We will denote vðWÞ and
KðWÞ, v and K respectively.

� � be sufficiently small so that � � mv2

20KL.
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Then the index i corresponding to a column m0i of M 0 that
maximizes the function f satisfies

mi ¼ ½W;Q�hi; where hiðpÞ � 1	 d for some 1 � p � k;
(6)

and d ¼ 10�KL
mv2 , which implies

km0i 	 wpk2 � �þ 2Kd ¼ � 1þ 20
K2

v2

L

m

� �
: (7)

Proof. First note that � � mv2

20KL implies d ¼ 10�KL
mv2 � 1

2. Let us
then prove Equation (6) by contradiction. Assume the
extracted index, say i, for which m0i ¼ mi þ ni ¼ Y hi þ ni
satisfies hiðlÞ < 1	 d for 1 � l � k. We have

fðm0iÞ ¼ fðmi þ niÞ

�
ðLemma 3Þ

fðY hiÞ þ
3

2
�KL

< max
x2Dr;xðlÞ< 1	d 1�l�k

fðY xÞ þ 3

2
�KL

�
ðLemma 2Þ

max
j
fðwjÞ 	

1

2
mdð1	 dÞv2 þ 3

2
�KL

�
ðLemma 3Þ

max
j
fðw0jÞ 	

1

2
mdð1	 dÞv2 þ 5

2
�KL;

(8)

where w0j is the perturbed column of M corresponding to
wj (that is, the jth column of M 0). The first inequality fol-
lows from Lemma 3. In fact, we have � � K since m � L
and v � K, kmik2 ¼ kWhik2 � maxikwik2 ¼ K (by con-
vexity of k:k2), and knik2 � � 8i so that fðm0iÞ �
fðmiÞ þ 3

2 �KL. The second inequality is strict since the
maximum is attained at a vertex with xðlÞ ¼ 1	 d for
some 1 � l � k at optimality (see proof of Lemma 2). The
third inequality follows from Lemma 2 while the fourth
follows from the fact that kwjk2 � K so that fðwjÞ	
�KL � fðw0jÞ for all j by Lemma 3.

We notice that, since d � 1
2,

1

2
mdð1	 dÞv2 � 1

4
mv2d ¼ 1

4
mv2 10�KL

mv2
¼ 5

2
�KL:

Combining this inequality with Equation (8), we obtain
fðm0iÞ < maxjfðw0jÞ, a contradiction since m0i should
maximize f among the columns of M 0 and the w0j’s are
among the columns of M 0.

To prove Equation (7), we use Equation (6) and
observe that

mi ¼ ð1	 d0Þwp þ
X

k 6¼p
akyk for some p and 1	 d0 � 1	 d;

so that
P

k6¼p ak � d0 � d. Therefore,

mi 	 wp
�� ��

2
¼ 	d0wp þ

X

k6¼p
akwk

�����

�����
2

� 2d0max
j
kwjk2 � 2d0K � 2Kd;

which gives

km0i 	 wpk2 � kðm0i 	miÞ þ ðmi 	 wpÞk2 � �þ 2Kd;

for some 1 � p � k. tu
It is interesting to relate the ratio KðWÞ

vðWÞ to the condition
number of matrix W , given by the ratio of its largest
and smallest singular values kðWÞ ¼ s1ðWÞ

srðW Þ.

Lemma 4. Let W ¼ ½w1 w2 � � � wr� 2 IRm�r. Then

vðWÞ � srðW Þ :

Proof. We have to show that kwik2 � srðWÞ for all i, and
kwi 	 wjk2 �

ffiffiffi
2
p

srðWÞ for all i 6¼ j. Let ðU;S; V Þ 2
IRm�r � IRr�r � IRr�r be a compact singular value decom-
position of W ¼ USV T , where U and V are orthonormal
and S is diagonal with the singular values of W on the
diagonal. Then

kwik2 ¼ kUSvik2 ¼ kSvik2 � srðWÞkvik2 ¼ srðW Þ;

while

kwi 	 wjk2 ¼ kUSðvi 	 vjÞk2 ¼ kSðvi 	 vjÞk2

� srðWÞkvi 	 vjk2 ¼
ffiffiffi
2
p

srðWÞ:
tu

The ratio KðWÞ
vðWÞ is then closely related to the conditioning

of matrix W 2 IRm�r. In fact, we have seen that vðW Þ �
srðW Þ while, by definition, s1ðWÞ � KðW Þ � nðWÞ � vðW Þ
so that

1 � KðWÞ
vðW Þ �

s1ðWÞ
srðWÞ

¼ kðWÞ:

In particular, this inequality implies that if kðWÞ ¼ 1 then
KðWÞ
vðWÞ ¼ 1.

2.3.2 Error Bound for Algorithm 1

We have shown that, if the input matrix M 0 has the form

M 0 ¼ ½W;Q�½Ir;H 0� þN;

where Q and N are sufficiently small and the sum of the
entries of each column of H 0 � 0 is smaller than one, then
Algorithm 1 extracts one column of M 0 which is close to a
column of W ; cf. Theorem 2. We now show that, at each
step of Algorithm 1, the residual matrix satisfies these
assumptions so that we can prove the result by induction.

We first give some useful lemmas; see [19] and the refer-
ences therein.

Lemma 5 (Cauchy interlacing theorem). Let W 2 IRm�r and
P ¼

Qk
i¼1ðI 	 uiuTi Þ where ui 2 IRm with kuik2 ¼ 1 for all i,

and k � r	 1. Then

s1ðWÞ � s1ðPWÞ � sr	kðPW Þ � srðWÞ:

Lemma 6 (Singular value perturbation, Weyl). Let M 0 ¼
M þN 2 IRr�n with r � n. Then, for all 1 � i � r,

siðMÞ 	 siðM 0Þj j � s1ðNÞ ¼ kNk2 :
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Lemma 7. Let W ¼ ½W1; W2� 2 IRm�r where W1 2 IRm�r1 and
W2 2 IRm�r2 . Let also P ¼

Qr2
i¼1ðI 	

uiu
T
i

kuik22
Þ be such that

maxikPW2ð:; iÞk2 � � for some � � 0. Then,

sr1
ðPW1Þ � srðW Þ 	

ffiffiffiffiffi
r2
p

�:

Proof. We have

sr1ðPW1Þ ¼ sr1ð½PW1; 0m�r2
�Þ

�
ðLemma 6Þ

sr1ð½PW1; PW2�Þ 	 kPW2k2

� sr1ðPWÞ 	
ffiffiffiffiffi
r2
p

max
i
kPW2ð:; iÞk2

�
ðLemma 5Þ

srðWÞ 	
ffiffiffiffiffi
r2
p

� :

The second inequality follows from the fact that kAk2 �ffiffiffi
n
p

maxikAð:; iÞk2 for any matrix A 2 IRm�n. tu
We can now prove the main theorem of the paper which

shows that, given a noisy separable matrix M 0 ¼M þN ¼
WH þN where M satisfies Assumption 1, Algorithm 1 is
able to identify approximately the columns of W .

Theorem 3. Let M 0 ¼M þN ¼WH þN 2 IRm�n where M
satisfies Assumption 1 with W 2 IRm�r, r � 2, and H ¼
½Ir H 0�, and let f satisfy Assumption 2 with strong convexity
parameter m and its gradient has Lipschitz constant L. Let also
knik2 � � for all i with

� < srðWÞmin
1

2
ffiffiffiffiffiffiffiffiffiffiffi
r	 1
p ;

1

4

ffiffiffiffi
m

L

r� �
1þ 80

KðWÞ2

s2
rðWÞ

L

m

 !	1

;

(9)

and J be the index set of cardinality r extracted by Algorithm 1.
Then there exists a permutation P of f1; 2; . . . ; rg such that

max
1�j�r

��m0JðjÞ 	 wP ðjÞ
��

2
� � ¼ � 1þ 80

KðWÞ2

s2
rðW Þ

L

m

 !
:

Proof. Let us prove the result by induction. First, let us
define the residual matrix RðkÞ obtained after k steps of
Algorithm 1 as follows:

Rð0Þ ¼M 0; Rðkþ1Þ ¼ P ðkÞRðkÞ for 1 � k � r	 1;

P ðkÞ¼ðI 	 uuT

kuk22
Þ is the orthogonal projection performed at

step 5 of Algorithm 1 where u is the extracted column of

RðkÞ, that is, u ¼ rðkÞi for some 1 � i � n.
Then, let us assume that the residual RðkÞ 2 IRm�n has

the following form:

RðkÞ ¼


W ðkÞ; QðkÞ

�
H þNðkÞ;

where W ðkÞ 2 IRm�ðr	kÞ, QðkÞ 2 IRm�k, KðQðkÞÞ � �,
nðW ðkÞÞ > 2

ffiffiffi
L
m

q
�, and KðNðkÞÞ � � � vðW ðkÞÞ2m

20KðW ðkÞÞL. Let us

show that Rðkþ1Þ satisfies the same conditions as RðkÞ.

By assumption, RðkÞ satisfies the conditions of Theo-
rem 2: the ðkþ 1Þth index extracted by Algorithm 1, say
i, satisfies

��rðkÞi 	 wðkÞp
��

2
� � 1þ 20

KðW ðkÞÞ2

vðW ðkÞÞ2
L

m

 !
;

for some 1 � p � r	 k. Let us assume without loss of
generality that p ¼ r	 k. The next residual Rðkþ1Þ has
the form

Rðkþ1Þ ¼ P ðkÞW ðkÞð:; 1:r	k-1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
W ðkþ1Þ

; P ðkÞwðkÞp ; P ðkÞQðkÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Qðkþ1Þ

2
664

3
775H

þ P ðkÞN ðkÞ|fflfflfflfflffl{zfflfflfflfflffl}
Nðkþ1Þ

;

(10)

where

� KðN ðkþ1ÞÞ �KðN ðkÞÞ � � and KðP ðkÞQðkÞÞ�KðQðkÞÞ�
� because an orthogonal projection can only
reduce the ‘2-norm of a vector.

� kP ðkÞwðkÞp k2 � � ¼ �ð1þ 80KðWÞ2
s2
r ðWÞ

L
m
Þ since

��P ðkÞwðkÞp
��

2
�

��rðkÞi 	 wðkÞp
��

2

�
ðThm 2Þ

� 1þ 20
K
�
W ðkÞ�2

v
�
W ðkÞ

�2

L

m

 !
;

where the first inequality follows from P ðkÞwðkÞp being
the projection of wðkÞp onto the orthogonal comple-
ment of r

ðkÞ
i . Moreover,

KðW ðkÞÞ2

vðW ðkÞÞ2
� 4

KðWÞ2

s2
rðWÞ

: (11)

In fact, KðW ðkÞÞ � KðW Þ because of the orthogonal
projections, while vðW ðkÞÞ � 1

2 srðWÞ follows from

v
�
W ðkÞ� �

ðLemma 4Þ
sr	k

�
W ðkÞ�

�
ðLemma 7Þ

srðW Þ 	
ffiffiffi
k
p

�

� srðWÞ 	
ffiffiffiffiffiffiffiffiffiffiffi
r	 1
p

�

� 1

2
srðWÞ:

Lemma 7 applies since KðQðkÞÞ � �. The last inequal-
ity follows from � � srðWÞ

2
ffiffiffiffiffiffi
r	1
p since

� � srðW Þ
2
ffiffiffiffiffiffiffiffiffiffiffi
r	 1
p 1þ 80

KðWÞ2

s2
rðWÞ

L

m

 !	1

:

For Rðkþ1Þ to satisfy the same conditions as RðkÞ, it

remains to show that nðW ðkþ1ÞÞ > 2
ffiffiffi
L
m

q
� and � �

vðW ðkþ1ÞÞ2m

20KðW ðkþ1ÞÞL. Let us show that these hold for all k ¼ 0;

1; . . . ; r	 1:
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� Since nðW ðkÞÞ � vðW ðkÞÞ � 1
2 srðWÞ (see above),

nðW ðkÞÞ>2
ffiffiffi
L
m

q
� is implied by 1

2 srðWÞ> 2
ffiffiffi
L
m

q
�, that is,

� <
1

4

ffiffiffiffi
m

L

r
srðWÞ 1þ 80

KðWÞ2

s2
rðWÞ

L

m

 !	1

:

� Using Equation (11), we have

� � srðW Þ
2
ffiffiffiffiffiffiffiffiffiffiffi
r	 1
p 1þ 80

KðWÞ2

s2
rðW Þ

L

m

 !	1

� srðWÞ
srðWÞm

80KðW ÞL �
vðW ðkÞÞ2m

20KðW ðkÞÞL :

By assumption on the matrix M 0, these conditions
are satisfied at the first step of the algorithm (we actu-
ally have that Qð0Þ is an empty matrix), so that, by
induction, all the residual matrices satisfy these condi-
tions. Finally, Theorem 2 implies that the index i
extracted by Algorithm 1 at the ðkþ 1Þth step satisfies

r
ðkÞ
i ¼ ½W ðkÞ; QðkÞ�hi þ ni; where hiðpÞ � 1	 dðkÞ;

dðkÞ ¼ 10�KðW ðkÞÞL
vðW ðkÞÞ2m

, and p ¼ r	 k without loss of generality.
Since the matrix H is unchanged between each step, this

implies mi ¼Whi where hiðpÞ � 1	 dðkÞ, hence

km0i 	 wpk2 ¼ km0i 	mi þmi 	 wpk2

� �þ kmi 	 wpk2

� �þ 2dðkÞKðWÞ

¼ �þ 20
�KðW ðkÞÞL
vðW ðkÞÞ2m

KðW Þ

�
ðEq: 11Þ

� 1þ 80
KðWÞ2

s2
rðWÞ

L

m

 !
:

The second inequality is obtained using mi ¼Whi ¼
hiðpÞwp þ

P
k 6¼p hiðkÞwk and

P
k6¼p hiðkÞ � 1	 hiðpÞ so

that

kwp 	mik2 ¼ kð1	 hiðpÞÞwp 	
X

k 6¼p
hiðkÞwkk2

� 2ð1	 hiðpÞÞmax
k
kwkk2 � 2dðkÞKðWÞ:

tu

2.4 Bounds for Separable NMF and Comparison
with the Algorithms of Arora et al. [3]
and Bittorf et al. [6]

Given a noisy separable matrix M 0 ¼M þN ¼WH þN ,
we have shown that Algorithm 1 is able to approximately
recover the columns of the matrix W . In order to compare
the bound of Theorem 3 with the ones obtained in [3]
and1 [6], let us briefly recall the results obtained in both

papers: Given a separable matrix M ¼WH, the parameter
a is defined as the minimum among the ‘1 distances
between each column of W and its projection onto the
convex hull of the other columns of W . Without loss of
generality, it is assumed that the ‘1 norm of the columns
of W is equal to one (by normalizing the columns of M),
hence a � 2. Then, given that the noise N added to the
separable matrix M satisfies

�1 ¼ max
i
knik1 � Oða2Þ;

Arora et al. [3] identify a matrix U such that

max
1�k�r

min
1�j�r

kuj 	 wkk1 � O
�1
a

� 	
:

The algorithm of Bittorf et al. [6] identifies a matrix U
satisfying

max
1�k�r

min
1�j�r

kuj 	 wkk1 � O
r �1

a

� 	
;

given that �1 � Oðag1
r Þ where g1 ¼ mini6¼jkwi 	 wjk1 � a; see

[18]. Let us compare these bounds to ours. Since the ‘1 norm
of the columns of W is equal to one, we have srðW Þ �
KðWÞ � 1. Moreover, denoting pi the orthogonal projection
of wi onto the linear subspace generated by the columns of
W but the ith, we have

srðWÞ � min
i
kwi 	 pik2 � min

i
kwi 	 pik1 � a:

By Theorem 3, Algorithm 1 therefore requires

�2 ¼ max
i
knik2 � O

s3
rðW Þffiffiffi
r
p

� �
� O a3

ffiffiffi
r
p
� �

;

to obtain a matrix U such that

max
1�k�r

min
1�j�r

kuj 	 wkk2 � O
�2

s2
rðW Þ

� �
:

This shows that the above bounds are tighter, as they only
require the noise to be bounded above by a constant propor-
tional to a2 to guarantee an NMF with error proportional to
�1
a

. In particular, if W is not full rank, Algorithm 1 will fail to
extract more than rankðWÞ columns ofW , while the value of
a can be much larger than zero implying that the algorithms
from [3], [6] will still be robust to a relatively large noise.

To conclude, the techniques in [3], [6] based on linear
programming lead to better error bounds. However, they
are computationally much more expensive (at least qua-
dratic in n, while Algorithm 1 is linear in n, cf. Section 1.1),
and have the drawback that some parameters have to be
estimated in advance: the noise level �1, and

� the parameter a for Arora et al. [3] (which is rather
difficult to estimate as W is unknown),

� the factorization rank r for Bittorf et al. [6],2 hence
the solution has to be recomputed from scratch
when the value of r is changed (which often hap-
pens in practice as the number of columns to be
extracted is typically estimated with a trial and
error approach).

1. The error bounds in [6] were only valid for separable matrices
without duplicates of the columns of W . They were later improved and
generalized to any separable matrix in [18].

2. In their incremental gradient descent algorithm, the parameter �
does not need to be estimated. However, other parameters need to be
tuned, namely, primal and dual step sizes.
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Moreover, the algorithms from [3], [6] heavily rely on
the separability assumption while Algorithm 1 still makes
sense even if the separability assumption is not satisfied;
see Section 4.1. Table 1 summarizes these results. Note that
we keep the analysis simple and only indicate the growth
in terms of n. The reason is threefold: 1) in many applica-
tions (such as hyperspectral unmixing), n is much larger
than m and r, 2) a more detailed comparison of the running
times would be possible (that is, in terms of m, n, and r)
but is not straightforward as it depends on the algorithm
used to solve the linear programs (and possibly on the
parameters a and �1), and 3) both algorithms [3], [6] are at
least quadratic in n (for example, the computational cost of
each iteration of the first-order method proposed in [6] is
proportional to mn2, so that the complexity is linear in m).

3 OUTLIER DETECTION

It is important to point out that Algorithm 1 is very sensitive
to outliers, as are most algorithms aiming to detect the verti-
ces of the convex hull of a set of points, e.g., the algorithms
from [3], [6] discussed in the previous section. Therefore,
one should ideally discard the outliers beforehand, or
design variants of these methods robust to outliers. In this
section, we briefly describe a simple way for dealing with (a
few) outliers. This idea is inspired from the approach
described in [15].

Let us assume that the input matrix M is a separable
matrix WH ¼W ½I;H 0� satisfying Assumption 1 to which
was added t outliers gathered in the matrix T 2 IRm�t:

M ¼ W; T; WH 0½ �

¼ ½W; T �
Ir 0r�t H 0

0t�r It 0t�r


 �

¼ ½W;T �½Irþt; F 0� ¼ ½W;T �F;
(12)

where h0i 2 Dr for all i, hence f 0i 2 Dr for all i. Assuming
½W;T � has rank rþ t (hence t � m	 r), the matrix M above
also satisfies Assumption 1. In the noiseless case, Algorithm
1 will then extract a set of indices corresponding to columns
of W and T (Theorem 1). Therefore, assuming that the
matrix H 0 has at least one non-zero element in each row,
one way to identifying the outliers would be to

1. Extract rþ t columns from the matrix M using Algo-
rithm 1,

2. Compute the corresponding optimal abundance
matrix F , and

3. Select the r columns corresponding to rows of F with
the largest sum,

see Algorithm 2. (Note that Algorithm 2 requires the solution
of a convex quadratic program, hence it is computationally
much more expensive than Algorithm 1.) It is easy to check
that Algorithm 2 will recover the r columns of W because the
optimal solution G computed at the second step is unique and
equal to F (since ½W;T � is full rank), hence kGðj;:Þk1 > 1 for
the indices corresponding to the columns of W while
kGðj;:Þk1 ¼ 1 for the outliers; see Equation (12).

In the noisy case, a stronger condition is necessary: the
sum of the entries of each row of H 0 must be larger than
some bound depending on the noise level. In terms of hyper-
spectral imaging, it means that for an endmember to be dis-
tinguishable from an outlier, its abundance in the image
should be sufficiently large, which is perfectly reasonable.

Theorem 4. Let M 0 ¼ ½W;T;WH 0� þN 2 IRm�n where ½W;
WH 0� satisfies Assumption 1 with W 2 IRm�r, T 2 IRm�t,
r � 2, and let f satisfy Assumption 2 with strong convexity
parameter m and its gradient has Lipschitz constant L. Let also
B ¼ ½W;T �; s ¼ rþ t, and assume knik2 � � for all i with

� < ssðBÞmin
1

2
ffiffiffiffiffiffiffiffiffiffiffi
s	 1
p ;

1

4

ffiffiffiffi
m

L

r� �
1þ 80

KðBÞ2

s2
sðBÞ

L

m

 !	1

;

and J be the index set of cardinality r extracted by Algorithm 2.
If

2ð2n	 t	 rÞ �þ �
ssðBÞ

< kH 0ði; :Þk1 for all i; (13)

then there exists a permutation P of f1; 2; . . . ; rg such that

max
1�j�r

km0JðjÞ 	 wP ðjÞk2 � � ¼ � 1þ 80
KðBÞ2

s2
sðBÞ

L

m

 !
:

Proof. By Theorem 3, the columns extracted at the first step
of Algorithm 2 correspond to the columns of W and T up
to error �. Let then W þNW and T þNT be the columns
extracted by Algorithm 1 with KðNW Þ; KðNT Þ � �.

At the second step of Algorithm 2, the matrix G is
equal to

G ¼ argminxi2Drþt 8ikM 0 	 ½W þNW; T þNT �Xk2
F ;

up to the permutation of its rows. It remains to show that

min
1�i�r

kGði; :Þk1 > max
rþ1�i�rþt

kGði; :Þk1; (14)

TABLE 1
Comparison of Robust Algorithms for Separable NMF
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so that the last step of Algorithm 2 will identify correctly
the columns of W among the ones extracted at the first
step. We are going to show that

G � F ¼ Ir 0r�t H 0

0t�r It 0t�r


 �
:

More precisely, we are going to prove the following
lower (resp. upper) bounds for the entries of the first r
(resp. last t) rows of G:

a. For 1 � i � r, Gij � maxð0; Fij 	 2 �þ�
ssðBÞÞ for all j.

b. For rþ 1 � i � rþ t, Gij � minð1; Fij þ 2 �þ�
ssðBÞÞ for

all j.
Therefore, assuming (a) and (b) hold, we obtain

min
1�i�r

kGði; :Þk1 �
ðaÞ

1	 2
�þ �
ssðBÞ

� �
þ kH 0ði; :Þk1

	 2ðn	 t	 rÞ �þ �
ssðBÞ

>
Eq: ð13Þ

1þ 2ðn	 1Þ �þ �
ssðBÞ

�
ðbÞ

maxrþ1�i�rþtkGði; :Þk1;

which proves the result. It remains to prove (a) and (b).
First, we have that

km0j 	 ½W þNW; T þNT �G:jk2 � �þ � for all j: (15)

In fact, for all j,

km0j	½W þNW; T þNT �G:jk2

� kmj þ nj 	 ½W;T �F:j 	 ½NW;NT �F:jk2

� kmj 	 ½W;T �F:jk2 þ �þ � ¼ �þ �;

since Gð:; jÞ leads to the best approximation of m0j over D

(see step 2 of Algorithm 2) and fj 2 D.
Then, let us prove the upper bound for the block of

matrix G at position ð2; 1Þ, that is, let us prove that

Gij � 2
�þ �
ssðBÞ

for all rþ 1 � i � rþ t and 1 � j � r:

(Note that 0 � G � 1 by construction, hence some of
the bounds are trivial, e.g., for the block (1,2).) The deri-
vations necessary to obtain the bounds for the other
(non-trivial) blocks are exactly the same and are then
omitted here. Let rþ 1 � i � t and 1 � j � r and denote
Gij ¼ d, and let also I ¼ f1; 2; . . . ; rþ tgnfig. We have

km0j	½W þNW; T þNT �G:jk2

¼ kðwj þ njÞ þBG:j þ ½NW;NT �G:jk2

� kwj þBð:; IÞGðI; jÞ þBð:; iÞdk2 	 �	 �
� min

y2IRrþt	1
dkBð:; IÞy	Bð:; iÞk2 	 �	 �

� dssðBÞ 	 �	 �:

(16)

The first inequality follows from KðNÞ � �,
Kð½NW;NT �Þ � � and G:j 2 Drþt, while the second

inequality follows from the fact that wj is a column of
Bð:; IÞ. The last inequality follows from the fact that the
projection of any column of B onto the subspace spanned
by the other columns is at least ssðBÞ. Finally, using
Equations (15) and (16), we have �þ � � dssðBÞ 	 �	 �,
hence Gij ¼ d � 2 �þ�

ssðBÞ. tu

4 CHOICES FOR ff AND RELATED METHODS

In this section, we discuss several choices for the function f
in Algorithm 1, and relate them to existing methods.

4.1 Best Choice with m ¼ L : fðxÞ ¼ kxk2
2m ¼ L : fðxÞ ¼ kxk2
2

According to our derivations (see Theorem 3), using func-
tions f whose strong convexity parameter m is equal to the
Lipschitz constant L of its gradient is the best possible choice
(since it minimizes the error bounds). The only function sat-
isfying Assumption 2 along with this condition is, up to a

scaling factor, fðxÞ ¼ kxk2
2 ¼

Pm
i¼1 x

2
i . In fact, Assumption 2

implies m
2 kxk

2
2 � fðxÞ � L

2 kxk
2
2; see Equation (1). However,

depending on the problem at hand, other choices could be
more judicious (see Sections 4.2 and 4.3). It is worth noting
that Algorithm 1 with fðxÞ ¼ kxk2

2 has been introduced and
analyzed by several other authors:

� Choice of the reflections for QR factorizations. Golub and
Businger [8] construct QR factorizations of matrices
by performing, at each step of the algorithm, the
Householder reflection with respect to the column of
M whose projection onto the orthogonal comple-
ment of the previously extracted columns has maxi-
mum ‘2-norm.

� Successive projection algorithm. Ara�ujo et al. [2] pro-
posed the successive projection algorithm, which is
equivalent to Algorithm 1 with fðxÞ ¼ kxk2

2. They
used it for variable selection in spectroscopic multi-
component analysis, and showed it works better
than other standard techniques. In particular, they
mention ‘SPA seems to be more robust than genetic
algorithms’ but were not able to provide a rigorous
justification for that fact (which our analysis does).
Ren and Chang [24] rediscovered the same algo-
rithm, which was referred to as the automatic target
generation process. It was empirically observed in
[29] to perform better than other hyperspectral
unmixing techniques (namely, PPI [7] and VCA
[23]). However, no rigorous explanation of their
observations was provided. In Section 5, we describe
these techniques and explain why they are not
robust to noise, which theoretically justifies the bet-
ter performances of Algorithm 1. Chan et al. [11] ana-
lyzed the same algorithm (with the difference that
the data is preprocessed using a linear dimensional-
ity reduction technique). The algorithm is referred to
as the successive volume maximization algorithm.
They also successfully use Algorithm 1 as an initiali-
zation for a more sophisticated approach which does
not take into account the pure-pixel assumption.

� Greedy heuristic for volume maximization. Çivril and
Magdon-Ismail [9], [10] showed that Algorithm 1
with fðxÞ ¼ kxk2

2 is a very good greedy heuristic for
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the following problem: given a matrix M and an inte-
ger r, find a subset of r columns of M whose convex
hull has maximum volume. More precisely, unless
P ¼ NP, they proved that the approximation ratio
guaranteed by the greedy heuristic is within a loga-
rithmic factor of the best possible achievable ratio by
any polynomial-time algorithm. However, the spe-
cial case of separable matrices was not considered.
This is another advantage of Algorithm 1: even if the
input data matrix M is not approximately separable,
it identifies r columns of M whose convex hull has
large volume. For the robust algorithms from [3], [6]
discussed in Section 2.4, it is not clear whether they
will be able to produce a meaningful output in that
case; see also Section 5.2 for some numerical
experiments.

4.2 Generalization: fðxÞ ¼
Pm

i¼1 hðxiÞfðxÞ ¼
Pm

i¼1 hðxiÞ
Given a one-dimensional function h : IR! IRþ satisfying
Assumption 2, it is easy to see that the separable function
fðxÞ ¼

Pm
i¼1 hðxiÞ also satisfies Assumption 2 (notice that

hðyÞ ¼ y2 gives fðxÞ ¼ kxk2
2.). For example, we could take

hðyÞ ¼ y2

aþ jyj ; a > 0; hence fðxÞ ¼
Xm

i¼1

x2
i

aþ jxij
:

This choice limits the impact of large entries in x, hence

would potentially be more robust to outliers. In particular,

as a goes to zero, fðxÞ converges to kxk1 while, when a goes

to infinity, it converges to
kxk22

a
(in any bounded set).

Lemma 8. In the ball fy 2 IR j jyj � Kg, the function

hðyÞ ¼ y2

aþ jyj ; a > 0;

is strongly convex with parameter m ¼ 2a2

ðaþKÞ3
and its gradi-

ent is Lipschitz continuous with constant L ¼ 2
a
.

Proof. On can check that

2a2

ðaþKÞ3
� h00ðyÞ ¼ 2a2

ðaþ jyjÞ3
� 2

a
; for any jyj � K;

hence m ¼ 2a2

ðaþKÞ3
, and L ¼ 2

a
. tu

For example, one can choose a ¼ K for which we have
L
m
¼ 2, which is slightly larger than one but is less sensitive

to large, potentially outlying, entries of M. Let us illustrate
this on a simple example:

M 0 ¼

2 2
0 1
2 2
1 2
0 1

0
BBBB@

1
CCCCA

1 0 0:5
0 1 0:5

� �
þ

0 0 �
0 0 0
0 0 0
0 0 0
0 0 0

0
BBBB@

1
CCCCA
: (17)

One can check that, for any � � 0:69, Algorithm 1 with

fðxÞ¼kxk2
2 recovers the first two columns of M, that is, the

columns ofW . However, using fðxÞ ¼
P

i

x2
i

1þjxij, Algorithm 1

recovers the columns of W for any � � 1:15. Choosing

appropriate function fðxÞ depending on the input data

matrix and the noise model is a topic for further research.

Remark 3. The condition that the gradient of f must be
Lipschitz continuous in Assumption 2 can be replaced
by the condition that the gradient of f is continuously
differentiable. In fact, in all our derivations, we have
always assumed that f was applied on a bounded set
(more precisely, the ball fx j kxk2 � KðW Þg). Since
g 2 C1 implies that g is locally Lipschitz continuous, the
condition f 2 C2 is sufficient for our analysis to hold.
Similarly, the strong convexity condition can be relaxed
to local strong convexity.

It would be interesting to investigate more general clas-
ses of functions for which our derivations hold. For exam-
ple, for any increasing function g : IRþ ! IR, the output of
Algorithm 1 using f or using ðg � fÞwill be the same, since
fðxÞ � fðyÞ , g fðxÞð Þ � g fðyÞð Þ. Therefore, for our analy-
sis to hold, it suffices that ðg � fÞ satisfies Assumption 2

for some increasing function g. For example, kxk4
2 is not

strongly convex although it will output the same result as

kxk2
2 hence will satisfy the same error bounds.

4.3 Using ‘p‘p-Norms

Another possible choice is

fðxÞ ¼ kxk2
p ¼

Xm

i¼1

jxijp
 !2=p

:

For 1 < p � 2, fðxÞ is strongly convex with parameter
2ðp	 1Þ with respect to the norm k:kp [22, Section 4.1.1],
while its gradient is locally Lipschitz continuous (see
Remark 3). For 2 � p < þ1, the gradient of fðxÞ is Lipschitz
continuous with respect to the norm k:kp with constant
2ðp	 1Þ (by duality), while it is locally strongly convex.
Therefore, f satisfies Assumption 2 for any 1 < p < þ1 in
any bounded set, hence our analysis applies. Note that, for
p ¼ 1 and p ¼ þ1, the algorithm is not guaranteed to work,
even in the noiseless case (when points are on the boundary
of the convex hull of the columns of W ): consider, for exam-
ple, the following separable matrices:

M ¼ 1 0 0:5
0 1 0:5

� �
¼ 1 0

0 1

� �
1 0 0:5
0 1 0:5

� �
;

for which the ‘1-norm may fail (selecting the last column of
M), and

M ¼ 1 1 1
0 1 0:5

� �
¼ 1 1

0 1

� �
1 0 0:5
0 1 0:5

� �
;

for which the ‘1-norm may fail. Similarly as in the previous
section, using ‘p-norms with p 6¼ 2 might be rewarding in
some cases. For example, for 1 < p < 2, the ‘p-norm is less
sensitive to large entries of M. Consider the matrix from
Equation (17): for p ¼ 1:5, Algorithm 1 extracts the columns
of W for any � � 0:96, while for p ¼ 4, it only works for
� � 0:31 (recall for p ¼ 2 we had � � 0:69).

Algorithm 1 with fðxÞ ¼ kxkp has been previously
introduced as the ‘p-norm based pure pixel algorithm
(TRI-P) [1], and shown to perform, in average, better than
other existing techniques (namely, N-FINDR [28], VCA
[23], and SGA [12]). The authors actually only performed
numerical experiments for p ¼ 2, but did not justify this
choice (the reason possibly is that it gave the best
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numerical results, as our analysis suggests), and could not
explain why Algorithm 1 performs better than other
approaches in the noisy case.

5 NUMERICAL EXPERIMENTS

In the first part of this section, we compare Algorithm 1 with
several fast hyperspectral unmixing algorithms under the
linear mixing model and the pure-pixel assumption. We
first briefly describe them (computational cost and main
properties) and then perform a series of experiments on
synthetic data sets in order to highlight their properties. For
comparisons of Algorithm 1 with other algorithms on other
synthetic and real-world hyperspectral data sets, we refer
the reader to [1], [2], [11], [24], [29], [30] since Algorithm 1 is
a generalization of the algorithms proposed in [1], [2], [11],
[24]; see Section 4.

In the second part of the section, we compare Algorithm 1
with the Algorithm of Bittorf et al. [6].

5.1 Comparison with Fast Hyperspectral Unmixing
Algorithms

We compare the following algorithms:

1. Algorithm 1 with fðxÞ ¼ kxk2
2. We will only test this

variant because, according to our analysis, it is the
most robust. (Comparing different variants of
Algorithm 1 is a topic for further research.) The
computational cost is rather low: steps 3 and 5 are
the only steps requiring computation, and have to
be performed r times. We have

a. Step 3. Compute the squared norm of the col-
umns of R, which requires n times 2m opera-
tions (squaring and summing the elements of
each column), and extract the maximum, which
requires n comparisons, for a total of approxi-
mately 2mn operations.

b. Step 5. It can be compute in the following way:

R I 	
uju

T
j

kujk2
2

 !
R ¼ R	 uj

kujk2
2

�
uTj R

�
;

where computing xT ¼ uTj R requires 2mn opera-

tions, y ¼ uj

kujk22
m operations, and R	 yxT 2mn

operations, for a total of approximately 4mn
operations.

The total computational cost of Algorithm 1 is then
about 6mnr operations, plus some negligible terms.

Remark 4 (Sparse matrices). If the matrix M is
sparse, R will eventually become dense which is
often impractical. Therefore, R should be kept in
memory as the original matrix M minus the rank-
one updates.

Remark 5 (Reducing running time). Using recur-
sively the formula

kðI 	 uuT Þvk2
2 ¼ kvk

2
2 	 ðuTvÞ

2;

for any u; v 2 IRm with kuk2 ¼ 1, we can reduce the
computational cost to 2mnrþOðmr2Þ operations.

Although this formula is unstable when u is almost
parallel to v, this is negligible as we are only inter-
ested in the column with the largest norm (on all the
tested data sets, including the 40,000 randomly gen-
erated matrices below, we have always obtained the
same results with both implementations). This is the
version we have used for our numerical experiments
as it turns out to be much faster (for example, on
200-by-200 matrices with r ¼ 20, it is about seven
times faster, and on a real-world 188-by-47; 750
hyperspectral image with r ¼ 15, about 20 times
faster –taking less than half a second), and handles
sparse matrices as it does not compute the residual
matrix explicitly (for example, it takes about half a
second for the 19,949-by-43,586 20-newsgroup data
set for r ¼ 20). Note that all experiments have been
performed with MATLAB R2011b on a laptop with
2 GHz Intel Core i7-2630QM. The code is available at
https://sites.google. com/site/nicolasgillis/code.

2. Pure pixel index (PPI) [7]. PPI uses the fact that the
maxima (and minima) of randomly generated linear
functions over a polytope are attained on its vertices
with probability one. Hence, PPI randomly generates
a large number of linear functions (that is, functions
fðxÞ ¼ cTx where c 2 IRm is uniformly distribution
over the sphere), and identifies the columns of M
maximizing and minimizing these functions. Under
the separability assumption, these columns must be,
with probability one, vertices of the convex hull of
the columns of M. Then, a score is attributed to each
column of M: it is equal to the number of times the
corresponding column is identified as a minimizer
or maximizer of one of the randomly generated lin-
ear functions. Finally, the r columns of M with the
largest score are identified as the columns of W . Let-
ting K be the number of generated linear functions,
we have to evaluate K times linear functions overs n
vertices in dimension m for a total computational
cost of OðKmnÞ. For our experiments, we will use
K ¼ 1;000. There are several pitfalls in using PPI:

a. It is not robust to noise. In fact, linear functions
can be maximized at any vertex of the convex
hull of a set of points. Therefore, in the noisy
case, as soon as a column of the perturbed
matrix M 0 is not contained in the convex hull of
the columns of W , it can be identified as a ver-
tex. This can occur for arbitrarily small perturba-
tion, as will be confirmed by the experiments
below.

b. If not enough linear functions are generated, the
algorithm might not be able to identify all the
vertices (even in the noiseless case). This is par-
ticularly critical in case of ill-conditioning
because the probability that some vertices maxi-
mize a randomly generated linear function can
be arbitrarily low.

c. If the input noisy data matrix contains many col-
umns close to a given column of matrix W , the
score of these columns will be typically small
(they essentially share the score of the original

GILLIS AND VAVASIS: FAST AND ROBUST RECURSIVE ALGORITHMS FOR SEPARABLE NONNEGATIVE MATRIX FACTORIZATION 709



column of matrix W ), while an isolated column
which does not correspond to a column of W
could potentially have a higher score than these
columns, hence be extracted. This can, for exam-
ple, be rather critical for hyperspectral images
where there typically are many pixels close to
pure pixels (i.e., columns of M corresponding to
the same column of W ). Moreover, for the same
reasons, PPI might extract columns of M corre-
sponding to the same column of W .

3. Vertex component analysis (VCA) [23]. The first step of
VCA is to preprocess the data using principal com-
ponent analysis which requires Oðnm2 þm3Þ [23].
Then, the core of the algorithm requires Oðrm2Þ
operations (see below), for a total of Oðnm2 þm3Þ
operations.3 Notice that the preprocessing is particu-
larly well suited for data sets where m
 n, such as
hyperspectral images, where m is the number of
hyperspectral images with m � 100, while n is the
number of pixels per image with n � 106. The core of
VCA is very similar to Algorithm 1: at each step, it
projects the data onto the orthogonal complement of
the extracted column. However, instead of using a
strictly convex function to identify a vertex of the
convex hull of M (as in Algorithm 1), it uses a ran-
domly generated linear function (that is, it selects the
column maximizing the function fðxÞ ¼ cTx where c
is randomly generated, as PPI does). Therefore, for
the same reasons as for PPI, the algorithm is not
robust. However, it solves the second and third pit-
falls of PPI (see point (b) and (c) above), that is, it
will always be able to identify enough vertices, and a
cluster of points around a vertex are more likely to
be extracted than an isolated point. Note that, in the
VCA implementation, only one linear function is
generated at each step which makes it rather sensi-
tive to this choice. Finally, the two main differences
between VCA and Algorithm 1 are that: 1) VCA uses
a pre-processing (although we could implement a
version of Algorithm 1 with the same pre-process-
ing), and 2) VCA uses randomly generated linear
functions to pick vertices of the convex hull of the
columns of M (which makes it non-robust to noise,
and also non-deterministic).

4. Simplex volume maximization (SiVM) [26]. SiVM
recursively extracts columns of the matrix M while
trying to maximize the volume of the convex hull
of the corresponding columns. Because evaluating
the volumes induced by adding a column not yet
extracted to the previously selected ones is compu-
tationally expensive, the function is approximated
via a heuristic, for a total computational cost of
OðmnrÞ operations (as for Algorithm 1). The heu-
ristic assumes that the columns of W are located at
the same distance, that is, kwi 	 wjk2 ¼ kwk 	 wlk2

for all i 6¼ j and k 6¼ l. Therefore, there is no guar-
antee that the algorithm will work, even in the
noiseless case; this will be particularly critical for

ill-conditioned problems, which will be confirmed
by the experiments below.

We now generate several synthetic data sets allowing to
highlight the properties of the different algorithms, and in
particular of Algorithm 1. We are going to consider noisy
separable matrices generated as follows.

1. The matrixW will be generated in two different ways:

a. Uniform distribution. The entries of matrix
W 2 IR200�20 are randomly and independently
generated following a uniform distribution
between 0 and 1 (using the rand() function of
MATLAB).

b. Ill-conditioned. First, we generate a matrix
W 0 2 IR200�20 as above (that is, using the rand()
function of MATLAB). Then, we compute the
compact SVD ðU 2 IR200�20;S 2 IR20�20; V 2
IR20�20Þ of W 0 ¼ USV T , and finally generate
W ¼ USV T where S is a diagonal matrix whose
diagonal entries are equal to ai	1 for i ¼ 1;
2; . . . ; 20 where a19 ¼ 10	3 (that is, a ¼ 0:695) in
such a way that s1ðWÞ ¼ 1 and s20ðW Þ ¼ 10	3,
hence kðWÞ ¼ 1; 000. (Note that W might not be
nonnegative, a situation which is handled by
the different algorithms.)

2. The matrices H and N will be generated in two dif-
ferent ways as well:

c. Middle points. We set H ¼ ½I20; H
0� 2 IR20�210,

where the columns of H 0 contain all possible
combinations of two non-zero entries equal to
0.5 at different positions (hence H 0 has ð20

2 Þ ¼
190 columns). This means that the first 20 col-
umns of M are equal to the columns of W while
the 190 remaining ones are equal to the middle
points of the columns of W . We do not perturb
the first 20 columns of M (that is, ni ¼ 0 for
1 � i � 20), while, for the 190 remaining ones,
we use

ni ¼ d ðmi 	 wÞ for 21 � i � 210; d � 0;

where w is the average of the columns of W
(geometrically, this is the vertex centroid of the
convex hull of the columns of W ). This means
that we move the columns of M toward the out-
side of the convex hull of the columns of W .
Hence, for any d > 0, the columns of M 0 are not
contained in the convex hull of the columns of
W (although the rank of M 0 remains equal to 20).

d. Dirichlet and Gaussian distributions. We set
H ¼ ½I20; I20; H

0� 2 IR20�240, where the columns
of H 0 are generated following a Dirichlet distri-
bution whose r parameters are chosen uniformly
in ½0; 1� (the Dirichlet distribution generates vec-
tors h0i on the boundary of Dr, that is,P

k h
0
iðkÞ ¼ 1 8i). We perturb each entry of M

independently using the normal distribution:

niðkÞ � dNð0; 1Þ for 1 � i � 240; 1 � k � 200:

(The expected value of the ‘2-norm of the columns
ofN is

ffiffiffiffiffi
m
p

d, the square root of the expected value3. The code is available at http://www.lx.it.pt/~bioucas/code.htm.
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of a Chi-squared distribution.) Notice that each
column ofW is present twice as a column ofM (in
terms of hyperspectral unmixing, this means that
there are two pure pixels per endmember).

Finally, we construct the noisy separable matrix
M 0 ¼WH þN in four different ways, see Table 2, where
W , H and N are generated as described above for a total
of four experiments.For each experiment, we generate
100 matrices for 100 different values of d and compute
the percentage of columns of W that the algorithms were
able to identify (hence the higher the curve, the better);
see Fig. 1. (Note that we then have 10,000 matrices gen-
erated for each experiment.) We observe the following:

� Algorithm 1 is the most robust algorithm as it is able
to identify all the columns of W for the largest values
of the perturbation d for all experiments; see Table 3
and Fig. 1.

� In Exp. 1, PPI and SiVM perform relatively well, the
reason being that the matrix W is well-conditioned
(see Table 2) while VCA is not robust to any noise. In
fact, as explained in Section 5.1, VCA only uses one
randomly generated linear function to identify a col-
umn of W at each step, hence can potentially extract
any column of M since they all are vertices of the
convex hull of the columns of M (the last columns of
M are the middle points of the columns of W and
are perturbed toward the outside of the convex hull
of the columns of W ).

� In Exp. 2, the matrix W is well-conditioned so that
SiVM still performs well. PPI is now unable to
identify all columns of M, because of the repeti-
tion in the data set (each column of W is present
twice as a column of M).4 VCA now performs
much better because the columns of M are strictly
contained in the interior of the convex hull of the
columns of W .

� In Exp. 3 and 4, SiVM performs very poorly because
of the ill-conditioning of matrix W .

� In Exp. 3, as opposed to Exp. 1, PPI is no longer
robust because of ill-conditioning, although more
than 97 percent of the columns of W are perfectly
extracted for all d � 10	3. VCA is not robust but per-
forms better than PPI, and extracts more than

97 percent of the columns of W for all d � 10	2 (note
that Algorithm 1 does for d � 0:05).

� In Exp. 4, PPI is not able to identify all the columns of
W because of the repetition, while, as opposed to

TABLE 2
Generation of the Noisy Separable Matrices for the Different
Experiments and Average Value of kðW Þ, KðW Þ, and srðWÞ

Fig. 1. Comparison of Algorithm 1, PPI, VCA and SiVM. From top to bot-
tom: Exp. 1, Exp. 2, Exp. 3, and Exp. 4.

4. For d ¼ 0, we observe that our implementation of the PPI algo-
rithm actually recovers all columns of W . The reason is that the first col-
umns of M are exactly equal to each other and that the MATLAB max(.)
function only outputs the smallest index corresponding to a maximum
value. This is why PPI works in the noiseless case even when there are
duplicates.
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Exp. 2, VCA is not robust to any noise because of ill-
conditioning.

� Algorithm 1 is the fastest algorithm although PPI
and SiVM have roughly the same computational
time. VCA is slower as it uses PCA as a preprocess-
ing; see Table 4.

These experiments also show that the error bound
derived in Theorem 3 is rather loose, which can be partly
explained by the fact that our analysis considers the worst-
case scenario (while our experiments use either a structured
noise or Gaussian noise). Recall that the value of � in Theo-
rem 3 is the smallest value such that knik2 � � for all i; see
Equation (9). Table 2 gives the average value of the maxi-
mum norm of the columns of N for each experiment. Based
on these values, the first row of Table 5 shows the average
upper bound for d to guarantee recovery; see Theorem 3.

5.2 Comparison with the Algorithm of
Bittorf et al. [6]

In this section, we compare the Algorithm of Bittorf et al.
(BRRT) ([6, Algorithm 3]; see also [18, Algorithm 2])5 with
Algorithm 1. BRRT has to solve a linear program with
Oðn2Þ variables which we solve using CVX [20]. Therefore
we are only able to solve small-scale problems (in fact, CVX
uses an interior-point method): we perform exactly the
same experiments as in the previous section but for m ¼ 10
and r ¼ 5 for all experiments, so that

� n ¼ 5þ ð52Þ ¼ 15 for the first and third experiments
(the last ten columns of M are the middle points of
the five columns of W ).

� n ¼ 5þ 5þ 10 ¼ 20 for the second and fourth
experiments (we repeat twice each endmember,
and add 10 points in the convex hull of the col-
umns of W ).

TABLE 4
Average Computational Time (s.) for the Different Algorithms

TABLE 5
Comparison of the Average Value of d Predicted by Theorem 3

to Guarantee Recovery Compared to the Observed Values

5. We do not perform a comparison with the algorithm of Arora
et al. [3] as it is not very practical (the value of a has to be estimated, see
Section 2.4) and has already been shown to perform similarly as BRRT
in [6].

Fig. 2. Comparison of Algorithm 1 and BRRT [6]. From top to bottom:
Exp. 1, Exp. 2, Exp. 3, and Exp. 4.

TABLE 3
Robustness: Maximum Values of d for Perfect Recovery
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The average running time for BRRT on these data sets
using CVX [20] is about two seconds while, for Algorithm 1,
it is less than 10	3 seconds. (Bittorf et al. [6] propose a more
efficient solver than CVX for their LP instances. As men-
tioned in Section 2.4, even with their more efficient solver,
Algorithm 1 is much faster for large n.) Fig. 2 shows the
percentage of correctly extracted columns with respect to
d, while Table 6 shows the robustness of both algorithms.

Quite surprisingly, Algorithm 1 performs in average
better than BRRT. Although BRRT is more robust in two
of the four experiments (that is, it extracts correctly all
columns of W for a larger value of d), the percentage of
columns it is able to correctly extract decreases much
faster as the noise level increases. For example, Table 7
shows the maximum value of d for which 99 percent of
the columns of W are correctly extracted. In that case,
Algorithm 1 always performs better. A possible explana-
tion for this behavior is that, when the noise is too large,
the condition for recovery are not satisfied as the input
matrix is far from being separable. However, using Algo-
rithm 1 still makes sense as it extracts columns whose
convex hull has large volume [9], [10] while it is not clear
what BRRT does in that situation (as it heavily relies on
the separability assumption). Therefore, although BRRT
guarantees perfect recovery for higher noise levels, it
appears that, in practice, when the noise level is high,
Algorithm 1 is preferable.

6 CONCLUSION AND FURTHER WORK

In this paper, we have introduced and analyzed a new fam-
ily of fast and robust recursive algorithms for separable
NMF problems which are equivalent to hyperspectral
unmixing problems under the linear mixing model and the
pure-pixel assumption. This family generalizes several
existing hyperspectral unmixing algorithms, and our analy-
sis provides a theoretical framework to explain the better
performances of these approaches. In particular, our analy-
sis explains why algorithms like PPI and VCA are less
robust against noise compared to Algorithm 1.

Many questions remain open, and would be interesting
directions for further research:

� Is it possible to provide better error bounds for Algo-
rithm 1 than the ones of Theorem 3? In other words,
is our analysis tight? Also, can we improve the
bounds if we assume specific generative and/or
noise models?

� How can we choose appropriate functions fðxÞ for
Algorithm 1 depending on the input data matrix?

� Can we design other robust and fast algorithms for
the separable NMF problem leading to better error
bounds?
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