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Il n'y a que les gens qui aiment rire qui sont sérieux. Les autres se

prennent au sérieux.1

Jean Caplanne

1Free translation: �Only those who love to laugh are serious people. The others are taking
themselves too seriously.�
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Abstract

This dissertation relates to acoustic laughter processing. The ultimate objective is the

synthesis of natural-sounding laughs, but to achieve this goal we addressed most of

the �elds related to (engineering) acoustic laughter processing. First, we have tackled

the problem of obtaining high quality laughter data, which is obviously critical for

any subsequent study. Our own laughter database, the AVLaughterCycle database,

has been recorded in the framework of this PhD Thesis and presents unique features.

Second, we have investigated the acoustic analysis of laughter and proposed new an-

notation levels: phonetic transcriptions and arousal signals. Third, we have addressed

the �eld of automatic characterization of laughter episodes, by designing methods to

automatically compute phonetic transcriptions and estimate arousal values. Fourth,

we have synthesized acoustic laughs and achieved naturalness scores outperforming

the state-of-the-art. Finally, the analysis and synthesis methods have been imple-

mented in human-computer applications, which were enhanced by the possibility to

detect and express a�ect through laughter.

Another signi�cant contribution of this dissertation is the extensive state-of-the-art

gathered for all these �elds, prior to explaining our own developments and suggesting

future works. In addition, original analyses of laughter characteristics have been

carried out with the help of phonetic transcriptions and arousal annotations. We

have for instance demonstrated that laughter phonemes are shorter during laughter

exhalation phases than inhalation phases, and that di�erent subjects tend to use

di�erent sets of phonemes when laughing.

From a technical side, the biggest achievements have been obtained with the help

of Hidden Markov Models (HMMs), by adapting algorithms which had initially been

designed for speech processing. HMMs have been used both for producing phonetic

transcriptions and for synthesizing acoustic laughs. For the estimation of laughter

arousal, Multi-Layer Perceptrons have been trained. Regarding laughter synthesis,

several methods are compared and evaluated, among others di�erent vocoders or the

training of laughter synthesis via automatically obtained phonetic transcriptions.

An important contribution of this dissertation is the development of a method to

automatically produce phonetic transcriptions from arousal curves. This method

was inspired by concatenative speech synthesis and was proven, through evaluation,

to produce acoustic laughs that are as natural as laughs synthesized from lower-level

information (phonetic transcriptions). Nevertheless, synthesized laughs are still far

from actual human laughs in terms of naturalness, and suggestions of future work

are proposed to further improve HMM-based laughter synthesis.

Keywords: laughter processing, laughter analysis, laughter synthe-
sis, laughter databases, Hidden Markov Models.
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Laughter is universal. There is no reported culture where laughter is ab-

sent [Devillers & Vidrascu 2007]. It is estimated to be seven million years old

[Ruch & Ekman 2001], used as a communicative and expressive signal before the ap-

parition of speech. Still now, laughter precedes speech: newborns laugh after a few

months, later than smiling but long before uttering their �rst words [Chafe 2007]. But

the apparition of speech does not annihilate laughter: that process lies in our genes.

Studies have shown that all laughter functions are present and functional at birth.

Indeed laughter is easily observable in deaf-blind children [Ruch & Ekman 2001]. It

is important to note that even though speech and laughter often co-occur, these are

totally separated processes. Mute people do laugh as well. Laughter transmits�

voluntarily or not�our feelings and has important social values. It is communicative

and generally helps to cheer up our minds. When laughing spontaneously, our aware-

ness state is altered and all our thoughts go to the object of the laugh.

For these reasons and due to the increasing development of natural user interfaces

in human-computer interaction, interest for automatic laughter recognition and syn-

thesis devices has grown in recent years. However laughter has long been a neglected

research �eld and many aspects remain unclear regarding its cerebral production
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mechanisms or the acoustic patterns enabling humans to identify laughter without

any doubt.

But what exactly is laughter? The concept is so obvious for all of us that we would

probably have di�culties explaining it without imitating it. The de�nition given by

the Free Dictionary [Free Dictionary 2008] for �to laugh� is:

�To express certain emotions, especially mirth or delight, by a series of

spontaneous, usually unarticulated sounds often accompanied by corre-

sponding facial and bodily movements�.

This de�nition is fuzzy, re�ecting the large variability of laughter episodes, their

miscellaneous meanings and the strong links with emotions. But this vague de�nition

does not embrace the whole phenomenon. Laughter is not always spontaneous�it

can be intentionally shaped�, does not all the time re�ect positive feelings and can

be composed of only one sound1.

In a nutshell2, this work aims at improving acoustic laughter processing. We will

not consider visual and physiological correlates of laughter. Natural-sounding and

easily controllable acoustic laughter synthesis can be considered as the ultimate ob-

jective of this PhD Thesis. To achieve this goal, preliminary steps in other �elds

than synthesis were required. In consequence, this Thesis does not concentrate on

laughter synthesis but presents contributions along di�erent aspects of laughter pro-

cessing: database building and annotation, description, automatic characterization,

generation and synthesis. Here is an overview of our developments in these �elds:

• Firstly databases are needed to study the phenomenon. We will present our

contribution in this �eld: the recording of a unique audiovisual database of

spontaneous laughs from 24 subjects. The database is segmented in laughs and

freely available.

• Secondly we investigated convenient ways to characterize laughs, which resulted

in phonetic annotations of the laughs from the database as well as their labeling

in intensity. These annotations are provided with the database. To the extent

of our knowledge, nothing similar exists.

• Thirdly we developed methods to automatically compute laughter phonetic

transcriptions and intensity curves. As the annotation of these dimensions was

already new, their automatic estimation is obviously something that had not

been addressed before.

• Finally laughter synthesis was investigated, with the objective to obtain human-

like laughs from a simple symbolic transcription. Methods similar to speech

synthesis have been explored, taking a phonetic transcription as input. We

1Some people tend to consider laughs with only one sound as smiles, while others, including the
author, think that a smile becomes a laugh as soon as there is an audible contribution.

2The structure of this document will be recalled in Section 1.5.
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have also developed a method to automatically generate such phonetic tran-

scriptions from intensity curves. Hence the synthesis can be driven by these

intensity curves. We have also explored the possibility to train laughter syn-

thesis on automatically estimated phonetic transcriptions, so as to avoid the

time-consuming task of manual phonetic transcriptions.

The state-of-the-art was advanced in each of these �elds, with innovative works.

The Thesis is providing the �rst answers, but also opening research paths in all of

these �elds. We hope that they will be further investigated in the future.

Before addressing these topics, we would like to continue introducing laughter by

presenting the mechanisms of laughter production, without going into acoustic details

since they will be described in Chapter 3, as well as some dimensions that will receive

no attention in the following chapters but are useful to appreciate the context and

importance of laughter processing: laughter social aspects and health outcomes.

1.1 Laughter production

The sounds of laughter are produced by the same organs as speech, the so-called

vocal organs or vocal apparatus. The vocal organs include the lungs, the larynx

where the vocal folds are located, the pharynx, the jaws, the tongue, the teeth, the

lips and the oral and nasal cavities. The vocal apparatus is illustrated on Figure 1.1

(except for the lungs). Chafe [Chafe 2007] states that �Laughter consists of sudden,

spasmodic expulsions of air from the lungs�. These forceful �pulses�, caused by jerky

contractions of the diaphragm and abdominal muscles [Ruch & Ekman 2001], go up

in the larynx, where they can be modulated by the periodic vibration of the vocal

folds. This periodic vibration of the vocal folds is called voicing, and makes the

di�erence between the consonants f (unvoiced) and v (voiced) or s (unvoiced) and z

(voiced) in spoken English. If the vocal folds are relaxed, the pulse is still somehow

modi�ed by laryngeal friction [Chafe 2007], but remains unvoiced. Then the pulse

is further modi�ed by the tongue and lips, shaping the vowels and consonants of

speech. However, unlike in speech, articulation is limited in spontaneous laughter

and usually the sounds are produced with the tongue in a resting neutral position

[Ruch & Ekman 2001] and the mouth widely open. This generates h-like consonants

and central vowels, close to schwa (@). But the mouth can also be closed, in which case

the pulse will escape through the nose, producing an m-like sound if the resonance

occurs in the nasal cavity or a grunt-like sound if the turbulence takes place lower, in

the oral or laryngeal cavities [Bachorowski et al. 2001].

As we have just seen, the organs of the vocal tract (laryngeal cavity, pharynx,

oral and nasal cavities, teeth and lips) have a �ltering e�ect on the acoustic vibration

emerging from the vocal folds (periodic or not). A model for speech production

therefore approximates speech by two contributions: a) the acoustic wave emerging

from vocal folds, which is called the source or excitation and excites b) the �lter

formed by the vocal tract. The model is called source-�lter model of speech production
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and is widely used in speech processing with the assumption of independence between

the source and the �lter.

Figure 1.1: Head and neck overview (image produced by the US National Institutes

of Health).

Laughter also involves facial movements. It is unusual to laugh naturally without

smiling [Chafe 2007]. Exhilaration laughter is accompanied by the �Duchenne� smile

[Ruch 1993], referring to the �joint contraction of the zygomatic major and orbicularis

oculi muscles (pulling the lip corners backwards and upwards and raising the cheeks

causing eye winkles, respectively)� [Ruch & Ekman 2001]. All the outcomes of the

Duchenne display are however not always present in laughter [Chafe 2007]. For in-

stance, di�erences have been noticed around the eye region between spontaneous and

voluntary laughter [Ruch & Ekman 2001].

Laughter can be accompanied by other body movements. Movements of the trunk

and limbs can appear, as well as changes in posture [Ruch 1993]. Ruch also reports

vibrations of the trunk and shoulders, due to forced respiration movements of the

diaphragm and abdominal muscles.

Laughter is the combination of all these manifestations, as expressed by Fry

[Fry 1994]:

(...) I believe that we do not laugh merely with our lungs, or chest

muscles, or diaphragm, or as a result of a stimulation of our cardiovascular

activity. I believe that we laugh with our whole physical being.
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Due to its implications on the whole physical being, laughter is hypothesized by Chafe

[Chafe 2007] to prevent the laugher to simultaneously perform any physical or serious

mental activity. Chafe considers laughter as a manifestation of a particular emotion

which he calls the feeling of nonseriousness, which is named �exhilaration� by Ruch

[Ruch 1993]. In addition, as the laugh is audible and visible, it is also signaling

conversational participants that the laugher is experiencing this feeling, which has

strong communicative and social implications. As we will see in the following section,

this relationship between social context and laughter is bidirectional: social context

also has an in�uence on laughter.

1.2 Social aspects

Laughter is essential in human communication. It conveys information about some-

one's emotional state, her/his involvement in the conversation and elicits emo-

tions to its listeners. While laughter is generally associated to positive mood, it

can also express negative feelings such as disappointment, embarrassment or stress

[Devillers & Vidrascu 2007]. Irony and mockery are other situations where laughter

can convey a negative meaning. In consequence, there is no direct mapping between

laughter and one particular emotion.

Due to its important communicative aspects, laughter is in�uenced by the social

context. Firstly we are much more likely to laugh when we are not alone [Glenn 2003].

Moreover laughter is communicative�the odds of laughing increase if surrounding

people are laughing�and even self-communicative: when we have laughed, we are

more likely to laugh again in the near future. This is well-known by humorists: the

most di�cult part of a one-man show is the beginning; when people have started to

laugh it is easier to keep entertaining them. However this communicative property of

joyful laughter is not true for gelotophobes [Ruch 1997], i.e. people who are excessively

fearful of being laughed at. These subjects have been shown to persistently interpret

laughs uttered by others negatively, as rude and o�ensive acts [Ruch & Proyer 2009].

Secondly the way we laugh depends on whom we laugh with. This was shown

by Campbell [Campbell 2007] from an analysis of telephone conversations: a neural

network trained with acoustic features of laughs could distinguish the gender (with

62.5 to 67.7% accuracy) and the origin (Chinese or English, with 67.5 to 70% accuracy)

of the conversational partner. This con�rms everyday behavior: even if we basically

feel the same emotions, we will for example not laugh at a business meeting the same

way as we do with friends. In addition laughter can be spontaneous or controlled to

express a desired meaning [Devillers & Vidrascu 2007].

Furthermore interaction between speech and laughter is interesting. While it is

considered as impolite to speak at the same time as a conversational partner, laughing

simultaneously is interpreted oppositely. Politeness brings us to laugh when others

do. A very basic laughter recognition system in meetings could thus simply count the

proportion of people vocalizing simultaneously. Above a certain threshold, it would
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be very unlikely that people are talking3. It is also surprising to note that laughter

does not interrupt speech [Devillers & Vidrascu 2007]. In natural conversations, a lot

of overlapping speech and laughs are found, and a given speaker is often doing both

simultaneously. The phenomenon is called speech-laugh and will be further detailed

in Section 3.1.3.

Trouvain noticed that laughter was especially used when conversational partners

did not know each other [Trouvain 2001]. We do not have to know people to laugh

with them and this might be the start of a conversation. As Victor Borge said,

� laughter is the shortest distance between two people�. People looking happy, which is

the case of laughers, are more attractive and gain in self-con�dence.

Several researchers have investigated the role of laughter in conversations and

realized that laughter is not solely a response to humor. Laughter is used in the

case of undesirable or abnormal situations, to mitigate the unpleasantness and help

pursuing the conversation in a more enjoyable way [Chafe 2007]. We also simply

use laughter when we are nervous or when other people are laughing [Glenn 2003].

Laughter is also important for indicating possibilities to take the turn in conversations.

Glenn [Glenn 2003] summarizes the social impact of laughter as follows (pages

29-31):

As this suggests, laughter proves important socially as a means to show

a�liation with others. To laugh when someone else has done something

humorous, laughed �rst, or otherwise indicated a nonserious orientation

provides a way to display like-mindedness. Similarly, one may laugh �rst

in order to provide the co-participant(s) the opportunity to do the same.

(...) Because of its ability to show (and produce) a�liation, laughter proves

particularly useful in situations of embarrassment, discomfort, or anxiety.

(...) laughter may also contribute to interactional disa�liation. Laugh-

ing at someone may demonstrate a lack of sympathy, consideration, or

alignment. Laughter may hurt and may contribute to feelings of hostility

or embarrassment. The same laughter that promotes in-group solidarity

may be done at the expense of outsiders, thus accomplishing simultaneously

both a�liation and disa�liation (...) More deeply, it may contribute to

perpetuating negative attitudes, stereotypes, and temptations to denigrate

or dismiss individuals or entire groups of people. These two outcomes

viewed together�bonding people while disa�liating them from others�

make laughter a powerful and even subversive social tool.

Some social contexts can also inhibit laughter. For example, it is not socially

acceptable to laugh during funerals, classic concerts or when a Professor is mispro-

nouncing something in a funny way without noticing it4. In some cases, not joining

3As pointed out by one of the reviewers of this dissertation�but not the author's wife�people
vocalizing simultaneously could also be arguing... Politeness is indeed not always present in human
communication, but the point is still there.

4I cannot be the only one to have su�ered from trying to repress giggles in these kinds of situations,
can I?
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in laughter is the way to show a�liation, for example when someone is telling about

her/his troubles or pains [Glenn 2003]. The majority of social contexts however tol-

erate laughter, or even favor it, as most of the time the underlying feeling of nonse-

riousness is enjoyable. This supports the creation of humor, which sole purpose is to

elicit this feeling. Most of us will agree that laughter is pleasant and in addition it is

also thought to have impacts on health, as will be discussed in the next section.

1.3 Laughter and health

1.3.1 Preliminary remarks

A lot is said about the healthy bene�ts of laughter. In this section we will try

to summarize5 the results and the evidence supporting this belief. Reviews of

laughter-related articles from Martin [Martin 2001, Martin & Lefcourt 2004] and

Bennett and Lengacher [Bennett & Lengacher 2006a, Bennett & Lengacher 2006b,

Bennett & Lengacher 2008, Bennett & Lengacher 2009] show that this idea is largely

unfounded, as solid evidence is still lacking. For several aspects, parallel studies have

had opposite conclusions.

Martin [Martin 2001] enumerates four mechanisms by which laughter and humor

may have a positive impact on health:

1. Physiological changes in various body parameters (blood pressure, heart rate,

respiration rate, muscle tone, etc.) could have bene�cial e�ects. If this is true,

the consequent bene�ts are caused by laughter only.

2. Positive emotional states accompanying laughter and humor could be good for

health. In this case, the bene�ts would not be due solely to humor and laughter,

but to any method leading to enhanced mood.

3. Health could be indirectly enhanced through the inhibition of stress. Here the

crucial variable would probably be the sense of humor (de�ned in this case as

�the tendency to use humor as a coping strategy in daily life� by Martin) rather

than laughter.

4. People with a high sense of humor could bene�t from a richer social life. Here

the important factor would be the capacity to use humor to improve/facilitate

social relationships.

The methodology of the vast majority of the experiments linking laughter to im-

pacts of health is imperfect on one or several of the following points [Martin 2001,

Bennett & Lengacher 2009]:

5Detailed descriptions go way beyond both the scope of the present dissertation and my knowledge,
as I have de�nitely no expertise in the possible roles of body substances with names as strange as
norepinephrine, Salivary Immunoglobulin A (SIgA) or suppressor-cytotoxic T cells.
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• Being conducted on very small sample sizes. This can partially explain why

di�erent studies, done with di�erent groups, lead to contradictory results.

• Failing to include appropriately-designed and diverse control groups to assess

on which of the aforementioned four dimensions laughter and/or humor are

bene�cial compared to other �treatments�.

• Lacking experimental measures, such as the perceived funniness, interest or

boredom of the stimuli, as wells as the frequency and intensity of laughs. With-

out these measures, and given the imperfect control groups, it is generally hard

to understand what created a di�erence (or not) between groups: is it really

laughter, or is it that the group was distracted, etc.?

For these reasons, evidence of the healthy e�ects of laughter is still weak. Never-

theless the studies have not proven that laughter does not have a positive impact on

health either, nor, worse, that it would have negative e�ects. This last point must

be however nuanced, as Ferner and Aronson's recent review [Ferner & Aronson 2013]

is listing both the physical bene�ts and harms that have been reported for laughter.

The list of negative e�ects contains around 15 items, which in my opinion look quite

amusing or speci�c to a particular population (e.g., smokers, people su�ering from

asthma, etc.) and/or anecdotal with respect to the positive e�ects6. Troubles that af-

fected one or few laugher(s) are hard to compare to the positive e�ects enjoyed by the

vast majority. In the end �the laughter bene�t-harm balance is probably favorable�

[Ferner & Aronson 2013]. Nevertheless it is not our intention to hide anything to you,

so here is the list of harms that can be provoked by laughter [Ferner & Aronson 2013]7:

weakened resolve and promotion of band preference; inhalation of foreign bodies like

gum drops or popcorn; increased dissemination of infection due to the spread ex-

halation air �ows; syncope; arrhythmias; cardiac rupture; stroke; asthma attacks;

pneumothorax; interlobular emphysema; cataplexy; headaches; protruding hernia;

jaw dislocation; incontinence.

It must also be noted that a lot of studies focus on the importance of the sense of

humor, which we will not address here8. In addition, and related to the methodological

problems identi�ed above, most experiments consist in having people attending some

humorous stimulus (e.g., watching a humorous video). It is hypothesized to provoke

laughter but generally not measured. The conclusions should often carefully be related

to �the e�ect of a humorous stimulus� rather than �the impact of laughter�. Below

are the main health consequences that have been related to laughter.

6For example the review mentions one case of a woman su�ering from long QT syndrome (a
heart disorder) who died during intense laughter. This is of course a dramatic consequence, but it
occurred to me that people unfortunately die in a range of situations (some die during sleep, would
then sleeping be risky?).

7But be careful, reading the list could make you laugh, which can be dangerous.
8The interested readers will �nd plenty of information in the mentioned reviews from Martin and

Bennett and Lengacher.
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1.3.2 Stress reduction

From a psychological point of view, several studies support the idea that humor

(and laughter) improves mental health. An experiment conducted by Yovetich et al.

[Yovetich et al. 1990] showed that humor helps decreasing self-reported anxiety. How-

ever humor did not help moderating the physiological correlate of anxiety�increased

heart rate. Conclusions are di�cult to draw since laughter itself increases heart rate.

Berk et al. [Berk et al. 1989] found that laughter decreases stress hormones. Laughter

could thus be used to lower the e�ects of stress, which is known to have physiological

consequences. Indeed it a�ects the production and release of growth hormone and

insulin among others and disturbs the levels of neurotransmitters and various cells in

the immune system [Bennett & Lengacher 2006a]. However Martin [Martin 2001] and

Bennett and Lengacher [Bennett & Lengacher 2008] claim that the evidences linking

laughter to a reduction of stress hormones are weak and further experiments should

be conducted to draw �rm conclusions.

Exposure to humorous stimulus was shown to lower self-reported anxiety, although

the physiological correlates of anxiety were not modi�ed [Bennett & Lengacher 2009].

1.3.3 Mood changes

Neuho� et al. [Neuho� & Schaefer 2002] have found that smiling and laughing did

signi�cantly improve mood compared to howling. Furthermore laughing had a larger

e�ect than smiling.

1.3.4 Physiological outcomes

Laughter has also been proven to produce direct physiological outcomes. Fry

[Fry 1994] conducted several experiments to measure them. As already mentioned,

heart rate is increased when we laugh. Blood circulation and oxygen consumption

are increased [Bennett & Lengacher 2008], which reduces the risk of heart diseases

[Club de rire Asbl 2008]. In addition laughter causes episodes of deep breathing, rises

in blood pressure and modi�cations of muscle tone, as some muscle groups are ac-

tivated by laughter. Immediately after laughing, heart rate, muscle activity, blood

pressure and respiratory rate drop and a general relaxation state is reached. This

relaxation can last up to 45 minutes [Bennett & Lengacher 2008]. Some of these

e�ects�increased heart-rate, respiratory rate and oxygen consumption�are similar

to some outcomes of aerobic exercises and this leads to think that laughing could

be a good substitute for aerobic exercise. In the same vein, it was reported that 15

minutes of genuine laughter consumed an extra 40 kcal compared to regular activities

[Ferner & Aronson 2013]. However the substitution of physical exercise would only

be e�ective if intense laughter could be sustained for long periods, which is hard to

achieve. Other experiments reported no change in blood pressure and heat rate after

laughter, although a relaxation control group had the expected changes [Martin 2001].

Hence these results do not support the hypothesis that laughter lowers the levels of
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heart rate and blood pressure (relaxation period following laughter) and it is di�cult

to conclude on the physiological impact of laughter without further evidence.

1.3.5 Immune system

There exist several measures to evaluate the strength of the immune system. Two

of them have been investigated in humorous experiments: the level of Salivary Im-

munoglobulin A (SIgA) and the activity of Natural Killer cells.

1.3.5.1 Salivary Immunoglobulin A

In general�although imperfections in the methodology require to take results with

caution�it was found that SIgA was increased after exposure to a humorous stimu-

lus [Martin 2001, Martin & Lefcourt 2004, Bennett & Lengacher 2009]. The e�ect of

laughter is unknown as laughter occurrence was not reported. Furthermore the use

of SIgA as a measure of immune function is contested [Bennett & Lengacher 2009].

1.3.5.2 Natural Killer cells

Measurement of Natural Killer cell activity in response to humorous stimuli has �rst

lead to contrasted results [Martin 2001, Bennett & Lengacher 2009], and once more

the lack of appropriate control groups limits the extent of the results. Neverthe-

less, one study from Bennett et al. [Bennett et al. 2003] has shown that people who

laughed out loud during the experiment had a signi�cant increase in immune functions

but the long-term e�ects are still unknown.

1.3.6 Pain reduction

Laughter has the power to raise discomfort threshold [Mahony 2000]. It helps forget-

ting or lowering pain. Nevertheless it does not seem that the pain reduction e�ects are

a particular property of laughter, as any positive a�ect introduced (amusement, re-

laxation) or even negative a�ects with strong arousal (e.g., watching a tragedy video)

yield the same e�ects [Mahony 2000, Martin 2001]. Even more the e�ect has been

related to smiles rather than laughter (fake laughter even has a counterproductive

e�ect) [Martin & Lefcourt 2004]. To conclude this paragraph about pain reduction,

no change was reported on the level of beta-endorphines, contrary to general beliefs

[Martin 2001, Bennett & Lengacher 2009].

The above statements explain why laughter is one of the most popular comple-

mentary therapies used by patients su�ering from serious illnesses (such as cancer)

to manage stress, maintain hope and bear pain. Of course, laughter is not the only

means to reach these positive e�ects: relaxation, raised pain tolerance or enhanced

mood can also be obtained through meditation, prayer, listening to music, reading,

watching a video, relaxation and breathing exercises [Mahony 2000], which are also
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used as complementary therapies. But laughter is a pleasant way to obtain these

e�ects.

1.3.7 Miscellanous e�ects on health disorders

Reviewing recent articles, Ferner and Aronson [Ferner & Aronson 2013] report that

laughter lowers the risks of myocardial infection and yields to improved lung functions

in patients with chronic obtrusive pulmonary disease. In addition it was shown that

the fertility of women undergoing in vitro fecundation was signi�cantly increased if

they were entertained by a clown dressed as a chef (compared to no entertainment).

1.3.8 Conclusion on the health bene�ts of laughter

To conclude this section, we can say that there is only little empirical evidence to

support the idea that laughter can improve physical health. Most experiments did

not lead to solid conclusions on one side (laughter has healthy e�ects) or the other.

Some possible harms caused by laughter have even been reported, even though they

have a limited extent. Large population studies on sense of humor and cheerfulness

have even surprisingly revealed that cheerful people die at younger ages than less

cheerful people [Martin & Lefcourt 2004]. This might be due to over-optimism in

cheerful people, who are less concerned or aware about their health disorders9.

Laughing clearly has an impact on well-being. It is fun and is at least bene�cial

psychologically and socially. Individuals with a high sense of humor do not seem

to have objectively a better health and do not report more healthy life habits, but

they are (subjectively) more satis�ed with their health [Martin & Lefcourt 2004]. In

consequence, laughter clubs, where people gather to practice laughter together, have

been created and their success is growing. International laughter manifestations are

organized each year to promote and enjoy laughter. To take advantage of the fun

and communicative properties of laughter, a laughter chain has also been launched on

Skype [Skype Communications 2009]: people watch their predecessors laughing and

join the movement through the world-wide web.

1.4 Motivations of this Thesis

Laughter gives information about its producer's feelings. It is essential in human

communication. The �rst applications of laughter recognition and synthesis are thus

to enrich the communication between humans and machines. Recognizing some of

the emotions of the speaker through laughter would be bene�cial for virtual agents

who could react appropriately, for automatic speech recognition in call centers, for

people with sensory de�ciencies (deaf, blind), etc. Being able to produce human-like

9Nevertheless longevity is not the ultimate goal in life, and to cite this famous quote (the original
author seems to be unknown): Life is not measured by the number of breaths we take but by the

moments that take our breath away.
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laughs would add a new dimension to speech synthesis and communicative agents,

�elds which currently see a lot of research to increase the naturalness of the voices

and the expression of emotions. Human-computer interaction systems equipped with

good laughter recognition/synthesis would seem more natural as well.

Since laughter is communicative, it can also be used to elicit and maintain laughter

and in consequence drive the user towards desired emotions. This can be useful

to enrich the experience when visiting an artistic installation, to improve laughter

therapies or simply for the pleasure of hearing laughs and joining them.

The methods developed in this Thesis aim at enriching human-computer interac-

tion by endowing computers with the capabilities to sense and express a�ect through

laughter. On the one hand, the methods developed to automatically characterize

laughs (intensity and phonetic transcriptions) can serve to better describe and under-

stand the behavior and a�ective states of humans interacting with the system. An

appropriate response can thus be triggered. It must be noted that the decisions taken

by the machine (e.g., when and how to laugh in response) form a totally separate

�eld (called �dialog management�) and are not addressed in this work. On the other

hand laughter synthesis gives the computer the possibility to express the required

a�ective states in a richer way (display a�liation, joy, compassion, etc.). In addition

parametric laughter synthesis, as developed in this Thesis, provides control over a

range of laughter features that can be�and currently are�used to better understand

which properties of a laugh in�uence its perception. For example, we could determine

which acoustic features will make the di�erence between a laugh being perceived as

friendly or malicious. The possibility to create laughs with controlled features enables

to support psychological experiments on laughter. In particular our methods are used

with gelotophobes to investigate whether some laughs could be better accepted by

this population.

1.5 Organization of this dissertation

Previous sections have justi�ed the interest of automatic laughter processing. From

now on, we will concentrate on the acoustic aspects and explain how laughter can be

detected, analyzed and synthesized.

This dissertation is organized as follows. As the Thesis is covering di�erent �elds,

each chapter is covering one of these �elds. Each chapter begins with its own section of

related works, including works that have been published after our own developments

in the �eld, and is ending with its own conclusions and suggestions for future work.

Chapter 2 is related to databases that have been (or can be) used to study and model

laughter. As part of that chapter, the AVLC database, recorded during this work,

is detailed. Chapter 3 describes laughter from an audio point of view. We will see

that, similarly to speech, laughter can be studied at di�erent levels. The description

tracks introduced in this work (phonetic transcriptions and intensity curves) receive

particular attention in that chapter. Chapter 4 focuses on automatic laughter recog-

nition and analysis. Recognition was not investigated in the current Thesis, but as
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most e�orts on automatic laughter processing are recognition tasks, we have decided

to cover it in the state-of-the-art section. A few works about laughter classi�cation

are then presented, before describing the methods developed for automatic phonetic

transcription and intensity estimation of laughter. Chapter 5 focuses on acoustic

laughter synthesis. In that chapter we present our developments in laughter synthesis

based on Hidden Markov Models (HMMs) and the comparison of several vocoders,

as well as an experiment investigating whether laughter synthesis can be trained on

phonetic transcription obtained automatically. The method for generating phonetic

transcriptions from intensity curves is also detailed in that chapter. Chapter 6 relates

to broader applications (human-computer interaction, psychological studies, etc.) in

which our methods have been used. Finally Chapter 7 presents the overall conclu-

sions of this work, recalls its main contributions and summarizes the future works

suggested in each chapter.
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To analyze, characterize and model laughter, samples are mandatory. In this

Chapter we will review the databases that can be used to study laughter. First,

the objectives and constraints related to gathering laughter data will be described

in Section 2.1. Available databases are then presented in Sections 2.2 to 2.4. The

AVLaughterCycle (AVLC) database is then described in details, as it is the laughter

database which has been recorded in the framework of this PhD Thesis and was used

for the developments that will be presented in the remainder of this work.
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2.1 Building an emotional database

The most obvious way to build a database of laughter samples is to transpose what

has been done with speech for many years: bring people in a lab and ask them

to laugh (for speech, participants are generally asked to read out loud some given

text). This approach is however already limited for speech, since it does not enable to

record all the variations that speech encounters when we are in �real-life�, in�uenced

and altered by our emotions, conversational partners' behaviors, surrounding noise,

etc. It is very di�cult to design an experimental protocol that takes all the targeted

situations into account. And even if we were able to do it, how could we be sure that

we elicit the same emotions people face in everyday life and that they will react the

same way in the lab as in their �natural� environment? Another solution is then to

use actors. Actors are able to pretend being in a certain state, but signals are not

exactly the same as when they really feel the emotion. This is a major issue in emotion

research and, since laughter is an emotional signal, it is a�ected by the problem. Acted

emotions (and laughter) are useful, but never guarantee that real-life signals would

exhibit the same patterns. The true relationship between acted and spontaneous

feelings is still unknown, but the use of portrayed (i.e., acted) emotions to simulate

spontaneous occurrences is contested [Douglas-Cowie et al. 2003, Wilting et al. 2006,

Valstar et al. 2007, Ruch & Ekman 2001]. Some people believe that actors, when

asked to behave in a given mood, are more portraying a stereotype of how the state

is represented in society than its everyday expression [Drahota et al. 2008]. On the

other hand, capturing the signals in �real-life� without disturbing them is not easy and

a lot of post-processing to annotate and isolate the interesting segments is needed.

Noise can also be an issue in natural recordings.

Given these considerations, three main techniques have been used to build

databases in the �elds of emotion and laughter research [Scherer 2003]:

- Natural expressions: data is collected from the real-world, with the sub-

jects free to express themselves and, ideally, not aware that they are being

recorded until the end of the data acquisition. A popular setting for emo-

tion recognition is the use of data collected in call-centers [Morrison et al. 2007,

Devillers & Vidrascu 2007].

- Induced responses: subjects are presented to a stimulus (picture, video, vocal

information, etc.) chosen to elicit a target emotion (happiness, fear, etc.). For

example, laughter can be induced by presenting a comedy video. Users can be

aware that they are being recorded, but everything is done to provoke natural

reactions.

- Portrayed emotions: actors, professional or not, are directly asked to portray

the emotional state or, in our case, to laugh.

Many di�erent approaches can be found in the literature for obtaining such emo-

tional databases. In the following sections, we will only present a few databases
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where special attention was put on laughter. Databases with natural, induced and

acted laughter will be respectively presented in Sections 2.2, 2.3 and 2.4. A broad

listing of emotional databases can be found on the HUMAINE Network of Excellence

website [HUMAINE 2008]. In addition, a growing collection of laughter databases are

integrated in the ILHAIRE1 database [McKeown et al. 2012a] and distributed on its

website [McKeown 2014]. A summary table of the databases presented in this chapter

is available in Appendix A.

2.2 Laughter recorded as part of natural expressions

In this section we will review the databases of natural expressions in which laughter

has been annotated. Most of these databases have been initially recorded for other

purposes than studying laughter; rather experimenters were interested in regular, nat-

ural conversations and, as laughter is an important communicative signal frequently

occurring in everyday situations, laughs were captured in the process. It is expected

that every corpus of natural human behaviors can include laughs, but only databases

for which laughter annotation has been reported are included here. In other words,

the following is not an exhaustive list of databases containing laughter.

Note that the boundary between natural expressions and induced emotions can

be a bit fuzzy. Some of these databases included here in the �natural expression�

group have been recorded in laboratories, but the main objective was not speci�cally

to trigger laughter: experimenters designed a scenario in which the participant would

have to talk and react, but not a scenario focusing at the elicitation of laughter. Some

of the databases included in this �natural expressions� section could thus arguably be

moved to the �induced emotions� section. Reciprocally, parts of the databases in the

�induced emotions� section could be considered as natural expressions and therefore

be mentioned in the �natural expressions� section too.

Audio-only databases will be presented �rst in Section 2.2.1, distinguishing be-

tween data recorded in the wild (�indubitably natural�) and data recorded in labs

(�arguably induced�), with a more detailed section on the ICSI Meeting Corpus as

it has been used as a reference database to evaluate acoustic discrimination between

laughter and other events like speech (see Chapter 4). Then, multimodal databases

will be described: data gathered for other purposes than laughter in Sections 2.2.2.1 to

2.2.2.7, then the Belfast conversational dyads (Section 2.2.2.8), which is the only mul-

timodal database in this �natural expressions� section that was speci�cally recorded

to obtain naturally-occurring laughs.

1ILHAIRE is a FET European project focusing on the integration of laughter into human-avatar
interactions. The author of this Thesis is active in the ILHAIRE project, which helps promoting
e�orts on laughter processing and studying.
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2.2.1 Audio-only databases

2.2.1.1 Recordings in the wild

The Corpus of Spontaneous Japanese [Maekawa et al. 2003] contains around 650

hours of spontaneous speech, from over a thousand speakers recorded while giving

lectures or presentations. This huge audio database has been transcribed including

labels denoting the presence of laughter, but no time boundaries.

Nick Campbell has also been involved in several extensive recordings of spon-

taneous speech and has shown interest in spotting laughter inside his large corpora

[Campbell 2011]. Among others, there are the FreeTalk database (see Section 2.2.2.5)

as well as 20 hours of telephone conversations in Japanese between eight pairs (formed

from a pool of ten participants) of volunteers accounting for 2001 laughter and 1129

speech-laugh utterances [Campbell 2007].

For his observations of laughs, Wallace Chafe [Chafe 2007] used excerpts of

the Santa Barbara Corpus of Spoken American English, which contains record-

ings of natural conversations in a range of everyday situations (talking about

studies, preparing dinner, business conversations, etc.) [Du Bois et al. 2000,

Du Bois et al. 2003, Du Bois & Englebretson 2004, Du Bois & Englebretson 2005,

University of South California, Santa Barbara 2011]. Most conversations are face-to-

face, but there are also telephone dialogs, radio programs, lectures, story-telling,

etc. The corpus contains transcriptions of the audio �les, including labels identify-

ing laughter, but one major drawback is that all speakers are recorded on the same

channel [Truong & Trouvain 2012a]. Chafe used 60 excerpts of the corpus to study

laughter and humor.

The Corpus Gesproken Nederlands (CGN), which translates to �Spoken

Dutch Corpus�, is a collection of recordings in various socio-situational settings

[Oostdijk 2000]. The objective was to build an extensive corpus of spoken Dutch,

from both the Netherlands and the Belgian Flanders. The corpus includes scripted

(e.g., news, read-out texts), semi-scripted (e.g., lectures, interviews) and unscripted

(e.g., business transactions, face-to-face conversations, spontaneous TV commen-

taries) data. Recordings have been orthographically transcribed, with a speci�c tag

for non-speech events. Truong and van Leeuwen [Truong & van Leeuwen 2007a] have

used data from natural face-to-face conversations of the CGN to evaluate algorithms

for distinguishing speech and laughter (see Section 4.1.2.1).

Vettin and Todt [Vettin & Todt 2004] were also interested in laughter occurring

during natural conversations and recorded naturally occurring conversations: ten par-

ticipants (six women, four men)�who were acquaintances of the experimenters�

agreed to be recorded several months in advance and did not know when the record-

ings would actually take place. A second set was recorded in a more standardized

way, in the lab, with participants discussing with an experimenter without knowing

the exact purposes of the recordings.

Devillers and Vidrascu [Devillers & Vidrascu 2007] were interested in the emotions

conveyed by laughter and used 20 hours of telephone conversations in a call center
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providing medical advices. Verbal and non verbal contents such as laughs or cries

have been manually annotated. More than half of the 119 laughter utterances in this

corpus have been related to negative emotions.

The COSINE database [Stupakov et al. 2012] aims at recording natural speech

in the wild. Participants equipped with multiple portable microphones were asked

to walk to various noisy locations and talk about anything they like. Conversations

included from two to seven people and lasted from 45 minutes to 1.5h. A total of

33 sessions have been recorded (91 unique participants), among which ten have been

transcribed (37 unique participants). In the ten hours of transcribed data, locations

of 3267 laughter occurrences have been marked [Weninger & Schuller 2012].

The ICSI Meeting Corpus is also audio-only, but as it has been widely used for

training and evaluating laughter segmentation methods, we have decided to describe

this database more deeply. It receives a dedicated section later (Section 2.2.1.3).

2.2.1.2 Participants involved in scenarios

The HCRC Map Task Corpus [Anderson et al. 1991] contains recordings of 64 young

adults having to collaborate to reproduce on one participant's map the route that was

indicated on the other participant's map. Each participant was involved in four di�er-

ent conversations, in order to vary parameters such as familiarity between the speak-

ers, eye contact, landmark names to mention, etc. The conversations were transcribed.

Around one thousand laughter episodes were spotted [Truong & Trouvain 2012a].

The Buckeye Corpus of Conversational Speech [Pitt et al. 2007] gathers recordings

of 40 participants from Ohio discussing with an experimenter in an interview-style

setting. Participants wore a head-mounted microphone. The corpus contains 26 hours

of recording [Weninger & Schuller 2012]. Speech has been phonetically transcribed

and laughter positions were marked. A total of 1874 laughter occurrences have been

found in the data [Weninger & Schuller 2012].

The Diapix Lucid Corpus [Baker & Hazan 2011] consists of microphone recordings

of pairs of participants discussing when playing a �spot the di�erence between two

images� game. Twenty pairs of participants took part in the study and each one was

involved in three di�erent conversations. The conversations were transcribed and the

words were automatically aligned to the sound �les (forced alignment). The data

contain 582 laughs [Truong & Trouvain 2012a].

For the INTERSPEECH 2013 Social Signals Sub-Challenge of the Computational

Paralinguistic Challenge, a corpus containing 2763 audio clips was extracted from

60 phone calls between two participants having to discuss about�and order by

importance�a list of items that would be useful to survive in a polar environment

[Schuller et al. 2013]. Each clip lasts 11 s and contains at least one laughter or �ller2

occurrence. Sixty-three females and 57 males took part in the recordings. The corpus

was called SSPNet Vocalization Corpus (SVC).

2Fillers are vocalizations like �uhm�, �aaah�, etc. that indicate attempts to keep the speaking
turn.



20 Chapter 2. Laughter databases

2.2.1.3 The ICSI Meeting Corpus

In 2000, the International Computer Science Institute of Berkeley (ICSI) launched a

project to record a large speech database from meetings, called ICSI Meeting Corpus.

The purpose was to obtain speech as natural as possible and they chose to record only

meetings that would have occurred anyway [Janin et al. 2003]. All the meetings took

place in a meeting room of their lab, where they would have taken place even if the

ICSI Meeting Corpus project had not existed. The only, but important, unnatural

setting the project implied on the meetings was the use of head-mounted microphones,

in order to have easier speech activity detection and high quality speech transcriptions,

but also to avoid penalizing, with poor acoustic signals, non-acoustic research like

dialogue structure analysis [Janin et al. 2003]. In consequence, all the subjects knew

they were being recorded.

The audio settings were the following: each participant wore a head-mounted

microphone and, in addition, four omni-directional PZM microphones and one PDA

containing two cheap microphones were placed on the meeting table. The meetings

involved three to ten participants, with an average of six [Janin et al. 2004]. The

recordings ended in 2002, with a total of 75 meetings, corresponding to 72 hours

of meetings and 85 hours of speech. The total duration of speech is larger than the

duration of meetings due to overlapping speech. The audio signals were downsampled

on the �y from 48 kHz to 16 kHz and the channel from each microphone was saved

separately. At the beginning or end of the meetings, participants were asked to

read digit strings. These sequences of digits may be used to perform research on

far-�eld acoustic issues without having additional complexities introduced by large

vocabulary, spontaneity and conversation interactions [Janin et al. 2003]. After the

meetings, participants could listen to the recordings and remove con�dential sections,

but it was only requested 19 times, for a total of 2.6 minutes of deleted segments.

Since only naturally occurring meetings at the ICSI lab were recorded, some par-

ticipants appeared multiple times in the corpus. In total, 53 di�erent speakers were

involved in the data collection. Each received a unique identi�er mentioning the gen-

der of the participant and whether this participant was a native English speaker or

not. Other information such as the date and topic of each meeting or the way the

channel signal was transmitted (mostly wireless for head-mounted microphones) is

also provided.

Huge e�orts were done to annotate the data. For each meeting, there is a full

speech transcription, with beginning and ending times of each utterance. More inter-

esting for us, many non-speech sounds were also annotated, in two ways:

- VocalSound: this tag was used for spotting non-speech vocal sounds like

laugh, cough, breath, etc. Table 2.1 gathers the most frequently an-

notated VocalSound events, and the relevant ones for laughter processing

[Laskowski & Burger 2007b].

- Comment: various information about the transcribed utterance was encoded

under this tag. Among others, modi�cations of speech due to smile or laughter
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are annotated. Table 2.2 presents the most frequent Comment annotations in

relation with smile or laughter.

Table 2.1: Top �ve most frequently occurring VocalSound types in the ICSI Meeting

Corpus and all VocalSound related to laughter and smile [Laskowski & Burger 2007b].

Frequency rank Occurrences VocalSound Description

1 11515 laugh

2 7091 breath

3 4589 inbreath

4 2223 mouth

5 970 breath-laugh

11 97 laugh-breath

46 6 cough-laugh

63 3 laugh, �hmmph�

69 3 breath while smiling

75 2 very long laugh

Table 2.2: Top �ve most frequent Comment tags of the ICSI Meeting Corpus in

relation with smile and laughter [Laskowski & Burger 2007b].

Frequency rank Occurrences Comment Description

2 980 while laughing

16 59 while smiling

44 13 last two words while laughing

125 4 last word while laughing

145 3 vocal gesture, a mock laugh

Laughter processing was not the initial purpose of the ICSI Meeting Corpus

and it was not the event that received the most attention. However, thanks

to the quality of the database, recorded in a natural environment and present-

ing various occurrences of spontaneous laughs, it became a standard for laugh-

ter processing. Some of the groups using the ICSI Meeting Corpus for laugh-

ter processing did additional annotation works to keep only clearly audible laughs

[Truong & van Leeuwen 2007a] or localize the boundaries of the laughter segments

with more accuracy [Laskowski & Burger 2007b].

The Corpus is available from the Linguistic Data Consortium (LDC)

[Linguistic Data Consortium 2008]. Other annotations were done by the ICSI Meet-

ing Corpus team or other groups to mark the meetings dialogue structure, the parts

where speakers were most involved in the meeting, etc. Good overview of these addi-

tional annotations and research works carried out with the ICSI Meeting Corpus can
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be found in [Janin et al. 2004].

2.2.2 Multimodal databases

2.2.2.1 The Belfast Naturalistic Database

The Belfast Naturalistic Database [Douglas-Cowie et al. 2003] gathers excerpts of TV

programs (chat shows, religious programs, etc.) and studio recordings with a focus

on emotional expressions. The criterion to include TV excerpts was that speakers

should appear to genuinely experience a given emotion. The studio recordings were

one to one interviews over topics that would induce a range of emotional displays.

Data were split into clips that include su�cient context to understand the emotional

apex and to show how emotions evolve over time. Laughs were identi�ed in 53 out of

the 127 clips extracted from TV programs. Due to copyright issues, only �ve of these

clips are disseminated on the ILHAIRE database website [McKeown et al. 2012a].

2.2.2.2 The HUMAINE database

The HUMAINE database [Douglas-Cowie et al. 2007] is another collection of audiovi-

sual clips from various sources with the aim to cover a broad range of natural a�ective

displays. Some of the clips have been annotated, including labels for paralinguistic

events such as laughter. From the 50 clips available, 46 laughter occurrences have

been found and included in the ILHAIRE database [McKeown et al. 2012a].

2.2.2.3 The AMI Meeting Corpus

The Augmented Multiparty Interaction (AMI) Meeting Corpus [Carletta 2007,

AMI project 2011] consists of 100 hours of meetings recorded at the University of

Edinburgh (U.K.), Idiap (Switzerland), and the TNO Human Factors Research In-

stitute (The Netherlands). One third are naturally occurring lab meetings. The

remaining two thirds were elicited by a role playing game in which participants had

to take di�erent roles in a team project. While this is di�erent from the settings of

the ICSI Meeting Corpus, it has little in�uence on laughter naturalness.

All of the 138 role playing meetings involve four participants. Out of the 33

naturally occurring meetings, 25 also involve four participants, �ve have three con-

versationalists and the last three have �ve participants.

The recordings include synchronized audio (individual and far-�eld microphones),

video (individual and room-view cameras), as well as the positions of Logitech pens

held by the participants and the illustrations displayed by the meeting participants

(PowerPoint slides and whiteboard explanations). At the University of Edinburgh,

24 microphones were used: 16 omni-directional electret microphones were placed on

the table, in two groups of 8-microphone circular arrays (10 cm radius). Participants

wore two microphones, one head-mounted and one lapel microphone. Audio signals

were sampled at 48 kHz, with a resolution of 16 bits and stored in WAV format.

For the video signals, six cameras were used: one in front of each participant's chair,
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one taking an overhead view from the center of the room and the last one placed in a

room corner to obtain a full-scene recording, including the whiteboard and the screen.

Data written on the whiteboard and individual notes taken by the participants were

stored as x-y coordinates in a XML �le format, with the help of dedicated material

(Logitech pens, special paper, digital whiteboard). Similar material has been used at

Idiap and the TNO Human Factors research Institute, except for slight variations in

the position and number of devices (microphones, cameras).

The database is freely available for non-commercial purposes from the AMI web-

site [AMI project 2011]. Signals are provided with a range of annotations. Some

recordings include annotations about dialogue acts, emotions, actions, gestures, etc.

The vocal activity of each participant in each meeting has also been manually tran-

scribed. These transcriptions include the speech as it has been uttered by the speaker

(with grammatical errors, hesitations, etc.) and other non-verbal vocalizations such

as laughter and cough. In addition, a phonetic transcription of speech, obtained by

forced alignment, is provided.

2.2.2.4 The AVIC database

The AudioVisual Interest Corpus (AVIC) [Schuller et al. 2007] contains audiovisual

data from conversations in English between an experimenter and a participant. The

experimenter is playing the role of a product presenter and presents the product to

the participant. The participants and the experimenter are recorded with a lapel

microphone and a camera, and an additional far �eld microphone is placed in the

room. In total, 21 participants (ten females, eleven males) have been recorded, for

a total of more than ten hours of recording. The spoken content and non-verbal

interjections, including laughter, have been annotated.

2.2.2.5 The FreeTalk Database

Petridis et al. [Petridis et al. 2013b] refer as �FreeTalk� Database to the laughter

data used by Scherer et al. for their experiments on multimodal laughter detection

[Scherer et al. 2009]. The data were recorded during three multiparty interactions

where four or �ve people sitting around a table discussed freely for around 90 min-

utes. A 360 degree video camera was used to capture the participants' facial and

upper body movements. A centrally-positioned microphone was used to record the

audio signal. Speech and laughter segments have been annotated. Scherer et al.

[Scherer et al. 2009] used 300 laughter segments (average duration of 1.5 s) and 1000

speech segments (average duration of 2 s) for their works. The database is available

on the web [Campbell 2014] and possibilities to browse through the data are described

in [Campbell 2009].
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2.2.2.6 The Green Persuasive Database

The Green Persuasive Database [Douglas-Cowie et al. 2007] consists of recordings of

conversations between a persuader and a person he tries to convince to adopt more

ecological behaviors. Each conversational partner is recorded with a di�erent camera.

Close-talk microphones were placed on the participants' clothes. As in any social

interaction, there are laughter occurrences in the dataset. Eight interactions between

a Professor (the persuader) and di�erent students have been recorded. Each inter-

action is lasting from 15 to 35 minutes. The database is freely available for research

[SSPNET 2014]. In addition, 280 laughter episodes could be identi�ed in the data

and these episodes are available from the ILHAIRE database [McKeown et al. 2012a].

2.2.2.7 The SEMAINE database

The SEMAINE database [McKeown et al. 2012b] consists of audiovisual recordings of

participants discussing with either an operator playing the role of a limited automated

avatar, an operator-driven avatar or a limited automated avatar, designed to elicit

particular emotions. Four di�erent avatars with extreme personalities (constantly

angry, happy, gloomy or sensible) have been developed to try to move the participant

to the same state of mind. Each �le of the database has been labeled in emotional

states by six to eight annotators, providing information about the emotional states

leading to and following laughter. The database contains audio-visual recordings of

the participants with frontal cameras and head-mounted microphones. Laughter has

been spotted in 56 out of the 66 interactions (total: 333.7 minutes of recordings) of

the corpus. The database is freely available to the research community. A subset of

the SEMAINE Corpus has been used for the 2011 Audio/Visual Emotion Challenge

(AVEC) and is known as the AVEC Corpus [Schuller et al. 2011].

2.2.2.8 The Belfast Conversational Dyads

The Belfast Conversational Dyads data consist in recordings of free conversations

between two participants. The objective is to capture the structural particularities

in conversations with only two participants: as suggested by Glenn [Glenn 2003], it

is socially acceptable for the speaker to laugh �rst when there is only one listener,

but this is no longer true in groups of three or more as it could be interpreted as

self-praise. We will further explain that point in Chapter 3. Conversations involving

more than two participants are addressed in another corpus with similar settings, the

Belfast story-Telling sessions (see Section 2.3.4).

Participants of the Belfast Conversational Dyads were recorded while freely chat-

ting3 during approximately one hour. Participants wore high-quality close-talk mi-

crophones and, as for the Belfast Story-Telling sessions, Kinects and webcams were

used to record each participant's movements [Curran & McKeown 2013]. Nine Con-

versational Dyads have currently been recorded: the full recordings are available on

3A random topic could be provided to the participants to start the conversation if they wished.



2.3. Induced laughter databases 25

the ILHAIRE database website [McKeown 2014] and laughter segmentation is under

way.

2.3 Induced laughter databases

When laughter is the target of database recordings, inducing it can be an ecological

solution as it enables to both control the settings (e.g, close-talk microphones, motion

capture equipment, frontal camera views) and increase the number of laughs. Hence,

numerous high-quality recordings of laughter episodes can be obtained in a relatively

short time. The critical point is to create scenarios that can favor natural laughter,

as the objectives of induced laughter databases are to avoid forced laughs (otherwise,

one can simply record portrayed laughs).

For their extensive audio analysis of laughs, Bachorowski et al.

[Bachorowski et al. 2001] enrolled 139 students and let them watch video con-

taining humorous sequences either alone or with a partner. Laughs from 97

individuals (52 females, 45 males) were kept for the acoustic analyses, for a total

of 559 female and 465 male laughter bouts (see Section 3.1.1 for a de�nition of

�laughter bout�). It is useful to note that laughs were recorded in a broader setting:

participants watched 11 video clips in total, aimed to induce di�erent emotions, and

had to vocally express their emotions after viewing each clip. Hence the microphone

was needed for the ratings and participants ignored it would also be used to capture

their laughs. Kipper and Todt [Kipper & Todt 2007] induced laughter while subjects

were reading by putting their own voice in playback with a 200 ms delay.

The AVLC database is using the same induction technique as Bachorowski et al.

It was recorded in the framework of this PhD Thesis and will be detailed in Section

2.5. The following sections present other induced laughter databases, which have

chronologically been recorded after the AVLC corpus.

2.3.1 MMI Facial Expression database, Part V

Part V of the MMI4 Facial Expression database includes annotations of voiced and

unvoiced laughs [Valstar & Pantic 2010]. As for the AVLC database, participants

were left alone in a room to watch video clips. The clips were meant to induce

happiness, disgust and surprise. Participants' reactions were recorded with a camera

(audiovisual recordings, no close-talk microphone). Nine participants took part in the

recordings, providing 109 unvoiced and 55 voiced laughter episodes5. The database

is available for research [MMI team 2014].

4The acronym MMI comes from the �rst names of the MMI database's authors.
5In the MMI Part V annotation conventions, a laugh is considered as voiced if it contains at least

one voiced component. The distinction between voiced and unvoiced laughs will be further explained
in Chapter 3.
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2.3.2 The Belfast Induced Natural Emotion Database
(BINED)

The Belfast Induced Natural Emotion Database (BINED) [Sneddon et al. 2012] con-

tains camera recordings of the reactions of subjects performing di�erent tasks and

watching video clips6, with the aim to elicit �ve di�erent emotional states: frus-

tration, surprise, fear, disgust and amusement. Laughter frequently appeared in all

these (active or passive) tasks. The corpus was recorded in three di�erent sets with

di�erent purposes and sequences of tasks to perform. In particular Set 3 aims at

comparing di�erent cultures and includes recordings in Northern Ireland and in Peru.

The database (1400 clips in total from 256 participants) is freely available for re-

search [Queen's University Belfast: School of Psychology 2014]. Laughter instances

have been extracted from these recordings and included in the ILHAIRE database

[McKeown 2014]: 289 laughs from Set 1 and 48 from Set 3 are currently available.

2.3.3 The MANHOB laughter database

The MANHOB laughter database [Petridis et al. 2013b] was recorded in 2012 with

the aim to provide a benchmark for laughter classi�cation. It is similar to the AVLC

database on some points (laughter elicited with humorous videos, participants asked

to produce acted laughs) but includes some speci�c contents related to the objectives

of the data recording:

• participants were asked to speak for about 90 s in English, as well as in their

mother tongue if it di�ered from English, so that the database also includes

speech from the laughers, which is necessary to develop speech and laughter

discrimination;

• participants were also asked to produce posed smiles;

• thermal video recordings are included, to enable thermal images analysis (for

example study thermal di�erences between acted and spontaneous laughter).

The speech sessions consisted in the participant either talking about a selected topic

for 90 s, or discussing with a friend or an operator. It is important to note that two

operators were in the room together with the participant during the session, which is

a signi�cant di�erence with AVLC, as the social context (and the mere presence of

humans) is known to in�uence people's laughs.

Twenty-�ve people took part in the recordings. Three of them had to be discarded

due to technical failures. Among the 22 remaining participants were ten females

(average age: 27; standard deviation (std): 3) and twelve males (average age: 28;

6The parts of the database where participants are performing tasks could be considered as �natural
settings�, yet the objectives of these tasks was to induce speci�c emotions and the videos were chosen
to provoke amusement, which is why it was decided to include the BINED database within the
�induced laughter� section.
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std: 4). In total, 180 sessions were recorded, distributed as follows: 90 spontaneous

laughter recording sessions (watching video clips), 38 speech sessions, 23 acted laughs

sessions and 29 posed smiles sessions.

Although only one session (watching humourous clips) was speci�cally designed

to elicit spontaneous laughs, spontaneous laughs actually occurred in all the sessions

(speech, posed smiles, acted laughs). For example, the acted laugh session yielded

spontaneous laughs resulting from the participant's embarrassment to follow the in-

structions or their self-perception of inability to produce satisfying examples.

The database was annotated using the ELAN software

[Sloetjes & Wittenburg 2008, Max Planck Institute for Psycholinguistics 2014]

using several tracks to segment speech, laughter, speech-laughs, acted laughs,

posed smiles or other human sounds. Two annotation tracks were actually used

to segment all laughter-related events both with and without �nal inhalation (if

present), as both approaches have been used to segment laughs in other databases.

In addition, laughs were labeled as voiced or unvoiced by taking the majority

class assigned by two human labelers and an automatic decision provided by Praat

[Boersma & Weenink 2011] (the laugh was considered as unvoiced if at least 85% of

its frames were estimated as unvoiced by Praat). In total, the database contains 563

laughter episodes (318 voiced, 245 unvoiced) for a total duration of 931 s (average

laugh duration: 1.65 s).

The MAHNOB laughter database, including the annotations, is freely available

on the web [Imperial College London 2014].

2.3.4 The Belfast Story-Telling sessions

With the objective to record laughs related to di�erent a�ective states, the Belfast

Story-Telling sessions [Curran & McKeown 2013] are a replication of a similar exper-

iment that was conducted by the University of Zurich in the framework of the IL-

HAIRE project. The experiment, called The 16 Enjoyable Emotions Induction Task

[Hofmann et al. 2011], consisted in recordings of groups of three or four participants

where each participant had to tell stories recalling situations in which (s)he experi-

enced each of the given 16 enjoyable a�ective states [Ekman 2003]. The experiment

was �rst carried out in Zurich, with participants telling stories in Swiss-German. The

objective of replicating the experiment in Belfast with English- and Spanish-speaking

participants was on the one hand to investigate cross-cultural e�ects and on the other

hand to assess whether participants could identify laughter types without linguistic

cues in a large-scale web study (see Section 3.1.7). Such a setup required speci�c agree-

ment from the participants to broadcast their laughs. Participants wore high-quality

close talk microphones and each of them was recorded both with a regular camera and

a Kinect (tracking facial action units [Ekman et al. 2002], facial landmarks, skeleton,

head poses and storing the depth map). All streams were synchronized with the help

of the Social Signal Interpretation�formerly Smart Sensor Integration� (SSI) soft-

ware [Universitat Augsburg 2013, Wagner et al. 2011]. Twenty-one participants were
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recorded in this setup, making a total of over 25 hours of recordings. The full record-

ings as well as segmented laughs are available on the ILHAIRE database website

[McKeown 2014].

2.3.5 The Belfast and UCL Motion Capture sessions

Still in the framework of the ILHAIRE project, scenarios were developed to record

laughter body movements [McKeown et al. 2013]. Participants were invited by pairs

of friends to participate in a series of tasks aiming at eliciting laughter (e.g., tongue

twisters, dancing game, Pictionary, etc.). At least one of the participants was wearing

a motion capture system (in the Belfast recordings both participants were equipped

with Qualysis markers; in the University College London recording only one partic-

ipating was wearing an Animazoo IGS-190 inertial motion capture system). Partic-

ipants also wore close talk microphones, but the atmosphere was in general rather

noisy (music, voices of the experimenters, etc.). Eight participants were recorded in

Belfast and 18 in London. Motion capture data (both full recordings and stick �gures

of segmented laughs) have been included in the ILHAIRE database [McKeown 2014].

2.3.6 The MMLI Corpus

Extending from the Belfast and UCL Motion Capture session, the Multimodal Mul-

tiperson corpus of Laughter in Interaction (MMLI) [Niewiadomski et al. 2013b] aims

at capturing full body movements and in particular shoulders, torso and respiration

movements. The objective was also to obtain laughs from various contexts of free

interactions, hence gathering di�erent types of laughs. To favor laughter and free in-

teractions, participants were recorded in groups of friends performing di�erent tasks

together (watching humorous videos, playing simple social games). The database

consists of four groups of three friends and two groups of two friends, making a total

of 16 subjects, including three females. Their age ranged between 20 and 35. Sub-

jects were equipped with inertial motion capture systems (two XSens MVN Biomech

with 17 inertial sensors, one Animazoo IGS 190 with 19 inertial sensors) to record

their body movements. In addition, two Kinects were used to record video as well

as tracking 100 facial and 20 body points, and detecting six high-level actions such

as smiling or frowning. Audio (two close-talk microphones, one ambient microphone)

and regular video (six webcams) were also recorded. All modalities were synchronized

via the SSI software [Universitat Augsburg 2013]. Laughter episodes were annotated

and sum up to 520. The database is available from the ILHAIRE database website

[McKeown 2014].

2.3.7 Pinoy Laughter 2

For their developments of acoustic laughter synthesis, Cagampan et al.

[Cagampan et al. 2013] used audiovisual recordings of four Filipino participants who

took part in several tasks like discussing over Skype, watching video clips or asking and
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answering questions designed to elicit the six primary emotions (sadness, happiness,

anger, fear, disgust, surprise) [Ekman 1992]. The corpus is called Pinoy Laughter 2.

2.3.8 The AV-LASYN database

The AV-LASYN database [Çakmak et al. 2014] has been recorded with a similar

scheme as the AVLC database, with the speci�c objective to obtain a larger quan-

tity of audio and facial motion capture data from one single participant, in order

to develop audiovisual laughter synthesis. One male participant was recorded while

watching humorous video clips. He was wearing re�ective markers on the face to track

facial movements with the help of the Optitrack system [Natural Point, Inc. 2009] (see

Section 2.5.4.2). The database contains 251 laughter episodes, which have been pho-

netically annotated (similarly to the phonetic annotations of the AVLC database,

which will be presented din Section 3.2).

2.4 Portrayed laughter

For identifying acoustic correlates of di�erent emotions in laughter, Szameitat et al.

[Szameitat et al. 2007, Szameitat et al. 2009a, Szameitat et al. 2009b], asked eight

professional actors (�ve females, three males) to portray laughs for four di�erent af-

fective states, namely joyous, taunting, tickling and schadenfreude� a German word

meaning �pleasure in another's misfortune��laughs. Actors were asked to get into

the emotional states via self-induction techniques (emotional recall, voicing and body

movements). They gathered 429 episodes of acted laughs with this process. Laughs

were recorded at 48 kHz (16 bits) in a soundproof room.

Suarez et al. [Suarez et al. 2012] also recorded two actors portraying laughter

related to �ve di�erent emotions (happiness, giddiness, excitement, embarrassment,

hurtfulness). A total of 497 audiovisual laughter recordings were obtained in this

way. In addition, three participants were also recorded while watching humorous

video clips, with the aim to induce (laughs in) the �ve emotional states. The corpus

is named PinoyLaughter.

John Esling [Esling 2007] used samples from the University of Victoria Larynx

Research Project, which includes nasoendoscopic videos of the larynx, to analyze the

states of the larynx in acted and spontaneous laughter.

Finally, in the framework of the artistic installation �The world starts every sec-

ond� [Lafontaine & Todoro� 2007], laughs were recorded, constituting a database of

several dozen laughter utterances. The corpus gathers laughs from children and pro-

fessional singers. Some singers portrayed di�erent states of mind like �lover laugh�,

�hysteric laugh�, �obsessional laugh�, etc. The recordings took place in traditional

recording rooms or in places with poorer acoustics (echo, etc.). There are also several

occurrences of group laughs. From the recordings, 447 laughter episodes have been

extracted, totaling 20 minutes of laughs. Some are obviously exaggerated and fake.

They do not correspond to spontaneous laughs found in other corpora, but they have
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a strong power of eliciting laughter to their listeners. In consequence, they could be

used in applications designed to provoke emotional reactions, which was the aim of

the artistic installation.

2.5 The AVLaughterCycle database

The AVLaughterCycle (AVLC) project [Urbain et al. 2010b], launched during the eN-

TERFACE'09 workshop7 held in Genova, aimed at developing an audiovisual laughing

machine, capable of recording the laughter of a user and to respond to it with a vir-

tual agent's laughter linked with the input laughter. This goal implied three tasks:

laughter detection, laughter analysis/classi�cation (to link the output laugh with the

input) and audiovisual laughter (copy-)synthesis. To perform theses tasks, an audio-

visual laughter database has been recorded. The aim of this database is to provide

a broad corpus for studying the acoustics of laughter, the facial movements involved,

and the synchronization between these two signals. During the Workshop, the laugh-

ter database has been used to drive the facial movements of a three dimensions (3D)

humanoid virtual character, Greta [Niewiadomski et al. 2009], simultaneously with

the audio laughter signal.

The AVLC database [Urbain et al. 2010a], recorded as part of the AVLC project,

is meant to be useful for many researches about laughter. To our knowledge, it is

the �rst database of laughter combining both the acoustic signal and facial motion

tracking.

2.5.1 Participants

Twenty-four subjects participated in the database recordings: eight (three females,

�ve males) with the ZignTrack [Zign Creations 2009] setting and 16 (six females,

ten males) with the OptiTrack [Natural Point, Inc. 2009] setting (see Section 2.5.4).

They came from various countries: Belgium, France, Italy, UK, Greece, Turkey, Kaza-

khstan, India, Canada, USA and South Korea. The female, male and overall average

ages were respectively 30 (std: 7.8), 28 (std: 7.1) and 29 (std: 7.3). All the partici-

pants gave written consent for their data to be used for research purposes.

2.5.2 Stimuli

Both audio recording and accurate facial motion tracking were desired. Due to the

markers required for facial motion tracking, a natural laughter recording was impos-

sible. To push the participants towards spontaneous laughter, a 13-minutes funny

movie was created by the concatenation of short videos found on the Internet.

7eNTERFACE workshops are one-month summer workshops on Multimodal interfaces. The aim
is to meet, learn and work together with researchers from other places. The duration of the event
enables to deliver scienti�c outcomes at the end of the projects.
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2.5.3 Database recording protocol

Participants were invited to sit in front of a computer screen, used to display the com-

edy movie. They wore a headset microphone for audio recording and stimuli listening.

A webcam was placed on top of the screen, recording 25 Frames Per Second (FPS)

with a 640x480 resolution, stored in RGB 24 bits. The audio sampling frequency was

set to 16 kHz, stored in PCM 16 bits. The material for facial motion capture will be

presented in Section 2.5.4.

The database was recorded through University of Augsburg's SSI

[Wagner et al. 2009]. This software enables the synchronization between the

di�erent input signals (here microphone and webcam), handles the stimuli display

and can process the signals to segment and label interesting parts. SSI was also used

for the database annotation (Section 2.5.5).

Participants were asked to relax, watch the video and react freely to it, with

two limitations: they should try to 1) keep their head towards the screen, and 2)

not put anything between their head and the webcam (e.g., hands) to prevent the

facial tracking from failing. All the instructions were displayed on the screen before

the experiment. Once the protocol was clear, participants were left alone in the

experiment room and started the stimuli playing. For synchronization and data saving

reasons, the protocol had to be slightly modi�ed when using OptiTrack (see Section

2.5.4.2).

At the end of the movie, subjects were instructed to perform one acted laughter,

pretending they had just seen something hilarious. The main objective of these acted

laughs was to provide some material to analyze the di�erences between spontaneous

and acted laughs and to determine whether the subjects, when acting, tend to mimic

the spontaneous laughs they had just performed.

2.5.4 Facial motion capture

Since markerless facial motion tracking was not reliable enough to capture the small

variations of facial expression during laughter, we turned towards techniques using

markers placed on the subject's face. Two systems have been successively used, Zign-

Track and OptiTrack.

2.5.4.1 ZignTrack

ZignTrack [Zign Creations 2009] uses one single camera to realize the 3D tracking,

which is an extrapolation from a two dimensions (2D) image, using a �xed face tem-

plate. Facial features are marked with simple stickers or make-up (Figure 2.1). Zign-

Track presents the advantages of being cheap and requiring few material, but has

several drawbacks: the extrapolation from 2D to 3D causes head distortions, the

tracking fails when there are rapid movements and the tracking is unable to recover

after an erroneous frame. To obtain the accurate facial motion, a lot of manual cor-

rections are then needed (several hours per recording). For these reasons, we turned



32 Chapter 2. Laughter databases

Figure 2.1: Markers drawn for facial motion tracking using ZignTrack.

towards a more professional motion capture system, OptiTrack, after the �rst eight

recordings.

2.5.4.2 OptiTrack

OptiTrack [Natural Point, Inc. 2009] uses seven synchronized infrared cameras: six

placed in a semi-circular way for facial motion capture and an additional one for

scene audiovisual recording. Each camera contains a grayscale CMOS imager cap-

turing up to 100 FPS. Infrared re�ectors need to be stuck on the skin (Figure 2.2).

For the recordings performed with the OptiTrack system, the infrared cameras were

added to the previous setting (Figure 2.3, with the OptiTrack cameras highlighted

by circles). Participants were asked to clap their hands in order to synchronize the

facial motion tracking with the audio and webcam signals. OptiTrack provided high

quality tracking with few manual corrections required. However, the data acquisition

sometimes stopped after around �ve minutes. To make sure the data of the whole

experiment would be usable, it was then decided to shorten the stimuli video to ten

minutes and to split it into three parts slightly longer than three minutes. At the

beginning of each session, the instructor started the face motion acquisition system,

left the room and the subject clapped for synchronization with the other signals. At

the end of each session, the subject was again instructed to clap, so that the instruc-

tor would enter the room and stop the face motion tracking. The microphone and

webcam recorded the experiment from the beginning of the �rst session to the end of

the third session, without interruption.
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Figure 2.2: Infrared markers placed for facial motion tracking using OptiTrack.

Figure 2.3: Desktop setup for database recording. Optitrack cameras are highlighted

by circles.
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2.5.5 Database annotation

The recorded data have been labeled by the author, using SSI [Wagner et al. 2009].

A hierarchical annotation protocol was designed: segments receive the label of one

main class (laughter, breath, verbal, clap or trash; silence being the default class) and

�sublabels� can be concatenated to give further details about the segment. Laughter

sublabels characterize both the temporal structure and the acoustic contents of the

laughs.

The laughter temporal structure sublabels follow the three segmentation levels

presented in [Trouvain 2003] (see Section 3.1.1). These sublabels indicate whether

the laughter utterance contains:

• several bouts (i.e., parts separated by inhalations, as will be further explained

in Chapter 3), it is then annotated with the sublabel �episode�;

• only one syllable, labeled as �monosyllabic�, which is not uncommon

(e.g., [Edmonson 1987]) but sometimes not considered as a laugh (e.g.,

[Sudheer et al. 2009]);

• several syllables but only one bout - default category (no particular sublabel).

These three temporal structure sublabels are mutually exclusive.

The laughter acoustic contents sublabels describe the type of sound8: vowel,

breathy (oral exhalation), nasal exhalation, grunt-like, hum-like, hiccup-like, speech-

laugh or laughter that is mostly visual (quasi-silent). These sublabels can be combined

to re�ect content changes during the laughter episode.

For example, a laughter episode composed of several bouts, start-

ing by grunt-like sounds and followed by hiccup-like sounds is annotated:

laugh_episode_grunt_hiccup.

To cope with exceptional con�icts that might in�uence the class models when

training a classi�er (for example when there is a strong noise in the middle of a

laughter episode), a �discard� label has been added.

The annotation primarily relies on the audio, but the video is also looked at, to

�nd possible neutral facial expressions at the episode boundaries or annotate silent

laughs. In addition, laughs are often concluded by an audible inspiration, sometimes

several seconds after the laughter main part. When such an inhalation, obviously due

to the preceding laughter, can be found after the main audible part, it is included in

the laughter segment.

2.5.6 Database contents

2.5.6.1 Main classes

The number of occurrences of the main classes over the full recordings or only inside

the stimuli sessions are presented in Table 2.3. Subjects spent, in average, 21.8% of

8The sounds of laughter will be further detailed in Chapter 3. Here, only broad classes are used,
following the production modes introduced in Section 1.1.
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the stimuli sessions laughing, which is a huge proportion9. The number of laughter

utterances per participant stands around 42, with extreme values of four and 82, for

a total of 1021 episodes inside the dedicated stimuli sessions. The database contains

27 acted laughs, uttered by 22 subjects (two subjects did not produce any acted

laughter).

Occurrences

Main class Full database Stimuli sessions

Laughter 1066 1021

Trash 267 207

Verbal 186 64

Clap 93 1

Breath 41 31

Discard 31 23

Table 2.3: Occurrences of the main classes in the AVLC database annotations.

2.5.6.2 Laughter forms

Table 2.4 presents the occurrences of the laughter sublabels, for the 1021 laughs

elicited by the stimuli sessions, considered as spontaneous, as well as the 27 acted

laughs. It is important to remember that the acoustic content sublabels can be

combined to specify di�erent contents in an episode. This explains why the total

number of laughter sublabels is larger than the number of occurrences in the laughter

class.

On a structural level, it appears that most laughs contain several syllables form-

ing one single bout. Monosyllabic utterances are relatively frequent (17.5%) when

subjects laugh spontaneously, but no subject produced a monosyllabic laugh when

asked to pretend he had witnessed something hilarious. Episodes with several bouts

separated by inhalations occur from time to time spontaneously and with a larger

proportion when acting.

Regarding the acoustic contents, it can be seen that the spontaneous laughs cover

a broad variety of sounds: the labels are spread over all the laughter sublabels. One

third of the annotations re�ect a vowel-like content, and the vowel `a' is the most

frequent one. Nasal exhalations represent 20% of the annotations. Other categories

like breathy (oral exhalation), hum-like, hiccup-like or even silent laughing are also

well represented. However, the database contains only 20 speech-laughs 10. This can

be explained by the fact that the subjects were left alone and had nobody to interact

with: there is few speech in the stimuli sections, hence few speech-laughs.

9For comparison, participants to Bachorowski et al.'s sessions laughed around 4% of the time,
laughs account for around 7% of the MAHNOB database, while the call center conversations obtained
by Devillers and Vidrascu contain around 2.5% of laughter.

10We should even state that in nine out of the 20 cases, speech and laugh do not overlap but follow
each other so closely that it is impossible to separate them.
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Category Laughter sublabel Occurrences

Spontaneous Acted

TOTAL UTTERANCES 1021 27

Monosyllabic 179 0

Temporal structure One bout (several syllables) 677 14

Several bouts 165 13

TOTAL 1021 27

Vowel: a 277 18

Vowel: e 101 5

Vowel: i 37 1

Vowel: o 26 0

Vowel: u 5 2

Acoustic content Nasal exhalation 277 1

Breathy (oral exhalation) 237 2

Hum-like 169 2

Hiccup-like 95 5

Grunt-like 18 1

Speech-laugh 20 0

Silent 94 1

TOTAL 1359 38

Table 2.4: Occurrences of the laughter sublabels for the spontaneous and acted laughs.

The acoustic content sublabel occurrences are di�erent when considering the acted

laughs. There, voiced vowels are clearly the most frequent annotations. This might

be due to the stereotypical image of laughter (�hahaha�).

2.5.6.3 Laughter duration

Excluding laughs involving speech, the average duration of a spontaneous laughter

utterance in the database is 3.5 s (std: 5.3 s; median: 2.2 s; min: 0.26 s; max: 82 s).

A histogram of the spontaneous laughter duration and its cumulative distribution

function are presented in Figure 2.4. The large majority (83%) of the laughter episodes

lasts less than 5 s, but longer episodes should not be neglected as they represent 51.4%

of the total laughter duration and are the most striking ones. The longest giggle in

the database lasts 82 s.

Acted laughs tend to be longer. Their mean duration is 7.7 s (std: 5.94; median:

5.26). A t-test assuming the two samples (spontaneous and acted) come from normal

distribution with unknown and unequal variances shows that the di�erence between

the mean duration of spontaneous and acted laughs is highly signi�cant (p = 0.0012).

Using a t-test might seem daring since the duration distribution is clearly not Gaus-

sian and the number (27) of acted laughs is not su�cient to use the Central Limit

Theorem with full con�dence. However the outcome of the t-test is strengthened by
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Figure 2.4: Histogram and cumulative distribution function of the laughter durations.

a Kolmogorov-Smirnov test (measuring whether the two samples are likely to belong

to the same population, without any assumption on their distribution), which states

with high signi�cance (p = 1.1 · 10−8) that the spontaneous and acted laughs belong

to di�erent distributions.

2.5.7 Limitations and bene�ts

The biggest limitation of the AVLC database might reside in the absence of active

communication provided by the subjects. Unlike popular databases used in laugh-

ter processing like the ICSI Meeting Corpus [Janin et al. 2003] or the AMI Meeting

Corpus [Carletta 2007], participants had no one to interact with. It has been shown

that the conversational partners in�uence the way we laugh [Campbell 2007]. The

laughs from the AVLC database, obtained without conversational partners, might be

considered as the �base� laughs from our participants, when they are alone watching

a movie, and we have no guarantee these people would laugh the same way when they

interact with other people. The most dramatic consequence of the absence of interac-

tion is the very small number of speech-laughs, much less than in human conversations

(speech-laughs are as numerous as breath-laughs in the ICSI Meeting Corpus). In ad-
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dition, people knew they were being recorded, which is the case of many databases

but must still be kept in mind. The protocol (stimulus induction, etc.) was meant

to elicit reactions as natural as possible given the constraint of wearing markers on

the face. The main bene�ts of the database are: the number of laughs (over 1000),

their variety both in duration and acoustic contents, the presence of visual informa-

tion including motion tracking, and the annotation focusing on laughter. Finally, the

database contains some acted laughs, recorded by the same subjects at the end of

the experiment. All the recorded signals, annotations and stimuli videos are freely

available for research purposes.

2.6 Summary and perspectives

In this chapter we have reviewed the existing laughter databases. We have seen that

several recording settings have been used, from the most natural to the most arti�cial.

Di�erent databases also focus on di�erent social contexts, with some corpora trying to

suppress social context (participant is alone in a room) while other settings introduce

social context (from the mere presence of experimenters in the room to group conver-

sations). Laughter databases also di�er in the set and quality of recorded modalities.

Trade-o�s have been made to favor one modality or the other and have implications

on the whole recording settings (scenario, social context, etc.): for example if one

wants high quality body motion tracking, (s)he has to equip participants with mo-

tion capture suits (which makes totally natural settings impossible) and allow them

to move freely (making frontal facial view di�cult). It is also to cope with the im-

possibility to record some signals with su�cient quality in totally natural conditions

that several techniques have been developed to induce laughter�watching humorous

stimuli being the most frequently employed technique.

Further works on laughter databases are clear. The more data, the better, so

researchers should continue to record�voluntarily or not�laughing people. We can

identify three main directions, which are all addressed by the ILHAIRE project. First,

investigate the multi-cultural aspects of laughter itself (not the sense of humor) to

see whether the laughter patterns or their decoding vary from one culture to another.

Second, continue the trend to increase the range of recorded signals: in addition to

classic cameras and microphones, recent data collections have included new chan-

nels such as depth cameras (e.g., Kinect), motion tracking or respiration belts. All

these signals are important to better understand, detect and synthesize laughter.

Third, laughter synthesis in particular would bene�t from large amounts of laughter

data from one single laugher, so as to better model one laugher's voice and style.

ILHAIRE attempts to tackle this by inviting the same participants over and over

again to recording sessions with various scenarios (see Belfast storytelling sessions,

Belfast conversational dyads, Belfast motion capture sessions, etc.). The AV-LASYN

database has also been recently recorded with the speci�c purpose to have a large

quantity of audiovisual data from a single subject, to train laughter synthesis.

Even though recording devices become more and more portable (size, weight,
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memory) and convenient for natural recordings, we think that there is still a need

for scenarios to induce spontaneous11 laughter in controllable settings (light, noise,

frontal view, etc.). These scenarios also slightly reduce the post-processing time for

segmenting laughs (as laughter can be expected to be more frequent than in everyday

recordings), even though we will see in Chapter 4 that laughter can be reasonably

well detected in (audio) recordings.

In this PhD Thesis, we have used the AVLC database. We were interested in

clean audio data, in as natural laughs as possible and, for collaborative works, facial

motion capture was also necessary. At the time the project started, there existed no

such database and this is why we have recorded the AVLC corpus. Although other

laughter databases with high-quality audio have been recorded since then, AVLC is

still one of the databases that contains the cleanest laughs (i.e., without noise caused

by other people) from individual participants. This is essential for synthesis, where

it is required to have a lot of examples from a single voice. More importantly, we

will see in the next chapter that the AVLC database, in addition to the presence of

facial motion capture (which in this Thesis was mostly used in collaborative works

and applications), is unique in the way laughs have been transcribed and annotated

in intensity12.

11�Inducing spontaneous� seems antinomic, but we mean here inducing as spontaneous laughs as
possible.

12The AV-LASYN database is now close to match the AVLC features, for a single participant, but
with a large quantity of data.
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In this chapter we will focus on the audio properties of laughter. As for speech,

laughter can be studied at di�erent levels, from the acoustic properties of short time

frames to the analysis of the meaning of larger utterances in a given context. In

[Rajman et al. 2007], the following levels of natural language analysis are identi�ed:

• Phonetics: the study of the sounds used in natural language from an acoustic

or an articulatory viewpoint, i.e. with a short time perspective.
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• Phonology: the study of the sounds as they are perceived and interpreted by na-

tive speakers, that is linguistic units capable of distinguishing meanings, which

are called �phonemes�1.

• Suprasegmental phonology: the study of phenomena that bear on units larger

than phonemes, such as syllables. It is for instance the syllable that bears

features like height, intensity and duration.

• Morphology: the study of the internal properties of natural language words,

including word formation rules. It is the level of �morphemes�, which are units

that carry a meaning, and of the combination of morphemes to create words.

• Semantics: at this level the meaning of individual words and sentences is studied,

independently of their context of use.

• Pragmatics: this level focuses on the interpretation of sentences with respect to

their context of use and on the relations between sentences.

Laughter is not emerging from the same construction principles as speech. In

particular, laughter does not have phonological and morphological rules of which units

carry a meaning and may be combined together. Nevertheless several analysis levels

can be considered for laughter as well. The chapter will begin with a description

of the di�erent levels at which laughter has already been studied. Section 3.1 will

be centered on this state-of-the-art and will show that, besides trying to infer the

multi-level structure of laughs, there have been laughter description works that can

mainly be related to the pragmatic (interpreting social functions of laughter within its

context), semantic (classi�cation of entire laughs) and acoustic phonetic (description

of instantaneous acoustic properties such as pitch or formant frequencies) aspects.

Some contributions also deal with the suprasegmental phonology (duration of syllables

and evolution of pitch over syllables) of laughter. Then, we will present the descriptive

works that have been carried out in the framework of this PhD Thesis and which cover

some �elds that have not really been considered previously. Section 3.2 will focus

on phonetic transcriptions. Section 3.3 is related to the overall intensity of laughs.

Finally Section 3.4 brie�y presents our annotation e�orts to characterize laughs with

frame-level intensity curves.

3.1 State-of-the-art

In this section, the acoustic analyses conducted on laughter are examined. First,

works aiming at describing the structure of acoustic laughs are presented in Section

3.1.1. As respiration has a signi�cant role in laughter structure and has audible

1The actual acoustic realization of a phoneme is called a �phone�: it may di�er from the standard
or intended way of pronouncing the phoneme while still be properly related to the corresponding
phoneme by native speakers.
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e�ects, considerations about laughter respiration are given in Section 3.1.2. A short

parenthesis is then made in Section 3.1.3 to brie�y present speech-laughs.

After that, the acoustic laughter properties are described, from low-level to high-

level perspectives. Section 3.1.4 refers to acoustic phonetic features and especially

the fundamental frequency (f0) and formant values encountered in laughter. Section

3.1.5 focuses on the phonetic level, with descriptions of the evolution of f0 during

a phone2 as well as e�orts to produce phonetic transcriptions of laughter. Section

3.1.6 presents the �ndings at the syllable and bout levels. Section 3.1.7 considers the

classi�cation of laughter episodes in types. Section 3.1.8 refers to characteristics of

laughter episodes and their relationship with some laughter types. Finally, Section

3.1.9 summarizes the main conclusions of the presented works with respect to the

contributions of this Thesis.

3.1.1 Laughter structure

Laughter sounds have been intriguing scientists for a long time. Describing these

sounds is not an easy task, as they are both extremely variable and di�erent from

other sounds made by humans.

Laughter sounds are extremely variable: unlike speech, laughter does not seem3 to

follow production rules [Sudheer et al. 2009, Sathya et al. 2013]. Given this absence

of phonological rules, we do not attempt to contrast laughter sounds, as we are not

aware of the meaning conveyed by these sounds. In consequence, laughter varies from

a subject to another: although it is contested by the small experiment conducted in

[Sathya et al. 2013], characteristic patterns enable us to recognize people only by the

way they laugh [Edmonson 1987, Chafe 2007]. In addition, the laughter signal of a

single person may change a lot from one situation to another, in�uenced by many

communicative and social factors, as explained in Section 1.2.

Laughter sounds are also surprisingly di�erent from other sounds humans are

making. In 1872, Darwin [Darwin 1872] wrote:

The sound of laughter is produced by a deep inspiration followed by

short, interrupted, spasmodic contractions of the chest, and especially of

the diaphragm. (...) But why the sounds which man utters when he is

pleased have the peculiar reiterated character of laughter we do not know.

Nevertheless we can see that they would naturally be as di�erent as possible

from the screams or cries of distress; and as in the production of the latter,

the expirations are prolonged and continuous, with the inspirations short

and interrupted, so it might perhaps have been expected with the sounds

2The phonological notion of �phoneme� is not clearly de�ned for laughter; we prefer to use the
word �phone� for the acoustic units found in laughter.

3If they exist, production rules have at least not been found yet. But in any case the rules of
language are explicitly established by humans, while laughter is a spontaneous, universal behavior
for which no rules of �how to laugh properly� have been speci�ed.
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uttered from joy, that the expirations would have been short and broken

with the inspirations prolonged; and this is the case.

Since Darwin, laughter has been described by several research teams (e.g.,

[Ruch & Ekman 2001, Bachorowski et al. 2001]). E�orts have been recently con-

ducted to standardize the laughter terminology. Two laughter categories are broadly

accepted (see Section 3.1.7): voiced (involving quasi-periodic vibrations of the vocal

folds) and unvoiced laughter. In the voiced laughter set appears the stereotypical

melodious laugh (e.g., �hahahahaha�), and a hierarchical structure has been proposed

by Trouvain [Trouvain 2003], as illustrated in Figure 3.1:

• Episode: The entire laughter utterance is called an �episode�.

• Bout: An episode can contain several �bouts�, which are exhalation periods,

delimited by inhalations4.

• Syllable: Each bout is further decomposed in laughter syllables, formed by the

concatenation of a vowel and a consonant. The consonant is generally a fricative

(aspired �h� sound) [Ruch & Ekman 2001].

• Consonants and vowels: The basic components of voiced laughs are alternat-

ing vowels (voiced) and consonants (unvoiced, mostly breath-like �h�). Vowels

generally present higher energy values than consonants.

Using a broader de�nition to take unvoiced laughs5 into account as well, Ruch and

Ekman [Ruch & Ekman 2001] and Chafe [Chafe 2007] use the term pulse to refer to a

burst of expelled air. Bachorowski et al. [Bachorowski et al. 2001] and Sundaram and

Narayanan [Sundaram & Narayanan 2007] denote these bursts as calls. A laugh bout

is composed of laugh pulses or laugh calls, and each pulse can be voiced or not. Pulses

or calls are separated by pauses with signi�cantly lower energy, called inter-call by

Bachorowski et al. In the case of voiced laughs, the calls are typically formed by vowels

and the inter-calls are formed by h-like consonants, hence the combination of a call and

an inter-call forms a syllable. But even in open-mouth unvoiced laughter syllables6�

that at �rst sight are close to simple exhalations�, laryngeal friction usually makes

laughter exhalations more audible than during normal breathing [Chafe 2007]. Ruch

and Ekman [Ruch & Ekman 2001] also use the term cycle in place of bout.

The presented structure mainly focuses on the stable, rhythmic part of laughs.

Several researchers have also considered the beginning and ending phases of laughs,

which generally di�er from the rhythmic structure.

4Chafe [Chafe 2007] calls �phrase� the segment formed by a bout and its successive inhalation.
5Unvoiced laughs do not contain voiced segments, hence syllables could not be formed with the

de�nition given above as there is no vowel.
6Closed-mouth laughter syllables are generally powerful enough to be audible as well, in particular

grunts that imply resonances in the laryngeal cavity, as well as strong exhalations through the
nostrils�called nareal fricatives�as will be introduced later in this chapter.
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Figure 3.1: Hierarchical structure of laughter. (Exhalation parts = bouts)

For acoustic laughter synthesis and considering only melodious laughs, Lasarcyk

and Trouvain [Lasarcyk & Trouvain 2007] proposed the following structure7:

• An onset, caused by a strong exhalation.

• The main part, composed by a succession of laughter syllables, each of them

containing a voiced (laughter call) and an unvoiced part (inter-call interval).

• A pause.

• The o�set, including at least one audible inhalation.

Analyzing the 178 laughter bouts of their corpus, Kipper and Todt

[Kipper & Todt 2007] observed a similar typical structure of laughter episodes, but

expressed it di�erently:

• Initialization by one or two �singular� elements, where �singular� means that

at least two features among the maximum f0, the duration of the element and

the interval between two elements varied by more than 50% with respect to the

next element.

• A homotype series, composed of similar (i.e., non-singular) elements, thus some-

how predictable. This homotype series was present in 95% of the analyzed

laughs, and generally formed the major part of the laughter bouts. The average

periodicity of elements within this series was 213 ms, with variations between

individuals but no di�erence between men and women.

• Sometimes singular elements again.

• Ending with a sound during inhalation.

7This structure is similar to the de�nitions given by Ruch and Ekman [Ruch & Ekman 2001],
who used also visual cues (smile, etc.) to characterize the laughs.
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A similar structure can be inferred from the various examples presented by Chafe

[Chafe 2007]: an initiating burst is commonly found, followed by �normal� and some-

how regularly spaced exhalation bursts, and usually a recovery inhalation. The in-

halation is most of the time unvoiced, but can be voiced.

In the remainder of this Thesis, we will use the following terms, as de�ned earlier

and illustrated in Figure 3.1: vowels, consonants, syllables, bouts, episodes. The

de�nition of �syllable� is extended to the unvoiced case by considering that a syllable

is formed by a call and an inter-call duration. In addition we will refer to frames,

which are short-time (typically around 30 ms) windows used for local acoustic analysis.

Each unit (vowel, consonant, syllable, etc.) is a sequence of frames.

3.1.2 Laughter respiration

A short note is worth to be made about laughter respiration. Unlike speech, laugh-

ter is disrupting normal breathing [Chafe 2007] and audible inhalations can occur in

laughter. Respiration occurs in cycles of inhalations, inhalation pauses, exhalations

and exhalation pauses. A resting state typically involves 14 cycles per minute, and

the ratio between the durations of inhalations and exhalations is around 60%. The

frequency of respiration cycles remains in the same boundaries during laughter, but

the proportion of inhalation periods diminishes under 40% of the exhalation dura-

tion [Ruch 1993]. Exhalations and inhalations are stronger during laughter, and the

respiration amplitude can be up to 2.5 times higher than in normal breathing.

No matter where in its respiration cycle the laugher is, laughter usually begins

with a forceful exhalation that expires the tidal volume8 [Ruch & Ekman 2001]. This

can explain the initial explosive exhalation in some laughs, which serves to expel

the excessive amount of air in the lungs. Then, the following pulses are initiated

around the functional residual capacity9 and laughs can terminate close to the residual

volume10 [Ruch & Ekman 2001]. This causes an urgency to inhale again, which can

lead to the strong, audible inhalations that frequently occur in laughter.

As we have seen in the previous section, in the case of (sustained) laughter,

such audible inhalations can take place in the middle of the laugh, clearly delim-

iting bouts. Inhalations are considered by Je�erson et al. [Je�erson et al. 1987] and

Glenn [Glenn 2003] as indicating to conversational partners that they can take the

speaking turn, in which case the laugh would probably stop11. If no-one is speaking

following the inhalation, the laugher may (or may not) continue to laugh and produce

a new series of forceful exhalations and inhalations. The laugher can then either stop

laughing or go on with laughter. Regular breathing is resumed in a few breaths after

8The tidal volume is the volume of air usually displaced during normal breathing.
9The functional residual capacity is the volume of air remaining in the lungs after a normal

expiration.
10The residual volume is the volume of air remaining in the lungs after a forced, maximal expiration.
11A decrease in the intensity of the exhalation pulses was identi�ed as another feature that can

indicate a possible termination of the laugh, and consequently the opportunity for conversational
partners to talk again.
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the end of the laugh [Filippelli et al. 2001].

3.1.3 Speech-laughs

Laughter and speech can occur simultaneously. The phenomenon is generally called

�speech-laugh� and we will brie�y present it here. Although it is contested by

Provine [Provine 1993], who claims that laughter and speech scarcely ever co-occur,

speech-laughs seem to be frequent in conversations: for example 18.6% of the

laughs in Nwokah et al.'s mother-infant interactions were co-occurring with speech

[Nwokah et al. 1999], speech-laughs represent around 10% of the number of isolated

laughs in the ICSI Meeting Corpus (see Section 2.2.1.3) and speech-laughs account

for 60%12 of the laughter labels in the dialogs analyzed by Trouvain [Trouvain 2001].

Comparing speech, speech-laughs and pure laughs during mother-infant interactions,

Nwokah et al. found that speech-laughs are generally longer than isolated laughs

and have more energy variations than regular speech or isolated laughs. Surprisingly,

Nwokah et al. also found that speech-laughs have similar f0 values as regular speech

(while isolated laughs occur at higher frequencies). The latter �nding is unexpected as

smile usually yields to speech with higher f0. One explanation could be that mothers

tend to speak with higher pitch when talking to their infants. Regarding the places of

occurrence of speech-laughs, Nwokah et al. found that they are more frequent during

statements than during questions or exclamations. They usually a�ect two words,

but it can be only one word or more than �ve words.

Speech-laughs acoustic patterns vary from one speaker to the other, but gener-

ally laughter is a�ecting speech by vowel elongation and/or syllabic pulsation13, and

sometimes breathiness and modi�cation of the pitch contour. Although the authors

stated that other analyses in di�erent contexts are required to con�rm their �ndings,

their conclusions are worth mentioning [Nwokah et al. 1999]:

A speech-laugh retains the vowels and consonants of the speech, usu-

ally adapts to the fundamental frequency of the speech, incorporates the

repetitive rhythm and glottal stops/fricatives of laughter, and adopts the

amplitude contour of laughter in most cases and (sometimes) the charac-

teristic breathiness of laughter. The duration of the laugh increases, but

because the consonants and vowels of speech remain intact, there is suf-

�cient lack of distortion so that the speech is as perceptually intelligible

as it would be without laughter. (...) It was also observed that speech

appears to be slowed and exaggerated as a result of laughter. (...) (Speech-

laughs) only occurred within one breath, and the basic rhythm of laughter

was maintained. (...)

12This number is probably an over-estimate as it includes utterances that are perceived rather as
speech-smiles by many listeners, but even with a cautious threshold speech-laughs represent at least
10% of the laughter labels.

13Syllabic pulsation was de�ned in [Nwokah et al. 1999] as �vocal modulation that usually occurs
on vowels producing repetitive-like segments. Each segment is often preceded by a sharp glottal
attack or fricative /h/�.
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If the laughter is forceful or intense, it appears to override the speech.

However, speech may take increased priority if a mother needs the child to

hear her words clearly but is still laughing at the child's antics. This may

happen, for example, when the mother is expressing caution. (...)

There is no completely predictable result to the reorganization of the

two vocal outcomes�each speech-laugh is unique. We have established that

the laughter structure appears to have a self-organized timing pattern or

laughter signature for each person that is preserved but also adapts with

the addition of the rhythmic and phonetic structure of speech.

Trouvain [Trouvain 2001] analyzed eleven utterances that were con�dently scored

as speech-laughs by ten naive raters. He also states that speech in speech-laughs

remains intelligible. He observed similar acoustic characteristics of speech-laughs as

Nwokah et al's: breathiness, stronger aspiration sounds and vibrato, especially in the

vowel regions. Speech-laughs were expanded over two syllables most of the times (no

matter what the length of the words). The conclusions of Trouvain's analysis are the

following [Trouvain 2001]:

It is clear that the simultaneous production of speech and laughter is

not simply laughter superimposed on articulation. The articulatory con-

�gurations for speaking are continuously maintained during speech-laughs.

Traces of laugh can be found in increased breathiness and sometimes vi-

brato on the voiced portions, and a reinforced expiration on phonologically

possible locations (e.g., after a plosive release or during an unvoiced seg-

ment). A mere superimposing of laughter on speech would probably destroy

the temporal relationship between consonant(s) and vowel in a speech syl-

lable, would severely a�ect the spectral properties of the consonants, and

would destroy the local intensity scaling. The sparse data presented here do

not allow powerful statements on the acoustics, the frequency and the lo-

cation of speech-laughs. Nevertheless it became evident that there is indeed

no prototypical pattern for speech-laughs.

Chafe [Chafe 2007] also dedicated one chapter of his book to describe speech-

laughs. He shows how laughter modi�es regular speech by syllabic pulsation: pro-

voking amplitude modulations (tremolo) as well as inserting aspiration sounds which

make the speech more broken. The rhythm of tremolo or laughter-pulse insertions in

speech is generally higher than the common rhythms of pure laughter.

Speech-laughs are not considered in this Thesis that focuses on the production of

pure laugh, which is di�erent than the production of speech and its modi�cation due

to various phenomenons (stress, smiling, laughing, crying, etc.).

3.1.4 Fundamental frequency and formant values

The acoustic parameter of laughter that has been most widely reported is its funda-

mental frequency (f0). However, results must be considered with caution as, most
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of the time, methods for estimating f0 in regular speech have been simply used to

compute f0 in laughter, although the two phenomena are quite di�erent. Vocal folds

do not close as decisively in laughter as in speech [Chafe 2007], which hinders the

automatic estimation of f0. In addition, laughter f0 may di�er from regular speech

frequencies, as will be shown in this section. In other words, methods developed

and optimized for computing f0 in modal speech may not be reliable estimators of

f0 in laughter. For example, Bachorowski et al. [Bachorowski et al. 2001] manually

checked the outputs of the RAPT f0 tracking algorithm [Talkin 1995]�which is part

of the ESPS Toolbox included in the widely-used Wavesurfer sound analysis software

[Sjölander & Beskow 2011]�and realized that the algorithm performed well in only

65% of the cases.

Generally speaking, what is striking is the large variability of f0 values in

laughter. Most researches have also shown that the f0 range in laughter is wider

than in speech and that we are generally laughing with higher f0 than in regu-

lar speech. Bachorowski et al. [Bachorowski et al. 2001] obtained an average f0
of 405 Hz for females and 272 Hz for males, while average f0s in speech are 220

and 120 Hz, respectively. The maximum f0 value was 2083 Hz for females and 1245

Hz for males [Bachorowski et al. 2001]. Fundamental frequency was also shown to

be higher in open-mouth calls than closed-mouth calls. Using laughs produced by

actors (see Section 2.4) and only focusing on long (>3 s) episodes, Szameitat et

al. [Szameitat et al. 2007] obtained fundamental frequencies averaging at 476 Hz for

females and 199 Hz for males, with maximum values of 1765 Hz and 595 Hz, re-

spectively. In their corpus of laughs occurring in conversations14, Vettin and Todt

[Vettin & Todt 2004] computed the median of the participants' median average f0
15

to be 315 Hz for females and 171 Hz for males. These values are lower than what

was previously presented, but a) they are still higher than modal speech; b) it is not

straightforward to compare means and medians; and c) the considered data are quite

di�erent (ten participants in natural conversations, instead of participants watching

humorous clips or actors portraying emotions). Vettin and Todt also measured high

intra-individual variability in laughter acoustic parameters.

Apart from the fundamental frequency in laughter, several researchers also

investigated the position of formants16: several studies [Bachorowski et al. 2001,

Szameitat et al. 2007, Tanaka & Campbell 2011] showed that vowels constituting the

main part of voiced laughs are mainly unarticulated central vowels. This was ex-

pected from the physiological aspects of laughter: the vocal tract is in a relaxed

position and raised lips corners and widely opened jaws make articulation di�cult

14Hence there can be conversational/social laughs in this corpus as well as hilarious laughs.
15In other words: they measured the average f0 of each laugh, then took the median value for

each participant, and �nally computed the median of the resulting values across all participants.
16Formants are the resonances in the spectral contour of speech signals caused by the shape of the

vocal tract. Formant positions are commonly used to distinguish vowels. Each vowel is produced
with a speci�c con�guration of vocal tract (tongue, lips, jaws, etc.), giving it particular spectral
peaks. The frequency of the �rst formant is denoted F1, the frequency of the second formant F2,
and so on.
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[Ruch & Ekman 2001]. Edmonson [Edmonson 1987] however used a large spectrum

of vowels to transcribe laughs and suggested that deviations from central vowels to-

wards front vowels indicate a higher-degree of self-consciousness and inhibition, while

low back vowels (and nasals) are related to higher self-assertiveness. In their cor-

pus of portrayed laughs, Szameitat et al. [Szameitat et al. 2007] obtained, for fe-

males, voiced sounds mostly falling in the (2) and (a) areas of Hillenbrand et al.'s

[Hillenbrand et al. 1995] standard vowel-space representation (see Figure 3.2). Males'

vowels mostly fell in the same regions and in the (3) range (see Figure 3.3).

Figure 3.2: F1-F2 plot of female laughter vowels, according to Hillebrand et al.'s vowel

representation [Szameitat et al. 2007].

As Figures 3.2 and 3.3 illustrate, frequencies of the �rst formant (F1) of laughter

syllables of Szameitat et al.'s corpus can reach very high values [Szameitat et al. 2007]:

26% of F1 values are over 1000 Hz, with peaks over 1500 Hz for females and 1300 Hz

for males. The average was 924 Hz for females and 728 Hz for males. These large

values for F1 can be caused by a wide jaw opening or pharyngeal changes in �pressed�

voice [Tanaka & Campbell 2011]. Szameitat et al. indeed noticed that these syllables

with large F1 sounded as if they had been produced with a hard, pressed voice. In

addition, they obtained formant frequencies higher for females than males, for all the

�rst �ve formants. Again, these results are somehow contested since Bachorowski

et al. [Bachorowski et al. 2001] reported di�erent trends, with the Frequency of the

fourth formant (F4) in the same range for males and females and the Frequency of the
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Figure 3.3: F1-F2 plot of male laughter vowels, according to Hillebrand et al.'s vowel

representation [Szameitat et al. 2007].

�fth formant (F5) even higher for males than females in the case of open-mouth voiced

laughs, while only F3 values showed gender di�erences in the case of closed-mouth

laughs. It is important to remind that Szameitat et al. analyzed laughs portrayed

by eight professional actors, while Bachorowski et al. [Bachorowski et al. 2001] used

elicited laughs from 97 subjects. This can explain some di�erences. Bachorowski et

al. obtained much lower F1 values (average: 653 Hz for females; 535 Hz for males).

Most of the female calls fell in the E and a regions of Hillenbrand et al.'s vowel space

representation, while the most frequent male vowels were 3 and 2.

Both studies report that some calls fell in other vowel regions like I and o. Sza-

meitat et al. also obtained some examples in the æ, O, i, e and U regions.

Finally, calls of a same laughter bout are consistent: one vowel is chosen

for the bout, and it generally does not change among calls [Edmonson 1987,

Bachorowski et al. 2001]. Szameitat and al. even reported that individual laugh-

ers tend to use the same set of vowels, which could be one clue to identify people by

their laughs. But it is not always the case, and Chafe [Chafe 2007] shows an example

of a laugh with a change in vowel quality.
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3.1.5 Analysis of call-related features and phonetic transcrip-
tions

3.1.5.1 Evolution of fundamental frequency during calls

Bachorowski et al. [Bachorowski et al. 2001] conducted analyses of fundamental

frequency (f0) at the call level (i.e., one phonetic unit). It revealed that f0 is highly

variable within a single call, with average standard deviations of 21.41 Hz and 29.98

Hz for males and females, respectively. The average f0 range within a call (maximum

f0 minus minimum f0 of a call) was 59 Hz for males and 86 Hz for females. The

average f0 excursion within a call (initial f0 minus �nal f0 of the call) was 44 Hz for

males and 64 Hz for females. There was no dominant f0 pattern during calls, most

f0 curves were labeled as ��at� (38%), followed by �falling� (29%), �sinusoidal� (19%),

�arched� (8%) and �rising� (6%).

3.1.5.2 Phonetic transcriptions

Many terms (snorts, pants, chuckles, cackles, giggles, etc.) have been used by re-

searchers to characterize the sounds of laughter. However only few scholars have

actually made the e�ort to transcribe all the sequences of sounds that occur in one

(or even better, any) laughter episode.

One of such works is due to Gail Je�erson [Je�erson 1985] who analyzed conver-

sations. She is stating that more information about the dynamics of the conversation

can be inferred if laughs are actually transcribed (for example �heh-heh-heh�) rather

than simply reported (i.e., �Mr. X laughed�). In consequence, she proposes a system

for transcribing laughter in conversations�which includes transcribing how laugh-

ter is modifying regular speech when they co-occur (speech-laughs)�that has been

adapted by Glenn [Glenn 2003] for the same purpose of analyzing conversations. The

system includes transcriptions of the canonical laughter sounds through standard let-

ters (�h� for the aspired laughter consonants, English vowels and consonant �n� for the

voiced parts) as well as a code for breathing sounds that frequently occur in laughter

(�hhh�) and a symbol to indicate inhalations. Other symbols are sometimes used to

provide additional information on pitch (raising, constant, falling), energy (higher or

lower volume) and deviations from modal speech (emphasis, pauses, stretched sound,

etc.). The full system of symbols can be consulted in Glenn's book (pages xi-xii)

[Glenn 2003]. The code also enables to indicate simultaneous vocalizations between

the conversational partners�or at least relate the beginning and ending of partic-

ipants' vocalizations, as the proposed system is not very accurate regarding timing

and no duration information is included�which is crucial information for conversation

analysis.

Edmonson [Edmonson 1987] gives phonetic transcriptions for a set of laughs.

He used phonetic symbols from the International Phonetic Alphabet (IPA)

[International Phonetic Association 1999] to characterize laughter aspirates, glottal

stops, vowels and nasals. Symbols are also used to give information about the pitch
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pattern, the length and the presence of stress. Transcriptions are provided for 83

laughs from di�erent laughers and cultures, to illustrate various phonetic forms laugh-

ter can take. E�orts are concentrated on the description of �stable parts� of bouts

(fricative-vowels) and sounds outside of the IPA (inhalations, grunts, snorts, etc.)

are not transcribed. Furthermore, it is unknown whether the corresponding acoustic

samples are available.

To describe the states that the larynx can take during laughter, Esling

[Esling 2007] employs phonetic transcriptions and focuses on the diacritics (i.e., sym-

bols added to a letter, like ��e� to denote a nasalized �e�) to illustrate the changes

in vocal quality (breathy, creaky, whispery voice). Phonetic transcriptions are used

for theoretical illustrations mostly, as the recorded instances of laughter are not tran-

scribed. Using nasoendoscopic videos to analyze six instances of spontaneous laughter,

Esling found that mostly the breathy and modal modes of the larynx are appearing

in laughter.

Chafe [Chafe 2007] also proposes a system for transcribing laughter (see page

XIII of his book) in conversations (i.e., in the middle of speech), making mainly the

distinction between voiced and unvoiced inhalations and exhalations as well as closed-

mouth exhalations. Nevertheless, he does not use this system to describe laughs in

isolation (i.e., without surrounding speech), but introduces ad hoc terms like �SH�,

cough, snort, sni�, glottal clicks or creak.

Campbell [Campbell 2007] mentions the �transcription of laughs in Japanese al-

phabet, wherever possible�, for his telephone conversation laughs.

Tanaka and Campbell [Tanaka & Campbell 2011] labeled laughter calls from a

single participant with four broad categories (nasal, ingressive, vocal or chuckle).

Two examples of phonetic transcriptions of laughter are provided in

[Pompino-Marschall et al. 2007]. The total number of laughs transcribed that way

is unknown and these transcriptions are related to a small set of acted laughs (as part

of a movie).

Finally, the works in [Bachorowski et al. 2001, Szameitat et al. 2007,

Tanaka & Campbell 2011] on the identi�cation of vowels used in laughter (through

analysis of formant positions, as we have seen in Section 3.1.4) can be related to

phonetic transcriptions, as it concerns identifying and labeling the laughter sounds.

Nevertheless these do not form phonetic transcriptions in any way, as no e�ort was

made to transcribe entire laughs (including other sounds than �speech-like vowels�)

and these works served to identify global trends rather than label individual instances

(even the �vowels� have not been labeled along laughter occurrences).

3.1.6 Syllable and bout patterns

In this section we will focus on works that describe laughter properties at the syllable

and bout levels. These works have mainly focused on two important quantities:

duration and evolution of the fundamental frequency.
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3.1.6.1 Syllable rhythm

The rhythm of laughter syllables has been computed by many researchers (see

[Ruch & Ekman 2001] for a summary). The laughter syllabic rhythm is similar to

speech [Bickley & Hunnicutt 1992]. It was measured between 4 and 6 Hz, with most

researchers agreeing on a rhythm slightly below 5 Hz, or a syllable duration slightly

higher than 200 ms. Bachorowski et al. [Bachorowski et al. 2001] have shown that

bouts generally start with one call approximately twice as long as the following calls

and that the terminating call of long bouts (over �ve calls) is generally longer than

the middle calls. In addition, the inter-call duration tends to increase during the

course of a bout. The syllable rhythm does not vary much however, as the duration

of calls themselves tends to slightly decrease over the course of a bout (with the ex-

ception of the terminating call mentioned earlier) which roughly compensates for the

longer inter-call durations. As illustrated by Chafe [Chafe 2007], series of inhalation

pulses can also occur, but in this case the rhythm will be signi�cantly lower than for

exhalation pulses: around 1.5 Hz.

Finally, Chafe [Chafe 2007] showed that the energy envelope of laughter pulses

is asymmetrical, hence playing laughter backwards does not yield natural laughter

sounds.

3.1.6.2 Bout duration

Regarding the duration of bouts, Laskowski and Burger [Laskowski & Burger 2007a]

found that the duration of the bouts in the ICSI Meeting Corpus follows a log-

Gaussian distribution with a peak around one second. Voiced bouts tend to be

slightly longer than unvoiced ones [Laskowski & Burger 2007b]. Bachorowski et al.

[Bachorowski et al. 2001] report a high variability in laughter bout duration, as the

average of 0.87 s is associated to a standard deviation of 0.77 s. We obtained higher

values on the AVLaughterCycle database, as bouts lasted 1.69 s on average, with

a standard deviation of 1.52 s [Urbain & Dutoit 2011]. The duration of inhalation

phases was smaller, with an average of 0.36 s and a standard deviation of 0.15 s.

Chafe [Chafe 2007] also indirectly reported about the duration of bouts, indicating

that the number of pulses can vary from one to twelve or even more. He insisted

on the fact that a bout with only one pulse is not uncommon, something that is

also noticed by other researchers (e.g., [Urbain et al. 2010a]). Bachorowski et al.

[Bachorowski et al. 2001] measured the average number of pulses in a bout to 3.61 for

males and 3.20 for females.

3.1.6.3 Fundamental frequency inside bouts

Regarding the evolution of fundamental frequency (f0), as for many other laughter

properties, high variability appears to be the main conclusion. Ruch and Ekman

[Ruch & Ekman 2001] reported a decrease of pitch and intensity in the course of

a bout. Vettin and Todt [Vettin & Todt 2004] obtained opposite results, as they
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measured the fundamental frequency (f0) at the end of a bout to be generally higher

than the initial f0 of the bout: the variation of f0 is ranging from -68% to +129%,

with a median of +12%. The median f0 excursion within a bout (i.e., the di�erence

between maximum and minimum f0 within a bout) ranged from 0% to 228% of the

minimum f0, with a median value of 28%.

Bachorowski et al. [Bachorowski et al. 2001] stated that f0 routinely increases and

decreases during the course of bouts, without any obvious pattern emerging. Again,

the authors insist on the large variability of f0 within bouts�and even more so in

long bouts, which also have higher average f0 than short bouts. Very large variations

of f0 within a single bout are not uncommon, as 7 males and 13 females (out of their

97 participants, see Section 2.3) produced at least one bout with a variation of 500 Hz

or more. There was no evidence of a decrease (or increase) in f0 during bouts. In

accordance with these conclusions, Chafe [Chafe 2007] gave examples of various pitch

patterns (rising, declining) for both bouts and syllables.

3.1.6.4 Variability inside bouts

Variability in successive syllables appears to be a key parameter of natural laughter.

Vettin and Todt [Vettin & Todt 2004] measured that the median variations in dura-

tion and f0 of successive syllables were 43% and 16%, respectively. These �ndings

con�rm two studies conducted by Kipper and Todt.

In a �rst study [Kipper & Todt 2001], they manipulated a series of seven vowel-

like calls from a human laugh, with an average syllabic rhythm of 200 ms, to create

three types of rhythmic patterns: a) the original pattern (isolating the seven calls

from the laughter onset); b) a laugh with standardized rhythm, created by copying

seven times with a �xed interval one of the laughter calls and c) a �reversed� laugh

obtained by reversing the order (but not the audio samples themselves) of the seven

calls. Speed variations of each rhythmic pattern were also created by multiplying the

playing speed of each laugh with factors ranging from 0.4 to 1.8, without modifying

the spectral contents of the laughs. Naive participants were asked to tell whether each

created laugh was laughter or not. The standardized rhythm laughs received poor

evaluations (i.e., were perceived as not being laughter in around 50% of the cases),

the reversed rhythm laughs were better rated and the original pattern obtained the

best results (around 90% of raters perceived it as laughter). Regarding speeds, it

was found that multiplying factors between 0.6 and 1.4 (which roughly correspond to

syllabic periods between 140 ms and 300 ms) yielded similar results, while speeds out

of this range lead to decreased laughter perception. These results were con�rmed on

samples from �ve di�erent male laughers evaluated by di�erent groups of raters. The

study was completed with a second experiment in which the fundamental frequency

of an eight-call human laugh was modi�ed to create samples with decreasing (from

220 Hz to 110 Hz), constant (165 Hz) and increasing (from 110 Hz to 220 Hz) f0
patterns. The laughs with decreasing f0 obtained more positive evaluations�and

closer to human laughs�on bipolar scales (happy-sad, pleasant-unpleasant, likeable-
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unlikeable, contagious-uncontagious) than the ascending f0 patterns and �nally the

constant f0.

In a second study [Kipper & Todt 2003], Kipper and Todt �rst investigated more

complex rhythmic patterns on six-call bouts and then combined variations of rhythm

with variations of pitch patterns. Laughs were evaluated on three bipolar scales as

well as through three questions rated on a �ve-point agreement-disagreement scale

(�This series makes me laugh/smile�, �The series sounds like laughter�, �The series

is funny�). Answers were grouped with principal component analysis. Regarding

the perception of laughs when only rhythmic patterns vary, the �rst principal com-

ponent grouped 5 questionnaire items (pleasant-unpleasant, interested-boring and

the three questions presented above). Laughs with constant, predictable (linearly

increasing or decreasing) or random rhythmic patterns received less positive scores

than laughs with complex yet structured patterns (alternation of long and short calls,

or long-short-short patterns, which they called �subphrases�). When varying both the

rhythm and the pitch pattern (constant, decreasing or forming two high-medium-low

�subphrases�), it was again the �subphrase� pattern that was the most positively eval-

uated, over samples in which the pitch was linearly modi�ed. The �subphrase� laugh

was even perceived as more pleasant and more happy than the corresponding human

laugh, but the human laugh was found as sounding more like laughter and making

people smile or laugh more. Again, the results were con�rmed by similar experiments

conducted with laughs from six additional laughers. As the in�uence of pitch was not

evaluated separately from the in�uence of rhythm in this study, it is impossible to

know whether the subphrase pattern for only one of the two features (rhythm, pitch)

would have been su�cient to achieve the same e�ect as the joint modi�cation of the

two. In addition, only particular laughs were included in the study (same number

of calls, same laughter vowel, etc.) and the majority of the laughs had unnatural

settings, so generalization of these results to all laughter patterns should not be done.

Nevertheless, these two studies from Kipper and Todt support the idea that (unpre-

dictable17) variations of features from one laughter syllable to the other are necessary

for the laugh to be perceived as natural.

3.1.7 Laughter types

3.1.7.1 Emotions and laughter

Laughter is highly variable and can occur in a range of social or emotional situa-

tions. Some researchers therefore suspected the existence of several types of laughter,

related to a�ective meanings. An experiment conducted by Devillers and Vidrascu

[Devillers & Vidrascu 2007] indeed showed that healthy humans are able to discrimi-

17For the listener! For the producer, these variations are probably unconsciously shaped. In these
experiments, laughs were modi�ed with prepared patterns, so the people who created the laughs
can predict these patterns, but they are surprising to the naive listener. Laughter synthesis systems
are thus also expected to produce patterns unpredictable for the listeners, even if those patterns are
totally deterministic when looking at the mathematical models.
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nate between di�erent laughter valences (positive, negative or ambiguous) with agree-

ment rates much higher than chance.

Kori asked an actor to produce 16 laughs covering a range of (hypothesized) types

[Kori 1987]. Ten naive listeners rated each laugh on twelve scales (e.g., happy, em-

barrassed, self-deprecating). He observed that only three of the laughs obtained

judgments corresponding to the emotion intended by the actor and concluded that

�the content of the laughter is not always unambiguously encoded in its vocal output�.

Factor analysis performed on the ratings revealed two main lines, which Kori identi-

�ed as pleasant-unpleasant and superior-inferior. He also investigated several features

that contribute to these perceptions and found that pleasant laughs generally had a

longer initial burst and a steeper decrease of energy along the bout than unpleasant

laughs, while laughs perceived as superior had higher fundamental frequencies, longer

durations between vowel onsets and softer decrease of energy than inferior laughs.

These �ndings must however be taken with care as they result from a study with

limited data (16 portrayed laughs) and ratings (ten subjects).

Szameitat et al. [Szameitat et al. 2009a] investigated the emotional question on

portrayed laughter covering four a�ective categories18: joyful, taunting, tickling and

schadenfreude (see Section 2.4). Naive participants listened to the laughs and assigned

an emotional label (four choices corresponding to the four emotional categories) to

each portrayed laugh. The overall recognition rate was 44%, signi�cantly higher than

chance level (25%). In a second experiment, using only 160 laughter sequences that

were classi�ed above chance level, naive participants were asked to give dimensional

ratings to each laugh on a 4-point scale. Four dimensions were assessed: the frequently

used valence, arousal and dominance of the speaker, as well as the valence towards

the receiver of the laugh (as it was hypothesized that all laughs would have positive

arousal and valence for the speaker, but would di�er in dominance�with tickling

being highly submissive while taunting should be highly dominant�and valence to-

wards the listener�with negative values for schadenfreude and particularly taunting).

Results indeed showed that the di�erent emotional categories are associated to di�er-

ent values on the dimensional scales. Nevertheless, this study focused on portrayed

laughter, and it is unclear whether these results can generalize to spontaneous laughs.

To verify the existence of laughter types within spontaneous laughs, experiments

have been conducted with the Belfast Story-Telling sessions (see Section 2.3.4). The

objective was to assess whether participants agree on laughter types when viewing

the laugh (sound+video) without any contextual information (i.e., the laugh was

segmented so that no linguistic cues before or after the laugh could be used). Two

di�erent annotation schemes were experimented [Hofmann et al. 2013]:

• UZH scheme: 13 emotions out of the 16 enjoyable emotions which triggered

laughter: amusement, relief, contentment, excitement, wonder, visual, schaden-

18Tickling has not been proven to be related to emotions�it could simply be a re�ex�but for
ease of reading the authors included it in the category of emotional laughter.
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freude, auditory, �ero, tactile, ecstasy, gustatory and olfactory19.

• QUB scheme: ten laughter categories: surprised, anxious, backchannel, giggling,

happy, hilarious, embarrassed, sad, polite and relieved.

An �other� tag was added to each annotation scheme, allowing annotators to indicate

if the laugh did not fall into any of the proposed categories. The experiment was run

online using Amazon Mechanical Turk [Amazon.com, Inc. 2014]. A large number of

annotations was obtained: 290 people each rated ten laughs with the UZH scheme and

149 participants rated the laughs with the QUB scheme. Results showed poor inter-

rater agreement. The best category, amusement, obtained only 30% of agreement.

This is contradicting Szameitat et al.'s conclusions [Szameitat et al. 2009a] but in

agreement with Kori's �ndings [Kori 1987]. Suarez et al. [Suarez et al. 2012] also

asked raters to assign categorical and dimensional (on the valence-arousal plane)

emotional labels to laughs. It was observed that people do not agree on emotional

labels when they only see and hear the laugh. These outcomes tend to indicate that

laughter alone does not convey unique emotional meanings, but is an ambiguous signal

that is interpreted individually by the listeners and with the help of context20. This

is in line with Edmonson's opinions [Edmonson 1987] as well as the a�ect-induction

hypothesis of Owren and Bachorowski [Owren & Bachorowski 2003], who concluded

that:

The critical point of departure lies in proposing that signals are used

not to convey information about underlying state, but rather to in�uence

perceived a�ect and associated behavior. (...) Thus, vocalizer behavior will

depend on a combination of a�ect state, nonconscious goals, and the rela-

tionship to the listener. That combination can potentially trigger any of a

variety of acoustically di�erentiated laughs, where the common element is

the likely e�ect that the sounds will have on the other party. We therefore

expect humans to produce laughter in virtually any situation where the ef-

fect of its a�ect-inducing features on perceivers can bene�t the vocalizer.

However, because the sounds are not primarily designed to convey cues

to a�ect and social goals, signaler state and laugh acoustics will not show

close, exclusive links.

(...) human listeners hearing others laugh are likely able to infer some-

thing about the vocalizer's state from a combination of their own a�ective

responses, an evaluation of contextual information, and past experience

with laughers.

(...) The a�ect-induction approach to laughter readily produces testable

predictions, for instance beginning with the premise that laugh acoustics

19For information the three enjoyable emotions that were not included as they did not conduct to
increased proportions of laughter in the initial experiment are: gratitude, naches and elevation.

20It has been shown by ILHAIRE partners, although not published by itself as it is rather obvious,
that people could identify the 16 emotions with acceptable accuracy when the laughs are presented
within context formed by sentences before and after.
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are not uniquely associated with particular nuances of laugher state, and

that listeners are requisitely unlikely to infer those nuances from laugh

sounds alone. (...) The ability that listeners have to infer vocalizer state

is expected to be critically dependent on contextual cues, including the

perceivers' own emotional states at the time, and their experience both

with speci�c vocalizers and laughers more generally. It follows that two

listeners hearing the same laughs could derive exactly opposite �meanings�

from the sounds and attribute quite di�erent emotions or intentions to the

laugher.

In consequence, it is now strongly suspected that laughter in isolation cannot

be reliably classi�ed into emotional types. Rather, context would be necessary to

interpret laughter meanings. This would move the emotional analysis of laughter

from semantics to the level of pragmatics.

3.1.7.2 Voiced and unvoiced laughter

Despite the inconclusive attempts to classify laughs in emotional types, there exist

other ways to characterize laughs. Laughs can be classi�ed based on their articula-

tory properties. One clear distinction is made between voiced and unvoiced laughs

[Laskowski & Burger 2007b]:

• Voiced laughs: The source of energy is indeed a quasi-periodic excitation for

at least part of the laugh bursts. In this category, we �nd song-like laughs

(corresponding to Figures 3.1 or 3.4), as well as most chuckles and giggles.

• Unvoiced laughs: The excitation is fricative, there is no voicing. This category

groups the open-mouth laughs sounding like panting, and the closed-mouth

grunts and nasal snorts. These closed-mouth sounds can appear when trying to

retain laughter [De Benedictis 2007], voluntary modifying the laughter sound,

often accompanied by a hand movement to cover the mouth. The onset of the

laughter episode can in this case be a strong inhalation instead of an exhalation.

Some of these unvoiced laughs do not present the rhythmic structure described

in section 3.1.1, but are more irregular, as illustrated in Figure 3.5, displaying

the waveform of a unvoiced nasal laughter bout. Bursts of energy can still be

noticed.

The distinction between voiced and unvoiced laughs was �rst intro-

duced by Hall and Alli« [Hall & Alli« 1897]. Grammer and Eibl-Eibesfeldt

[Grammer & Eibl-Eibesfeldt 1990] showed that these types of laughs have di�erent

e�ects: for instance male subjects were more interested in seeing again a female par-

ticipant they had just met in the framework of the experiment if she had produced

voiced laughter. The di�erent e�ects of voiced and unvoiced laughs was further high-

lighted by Bachorowski and Owren [Bachorowski & Owren 2001] who revealed that

voiced laughter yields signi�cantly more positive emotional responses in listeners than
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Figure 3.4: A stereotypical voiced laughter episode. Top: waveform; middle: f0;

bottom: spectrogram.

unvoiced laughter. Further splitting the unvoiced category in two, Bachorowski et al.

[Bachorowski et al. 2001] distinguished the following three categories21:

• voiced, song-like laughs: laughs that are mainly composed of voiced syllables,

including stereotypical episodes with vowel-like sounds, giggles and chuckles.

• unvoiced, snort-like laughs: laughs that are mainly unvoiced and composed of

sounds resulting from turbulences in the nasal cavity.

• unvoiced, grunt-like laughs: mainly unvoiced laughs, with resonances in the oral

or laryngeal cavities.

This way of categorizing laughs is appealing, as it is based on articulatory properties

of the laughs (objective) rather than perceived emotional states (subjective). Ba-

chorowski et al. have indeed obtained high agreement scores between two annotators

classifying laughs among the proposed three categories. As already stated, voiced and

unvoiced laughs have also been shown to have di�erent functions in human communi-

cation, hence the distinction is not only convenient (relying on objective parameters)

but also meaningful. We should however note that the distinction is not as objec-

tive as it might look at �rst sight: where is the boundary between �mainly voiced�

and �mainly unvoiced� laughs? This criterion is provided neither by Grammer and

Eibl-Eibesfeldt nor by Bachorowski et al., and the limit has been placed at di�erent

values by some authors. For example Petridis and colleagues consider laughter to

be voiced if it contains at least 15% of voiced frames in [Petridis et al. 2013b], but

at least 20% of voiced frames in [Petridis & Pantic 2011], while Truong and Trouvain

[Truong & Trouvain 2012a] consider a laugh as voiced if it contains at least one voiced

21Examples are provided on the web: http://www.psy.vanderbilt.edu/faculty/bachorowski/

laugh.htm, last consulted on February 18, 2014.

http://www.psy.vanderbilt.edu/faculty/bachorowski/laugh.htm
http://www.psy.vanderbilt.edu/faculty/bachorowski/laugh.htm
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Figure 3.5: Example of an unvoiced laughter bout. Top: waveform; bottom: spectro-

gram.

frame. Laskoswki and Burger [Laskowski & Burger 2007b] also propose to label as a

voiced laugh any laugh that includes at least one voiced call22 and report quite low

agreement rates between voicing annotations in laughs (between 88% and 91% for two

annotators), con�rming that the distinction between voiced and unvoiced laughter is

not objective. One possible explanation for the low agreement is the fact that vocal

folds are more abducted in laughter [Bickley & Hunnicutt 1992] and do not close as

decisively in laughter as in speech [Chafe 2007], making voicing more breathy and

less clear in laughter. This is con�rmed by Esling [Esling 2007] who observed the

laryngeal states during laughter and concluded that the conditions are met to obtain

sounds that are at the same time high-pitched and breathy.

3.1.7.3 Social functions

Another distinction that is made between laughs is related to their functions. In

ancient times, lead philosophers Plato and Aristotle considered laughter, while pleas-

ant, as a malicious response to the ignorance of others, and hence educated peo-

ple should refrain from manifesting such hateful signals [Green�eld 2002]. Laugh-

ter is nowadays known to be a signal of amusement, but also a conversational

and polite signal to indicate that we are following the discussion. While the for-

mer can occur when people are alone, the latter only happens when there is a so-

22Without giving subsequent de�nition of when a call is considered as voiced.
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cial context (starting from the mere presence of another person, to group discus-

sions on the other end). In consequence, researchers distinguish between hilarious�

as a response to an amusing stimulus�and social/conversational�motivated by

social behavior�laughter [Foot & Chapman 1976, Glenn 2003, Vettin & Todt 2004,

McKeown et al. 2013]. Vettin and Todt [Vettin & Todt 2004] realized that people

frequently laugh after their own utterances and suggest that it serves to mitigate the

meaning of the preceding utterance, especially if the conversational partner did not

react in the expected way. Glenn [Glenn 2003] also noticed this phenomenon, but

speci�es that it does not happen frequently in groups of three or more, as it could

be considered as self-praise, while it is socially acceptable when there is only one

conversational partner23. Trouvain and Truong [Trouvain & Truong 2013] found that

half of the overlapping laughs in dyadic conversations were initiated by the speaker.

These laughs are thus inherently social, as are many laughs in natural conversations,

that occur after regular statements rather than humorous comments [Provine 1993].

Glenn [Glenn 2003] makes several interesting suggestions about conversational

laughs. Among others, his analyses of �rst laughs suggest that �rst laugh can be

equivocal (similar to a cough or deep breathing), to enable the speaker either to

retroactively display it as non-laughter or turn it into more obvious laugh depend-

ing on others' reactions (laughing or not). Also, he presents some examples where

laughter can be considered as an intermediate answer between total acceptation of

the previous comment and resistance towards these comments: the features of the

laugh (for example, closed mouth while others are laughing out loud with the mouth

open) can indeed indicate some resistance.

Relying on the distinction between hilarious and social laughter, two dimen-

sions for characterizing laughs are currently investigated by the ILHAIRE Con-

sortium [Hofmann et al. 2013]: intensity and regulation. The notion of intensity

seems so straightforward that many authors (e.g., [Edmonson 1987, Glenn 2003,

Martin & Lefcourt 2004, Trouvain & Schröder 2004]) use terms that refer to it with-

out �nding necessary to de�ne what this notion implies. This notion is actually quite

old. Plato already referred to �violent�24 laughter (see quote in [Chafe 2007], p. 140),

Darwin also refers to this notion [Darwin 1872], with the following statements:

A graduated series can be followed from violent to moderate laughter,

to a broad smile, to a gentle smile, and to the expression of mere cheerful-

23If you are also wondering in which situations laughing after her/his own statements can be
socially accepted (not considered as self-praise), Glenn identi�ed the following situations: after a
self-deprecating comment (laughing is then encouraging others to laugh at the speaker himself,
which is opposite to self-praise), when referring to some laughable comment that was actually made
by someone else (retelling a story, reading, etc. then the credit of the laughable comment is attributed
to the person who produced it rather than the speaker who laughed �rst about it), and to mitigate
a previous comment, indicating that it was not uttered with a serious aim and in consequence does
not require a serious answer.

24Although here the meaning of the term �violent� is debatable, as Plato possibly wanted to
designate the negative, malicious e�ect of laughter with this word. Furthermore there may be
nuances that were incorrectly translated.
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ness. During excessive laughter the whole body is often thrown backward

and shakes, or is almost convulsed; the respiration is much disturbed; the

head and face become gorged with blood, with the veins distended; and the

orbicular muscles are spasmodically contracted in order to protect the eyes.

Tears are freely shed.

(...) Excessive laughter, as before remarked, graduates into moderate

laughter. In this latter case the muscles round the eyes are much less con-

tracted, and there is little or no frowning. Between a gentle laugh and a

broad smile there is hardly any di�erence, except that in smiling no reit-

erated sound is uttered, though a single rather strong expiration, or slight

noise�a rudiment of a laugh�may often be heard at the commencement

of a smile. (...) We thus see that no abrupt line of demarcation can

be drawn between the movement of the features during the most violent

laughter and a very faint smile.

If we try to put words on this obvious notion used by virtually everybody, intensity is

used to characterize the �arousal� of the laugher, which is related to a gradual increase

of the laughter markers used [Ruch 1993]: starting from a simple smile�Action Unit

(AU) 12 (see [Ekman et al. 2002] for more information about Action Units)�at low

intensity, then involving audio as well (at �rst with closed mouth), then adding and

extending facial activities (cheek raises, AU6, on top of AU12 and AU25, mouth open-

ing) in combination with open-mouth sounds [Ruch & Ekman 2001], �nally propagat-

ing to the whole body (shoulder shaking, trunk bending, throwing back the head) and

lacrimation. Nevertheless, as people have di�erent laughing styles, laughter intensity

is encoded di�erently by di�erent laughers [Edmonson 1987].

Laughter is not an uncontrollable reaction [Glenn 2003]. Regulation indicates

whether the laugh is totally spontaneous (resulting from amusement only) or modi�ed

(consciously or not) by some social context: in up-regulated laughter, the laugher is

trying to appear more amused than (s)he actually is, while it is the opposite in

down-regulated laughter [Hofmann et al. 2013]. Both behaviors can be motivated by

social etiquette. Up-regulated laughs include fake laughs, i.e. the laugher is actually

not amused and is laughing to pretend (s)he is (consciously or not). The distinction

between fake and spontaneous laugh is indeed well established [Ruch & Ekman 2001],

and it has been shown that they are separate processes: some people su�ering from

brain disorders are not able to voluntary move their abdomen, while they would

exhibit large abdominal movements during spontaneous laughter [Bright et al. 1986].

It is remarkable to note that the notion of regulation had already been pointed out

by Darwin [Darwin 1872], who wrote the following:

Laughter is suppressed by the �rm contraction of the orbicular muscles

of the mouth, which prevents the great zygomatic and other muscles from

drawing the lips backwards and upwards. The lower lip is also sometimes

held by the teeth (...) Laughter is frequently employed in a forced manner

to conceal or mask some other state of mind, even anger.
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The existence of hilarious and social laughs is somehow con�rmed by Tanaka

and Campbell [Tanaka & Campbell 2011], who proposed �ve categories to annotate

laughs: mirthful, polite, embarrassment, derision and other. Eighteen people were

invited to assign one of these labels to 876 laughs uttered by two male speakers. The

agreement between raters was fair (Cohen's [Cohen 1960] κ = 37%). The authors

noticed that embarrassment was hard to acoustically distinguish from polite laughs

and grouped these categories. As �derision� and �other� labels had barely been used,

this resulted in two remaining categories: mirthful and polite. According to their

analysis of the laughs from one of the participants, polite laughs rarely include chuckles

and never contain ingressive calls. These �ndings obviously need to be taken with

care until they are con�rmed (or not) on a multi-speaker corpus.

Coming back to the notion of intensity, its relevance for characterizing laughter is

further stressed by the following two experiments. Firstly, from annotation of laughs

on the Mechanical Turk, a high correlation between ratings of amusement (how hilari-

ous the laugh is) and intensity has been observed [Hofmann et al. 2013]. Secondly�in

what has been called the �ambiguity� experiment [Hofmann et al. 2013]�it has been

shown that a high intensity laugh in a conversation can be replaced by another high

intensity laugh without modifying the naturalness of the sequence, as perceived by

naive observers, while this does not hold when low intensity laughs are involved.

Intensity is thus, as expected, a dimension that makes sense to laypersons, that is

related to other perceptual characteristics (amusement) and that can be used to dis-

criminate laughs having di�erent properties (as high- and low-intensity laughs are not

interchangeable).

To avoid confusion with acoustic intensity (amplitude, loudness, etc.), from now

on we will use the term arousal to refer to the intensity of the emotional state leading

to laughter. Arousal is frequently used to characterize a�ects, for example in the

two-dimensional valence-arousal plane.

3.1.7.4 Lexical approach

To conclude this section, it is interesting to look at the lexical study reported in

[Hofmann et al. 2013] to �nd and cluster terms that are used to characterize laughter.

Large quantities of text (�ction, non-�ction, newspaper articles, transcriptions of

spoken language, etc.) in the German language were screened to �nd utterances of

the word �laugh� (or variations of it). Almost 270,000 instances were found, and

for each of them all surrounding terms (within ±5 words of �laugh�) were analyzed.

Terms that speci�ed the way the person was laughing were included in the laughter

description lexicon. A total of 1148 such attributes were found. The words were then

grouped in �descriptive� categories. Six major categories of description were identi�ed

[Hofmann et al. 2013]:

1. Basic parameters: adjectives describing laughter with parameters that are com-

mon to other signals, for example its duration, time-course, steepness of the

onset, etc.
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2. How it sounds.

3. How it looks.

4. How intense the laugh is.

5. Its uniqueness: adjectives relating to how the laugh re�ects the identity of the

laugher (e.g., �distinctive�, �inimitable�).

6. Regulation: whether and how the laugh is regulated or modi�ed.

Emotional qualities only formed a minor category, with less terms relating to it than

the major six categories. Although the approach is di�erent (analyzing text instead of

actual laughter utterances), it is striking that conclusions are similar to previous works

on laughter description, with doubts on the appropriateness of emotional categories

at the pro�t of dimensions like regulation and arousal, on top of basic, objective

parameters (duration, composing sounds, etc.).

3.1.8 Episode characteristics and relation with laughter types

In this section, we would like to brie�y report about characteristics of laughter

episodes and some research works that have demonstrated that di�erent categories

of laughter have di�erent duration distributions. As could be expected, there is a

large variability in laughter duration as laughter can be as short as one single syllable

and as long as unstoppable giggles. For example, in the AVLC database, the shortest

laugh covers only 260 ms while the longest giggle is lasting 82 s [Urbain et al. 2010a].

The vast majority of laughs are however shorter than �ve seconds (average: 3.5 s;

std: 5.3 s; median: 2.2 s), in agreement with Ruch's statement that �single acts of

laughter seldomly exceed seven seconds�25[Ruch 1993].

Devillers and Vidrascu [Devillers & Vidrascu 2007] observed that laughs rated as

positive tend to be longer, have higher energy and more voiced frames than negative

laughs.

It is also interesting to note that acted laughs tend to be longer than spontaneous

laughs: the participants of the AVLaughterCycle database produced acted laughs with

an average duration of 7.7 s (median: 5.26 s; std: 5.92 s). The di�erence between the

average duration of spontaneous and acted laughs was found to be highly signi�cant,

as explained in Section 2.5.6.3. While the durations of acted laughs are not totally

uncommon in spontaneous laughs, the longer durations of acted laughs are betraying

the stereotypical idea people have about laughter: when someone is asked to fake

laughter, (s)he will most likely try to imitate some long, high-arousal, melodious

laugh, rather than short and lower-arousal utterances that are actually more frequent

in spontaneous behaviors.

25Ruch also considered the visual contributions of laughter, which start before and end after the
audio outcomes considered in analyzing the AVLaughterCycle corpus, so it is not surprising that
Ruch found slightly higher durations.
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In addition, Vettin and Todt [Vettin & Todt 2004] found that conversational

laughs are shorter than humorous laughs. For example, in the ICSI Meeting Cor-

pus (which consists of conversation recordings), the average laughter duration is

1.62 s with a standard deviation (std) of 1.24 s [Knox & Mirghafori 2007]. Glenn

[Glenn 2003] claims that subtle conversational laughs are frequently neglected in stud-

ies describing laughter, who mostly concentrate on intense episodes.

To conclude this section, let us consider contagion e�ects on laughter properties.

Truong and Trouvain [Truong & Trouvain 2012b] showed that overlapping laughs

(i.e., when several people are laughing at the same time) have on average a longer

duration, a higher average energy, a higher maximum energy, a higher average f0 and

a higher number of voiced frames than non-shared laughs (when only one person is

laughing). Interestingly, these e�ects are growing with the number of participants

laughing (at least partially26) simultaneously: the more laughing people, the longer

the laughs, the higher the average pitch, etc.

3.1.9 Summary

In this overview of existing works for describing laughter, we have �rst presented a ter-

minology that can be generalized to any laugh: episodes, bouts and syllables. Then,

we have reviewed the analyses of audio laughter properties that have been investi-

gated so far, which mainly concern the duration of suprasegmental units (syllables,

bouts, episodes), the fundamental frequency (both isolated values and evolution over

the course of syllables or bouts) and the position of formants. The main conclusion is

that laughter provokes a large variability of duration and fundamental frequency val-

ues and that no general pattern has been identi�ed so far. Finally, we have seen that,

perhaps surprisingly, there is no system of laughter categories that receives overall

agreement. The existence of emotional categories of laughter has been longly sup-

posed, but recent empirical evidence stems for the opposite. Additional research is

needed to understand exactly what type of information isolated laughter can reliably

convey, and which contextual information is possibly required to disambiguate be-

tween emotional, a�ective or functional laughter types. The current trend is to come

back to simpler systems: voiced-unvoiced (although the boundary between these cat-

egories has not been clearly established), conversational-hilarious (again, some laughs

cannot be unequivocally placed in these categories) or using dimensional systems like

arousal and regulation (the latter dimension enabling to encode social/conversational

e�ects on laughter).

In the remainder of this dissertation, we will focus on acoustic properties of laugh-

ter episodes, without considering their context. In other words, we will not try to

26Laughs are considered as overlapping as soon as there is one overlapping frame, they do not
have to start and end at the same time, or to reach a certain percentage of simultaneous frames.
Actually, Truong and Trouvain have found that people join in laughing on average 500 ms after the
beginning of the �rst laugh. This is an interesting �nding for building laughing interactive systems,
as it means that a few hundred milliseconds are available for computations (laughter detection and
decision about joining in laughter).
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explain why particular acoustic, phonetic or arousal patterns appear in di�erent situ-

ations, nor which e�ects they can have. We will rather attempt to infer these patterns

from laughter episodes (see following sections and Chapter 4) and synthesize laughs

that correspond to these patterns (see Chapter 5). As already explained, the inter-

pretation of laughs within their context and the decision to synthesize a laugh with

given properties (and expected e�ects) are, in human-computer interfaces, devoted to

Natural Language Processing and Dialog Management [Niewiadomski et al. 2013a],

which goes beyond the scope of the present work.

3.2 Phonetic transcriptions

We strongly believe that both automatic laughter recognition/characterization and

synthesis can bene�t from a detailed phonetic transcription of laughter. On the recog-

nition side, transcriptions can help classifying/clustering laughs, on a simple phonetic

basis or via features easily computed once the phonetic segmentation is available

(syllabic rhythm, exhalation and inhalation phases, acoustic evolution over laughter

syllables or bouts, etc.). On the synthesis side, transcriptions enable approaches sim-

ilar to those used in speech synthesis: training a system with the individual phonetic

units and then synthesizing any consistent phonetic sequence. This is the approach

used in this work, as will be presented in Chapter 5.

As we have seen in Section 3.1.5, several researchers (e.g., [Je�erson 1985,

Glenn 2003, Pompino-Marschall et al. 2007, Tanaka & Campbell 2011]) have ap-

proached what we are looking for, but detailed phonetic transcriptions�timely aligned

to available acoustic signals�of a large corpus of spontaneous laughs were lacking,

as well as a standard system indicating how to do such annotations. In consequence,

we decided to propose a way to phonetically transcribe laughs and publicly released

the obtained annotations in parallel to the audio signals. The methods are described

below (Section 3.2.1), as well as outcomes resulting from analyzing the phonetic tran-

scriptions (Sections 3.2.2 and 3.2.3). These research e�orts have been presented in

[Urbain & Dutoit 2011].

3.2.1 Transcriptions

The phonetic transcriptions were made on laughs from the AVLaughterCycle database

[Urbain et al. 2010a] presented in Section 2.5. Laughs had been segmented on the

basis of the audiovisual signal. In total, 1021 laughs have been segmented, for a total

of one hour of spontaneous, hilarious laughs. Note that only audio was used for the

phonetic transcriptions, while laughter segmentation had been done on the basis of

both audio and video.

One annotator labeled the 1021 laughs in phones in the Praat software

[Boersma & Weenink 2011]. Two annotation tracks have been used (see Figure 3.6).

The �rst is used to transcribe the phones, according to the phonetic symbols de�ned

in the IPA [International Phonetic Association 1999]. Diacritics have also been used
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Figure 3.6: Laughter annotation in Praat.

to label voice quality (modal, creaky, breathy) or unusual ways of pronouncing a

given phone (e.g., a voiceless vowel or a nasalized plosive), thereby leading to a nar-

row phonetic transcription of the database. Several sounds encountered in our data

could not be found in the extended International Phonetic Alphabet. To describe

them, similarly to some previous works ([Bachorowski et al. 2001, Chafe 2007]) but

unlike others (e.g., [Edmonson 1987]), the following labels have been added: hum,

cackle, groan, snore, vocal fry, grunt and nareal fricatives27. Nareal fricatives are

powerful (hence audible) streams of air traveling through the nostrils and actu-

ally have a phonetic symbol in the �extended IPA symbols for disordered speech�

[International Clinical Phonetics and Linguistics Association (ICPLA) 2008]: � ..
ñ�.

Since the respiratory dynamics are important to process laughter and since the

acoustics of laughter are di�erent when inhaling and exhaling, the air�ow phases

are transcribed on the second annotation track. The air�ow phases were segmented

using only the audio. In the end, the proposed system is relatively similar to

the one used by Je�erson [Je�erson 1985], with an increased range of transcribed

sounds/phones, detailed timing information (the phone boundaries are accurately po-

sitioned) but no information on the �prosody� of laughter (pitch, energy). This infor-

mation on prosody is here considered separate from the actual phonetic transcription.

Pitch and energy trajectories could however be added as additional tracks. Stan-

dard sound analysis programs like Praat [Boersma & Weenink 2011] and Wavesurfer

[Sjölander & Beskow 2011] for instance can provide tracks with editable automatic

estimations of such features.

Unsurprisingly, we have noticed that the phones constituting a laugh are often

perceived di�erently when listening to the laugh as a whole than when analyzing each

27Examples of the introduced phones are available on http://www.tcts.fpms.ac.be/~urbain/.

http://www.tcts.fpms.ac.be/~urbain/
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of its phones separately. As a matter of fact, although laughter episodes exhibit no

strong semantic contrast (as opposed to words), they still obey strong phonotactic

constraints (e.g. we will have the impression of hearing hahahaha when actually

listening to haha-aha because the �rst instance is more likely to happen). In addition,

psychoacoustic e�ects are likely to in�uence our perception of continuous laughter,

given its fast succession of sounds that can be highly contrasted in amplitude. In this

work, we annotated laughter phones as (it seemed to us that) they had been produced,

rather than how they actually sounded, following a long tradition of articulatory

phonetic transcription.

3.2.2 Laughter phonetic description

Out of the initial 1021 laughs, 20 laughs involving speech and 4 short laughs labeled as

only silence (i.e., they only had visual contributions) were discarded from our phonetic

analysis, leaving 997 acoustic laughs. Excluding the silences outside acoustic laughs

(as the laughs had been segmented with the help of visual cues, most of the times

there are silences before the �rst phone and after the last phone), 17,202 phones have

been annotated: 15,825 in exhalation phases and 1,377 in inhalation phases. If we

take diacritics into account28, 196 phonetic labels appear in the database: 142 during

exhalations and 54 during inhalations29. This reinforces the idea that laughter is

extremely variable.

For the sake of simplicity, the diacritics will not be considered here. This reduces

the number of labels to 124 (88 during exhalations, 36 during inhalations). The most

frequent phonetic labels in exhalation and inhalation phases are respectively listed in

Tables 3.1 and 3.2, with their average duration.

The outcomes of our annotation are mostly in line with previous �ndings

([Bachorowski et al. 2001, Ruch & Ekman 2001, Szameitat et al. 2009b]). During ex-

halation phases, if we exclude silences that are extremely frequent inside laughs, we

obtained a large number of h-like phones (h, x, H, è), and voiced parts are mainly cen-

tral vowels (@, 5, 8, 0). As stated in [Edmonson 1987] and [Chafe 2007], even though

it has been contested in [Ruch & Ekman 2001], we found that voiced segments can

be abruptly ended by a glottal stop (P).

We also found a lot of non-stereotypical laughter sounds. Nareal fricatives (.
.
ñ) are

frequently used, mostly in short laughs with a closed mouth, in which a voiceless air-

�ow going through the nose accompanies a smile. In addition, our database presents

occurrences of non central vowels (I, E, 2), which were not found in Bachorowski et al.'s

formant frequency analyses [Bachorowski et al. 2001]. Our data also contain numer-

ous cackles, hum-like sounds (close to vowels, but with a closed mouth), and grunts.

More surprising is the presence of a large number of dental clicks (|) and plosives

(t, k) that generally take place at the beginning of sudden exhalation phases. The

28The following diacritics, showed here on the letter e, have been used: ẽ (nasalized), e
˜

(creaky),

e
¨

(breathy), e̊ (voiceless), é (high tone).
29The same labels can appear in exhalation and inhalation parts. If so, they are here counted

twice (one time for inhalation, one time for exhalation) in the total of 196 labels.
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Table 3.1: Most frequent phonetic labels in laughter exhalation phases.
Label Occurrences Average duration (std)

silence 4886 308 ms (427 ms)

h 2723 121 ms (68 ms)

@ 1422 73 ms (44 ms)

5 1373 82 ms (47 ms)
..
ñ 839 210 ms (134 ms)

I 741 77 ms (39 ms)

cackle 704 34 ms (24 ms)

hum 639 77 ms (42 ms)

E 370 76 ms (35 ms)

P 269 27 ms (16 ms)

| 214 31 ms (32 ms)

x 176 228 ms (170 ms)

2 160 94 ms (66 ms)

è 152 175 ms (85 ms)

H 135 175 ms (114 ms)

8 109 116 ms (58 ms)

k 102 48 ms (51 ms)

t 81 73 ms (35 ms)

grunt 81 126 ms (104 ms)

0 79 93 ms (90 ms)

Table 3.2: Most frequent phonetic labels in laughter inhalation phases.
Label Occurrences Average duration (std)

h 640 305 ms (133 ms)

@ 172 95 ms (59 ms)
..
ñ 166 346 ms (170 ms)

I 108 97 ms (64 ms)

H 38 226 ms (121 ms)

s 38 340 ms (141 ms)

è 24 340 ms (154 ms)

t 23 49 ms (32 ms)

i 23 148 ms (58 ms)

E 17 94 ms (39 ms)
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Table 3.3: Number of laughs with a given number of exhalation and inhalation phases.

N
Number of laughs Number of laughs

having N exhalations having N inhalations

0 1 462

1 733 353

2 156 105

3 54 39

4 26 18

≥ 5 27 20

presence of these phones in laughter has been later con�rmed in [Wagner et al. 2013]

(see Section 4.1.2.3).

The duration of exhalation phones varies largely with the nature of these phones:

as expected cackles, clicks and plosives (t, k) are really short, while nareal fricatives

and fricatives (h, x, H, è) are much longer. If we combine the average durations

of phones that usually form voiced laughter syllables, we get back to the standard

syllable duration of around 210 ms, as �h� has an average duration of 121 ms while

�vowels� have average durations in the range [73-116 ms].

During inhalation phases, the most used phones are similar. Deep breath sounds

(h,
..
ñ, H) are even more dominant. It can also be noticed that, except for t, the

average duration of a phone is longer during inhalation phases than in exhalation

phases. Student's t-tests show that the average duration in inhalation and exhalation

is signi�cantly di�erent at a 99% con�dence level (p < 0.01) for all the phones that

appear in both Tables 3.1 and 3.2 (h, @,
..
ñ, I, H and è) except for t (no di�erence) and

E (p = 0.22). Over the whole database, the average phone duration during exhalation

and inhalation phases is respectively 165 ms (std: 266 ms) and 245 ms (std: 159 ms).

The di�erence is signi�cant at a 99% con�dence level.

Regarding the air�ow phases, 1551 exhalation phases and 943 inhalation phases

have been annotated. The average duration of exhalation and inhalation phases is

respectively 1.69 s (std: 1.52 s) and 0.36 s (std: 0.15 s). No correlation has been

found between the duration of an exhalation phase and the duration of its surrounding

inhalations (correlations < 0.1). Table 3.3 shows the number of laughs presenting a

given number of exhalation and inhalation phases.

Most of the laughs have only one bout (i.e., exhalation part separated by inhala-

tions). The number of inhalation phases is lower than the number of exhalations,

meaning that most laughs are not concluded by an audible inhalation. In fact, only

38% of the laughs are ended by an audible inhalation.

3.2.3 Interpersonal di�erences

We have already stated that the AVLaughterCycle database as a whole contains a

wide range of phones, and that these phones have variable durations, in�uenced by
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the air�ow direction. We will now present some �gures corroborating the impression

that laughter exhibits individual patterns. We will see that there are more individual

di�erences in the sounds produced than in the duration of the segments. Since the

numbers of subjects and phones are large, we cannot give an exhaustive analysis here

and will concentrate on a few examples.

3.2.3.1 Phones used

Subjects used di�erent sets of phones while laughing. The number of phones used

per laugher ranges from 2 to 59, with a mean (and median) of 32 (std: 14.4). There

are large inter-individual di�erences in the choice of phones. Most laughers are quite

consistent from one laugh to another, in accordance to Chafe's statement that users

have their �favorite laugh� [Chafe 2007]. Figure 3.7 displays, for the �ve subjects

who laughed the most and the most used seven exhalation labels (except silence), the

individual phone probabilities (i.e., the number of instances of phone X by subject Y,

divided by the total number of phones produced by Y). We can see that subject #6

typically uses h and 5. His laugh is quite stereotypical. This is not the case for other

subjects. Subject #20 produces much more nasal sounds (.
.
ñ and hum) than others.

The choice of the vowel is another di�erence between subjects: some laughers use up

to three times more @ than 5, others do the opposite.

Figure 3.7: Probabilities of the most used phones for the �ve subjects who laughed

the most.

There are numerous other proofs of individual di�erences in the produced sounds
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that do not appear on the graph. For example, subject #14 is the only one to make

a broad use of the phone m, which is present 23 times in 48 laughs (generally at the

end), while there are only 15 other instances of this phone, produced by 11 di�erent

subjects, in the whole database. Subject #14 is also responsible for 87 of the 109

instances of the phone 8.

3.2.3.2 Phone and air�ow phases duration

The average duration of exhalation phones is similar for all subjects: slightly under

100 ms for voiced phones, a bit larger for h-like sounds and nareal fricatives. There

is a slightly larger individual variation for inhalation phones. Figure 3.8 exhibits the

average duration of the most frequent three inhalation phones for all the subjects, with

their corresponding standard deviations (stds). No bar means that the subject did

not produce the corresponding phone. We can see that there are some extreme values

for all three phones, showing some individual in�uence over the length of inhalation

phones.

Figure 3.8: Average duration of the most frequent inhalation phones, for all the

subjects.

Figure 3.9 shows the average durations (and standard deviations) of exhalation

parts for all the subjects. We can notice some individual variability, but the large

standard deviations prevent us from drawing strong conclusions. The average inhala-

tion durations are similar for all the subjects. The large variability of the laughter

phone and bout durations is in line with the �ndings in [Bachorowski et al. 2001].
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Figure 3.9: Average duration of exhalation phases, for all the subjects.

The laughter �vowels� have been observed to be used mostly in sequences of the

same vowel by the AVLC participants. This is illustrated in Table 3.4 which presents

the number of occurrences of three-phone sequences beginning with a vowel, followed

by a fricative or silence and ending with a vowel. It appears clearly that, although

transitions from one vowel to another are allowed, it is much more likely that sequences

of constant vowels appear in laughter bouts.

3.3 Overall arousal

As we have seen the notion of laughter arousal reaches consensus among scholars.

However, to the best of our knowledge, no laughter database had been annotated

in arousal. In this section we will describe the works that we have done to obtain

overall arousal values for all the laughs in the AVLaughterCycle database. These

e�orts were conducted in collaboration with TELECOM-ParisTech. The aims were

on one side to obtain arousal annotations for the whole corpus and on the other
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Table 3.4: Number of occurrences in the AVLC database of three-phone sequences

beginning with a vowel, followed by silence or a fricative and ending with a vowel.
Third phone

a cackle @ I o E

F
ir
st

p
h
on
e

a 802 69 131 43 22 21

cackle 23 331 59 24 1 16

@ 94 89 468 75 23 42

I 29 42 66 339 9 29

o 17 9 31 6 102 2

E 22 33 54 41 4 110

side to identify which audio and visual cues contribute to the perception of laughter

arousal. We will however only report about the audio conclusions in this section.

The whole study, including visual contributions of laughter arousal, was presented in

[Niewiadomski et al. 2012]. The audio results presented here are nevertheless inte-

grating the latest arousal ratings (which were not included in the paper).

This section is organized as follows. The method for obtaining arousal annotations

is described in Section 3.3.1. Acoustic features correlated with arousal are investigated

in Section 3.3.2. �nally, Section 3.3.2 is related measures that have been taken aside

of these arousal annotations to examine acoustic di�erences between inhalation and

exhalations laughter phases.

3.3.1 Arousal annotation

The annotation in arousal was realized through a web application. Participants were

invited to the website where they could watch (audio+video) one laugh at a time

and rate the arousal of the laugh on a �ve-point scale (1-low arousal; 5-high arousal).

Laughs were randomly presented. Participants could watch one laugh as many times

as they wanted before giving it an arousal score. But once they had rated a laugh,

they could not come back and change its rating. There was no limit to the test:

participants were explained that they could stop annotating whenever they wanted

to, but a new laughter sample would always be presented to them after they had rated

one laugh.

The experiment was stopped once we had obtained at least six annotations for each

laugh of the AVLaughterCycle database. In total, we received 7,272 ratings from 90

participants, including 45 males and 42 females (three participants did not indicate

their gender), with an average age of 33.6 (std: 12.6; three participants did not

indicate their age). The overall agreement between the raters was fair: Krippendor�'s

alpha [Krippendor� 2007] was .67. The distribution of ratings is displayed on Figure

3.10. The histogram of the median arousal score of each laugh is shown on Figure

3.11. It can be seen that the distribution of arousal scores is not uniform. Most of

the episodes have been rated as produced with low arousal. The maximal arousal
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score (5) has only been used 249 times (3% of the ratings) and only 16 laughs have a

maximal median arousal value.

Figure 3.10: Laughter arousal annotations histogram.

It is also interesting to note that after rating laughs, several participants told

us that they tended to judge arousal relatively to the laugher's style. As there

are 24 laughers in the AVLaughterCycle database, raters who rated a lot of laughs

tended to view the same laughers over and over again. They informed us that they

got acquainted to individual laughing styles and rated laughter arousal accordingly.

This is an important remark for interactive systems: as pointed out by Edmonson

[Edmonson 1987], arousal is encoded di�erently by di�erent laughers and is perceived

relatively to the laugher's style. Interactive systems would thus bene�t from modeling

individual laughing styles and computing arousal in a relative rather than an absolute

manner.

3.3.2 Features in�uencing the perception of laughter arousal

To investigate the audio features that in�uence the perception of arousal, audio fea-

tures were extracted from each laugh. The features can be divided into three main

categories: spectral low-level descriptors, measures of the noise level and prosody-

related low-level descriptors. Spectral low-level descriptors are:

• Twelve Mel-Frequency Cepstral Coe�cients (MFCCs), their �rst (denoted ∆)

and second derivatives (∆∆).

• Spectral centroid, spectral spread, spectral variation, spectral �ux, spectral de-

crease [Peeters 2004].
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Figure 3.11: Number of laughter episodes for each degree of arousal (median).

• Twelve chroma features [Ellis & Poliner 2007].

The amount of noise is characterized with the following features:

• Chirp group delay [Drugman et al. 2011].

• Four values of Harmonic to Noise Ratios (HNRs) corresponding to the frequency

bands 0-500 Hz, 0-1500 Hz, 0-2500 Hz and 0-3500 Hz [Drugman et al. 2013].

• Zero-Crossing Rate (ZCR).

• Four values of spectral �atness corresponding to the frequency bands 250-500

Hz, 500-1000 Hz, 1000-2000 Hz and 2000-4000 Hz [Peeters 2004].

The prosody-related low-level descriptors include:

• Measures of energy: loudness [Peeters 2004], Root Mean Square (RMS) energy

and MFCC0 (with its �rst and second order derivatives).

• f0 computed with the Summation of Residual Harmonics (SRH) method

[Drugman & Alwan 2011], as well as the value of the maximum SRH peak.

• The four values provided by the Snack ESPS f0 estimation algorithm�

implementing the RAPT method [Talkin 1995]�namely the estimated pitch,

probability of voicing, local RMS measurement, and the peak normalized cross-

correlation.



78 Chapter 3. Hierarchical description of acoustic laughter episodes

• The frequency and bandwidth of the �rst four formants, computed with Snack

[Sjölander 2004].

All these 82 low-level acoustic descriptors were extracted from the 16 kHz audio

signals, using frames of 512 samples (32 ms) shifted by 160 samples (10 ms). To get

a �xed number of features for each laugh, the frame by frame low-level descriptors

(in variable number, depending on the duration of the laugh) are mapped to a �xed-

length feature vector with the help of the following nine functionals30: minimum over

the laugh (abbreviated min), maximum (abbreviated max ), range, mean, standard

deviation, skewness (abbreviated skew.), kurtosis (abbreviated kurt.), percentage of

time spent in the upper quartile (%25) and ZCR. Since we had 82 low-level acoustic

descriptors, we obtained a feature vector of 738 audio features per laugh. The duration

of the laugh was added to the feature vector in order to investigate whether arousal

was related to the duration of the laugh. Correlations were computed between all

these acoustic features and the median arousal values of the laughs.

Strong correlations between several features and the median arousal annotated

for each laugh have been found. Energy features provide the strongest correlations:

MFCC0 and its derivatives provide three of the best �ve correlation coe�cients (ρ)

with the laughter arousal, while loudness is slightly behind. Figure 3.12 shows the

best correlation with the annotated arousal, obtained with ∆ MFCC0 range. MFCCs

and spectral �atness also provide high correlations. The detailed data for the ten best

audio descriptors and pitch are presented in Table 3.5. We can see that the �range�

functional is yielding the best correlations for all these low-level descriptors. Energy

descriptors (MFCC0, ∆MFCC0, ∆∆MFCC0 and loudness) are the most correlated

with laughter arousal (best correlation coe�cients over .8), followed by descriptors

of the spectral shape (spectral �atness and MFCCs). Fundamental frequency, ex-

tracted through the ESPS method available in Wavesurfer [Sjölander & Beskow 2011],

is slightly below with a correlation coe�cient of .67.

Interestingly, the overall duration of the laugh is not strongly correlated ( ρ = .48)

with the perceived arousal (Figure 3.13). In other words, an intense laugh does not

necessarily last long, and vice-versa.

These results show that some audio features are strongly related to the perceived

arousal of laughs. Hence these features are good candidates to predict laughter

arousal, as will be investigated in Chapter 4. Yet, (audiovisual) laughter arousal

is not only a matter of duration or acoustic energy. Although acoustic energy is

strongly correlated with the arousal ratings, there is no one-to-one relationship be-

tween these quantities. Other features�or at least temporal patterns that are not

captured by our functionals�play a role, for example spectral shapes, pitch, or visual

features (jaw opening, etc.) [Niewiadomski et al. 2012].

30Functionals are descriptors of a sequence of features. For example, the average, minimum and
maximum values of a feature during an utterance or a given window are functionals of that feature.



3.3. Overall arousal 79

Figure 3.12: Correlation between median arousal and ∆MFCC0 range.

Figure 3.13: Correlation between median arousal and laughter duration.
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Table 3.5: Correlation between laughter median arousal and the ten best acoustic

descriptors (+ fundamental frequency (f0)).
∆
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min -0,77 0,25 -0,74 -0,73 -0,74 -0,73 -0,78 0,23 -0,76 -0.67 0.05
max 0,8 0,79 0,3 0,33 0,77 0,73 0,27 0,77 0,26 0,59 0,56
range 0,83 0,81 0,81 0,80 0,79 0,79 0,78 0,77 0,77 0,77 0,67

mean -0,1 -0,55 0,27 -0,37 -0,05 0,03 -0,6 -0,57 -0,56 -0,18 0,38
std 0,7 0,69 0,76 0,62 0,68 0,68 0,66 0,67 0,63 0,61 0,54
skew. 0,28 -0,03 -0.39 -0,47 -0,03 -0,29 -0,55 0,26 -0,48 -0.,06 0,12
kurt. 0,41 -0,04 0,11 0,33 0,47 0,5 0,4 0,22 0,35 0,31 0,22
ZCR -0,29 -0,2 -0,58 -0,43 -0,4 -0,36 -0,6 -0,13 -0,59 -0,47 -0,13
%25 -0,4 -0,23 0,31 0,16 -0,45 -0,3 0,62 -0,4 0,54 -0,22 0,12

3.3.3 Acoustic features and respiration phases

As a parallel study, we investigated whether the acoustic features exhibit di�erent

values in inhalation and exhalation phases. Respiration has an important role in

the multimodal laughter expression. We expect that information about respiration

is crucial to achieve believable audiovisual laughter synthesis: indeed, humans can

naturally distinguish these respiration phases when listening or watching to a laugh.

The audiovisual signals of the two respiration phases must thus present di�erent

patterns.

To investigate this, we extracted the same low-level acoustic features as in the

previous section, on a frame-by-frame basis. However functionals were this time

computed for all the windows that belong to a same respiration part (exhalation or

inhalation), instead of over the whole laugh. Then, for each feature, we compared its

distributions in exhalation and inhalation parts.

A Lilliefors test showed that most of the features do not follow a Gaussian dis-

tribution; hence a Kolmogorov-Smirnov test was preferred to a t-test to compare the

feature distributions over the two classes. The Kolmogorov-Smirnov test resulted in

highly signi�cant di�erences in the distributions of the two classes, for almost all the

features31. Figures 3.14 and 3.15 present the distributions, for the two classes, of four

di�erent features for the two classes. These experiments illustrate that audiovisual

features present di�erent patterns in exhalation and inhalation laughter phases, which

con�rms our expectations since it is easy for humans to distinguish these phases.

It is thus reasonable to assume that these features can help to automatically dis-

criminate between exhalation and inhalation parts in laughter, as will be explored in

31The only features that did not reach statistical signi�cance at a 99% con�dence value are the
percentage spent in the upper quartile of HNR [0-500 Hz] and the minimum values of MFCC10, ESPS
voicing probability, ESPS local RMS for f0 estimation, f0 estimated by SRH and the maximum SRH
peak.



3.4. Arousal curves 81

Chapter 4 in the framework of automatically obtaining laughter phonetic transcrip-

tions.

Figure 3.14: Distribution of MFCC0 skewness and maximum spectral variation for

exhalation and inhalation laughter parts.

3.4 Arousal curves

As already stated earlier in this chapter, laughter arousal appears as an important

dimension to characterize laughter and, consequently, to drive laughter synthesis. It

is even interesting to obtain instantaneous arousal signals of laughter to describe their

evolution. Instantaneous �arousal� indeed seems to us both convenient to use (it is easy

to draw or describe an arousal signal) and highly-correlated with the choice of phones

used (for instance low arousal laughs are related to closed-mouth nasal sounds, while

higher arousal examples include open vowels [Ruch & Ekman 2001, Ruch et al. 2013,

Niewiadomski et al. 2012]). We investigated how to build laughter arousal signals,

with the objective to automatically compute these signals from laughter acoustic

features.

To obtain some reference arousal signals against which we could train and eval-

uate algorithms, the per-frame arousal signal of 49 laughs from 3 subjects of the

AVLaughterCycle database were manually annotated by one labeler. The 49 laughs

were selected in order to cover the range of overall arousal values (see Section 3.3.1)

with, when possible, good agreement between the raters. The 49 annotated laughs
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Figure 3.15: Distribution of the range of spectral decrease and average Zero-Crossing

Rate for exhalation and inhalation laughter parts.

sum up to 27,693 frames (using windows of 32 ms shifted by 10 ms) labeled in laugh-

ter arousal. These frames were used to train automatic arousal estimation, as will

be explained in Chapter 4. The arousal signals, along with the audio recordings and

the phonetic transcriptions, of all the laughs of the AVLaughterCycle database are

freely available to the scienti�c community. Examples of arousal curves are displayed

in Figure 3.16.

3.5 Summary and perspectives

In this chapter we focused on the description of laughter properties at di�erent levels.

A �rst issue is the classi�cation of laughter. We have seen that the existence of

emotional laughter types, while highly suspected for a long time, is now contested.

This justi�es the use of other dimensions to characterize laughs, like their arousal

(which is subjective but interpreted similarly by laypersons), their source (hilarious

or social) or �objective� acoustic properties (voiced or not, composing sounds, etc.).

Parameter analysis mostly concentrated on fundamental frequency and duration of

the laughter units. Yet no standard pattern emerged and the main conclusions are

that laughter is highly variable and that fundamental frequency can take higher values

than in speech.

The introduced annotations (phonetic transcriptions of all the laughs, over-
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Figure 3.16: Examples of arousal signals. Top: waveform; bottom: corresponding

arousal signal.

all arousal for all the laughs, instantaneous arousal for a subset of laughs) make

the AVLaughterCycle database absolutely unique for laughter processing, no other

database being provided with any of these additional information. In consequence,

the AVLaughterCycle database has been the subject of all the developments reported

in this Thesis. It is also worth noting that we did not annotate the AVLaughter-

Cycle database on the dimension of regulation (the second dimension in the arousal-

regulation characterization mentioned at the beginning of this Chapter) due to the

nature of this database: subjects being alone, the social context that could provoke

laughter regulation is highly limited and the AVLaughterCycle database is considered

to contain only amusement, non-regulated laughs32.

Perspectives of future works are numerous. First, the problem of describing laugh-

ter is far from being solved. New experiments must be conducted to further prove (or

not) the existence of some laughter categories or dimensional scales. Cross-cultural

experiments are also needed to investigate possible di�erences in laughter audio pat-

terns across cultures. In addition, the fact that many studies investigating patterns

of basic laughter features (f0, duration, etc.) resulted in inconclusive or contradictory

�ndings might be due to the incorporation of di�erent laughers in the experimental

32We cannot however totally reject the possibility that some laughs were regulated, as participants
knew they were being recorded, but we hypothesize that it is not the case, or at least that if regulation
happened, it was to a small extent. Anyway, all the subsequent analyses would still hold even if
regulation had an impact on the data.
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sets. Individual styles might exist, possibly combined with contextual factors (social

context, underlying emotion, etc.), and reveal some trends. For example, it is possi-

ble that certain persons routinely have declining f0 patterns during laughter, but not

everybody. Such individual styles have been revealed in the phonetic analysis con-

ducted within this chapter. Laughter is proving to be an extremely complex signal

to analyze, and it might be necessary to take into account interdependencies between

several factors to identify �predictable� patterns.

Second, the phonetic analysis presented in this chapter could be extended to study

the in�uence of laughter phones or respiration phases over acoustic features. Here

only duration has been investigated. In the same vein, the experiment about laugh-

ter arousal could be extended. One interesting development would be to gather new

arousal ratings when only audio or video is displayed to the raters and investigate

how arousal perception di�ers when only audio or only visual information is avail-

able. Another research path is to experiment new features or functionals that pos-

sibly correlate with arousal. We have used here standard audio features covering

three types of dimensions (spectral shape, measures of noise, prosody), but numer-

ous other features could be experimented, for example features characterizing the

amount of breathiness or the glottal source (e.g., parameters of the Liljencrants-Fant

model [Fant et al. 1985]), features that are derived from phonetic transcriptions (e.g.,

the proportion of exhalation and inhalation phases) or new functionals to character-

ize the evolution of frame-level features over the laugh. For instance, Sathya et al.

[Sathya et al. 2013] a�rmed that the slope of decrease of the fundamental frequency

within a call is proportional to the arousal of the laugh and it would be interesting

to further investigate this hypothesis.

Third, we have presented here two novel tracks of annotation for laughter

databases. It would obviously be bene�cial if more databases were annotated the

same way, and even several �les annotated by di�erent raters in order to estimate to

what extent these annotations are �objective� or depend on the rater. All these an-

notated data are precious for automatic processing. We will see in the next chapters

that it is possible to automatize some parts of the description and that the description

stages that have been introduced in this chapter (phonetic transcriptions and arousal

curves) are useful for laughter synthesis. As we will only use the AVLaughterCycle

database for the following developments, our works concentrate on a particular subset

of laughs: hilarious (non social), with variable arousal. No clear distinction will be

made between voiced and unvoiced laughs, as we are not focusing on the e�ects or

functions of laughter in interactions. Nevertheless this classi�cation is rather implicit

given the fact that we will rely on phonetic transcriptions, and that phones can be

related to voicing33.

33The relationship between phonemes and voicing is not unique and there are deviations between
the acoustic realization and the suspected phonetic class. Nevertheless for most of the laughs it is
rather obvious to understand whether they contain voiced parts or not, by simply looking at their
phonetic transcriptions. It just requires to spot the presence of modal vowels or nasal consonants.
It is easier than �nding Waldo.
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In this chapter we will present the works that relate to automatic audio process-

ing involving laughter. Most of the automatic processing works related to laughter

concern the classi�cation of audio segments (speech, laughter, etc.) or the detection

of laughter in continuous audio streams. The state-of-the-art will be reviewed in Sec-

tion 4.1 and we will see that relatively e�cient methods exist for both problems. In

consequence, for our own developments, we have made the assumption that we re-

ceive segmented laughter as input. Our objectives were to automatically characterize

pre-segmented laughs. In Section 4.2, we will present a method for grouping simi-

lar laughs, which has been evaluated in its capacity to cluster laughs from the same

laugher. The developed methods for automatically obtaining phonetic transcriptions

and arousal signals will be described in Sections 4.3 and 4.4, respectively. A very

brief introduction to HMMs, which will be repeatedly used in the remaining of this

dissertation, is available in Appendix B.
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4.1 State-of-the-art

The initial motivation for laughter detection was actually to improve automatic speech

recognition systems [Kennedy & Hauptmann 1999]. Laughter was perceived as a

noisy signal which could hinder speech recognition, so it was better to spot the laugh-

ter segments and discard them. It is only later that interest in laughter itself, as a sig-

nal that brings useful information in a�ective systems, appeared [Schuller et al. 2008].

In addition, a few works have targeted the automatic classi�cation of laughs in dif-

ferent types or the identi�cation of the laugher.

All these works will be presented in this section. But before really addressing

laughter and speech discrimination, we would like to explain the di�erent measures

that are used to evaluate recognition algorithms. Unfortunately all the authors do

not use the same measures, and it is sometimes di�cult to compare the performance.

Section 4.1.1 aims to clarify the results that will be presented in the remaining of the

section. Then, in Section 4.1.2 we will begin with audio-only discrimination between

speech and laughter (seeing both classi�cation and detection works). This will be

followed by an overview of audiovisual discrimination between speech and laughter

(Section 4.1.3). These problems are not addressed in this Thesis. However we feel

that an extensive state-of-the-art of the methods to automatically distinguish speech

and laughter using audio features is important not only to position our works, but

also to contribute to promote laughter processing through this dissertation. Finally,

we will present the few works on automatic characterization of laughter in Section

4.1.4.

4.1.1 Measures of performance

Let us consider a binary classi�cation problem where the two classes are labeled �+1�

and �−1� (usually the positive class is the most interesting class to the researcher; in

the case of laughter and speech discrimination, we will consider laughter as positive).

To evaluate the classi�cation performance, the classi�er predictions are compared

to the ground truth. The classi�cation performance for all the instances can be

summarized through the confusion matrix, as illustrated in Table 4.1.

Table 4.1: Example confusion matrix

Ground truth

1 -1

Predicted value
1 True Positives (TP) False Positives (FP)

-1 False Negatives (FN) True Negatives (TN)

A �rst set of evaluation measures can be inferred from the confusion matrix:
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• the Accuracy is the proportion of correctly classi�ed instances:

Accuracy =
TP + TN

TP + FP + FN + TN
(4.1)

• the Recall or True Positive Rate (TPR) is the proportion of actually positive

instances that are retrieved by the classi�er:

Recall = TPR =
TP

TP + FN
(4.2)

• the Precision is the proportion of actually positive instances among the objects

classi�ed as positive by the classi�er:

Precision =
TP

TP + FP
(4.3)

• the False Alarm Rate or False Positive Rate (FPR) is the proportion of actually

negative instances erroneously classi�ed as positive by the classi�er:

FPR =
FP

TN + FP
(4.4)

• the F score
1 is a combination of Precision and Recall:

F score
1 =

2× Precision×Recall

Precision+Recall
(4.5)

It reaches its maximum value (i.e., 1) when the classi�er is perfect, and is a�ected

by the two types of errors (considering actually positive objects as negative or

vice-versa).

Usually, the decision of the classi�er depends on a controllable variable. For

example, if the classi�er returns the probability P+(o) of each object o to be positive,

the decision can be easily modi�ed using a variable threshold θ, and considering the

following decisions:

predicted_value(o) =

{
1 ifP+(o) ≥ θ

−1 otherwise
(4.6)

If we modify θ, the confusion matrix and all the standard measures de�ned above

will also vary. Hence these values depend on θ. The classi�er has di�erent �functioning

points�: with the same classi�er, by simply changing the value of θ, one can lower

the false alarm rate if (s)he accepts to miss positive values, or decide that (s)he does

not want to miss positive objects, at the cost of more false alarms. Most often,

the classi�cation performance is only given for the default value of θ, which is one

�functioning point� of the classi�er. However, it is interesting to characterize the
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Figure 4.1: An example ROC curve (solid line). The intersection with the (dashed)

diagonal is the Equal Error Rate point and the Area Under the ROC Curve is high-

lighted.

di�erent trade-o�s that can be achieved with the classi�er. The most explicative way

to do it is through the Receiver Operator Characteristic (ROC) curve, which is a

graph displaying the evolution of the True Positive Rate with the False Positive Rate

(see Figure 4.1).

As it is not always easy to compare graphs, measures have been introduced to

characterize the ROC curve:

• the Area Under the ROC Curve (AUC-ROC) is the highlighted area on Figure

4.1. The closer it is to 1, the better the classi�er, since it means that the

classi�er can achieve high True Positive Rates with few false alarms.

• the Equal Error Rate (EER) is the FPR at the characteristic functioning point

where the proportion of FP equals the proportion of FN. This point lies at the

intersection of the ROC curve with the dashed diagonal on Figure 4.1. The

lower the EER, the better the classi�cation.

To conclude, we can generalize to the multiple classes case (N classes). Accuracy

will still be the proportion of correct classi�cation among the N classes. All the other

measures presented above can only be given if one class is considered as positive and

all the other classes form the negative class.
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4.1.2 Audio-only discrimination of laughter versus other
events

The works to separate laughter from other sounds can be distinguished depending on

the nature of the task. When events are pre-segmented, we talk about classi�cation.

Classi�cation works will be presented �rst, in Section 4.1.2.1. On the other hand, when

the objective is to detect laughter and locate its boundaries as accurately as possible

in audio streams containing other events, we talk about detection or segmentation.

These kinds of works will be presented in Section 4.1.2.2 and prolonged in Section

4.1.2.3, which relates to the speci�c challenge proposed at the INTERSPEECH'13

conference.

4.1.2.1 Classi�cation of pre-segmented data

The global approach followed up to now for discriminating speech and laughter is to

compute usual acoustic features and feed them into typical classi�ers: Gaussian Mix-

ture Models (GMMs), Support Vector Machines (SVMs) or Multi-Layer Perceptrons

(MLPs) [Haykin 1994]. Several recent studies used the ICSI Meeting Corpus (see

Section 2.2.1.3) to train and evaluate the methods, from which speech-laughs were

always excluded.

In 2004, Kennedy and Ellis [Kennedy & Ellis 2004] classi�ed one-second segments

labeled as laughter when more than one participant was laughing. They used SVMs

as classi�cation tool. Features included MFCCs, delta1 MFCCs as well as modulation

spectrum. Modulation spectrum was computed by summing the energy in the 1000-

4000Hz range of the spectrogram over a one-second window, computing the Discrete

Fourier Transform of this signal and storing the �rst 20 coe�cients. The objective

of including modulation spectrum was to capture the repetition of vowels sounds in

laughter. However, results showed that MFCCs outperformed modulation spectrum.

Kennedy and Ellis achieved 87% of accuracy with six MFCCs.

In 2007, Truong and van Leeuwen [Truong & van Leeuwen 2007a] published a

comparative study of several feature sets, classi�ers, and fusion of classi�ers outputs

to classify pre-segmented pure speech or laughter utterances. The ICSI Meeting

Corpus, only keeping doubtless laughter episodes, was used to train the methods

and evaluate the results and, for a better estimation of the generalization power of

the algorithms, the CGN (see Section 2.2.1) was also used for evaluation. Features

were split in two categories: frame-level features, computed every 16 ms in a 32 ms

window, in variable number for a whole utterance�as the number of frames depends

on the duration of the utterance�and utterance-level features, computed on the whole

utterance and generating a constant number of features for each segment. The frame-

level features included Perceptual Linear Prediction (PLP) coding features as spectral

characteristics, pitch and energy values, as well as the deltas of each feature. A

second set of frame-level features consisted of 16 modulation spectrum attributes. As

1The term �delta� is commonly used to designate the �rst derivative. The second derivative is
then denoted �delta-delta�.
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utterance-level features, pitch statistics (mean, standard deviation, excursion, mean

absolute slope), the fraction of unvoiced frames and the ratio of non-voiced breaks

inside the utterance formed one set of prosodic attributes (called P&V for �Pitch and

Voicing�). GMMs and SVMs were used to perform the classi�cation with each set of

features.

The best results were achieved with the PLP features, giving clues that spec-

tral features contain useful information to distinguish between speech and laughter.

Promising performance was also obtained using only the six P&V features. A dis-

criminant analysis among these six features showed that the mean pitch and the ratio

of unvoiced frames have the biggest discriminative power. SVMs performed globally

better than GMMs. Then, classi�er outputs were fused. The fusion algorithm was

a linear combination (with equal weights for each classi�er), an SVM or an MLP.

This enabled to reduce the classi�cation errors. The best results were obtained by

fusing via an MLP the outcomes of SVMs and GMMs taking PLP and P&V features

as inputs, with EERs around 3% on the ICSI Meeting Corpus (25 minutes of speech

and 21 minutes of laughter to classify) and 7.5% on the CGN, which had balanced

proportions of laughter and speech (4 minutes each).

These classi�cation results are very good, but it should not be forgot-

ten that laughter and speech were pre-segmented. Truong and van Leeuwen

[Truong & van Leeuwen 2007a] suggested the use of HMMs to capture the tempo-

ral variations of features and detect the laughter boundaries in continuous audio �les.

They addressed the problem of laughter segmentation later on (see Section 4.1.2.2).

Schuller et al. [Schuller et al. 2008] discriminated between �ve unbalanced classes

of non-verbal events: breathing (452 instances), laughter (261), consent (325), hes-

itation (1147) and other (716). They compared features sets based on MFCCs or

PLP coe�cients. They tested three di�erent classi�ers: HMMs, Hidden Conditional

Random Fields (HCRFs), which both model the dynamics of features (the evolution

of features over a segment), and SVMs, which work with a static vector characteriz-

ing the whole segment (by computing functionals of the features over the segments).

They also tuned the number of states of the HMMs and of Gaussian mixtures for each

state to �nd the best con�guration. The best performance was achieved with HMMs

containing nine emitting states and emission probabilities computed with mixtures of

eight Gaussians. PLP features yielded slightly better results than MFCCs with an

accuracy of 80.7%. HCRFs and SVMs could not beat HMMs performance.

Weninger and Schuller [Weninger & Schuller 2012] addressed the classi�cation of

�ve pre-segmented categories: words; laughter; vocal noise including breathing, sigh-

ing or coughing; non-verbal consent (�mhm�); and �lled pauses (�um�,�uh�). Four dif-

ferent databases (AVEC, AVIC, Buckeye and COSINE, see Section 2.2), with avail-

able transcriptions of speech and the other targeted events, were used. Data were

segmented into word-like units through a forced alignment of the transcription by

triphone HMMs. Separate HMMs were then trained for each class, and in the test set

each unseen segment was assigned to the most likely class. Authors compared classi-

�cation performance in two di�erent settings: intra-corpus where models are trained
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on one part of a database and evaluated on another part of the same database, and

inter-corpus, where models are trained on one database and evaluated on another one.

Authors used the Unweighted Average Recall (UAR) (i.e., the average of the Recall

rates obtained for the 5 classes, without weighting these classes) as the performance

measure. Performance ranged from 67% UAR to 83% UAR in the intra-corpus set-

ting, but dropped in the inter-corpus classi�cation, with UARs ranging between 30%

and 74%. The lower bound could be increased when only leaving one corpus out for

testing (i.e., training on the three other corpora), with UARs between 60% and 76%.

These results illustrate the di�culties of generalizing models trained on one corpus to

data from another corpus and suggest, if generalization to di�erent recording setups

is expected, to try to eliminate dependency on the recording conditions by combining

several corpora recorded in di�erent environments.

Finally, Tanaka and Campbell [Tanaka & Campbell 2011] used HMMs fed with

MFCCs (and their �rst order derivative) to distinguish between four types of calls

produced by one speaker: nasal, ingressive, chuckles or vocal. The overall accuracy

was 87%, with most confusions related to the ingressive calls, which were misidenti�ed

as chuckles.

4.1.2.2 Laughter segmentation in continuous audio �ows

In a second experiment using only ICSI Meeting Corpus �les, Truong and

van Leeuwen tried to perform laughter segmentation in entire conversation �les

[Truong & van Leeuwen 2007b]. PLP features were used to take a decision every

16 ms and a Viterbi decoder was used to �nd the most likely sequence of labels (si-

lence, speech or laughter). They obtained an EER of 11% using this technique, which,

as expected, is higher (i.e., worse) than the rate achieved when laughter and speech

are pre-segmented (6%). Many of the errors were caused by �noises� such as deep

breaths, coughs or external noises, and it seems that unvoiced laughs can easily be

confused with these perturbations.

Knox and Mirghafori [Knox & Mirghafori 2007] employed MLPs to segment

laughs in the ICSI Meeting Corpus, speech-laughs excluded. They used the 0th and the

�rst 12 MFCCs as spectral features, with their �rst (delta) and second (delta-delta)

order derivatives. In addition, f0, RMS energy and the AutoCorrelation Peak (AC-

PEAK) of each 25 ms frame (with 10 ms shift between consecutive frames), as well

as their �rst and second derivatives were part of the feature vector. They determined

the best number of adjacent feature vectors to provide to the MLP to be 75: each

frame was classi�ed using its feature vector as well as the attributes of the preceding

and following 37 frames. They tried di�erent numbers of hidden units and decided

that 200 was a good value. Separate MLPs were trained for each subset of features

(MFCCs, f0, energy, AC-PEAK; and taking into account the feature itself, its delta,

its delta-delta, or a combination of the three). The best results were achieved with

delta-MFCC features, with an EER under 10%. Fusing the scores provided by MLPs

using MFCC and AC-PEAK features, they reached an Equal Error Rate (EER) of
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around 8%. This performance is similar to results they had previously obtained with

SVMs, but the temporal resolution was then of 25 ms instead of 10 ms.

Knox et al. [Knox et al. 2008] improved that work by considering temporal fea-

tures and using HMMs to process the sequence of laughter likelihoods returned by the

MLP. In a �rst step, they evaluated the combination of seven feature sets to perform

laughter and speech discrimination using MLPs. One MLP was trained for each of

the feature sets. The features were extracted on windows of 25 ms shifted by 10 ms

and were namely:

• 13 delta-MFCCs.

• f0 and delta-f0.

• RMS energy and delta-energy.

• AutoCorrelation Peak (AC-PEAK) and delta-AC-PEAK.

• Phones: a phone recognizer trained for speech was used to assign each frame to

one of the 46 possible phones.

• Prosody: statistics of jitter, shimmer and long-term average spectrum; these

features were extracted over 0.5 s windows.

• Modulation-�ltered SpectroGrams (MSGs), computing amplitude modulations

in the range 0-16 Hz, which is the frequency range where laughter repetitiveness

is expected to appear (see Section 3.1.6). The authors did not specify the size

of the window for these features.

Each individual feature set MLP was trained with the features of 101 consecutive

windows. The decisions of individual feature set MLPs were fused with another MLP

using nine consecutive windows. The output was median-�ltered to smooth transi-

tions. The best combination of features included the delta-MFCCs, MSG, energy,

autocorrelation and prosody features, reaching an EER of 5.4%. The performance

was further improved by including Hidden Markov Models to build a trigram lan-

guage model with the smoothed posterior probabilities, reaching 78.5% of precision

and 85.3% of Recall. In the easier task of classifying a balanced laughter and speech

(without other non-speech sounds like deep breathing) test set, the performance in-

creased to an EER of 2.7% without the HMMs and precision and Recall with the

HMMs of 99.5% and 88%, respectively. The phone set was useless in this experiment,

but no general conclusion can be taken on the use of laughter phones at this point

since the speech phone recognizer had to deal with unseen laugh phones, which were

mapped to speech phones.

Scherer et al. [Scherer et al. 2009] extracted, every 20 ms on 200 ms windows,

modulation spectrum features on the FreeTalk database (see Section 2.2.2.5). These

features were fed into an Echo State Network (ESN), which, according to the authors,

has the advantages to be robust to noisy inputs and to memorize past states and
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features, thanks to the introduction of recursive connections. Frame-based detection

resulted in an accuracy of 87%. It is important to note that, in the FreeTalk database,

only one microphone was used for recording all the participants.

Sudheer et al. [Sudheer et al. 2009] proposed a method for extracting the funda-

mental frequency (f0) and the strength of excitation (related to the speed of closing

of the vocal folds). The method, designed to be more robust than traditional f0 es-

timation algorithm to track the rapid variations in laughter, consists in �ltering the

signal through a zero-frequency resonator with a window length of 3 ms for removing

the trend. The positive zero-crossings of the resulting signal are then used to spot the

periods of voicing and obtain a �rst estimation of f0. The resulting voiced segments

are passed through a zero-frequency resonator with a window size adapted to the

roughly estimated fundamental frequency of the segment. The positive zero-crossings

give the location of the epochs. The pitch period is the interval between two epochs

and the strength of the excitation is given by the slope around positive zero-crossings.

Features used for laughter detection are the pitch period, the strength of excitation,

their slopes and their ratio. A voiced segment was labeled as laughter if, for all its

features, at least a given proportion of epochs (�fraction thresholds�) fell above �xed

thresholds (�value thresholds�). As the authors did not consider monosyllabic laughter

as laughter, isolated laughter segments (laughter segments of less than 500 ms having

at least 3 seconds of non-laughter either side) were relabeled as non-laughter. The

laughter detection method has been evaluated on TV program excerpts, with a Recall

of 88.9% and a FPR of 24.1% for the detection of laughter segments, and a Recall of

95.9% and a FPR of 27.4% for the detection of laughter episodes. The performance

is relatively satisfying given the simplicity of the method (only one type of features

based on f0, classi�cation via thresholds) but the method is limited to the detection

of voiced laughs. It would be interesting to evaluate the contribution of the proposed

features when combined to more traditional features to detect all kinds of laughter

(voiced and unvoiced) via a trained classi�er.

Unlike for speech recognition, and despite the suggestion of Truong and van

Leeuwen [Truong & van Leeuwen 2007a], Hidden Markov Models (HMMs) have not

been intensively used for laughter detection in continuous streams. We can cite three

works using HMMs to distinguish between speech and laughter. Locker and Mueller

[Lockerd & Mueller 2002] mention the use of HMMs trained with 70% of a corpus

containing 40 laughter and 210 speech segments from a single speaker. Using spectral

features, 88% of the test segments were correctly classi�ed. The performance drops

to 65% when the data are not pre-segmented. Cai et al. [Cai et al. 2003] also used

HMMs to spot laughter, cheers and applause events. The features were MFCCs, en-

ergy, ZCR, energy in four sub-bands, centroid and spread of the energy spectrum.

HMMs of two, four and four states were used respectively for applause, cheers and

laughter, and a mixture of four Gaussians modeled the emission probability of each

state. The models were evaluated on three types of TV programs with average Recall

and precision for laughter of 95% and 86% respectively.

A very interesting approach relying on HMMs has been proposed by Pammi
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et al. [Pammi et al. 2013]. They used Automatic Language Independent Speech

Processing (ALISP), which consists in building models (here HMMs) on a huge, un-

labeled data corpus. Hence the models are fully data-driven and can be considered as

�universal� sound units if they are trained on a su�ciently diverse database (contain-

ing speech, music, laughs, etc.). The data are �rst segmented into quasi-stationary

segments and then acoustically similar segments are clustered to form one single

ALISP model. Here the models consisted in HMMs for each of the identi�ed ALISP

units and the modeled features are the MFCCs. The models were trained with 240

hours of audio. After building the �universal� ALISP models, Pammi et al. adapted

them to laughter on the one hand and non-laughter events on the other hand, this

time with the help of labeled data (coming from the AVLaughterCycle, SEMAINE

and MAHNOB databases, see Chapter 2). They obtained this way separate ALISP

models for laughter and non-laughter units. These models could then be used to de-

code an unseen audio �le: a simple Viterbi decoding was employed to output the most

likely ALISP sequence corresponding to the audio �le. The resulting sequence was

indicative of the presence of laughter in regions where laughter ALISP models were

preferred to the non-laughter models. Hence the output ALISP sequence could be

converted to a sequence of laughter and non-laughter units (binary signal). To reduce

outliers, Pammi et al. proposed to use a median �lter on the sequence of laughter

and non-laughter units. The ALISP method for laughter detection was compared with

more traditional supervised approaches (GMMs, HMMs with several topologies) and

was shown to outperform these methods. The best ALISP performance for laughter

detection was a Precision of 94.3% and a Recall of 93.9%. It must be noted that some

of the used corpora (AVLaughterCycle, MAHNOB) are relatively easy for laughter

detection as they mostly contain laughter sounds, but the ALISP methods have the

interest to be universal and have shown their potential here for laughter detection.

4.1.2.3 INTERSPEECH 2013 Social Signals Sub-Challenge of the Com-

putational Paralinguistic Challenge

In the framework of the INTERSPEECH 2013 conference, a challenge on the detec-

tion of laughter and �llers in speech was proposed. For the challenge, the SSPNet

Vocalization Corpus (SVC) (see Section 2.2.1) was released together with frame-based

annotations into laughter, �ller and garbage (containing anything that is not laughter

and �llers, such as speech, cough, etc.) at 100 FPS [Schuller et al. 2013]. The corpus

was divided into training, development and test sets. Frame-wise features extracted

with the OpenSMILE library [Eyben et al. 2010] were also available to the challenge

participants, including 12 MFCCs, logarithmic energy, voicing probability, HNR, f0
and ZCR. The �rst order derivatives of all the features were also included in the

feature set, as well as the second order derivatives of MFCCs and logarithmic energy,

summing up to a total of 47 features. The feature vector of each frame was extended

with the arithmetic mean and standard deviation of the 47 features across 9 frames

centered on the considered frame (hence, a window ranging from 4 frames before to



4.1. State-of-the-art 95

4 frames after the considered frame), for a total of 47*3=141 base features for each

frame. Feeding these features into SVMs, the challenge organizers obtained the fol-

lowing results on the test set: AUC-ROC of 82.9% for laughter and 83.6% for �llers,

which results in an Unweighted Average Area Under the ROC Curve (UAAUC) of

83.3%. Participants to the challenge were invited to improve these results with the

use of other feature sets or classi�cation methods. Here is a summary of the papers

that have addressed the challenge.

Krikke and Truong Krikke and Truong [Krikke & Truong 2013] compared several

feature sets for laughter detection:

• 13 MFCCs (as well as their �rst and second order derivatives).

• Pitch and intensity features.

• Position of the �rst and second formants.

• Voice quality features, based on frequency bands of the long-term averaged

spectrum.

The base features were extracted every 10 ms. Functionals were applied to all the

features except MFCCs, so that the feature vector of each frame contained the feature

value for the considered frame as well as the average, standard deviation and slope of

a linear least square �t computed over nine frames centered on the considered frame.

Gaussian Mixture Models were trained for laughter detection against anything

else (�ller or speech). Results were smoothed through median �ltering. The best

results were obtained with 128 Gaussian distributions and median �ltering based on

51 frames. The MFCCs set outperformed all the other sets (including the combination

of all the features) and reached an EER of 9.3% for laughter.

Krikke and Truong explored slightly di�erent feature sets for �ller detection and

obtained similar results. It is interesting to remark that they have used two fea-

tures (proposed in [Pruthi & Espy-Wilson 2004]) to characterize the nasality of a

frame: one is based on the ratio between the maximum energy below 300 Hz and

the maximum energy between 300 and 5500 Hz, the second is the peak frequency

below 800 Hz. Although these features did not prove useful for spotting �llers in the

challenge, it would be interesting to consider them to discriminate between di�erent

laughter sounds.

Oh et al. Oh et al. [Oh et al. 2013] investigated features at the syllable level, with

a primary focus on laughter. First, they segmented the SVC �les into �syllables�

by cutting at minimum values of the median-�ltered energy envelope. Then, for

each syllable they computed features characterizing the energy pro�le (minimum,

maximum, and features measuring the attack and decay), the f0 pattern (minimum

and maximum f0 values as well as their positions within the syllable), the timbral

contour (minimum, maximum and average spectral �ux) as well as rhythmic features,
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which were estimated over larger windows (e.g., 500 ms) to re�ect the periodicity

of the energy envelope across all frequencies and also in the 4-6 Hz band which is

the band associated to laughter rhythm (as described in Section 3.1.6). The �rst

order derivative as well as the average value of each of the computed features over

�ve syllables (centered on the current syllable) were added in the feature set for each

syllable.

Analysis of the discriminant power of the proposed features showed that f0-related

features were not useful for the considered task, while features characterizing the

energy pro�le were the most discriminant, followed by energy modulation inside the

4-6 Hz band. Using these features in combination with the baseline features provided

by the challenge organizers, the authors could slightly improve the SVM classi�cation

results, which reached an AUC-ROC of 85.9% for laughter and an UAAUC of 85.3%.

An et al. An et al. [An et al. 2013] also relied on syllable-based features. They used

a pseudo-syllabi�cation algorithm based on the amplitude contour to segment the �les

into syllable-like regions. They experimented two di�erent methods to improve the

baseline detection results.

First, they considered the likelihoods for the three classes (laughter, �ller, garbage)

over each syllable segment and rescored the frames belonging to this segment if the

combined likelihoods reached certain thresholds. It is however surprising that they

only rescored frames which have a likelihood below another threshold: they justi�ed

this by the will to preserve labels when the classi�er was highly con�dent, yielding

a score above the threshold. But on the other hand this goes against their desire to

obtain stable labels for several frames (e.g., a syllable) as the events to be detected

lasted more than one frame.

Second, they computed features over pseudo-syllables: normalized2 intensity, nor-

malized pitch, mean spectral tilt (i.e., the average over the syllable segment of the

mean slope of the spectrum of the 10 ms frames), duration and duration of the pre-

ceding and following pauses. They also included the �rst derivative of the intensity,

pitch and spectral tilt, as well as the position of the syllable (as they noticed that

no clip begin with laughter or �ller, the position of the syllable can be relevant for

that speci�c corpus). To classify each syllable, they appended in the feature vector

the features of the previous and following syllables, making a total of 9 (features per

syllable) * 3 (syllables) + 1 (position feature) = 28 features.

In their experiments, they compared the baseline challenge detection (baseline fea-

tures, SVM) and combinations of the baseline methods with the additional syllable

features and/or the proposed rescoring. They found that both additions (rescoring or

adding syllable features) individually improved the performance, but that the com-

bination of both yielded to lower results than using the additional features alone

(in other words, there was no bene�t of rescoring the labels if the detection used

their proposed syllable features). The best performance achieved with this method

2In this case, �normalized� means that the actual value is divided with respect to the values
encountered in the training set.



4.1. State-of-the-art 97

was AUC-ROCs of 84.64% and 85.06% for laughter and �llers respectively, and an

UAAUC of 84.85%.

Janicki Janicki [Janicki 2013] proposed to use in a �rst step three GMMs to obtain

frame-based likelihoods for laughter, �ller and speech, respectively, then to rely on

a SVM to fuse the decisions. Only MFCCs were used. Several parameters were

varied in the experiment: the number of Gaussian components, the length of the

centered windows inputted to the GMMs, the impact of adding the �rst and second

order derivatives, the likelihood scores used by the SVM (absolute scores, di�erences

between likelihoods, or combination of both). The best results were achieved when

using 128 Gaussian distributions and a window of 60 frames, with the �rst and second

order derivatives of the MFCCs. The method reached the following performance:

AUC-ROCs of 90.7% and 89% for laughter and �llers, respectively, UAAUC of 89.8%,

EERs of 15.3% and 18.4% for laughter and �llers, respectively. Janicki also considered

the features proposed by the challenge organizers, but the addition of these features

to the SVM classi�er did not improve the overall accuracy3.

Gupta et al. Gupta et al. [Gupta et al. 2013] improved the baseline method by

smoothing and masking events probabilities. They used the same features as the chal-

lenge organizers, but replaced the SVM by a four-layers Deep Neural Network out-

putting the likelihoods for each frame to be laughter, �ller or anything else (garbage).

Then, they �ltered the outputs to have smoother predictions over time�as events

last several frames, one can avoid oscillations in the likelihood signals. After ana-

lyzing the resulting likelihoods, they noticed that when an event (laughter or �ller)

occurred, there was at least one frame in the event which received a high likelihood

for the correct class. Based on this �nding, they developed several post-processing

steps to weight the likelihoods. The �rst steps take into account the likelihoods of

the neighboring frames: frames that are far from values above a �rst threshold in

the likelihood signals are set to 0, then frames closely surrounded by zero frames are

also set to 0, and �nally all frames above another threshold are set to 1. The last

post-processing step involves a speech recognizer system trained on the data to recog-

nize laughter, �ller and garbage. The state occupations obtained when decoding the

signals are used to compute the entropy of each frame, which relates to the number of

competing states. This number was hypothesized to be higher in laughter (which is

highly heterogeneous and variable) than �llers (which are much more stable and can

hence be represented with a smaller number of states). Hence di�erent corrections

were applied to the laughter and �ller likelihoods with respect to the entropy value.

Using this method, Gupta et al. could signi�cantly improve the baseline challenge

results, with AUC-ROCs of 93.3% and 89.7% for laughter and speech, respectively,

resulting in an UAAUC of 91.5%. Part of the gain can be attributed to the Deep

Neural Network, which performs better than the baseline SVM especially for laughter,

3The Recall rate was however slightly increased with most of the feature sets.
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but the probability smoothing contributes for the biggest part of the performance

increase, while the masking steps yield to further small improvements.

Wagner et al. Wagner et al. [Wagner et al. 2013] investigated the potential of

using phonetic transcriptions to help the detection. They used a standard speech

recognizer which enables to output the most likely sequence of phonemes within a

�le. The speech recognizer included models for 40 English speech phonemes as well

as eight ��llers� (�breath�, �noise�, �cough�, �uh�, �um�, �uhum�, �noise� and �garbage�).

Wagner et al. used the outputted phonetic sequence for each �le and constructed,

for each frame, a feature vector with the number of apparitions of each of the 48

�phonemes� within a given window. They noticed that the distribution of �phonemes�

di�ered for each class. Interestingly, the most frequent phonemes in laughter were

similar to the ones presented in Section 3.2.2, although they used a recognizer trained

for speech recognition.

They fed the SVM with feature vectors containing the baseline challenge features

as well as two variations of their phonetic distribution features. Adding the phonetic

features improved the detection, in particular when the window for computing the

phonetic distributions was larger than 1 second. The best performance achieved with

the proposed method was AUC-ROCs of 89.4% and 85.9% for laughter and �llers,

respectively, for a global UAAUC of 87.7%.

Kaya et al. Kaya et al. [Kaya et al. 2013] employed random forests for classi�-

cation of laughter, �llers and garbage. They investigated the impact of the random

forests parameters: the number of trees and the number of features available (through

random selection) for each tree. In addition, they performed feature selection based

on mutual information of the features, to limit redundancy. Finally, they explored the

e�ect of Gaussian smoothing on the sequence of frame-wise decisions. They showed

that random forests can outperform the baseline SVMs and that feature selection

could improve the results. They reported AUC-ROCs of 89.6% for laughter and

87.3% for �llers, corresponding to an UAAUC of 88.4%.

4.1.3 Audiovisual discrimination of laughter versus other
events

This section consists in a brief introduction to audiovisual works that attempted to

discriminate laughter from speech. As visual analysis is out of the scope of this

dissertation, we do not intend to give an exhaustive list of the state-of-the-art here4,

but only to present the main works. In particular, Petridis and Pantic's works are

of interest as they are among the few teams who have tried to discriminate between

laughter types in addition to distinguish laughter from other acoustic events.

4We certainly do not want to claim that the other sections are exhaustive either, in spite of our
best e�orts, but here we did not even try.



4.1. State-of-the-art 99

In 2008, Petridis and Pantic [Petridis & Pantic 2008c, Petridis & Pantic 2008a,

Petridis & Pantic 2008b] started considering fusion of the audio and video modalities

to discriminate pre-segmented laughter episodes from speech segments. They used

the AMI Meeting Corpus (see Section 2.2.2.3) and selected 40 laughs (for a total of

58.4 s) and 56 speech segments (total: 118.1 s) from eight speakers. They extracted

PLP features, pitch and energy from the audio, and head and facial movements from

the video. Twenty facial points were tracked over the course of the video. Facial

and global head movements were separated using Principal Component Analysis,

which grouped the global head movements along the lower orders of the Principal

Components (PCs). The �rst six PCs were kept for the head movements. PCs #7

and #8 were linked to mouth opening and closing, respectively. PCs #9 and #10 were

also included in the facial movements. The authors remarked that the decomposition

of head and facial movements did not always work perfectly, and facial variations

could erroneously be included in the head features for some samples. They used

neural networks to distinguish between speech and laughter and showed that the best

features were the facial movements, followed by the spectral features (PLP). They

also investigated decision-level fusion of the modalities, which improved the decision

compared to audio- or video-only classi�cation. They showed that a simple linear

combination fusion between the modalities achieved similar results as a non-linear

fusion decision obtained with neural networks. The best results achieved a F score
1

of 87.5% when a local decision was taken and 89.3% when considering the temporal

evolution of the features.

These e�orts led to an application�judging the hilarity of stimuli by laughter

analysis�based on feature-level fusion, spectral acoustic features and facial expres-

sions [Petridis & Pantic 2009]. They reported a classi�cation accuracy of 74.7% to

distinguish three classes, namely unvoiced laughter, voiced laughter and speech.

Reuderick et al. [Reuderink et al. 2008] conducted a similar study. Also using

laughs from the AMI Meeting Corpus as well as speech segments (with no smile of

the speaker), they performed decision-level fusion between audio and visual classi�ers.

Audio features were 13 RASTA-PLP features, which add �ltering capabilities to PLP

features for channel distortion, and their derivatives, extracted every 16 ms over 32 ms

windows. Video features were the PCs of the 20 positions of tracked facial points

and their derivatives. HMMs and GMMs were investigated for the audio distinction

between speech and laughter. Visual classi�cation was performed through SVMs.

SVMs and linear combinations were evaluated for the fusion of the decisions taken

with the two modalities. For the audio modality, the best results were obtained with

GMMs, resulting in an AUC-ROC of 82.5%. Ergodic HMMs (HMMs where transitions

are possible from and to any state) were slightly behind with 82.2%, and surprisingly

outperformed left-right HMMs (HMMs where transitions are only possible in one

direction), which are generally used in speech processing. Video alone had better

classi�cation rates, with an AUC-ROC of 91.6%. This �gure increased to 93% when

fusing both modalities, with similar results for SVM and linear combination fusions.

In 2010, Petridis et al. [Petridis et al. 2010] used neural networks to model the
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relationship between audio and video features. Four neural networks were trained to

predict audio features from video features and vice-versa, for laughter and speech.

Then, for each test frame, the neural network giving the best prediction of unseen

features was considered as the winner and the frame was labeled accordingly. The

system was evaluated on data from the AMI Meeting Corpus as well as from the

SEMAINE database. Six MFCCs were used as audio features, while the �rst four and

three PCs of the facial markers were kept as video features for the AMI and SEMAINE

data, respectively. The results are hard to compare with previous work, since here the

data were evaluated on a database di�erent from the training. Training performed on

the AMI Corpus (which is di�cult for video features due to large head movements)

and testing on the SEMAINE database (easier since head movements are limited)

yielded a F score
1 of 95%. For comparison a standard neural network, using audio

and visual features to discriminate laughter and speech, was trained with the same

data and gave the same results. However, when training with the SEMAINE data

and testing on the AMI corpus, the modeling of the relationship between audio and

visual features gave a better F score
1 (76%) than a standard neural network (65%). The

authors concluded that modeling the audiovisual relationship for speech and laughter

and letting the two models compete has better generalization properties than an usual

classi�er. Using longer windows (160 ms) and standard neural network classi�cation

with feature-level fusion, Petridis and Pantic could improve the classi�cation rates in

[Petridis & Pantic 2011]. The problem of generalization from SEMAINE to AMI was

still present.

In 2013, Petridis et al. addressed the problem of audiovisual laughter detection in

continuous streams [Petridis et al. 2013a]. They extracted MFCCs and Facial Action

Parameters (FAPs) on the SEMAINE database and trained Time Delay Neural Net-

works (TDNNs) to recognize laughter and speech frames. One TDNN was trained for

each modality (audio or video) and fusion was performed at the decision level (fusion

at the feature level was tried too but lead to worst results). A Voice Activity Detector

was used to �lter out silent portions prior to speech and laughter discrimination. Per-

formance is estimated through ten-fold cross validation. Laughter detection results

were poor, with an average Recall of 41.9%, a Precision of 10.4% and a F score
1 of

16.4% for the audiovisual detection. Such bad results are partially explained by the

unbalanced data, where speech frames largely outnumber laughter frames: in conse-

quence, even if a small proportion of speech frames were misclassi�ed as laughter, the

False Positives (FP) would outnumber the True Positives (TP) and yield to a poor

Precision score. Results however showed that adding visual information to audio

laughter detection helped reducing the misclassi�cation of speech as laughter, hence

increasing the Precision score for laughter (and increasing the Recall rate for speech).

Audiovisual laughter detection was also investigated by Scherer et al.

[Scherer et al. 2009], on the FreeTalk database (see Section 2.2.2.5). Using features

characterizing facial and body movements of all the participants fed into ESNs, they

obtained an accuracy of around 82%, which is lower than what they achieved using

audio features (around 87%), while the combination of both audio and video yielded
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improvements, with an accuracy around 91%.

In a second study [Scherer et al. 2012], still using the FreeTalk data, Scherer et

al. compared di�erent audiovisual feature sets and classi�ers for audiovisual laugh-

ter classi�cation (pre-segmented laughs) and detection (continuous streams). The

compared classi�ers were ESNs, HMMs and SVMs. SVMs were fed with GMMs Su-

pervectors, resulting from one step of adaptation of GMMs representing �universal�

data (both speech and laughter) towards the inputted features. Audio feature sets

were modulation spectrum on one side, extracted over 200 ms windows with 20 ms

shift, and PLP coe�cients on the other side, extracted every 10 ms on 32 ms win-

dows. Visual features relied on face detection: fore each detected face (i.e., for each

of the four participants), two features were computed: one represented the movement

within the face, the other the movement of the body (below the face). As one single,

centrally-placed, microphone was used to record all the participants, and as visual

features also included all the participants, all the feature sets were combinations of

all four participants' behaviors. Fusion was performed at the decision level. For the

detection experiments, HMMs and SVMs with supervectors operated on �xed-sized

windows of 1.2 s. A laugh was considered to be spotted as soon as there was one

peak of the estimated laughter likelihood within the boundaries of the actual laugh.

In other words, the authors did not aim to locate the boundaries of the laughs, but

to count the number of laughs in the data.

For the classi�cation task, SVMs outperformed HMMs, with an accuracy of 96.3%

when fusing modulation spectrum and PLP decisions5. However, for the detection

task, SVMs gave poor results. The authors suggested that this was due to the unbal-

anced data. HMMs and ESNs, which encode the dynamics of the features, performed

better. The best performance with HMMs was achieved with modulation spectrum

and PLP features, with an accuracy of 93.5%, a Precision of 64% and a Recall of

80%. ESNs were slightly below: fusion of visual and modulation spectrum yielded an

accuracy of 90.9%, a Precision of 52% and a Recall rate of 81%.

4.1.4 Classi�cation of laughs

As already mentioned, Petridis and Pantic [Petridis & Pantic 2009] distinguished be-

tween voiced laughter, unvoiced laughter and speech. The overall classi�cation rate

was 74.7% and the F scores
1 for voiced and unvoiced laughter classi�cation were 70.4%

and 66.6%, respectively.

To the best of our knowledge, there exist only three other works which aimed

at automatically distinguishing laughs from other laughs using audio features. For

each of these works, laughter was pre-segmented, grouped in several classes and the

objectives were to predict those classes from acoustic features.

First, Bachorowski et al. [Bachorowski et al. 2001] investigated whether laugher

sex and identity could be inferred from acoustic features. The analysis was performed

5ESNs could not be used in this task, as they require some time to initialize and are hence not
suited to process short segments.



102 Chapter 4. Automatic estimation of laughter characteristics

at the call level: the objective was to classify calls, not entire laughs. Separate

classi�cation was performed for voiced and unvoiced open-mouth calls. Data from

a given participant were included in the study only if the participant had produced

at least six occurrences of the considered call type. As a result data from 19 males

and 13 females were included for voiced calls, and from 11 males and 7 females for

unvoiced calls. Features were extracted on call segments. Several feature sets were

compared in the task: formants F1-F2-F3, formants F1-F2-F3-F56, call duration,

vocal tract length (estimated from formants positions) and f0-related features (mean,

std, excursion and change over the call) only for voiced calls. Discriminant analysis

was used for classi�cation.

Classi�cation of laugher sex was relatively successful, with accuracy rates of 86.3%

for voiced calls and 87.4% for unvoiced ones. The best performance was achieved by

combining all available features, although close performance was obtained when using

formant values only. On the other hand f0-related features were not really useful

(improvement of chance level by only 22%), as could be expected given the large

variability of f0 in laughter, regardless of laugher sex. Despite the relatively good

classi�cation rates, Bachorowski et al. noted that performance is lower than what

can be achieved with speech vowels.

Identi�cation of the laugher was performed separately for males and females. Per-

formance was again satisfying, with accuracy rates between 40.7% and 53.2% depend-

ing on the cases (voiced or unvoiced, females or males) and corresponding improve-

ments over chance levels (which di�er in each case as there are di�erent numbers of

participants involved) ranging from 30.8% to 49.3%. As for gender classi�cation, the

best classi�cation rates were obtained when combining all the features, closely fol-

lowed by the formant values while the f0-related features yielded poor classi�cation.

And as for gender classi�cation, although the automatic identi�cation of the laugher

was largely above chance levels, the authors noted that the obtained performance was

lower than what can be achieved from speech vowels.

Second, as already said in the introduction (Chapter 1), Campbell [Campbell 2007]

trained neural networks on laughs from telephone conversations to predict the gender

and origin (English or Chinese) of the conversational partner. Speech-laughs were

also included. For each laughter or speech-laugh episode, the following features were

extracted in Snack [Sjölander 2004]:

• Pitch: minimum, maximum, position of the maximum in the episode and voicing

proportion.

• Power: minimum, maximum and position of the maximum in the segment.

• Duration and speaking rate (obtained by dividing the duration by the number

of transcribed units in the laugh).

6F4 was discarded as previous observations had shown that F4 values did not di�er among gender,
as explained in Chapter 3.
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• Spectral shape: location and energy of the �rst two harmonics, amplitude of

the third formant and the di�erence in energy between the �rst harmonic and

the third formant as a measure of breathiness.

Principal Component Analysis was applied to these features and the �rst �ve PCs

were retained for laughter classi�cation. Classi�cations rates were higher than chance

for both dimensions (language and gender of the conversational partner), indicating

that the laughing style depends on the interlocutor.

Third, Szameitat et al. [Szameitat et al. 2009b] tried to automatically distinguish

the emotions (joyful, taunting, schadenfreude and tickling) of their portrayed laughs.

For this study, they used 127 laughter sequences which had been assigned by naive

raters to their emotional class with success rates above chance level (see Section

3.1.7.1)7.

Laughs were manually segmented in bouts and calls. A range of features were ex-

tracted either on the full laughter episode (number of calls, number of bouts, average

bout duration, etc.) or on calls, to characterize their duration, energy pattern (ra-

tio between mean and maximum intensity, relative position of the maximum energy

within the call, etc.), fundamental frequency pattern (mean, minimum, maximum f0,

relative position of the maximum f0 value within the call, etc.), formants (positions

of �rst �ve formants, bandwidth of �rst formant, etc.) and vocal parameters such as

jitter, shimmer, percentage of voicing, HNR as well as the center of gravity, skewness

and kurtosis of the spectrum. To obtain one single value for each acoustic parame-

ter and each laugh, the features extracted over calls were averaged across bouts and

then further averaged across episodes. As the �rst call was found to di�er from the

following calls and to bring only little additional information about the underlying

emotion, the average of calls only involved calls numbered two to eight of each bout.

After analyzing the discriminant power of each feature to distinguish between the

emotions, a set of twelve features was built with the attempt to maximize the discrim-

inant information and minimize redundancy between features. The following features

were selected: f0, Frequency of the �rst formant (F1) and Frequency of the second

formant (F2), average call duration, maximum peak frequency, ratio between maxi-

mum frequency and average f0, di�erence between maximal and minimal intensity,

percentage of voicing, average HNR, center of gravity of the spectrum, average bout

duration and average number of calls per second. Discriminant analysis using these

twelve features could classify the emotions with an accuracy of 76%. The majority of

errors concerned schadenfreude laughs, which were correctly identi�ed in only 43% of

the cases, while the other three emotions were correctly classi�ed in over 80% of the

cases.

Classi�cation performance was thus relatively good, but the data used su�er from

two important limitations. First, it is portrayed laughter and, as explained in Chapter

2, the use of acted episodes to study laughter is contested, as it is unclear whether

7It is unknown to us why only 127 laughter episodes are mentioned in the automatic classi�cation
study while the characterization study presented in Section 3.1.7.1 had 160 laughs classi�ed above
chance level, with equal overall classi�cation agreement rates of 63%.
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acted and spontaneous occurrences share the same acoustic properties. Second, Sza-

meitat et al. only considered a subset of laughs (only 30% of their corpus) for which

humans could correctly identify emotions. It can thus be expected that these laughs

do have distinct patterns (that were related to emotions), and it is not surprising that

automatic classi�cation is also e�cient on this subset. In consequence, despite the

good classi�cation results, this experiment does not prove that emotional laughter

types exist and can be classi�ed, even in portrayed laughs. Recent experiments in-

deed suggest that emotional laughter types do not exist, as was explained in Section

3.1.7.1.

4.2 Laugher retrieval

The AVLaughterCycle database containing around a thousand laughs, we were in-

terested in developing methods to e�ciently browse through the database8. This

problem is di�erent, but related, to the classi�cation of laughs that has just been

presented in Section 4.1.4, as here we do not aim to classify laughs into a de�ned

number of categories, but to examine the similarity between laughs and group laughs

that are acoustically similar to each other.

We will report in this section the work that has been conducted to group

laughs according to the timbre of the laughing voice. Timbre is de�ned as the

quality of tone distinctive of a particular singing voice or musical instrument

[Merriam-Webster 2009]. It is linked to the relative intensities of a sound harmonics,

independently from its pitch and intensity. It has been shown to be related by the

spectral envelope of the sound, using a non-linear scale. In consequence MFCCs have

been used to characterize the timbre [Dupont et al. 2009b]. The timbre of a voice is

an individual characteristic, hence we expected that by grouping laughs according to

their timbre, we would group laughs uttered by the same laugher.

To organize the database according to the laughter timbre, the following spectral

features were extracted on each laughter episode:

• 13 MFCCs, and their �rst and second derivatives.

• Spectral �atness and spectral crest values, each divided in four analysis fre-

quency bands (250Hz to 500Hz, 500Hz to 1000Hz, 1000Hz to 2000Hz and 2000Hz

to 4000Hz).

• Spectral centroid, spread, skewness and kurtosis.

• Loudness, sharpness and spread, computed on the Bark frequency scale.

8This was part of the development of a browsing application for large databases, not restricted
to laughter but to any audiovisual data, in the framework of the NUMEDIART research pro-
gram: http://www.numediart.org/, consulted on February 28, 2014. The application was cre-
ated within the AudioCycle project [Dupont et al. 2009b, Urbain et al. 2009b] and extended with
the MediaCycle [Siebert et al. 2009], LaughterCycle [Dupont et al. 2009a] and AVLaughterCycle
[Urbain et al. 2009a] projects.

http://www.numediart.org/
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• Spectral slope, decrease, roll-o� and variation.

In addition, two temporal features were included: RMS energy and ZCR. In to-

tal, 60 features were extracted for each frame of 340 samples (sampling frequency:

16 kHz), with 75% overlap. The similarity estimation requires comparing laughs

of di�erent lengths, so also comparing di�erent numbers of frames. To obtain a

constant feature vector size, it was decided to store only the mean and standard

deviation of each feature over the whole segment. More complex models could be

investigated but this simple transform provides promising results and establishes a

baseline, useful to measure future improvements. This simpli�cation had been suc-

cessfully used in other similarity computation [Dupont et al. 2009b] or laughter clas-

si�cation [Petridis & Pantic 2009] contexts and was assumed applicable to laughter

timbre characterization. Normalized Euclidean distance between feature vectors is

used to compute the similarity between laughter episodes.

The capability of the method to group laughs uttered by the same laugher has been

objectively evaluated, as presented in [Urbain et al. 2010b]. For these experiments,

some laughs were discarded from the AVLC database: 20 laughs involving speech; 19

laughs from subject #1 for which we do not have facial tracking9; the laughs from

Subject #24, who only uttered 4 short laughs, which is not enough to perform reliable

similarity tests. In total, these experiments involved 978 laughs. To evaluate the

similarity estimation, we have taken each laugh L of the AVLaughterCycle database

and used the similarity algorithm to retrieve its N closest neighbors. Two di�erent

measures have been computed.

In the �rst measure, the retrieval was considered successful if at least one of the

N retrieved laughs had been uttered by the same laugher as L. Figure 4.2 gives the

individual success rates for N = 1, 3, 5 and 10. The gray bar represents the likelihood

of a successful search if randomly organizing laughs instead of using the similarity

algorithm.

The random success score for speaker i and N random picks equals

RN
i = 1−

N∏
k=1

Ntot −Ni − k + 1

NTot − k
(4.7)

where Ni is the number of laughs from speaker i out of the Ntot laughs in the database.

For each value of N, the similarity algorithm performs signi�cantly better than

chance, at a 95% con�dence level (all p-values are largely lower than 0.05, using one-

sided paired t-tests). However, for some individuals (subjects #10, #19 and, to a

smaller extent, #8) the similarity algorithm does not outperform chance. This is

probably due to the fact that these subjects mainly uttered nasal or breathy laughs,

for which it is very hard to discriminate between subjects (there is no perceived

timbre). On the other hand, Subject #11, who gets a (nearly) perfect success rate,

9Facial tracking was not used in the experiment reported here, but was important for other
experiments. See [Urbain et al. 2010b] for further information.
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produced a large majority of voiced (�vowel�) laughs10.

Figure 4.2: Success rates achieved by the similarity browsing application, MediaCycle

(black), against chance (gray) for laugher retrieval, using N picks.

To complement this information and illustrate the interest of using the similarity

algorithm to organize a laughter database according to the speaker, we have computed,

for each laugh, the average number of utterances one needs to pick to �nd one laugh

from the same speaker. Again, the timbre similarity algorithm (utterances ordered

by distance to the input laugh in the feature space) was compared against chance.

The mean chance score for speaker i equals:

Ci =

N0+1∑
u=1

u · N1 − 1

Ntot − u

u−1∏
t=1

N0 − t+ 1

Ntot − t
(4.8)

where Ni is the number of laughs from speaker i out of the Ntot laughs in the database

and N0 = Ntot − Ni is the number of laughs from other speakers. The results are

shown on Figure 4.3, with the standard deviation intervals for the similarity algorithm.

The grouping by timbre is undoubtedly better than random search11, though for

�ve subjects (#3, #7, #14, #20, #21), the mean + std value goes above (i.e., is

worse than) the chance performance. The one-sided paired t-test gives a p-value of

7.1× 10−8. For unknown reasons, the similarity algorithm was not able to e�ciently

improve the search for Subject #3, who uttered 40 laughs spread over the laughs

types.

10I have been informed that (s)he will most likely attend the PhD dissertation, so you could get a
chance to hear her/his nice laughs if I succeed in making one joke.

11The lower the number of picks, the faster the search.



4.2. Laugher retrieval 107

Figure 4.3: Average number of picks needed to �nd one laughter from the same

speaker: similarity algorithm (MediaCycle) against chance (light gray).

These measures, although they are not pure classi�cation experiments, indicate:

1. That laughter has individual traits, hence that we can recognize laughers

by hearing their laugh only. This goes in contradiction with the recent

experiment conducted by Sathya et al. [Sathya et al. 2013], as they found

that listeners could not recognize people through their laughs. However,

our �ndings join general beliefs and conclusions drawn by Bachorowski et al.

[Bachorowski et al. 2001], who could identify laughers above chance levels.

2. That the proposed timbre features can at least partially encode such individual

di�erences. We must however remain prudent on that side, as we cannot certify

that the proposed features are characterizing only timbre: some correlates of

rhythm or amplitude can also be encoded in the feature set.

This study was part of broader experiments, including evaluation of audiovi-

sual similarity, and the developed similarity algorithm was integrated in an appli-

cation aiming at answering to participant's laughs with the most similar laugh in the

AVLaughterCycle corpus. More details are available in [Urbain et al. 2010b].
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4.3 Automatic phonetic transcriptions

Given the importance of laughter phonetic transcriptions for laughter synthesis (see

Chapter 5) as well as the possible impact for laughter detection�see the works of

Knox et al. [Knox et al. 2008] and Wagner et al. [Wagner et al. 2013] who used

speech-trained phonetic transcriptions to discriminate between laughter and speech,

or Pammi et al. [Pammi et al. 2013] who used ALISP models for the same task)�

and characterization (discriminating between di�erent types of laughs based on their

phonetic contents), it seemed interesting to us to develop a method for automatically

transcribing laughs.

To the best of our knowledge, only one work could possibly be related to

this task: the automatic classi�cation of calls performed by Tanaka and Camp-

bell [Tanaka & Campbell 2011]. It must nevertheless be noted that they used pre-

segmented calls from one participant only, and distinguished between only four broad

categories (nasal, ingressive, chuckles or vocal). Automatic laughter phonetic tran-

scription in the way we will present it here is thus a new process. However, numerous

methods have already been developed for phonetic segmentation of speech. The most

frequently used methods for speech segmentation rely on phonetic Hidden Markov

Models (HMMs), trained with spectral features [Toledano et al. 2003]. HMMs are

able to model the temporal evolution of signals, which is interesting for characteriz-

ing phonemes, as they generally contain several parts: the stable part is surrounded

by transition parts with the previous and following phonemes. Nevertheless, it should

be noted that automatic speech phonetic segmentation usually relies on existing tran-

scriptions of the utterances, and the objective is to �nd the best alignment between

the acoustic signal and the given phonetic transcription.

In our case, we aim at automatically process any incoming laugh, without any

human intervention. No transcription is available for our algorithms. Our approach

is actually close to speaker independent speech recognition, where all the decisions are

taken using only the acoustic signal without any a priori knowledge on the speaker

identity. As HMMs are also widely used in speech recognition, it is this technique

we investigated to produce automatic laughter phonetic transcriptions. It might be

useful to recall that a brief introduction to HMMs is given in Appendix B. The method

described in this section has served to train laughter synthesis (see Section 5.4) and

has been presented in [Urbain et al. 2013a].

4.3.1 Hidden Markov Models for automatic laughter phonetic
transcriptions

The implementation of our HMM-based laughter transcription was made with the

help of the HMM Toolkit (HTK) [Young & Young 1994]. One HMM was built for

each phone in the database, relying on the phonetic transcriptions presented in Section

3.2. HMMs were always trained with a leave-one-subject-out process: the HMMs were

trained using all the data from 23 subjects and tested on the laughs of the remaining
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participant of the AVLC database. The operation was repeated 24 times so as to

obtain automatic phonetic transcriptions for all the subjects.

The acoustic signal was segmented in 32 ms frames (512 samples at 16 kHz) with

a 10 ms shift. For each frame, 70 acoustic features were extracted:

• Spectral centroid, spectral spread, spectral variation, four values of spectral

�atness, spectral �ux, spectral decrease [Peeters 2004].

• 13 MFCCs (including MFCC0), their �rst and second derivatives.

• ZCR, RMS energy and loudness [Peeters 2004].

• Chirp group delay [Drugman et al. 2011] and four values for HNRs

[Drugman et al. 2013].

• Twelve chroma features [Ellis & Poliner 2007].

• f0 computed with the SRH method [Drugman & Alwan 2011], as well as the

value of the maximum SRH peak.

Initial tests revealed that the HMMs could not deal with the large quantity of dif-

ferent phones (196 di�erent phonetic labels in the original transcriptions). There were

numerous confusions, as some phones are really close to each other from an acoustic

point of view. Furthermore, many phones only had a few available occurrences for

training, which resulted in inaccurate modeling. As it has been shown that good

laughter synthesis can be achieved with a limited set of phones [Urbain et al. 2013b]

(we will come back to this in Chapter 5), we decided to group acoustically close

phones in broader phonetic clusters. Several combinations have been experimented.

The grouping illustrated in Figure 4.4 appeared as a good trade-o� between preci-

sion (keeping a su�cient number of di�erent classes to distinguish between laughter

sounds) and e�ciency (limiting the number of classes so that it is manageable by auto-

matic transcription algorithms). As explained in Section 3.2, some labels introduced

to characterize laughter sounds that are not covered by the International Phonetic

Alphabet (IPA) [International Phonetic Association 1999] also formed phonetic clus-

ters, namely cackles, grunts (including pants and chuckles) and nareal fricatives�

audible voiceless friction sound through the nostrils, that actually have a phonetic

symbol: ..
ñ. Clicks and glottal stops were discarded from our models as they are very

short and subtle phones�which makes them very hard to detect�but in our opinion

do not provide critical information for applications that can be built on automatic

laughter phonetic transcription (e.g., clustering, laughter synthesis, etc.)12. The pro-

posed grouping reduced the number of phonetic labels from 196 to possibly 22 (three

consonant classes, four vowel classes, cackle, grunt, nareal fricative and silence for

12It must however be noted that even though glottal stops are not the most prominent laughter
sounds, they relate to the degree to which syllables are broken up, which could be an interesting
characteristic for some applications.
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Figure 4.4: Grouping of phones to build consistent phonetic clusters. The original

IPA chart can be found in [International Phonetic Association 1999].

exhalation and inhalation parts) and actually 17 as �ve13 labels have not been used

in inhalation parts. The size of the phonetic clusters used in our experiments is given

in Table 4.2.

HTK provides control over several parameters to design HMMs. It goes beyond

the scope of this dissertation to present detailed results regarding the optimization of

each of these parameters for acoustic laughter transcription. Most of the parameters

have been manually tuned and the resulting automatic transcriptions were compared

with the manual (reference) phonetic transcriptions. The following parameters have

been used in our experiments:

• All the HMMs have three states and transitions between all theses states are

allowed (�ergodic HMMs�).

• The emission probabilities of each state are modeled with ten Gaussian distri-

butions.

• To avoid excessive insertions, the Word insertion Penalty (WP)14 was set to

-20.

13Namely �a�, �o�, nasal, cackle and grunt.
14The WP is the cost in likelihood for adding a new �word��in our case, a new phone�in the

transcription. Setting a WP enables to favor longer �words� in comparison to a succession of short
words who could have higher local emission probabilities.
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Table 4.2: Phonetic clusters used for HMM-based laughter phonetic transcription,

ordered by frequency of occurrence
Inhalation or Exhalation Phonetic cluster Occurrences

e silence 6612

e fricative 3261

e e 1549

e a 1432

e I 1203

e ..
ñ 839

i fricative 774

e nasal 717

e cackle 704

e plosive 286

e o 256

i e 219

i ..
ñ 166

e grunt 156

i I 153

i plosive 43

i silence 9

• The grammar consisted in bigram modeling of the succession of phones.

• the Language Factor (LF)15 was set to 2.

An example of the obtained phonetic transcriptions is shown in Figure 4.5.

4.3.2 Automatic transcription results

There are several ways to evaluate the quality of automatic transcriptions. Most

frequently, measures of hit, insertion, substitution and deletion rates are used. These

kinds of �gures are directly provided by HTK. To compute them HTK only uses the

transcription of the �le, without paying attention to the temporal segmentation. HTK

searches for the best match between the automatic and the reference transcriptions

[Young et al. 2006] and provides the number of (see Figure 4.6):

• hits (H): the phones that correspond in the automatic and reference transcrip-

tions.

• substitutions (S): phones that are labeled di�erently in the automatic and ref-

erence transcriptions.

15The LF represents the weight of the grammar compared to the emission probabilities in com-
puting the likelihood of a transcription sequence.
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Figure 4.5: Example of automatic phonetic laughter transcription. From top to bot-

tom: 1) waveform; 2) spectrogram; 3) automatic (HTK) transcription; 4) reference

transcription. In the phonetic transcriptions, the _e and _i su�xes indicate exhala-

tion and inhalation phases, respectively.

• insertion (I): the number of extra phones in the automatic transcription, where

there is no corresponding phone in the reference transcription.

• deletions (D): the number of phones in the reference transcription that have no

corresponding phone in the automatic transcription.

Figure 4.6: Basis of the recognition measures output by HTK: insertions, substitu-

tions, deletions and hits. Hits are not explicitly represented here, they concern all the

matching phones (in black).

Two global measures are also provided [Young et al. 2006]:

• the Percentage Correct (PCo):

PCo =
N −D − S

N
∗ 100 [%] (4.9)
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where N is the total number of phones in the reference transcriptions.

• the Percentage Accuracy (PA):

PA =
N −D − S − I

N
∗ 100 [%] (4.10)

While these measures provided by HTK are useful, it must be remembered that

these �gures do not take the temporal segmentation into account, but only the tran-

scription. The problem of evaluating the quality of a segmentation is discussed in

[Räsänen et al. 2009]. Räsänen et al. proposed methods that de�ne a search region

around each segmentation boundary of the reference transcription. As illustrated in

Figure 4.7, a hit is obtained when there is a detected segmentation boundary in-

side the search region; a deletion occurs when there is no detected boundary inside

the search region of a reference boundary; and insertions are counted for detected

boundaries outside the search regions of the reference boundaries, or when there is

more than 1 detected boundary inside the search region of a single reference bound-

ary. Based on these �gures, and including the total number of reference boundaries

Nref and the total number of detected boundaries Ndet, the following measures are

proposed to evaluate the overall quality of the segmentation [Räsänen et al. 2009]:

• Hit Rate (HR), representing the proportion of actual boundaries that have been

retrieved (hence it corresponds to what we have previously called Recall):

HR =
Nhit

Nref
∗ 100 [%] (4.11)

• Over-Segmentation rate (OS), which is the ratio of supernumerary detected

boundaries:

OS =
Ndet −Nref

Nref
∗ 100 [%] (4.12)

• Precision (PR), which, as previously, is the ratio of detected boundaries that

are correct:

Pr =
Nhit

Ndet
∗ 100 [%] (4.13)

• R-distance (Rdist), which is the distance from the optimal functioning point

(HR = 100 and OS = 0):

Rdist = 1−

√
(100−HR)2 −OS2 + |−OS+HR−100√

2
|

200
(4.14)

These measures were computed for our automatic transcription method, using

search regions of 40 ms (∆ = 20 ms) for the segmentation measures. Table 4.3 gath-

ers the HTK and segmentation measures for automatic transcriptions obtained with
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Figure 4.7: Basis of the segmentation measures: hits, inserted boundaries and deleted

boundaries.

di�erent values of WP and LF in HTK. These values illustrate that the values that

were empirically determined (WP=-20 and LF=2, row highlighted in bold) indeed

form a good compromise between hit rate and over-segmentation, both for the pho-

netic transcription (HTK measures) and the location of the boundaries (segmentation

measures).

Table 4.3: Measures of automatic transcription performance, for di�erent values of

Word insertion Penalty (WP) and Language Factor (LF)

HTK parameters HTK measures Segmentation measures

WP LF PCo PA HR OS PR F score
1 Rdist

-20

1 60 43 56 4.4 54 0.55 0.61

3 63 41 57 11 51 0.54 0.6

10 58 -204 66 263 18 0.28 -1.4

-20

2

62 45 56 3.6 54 0.55 0.61

0 71 2 71 69 42 0.52 0.34

-40 54 47 46 -19 57 0.51 0.62

The obtained results are far from being perfect, re�ecting that the automatic pho-

netic transcriptions do not exactly match the reference ones. However, these tran-

scriptions are already useful for training the laughter synthesizer, as will be presented

in Chapter 5.

We will �nish this section with a short discussion on the evaluation of phonetic

transcriptions. The measures presented above (accuracy, etc.) can be considered as

�gures to optimize. As for classi�cation performance, choices must nevertheless be

made on which measure to focus on: accuracy of a transcription is one option, but one

must decide whether insertions are taken into account (Percentage Accuracy) or not

(Percentage Correct), as well as decide whether only the transcription is evaluated

or segment boundaries are also considered. Trade-o�s can be looked for using a

range of measures, as we have done in this section. Nevertheless, depending on

the application, di�erent trade-o�s and evaluation measures can be imagined. For
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instance, two applications that are considered here will put di�erent constraints on

the transcriptions:

• If phonetic transcriptions are used to train the laughter synthesizer, the most

important will be the accuracy of the transcriptions. The boundaries between

the phones only have a secondary impact, as usually phone boundaries are re-

estimated within the training process of the synthesis voice.

• If phonetic transcriptions are used to cluster or classify laughs, boundary lo-

cations could have more in�uence to compute features like the proportion of

inhalation parts, the syllabic rhythm, etc. Di�erent errors could also receive

di�erent weights, for example one can tolerate confusion between two vowels

but not between inhalation and exhalation phases or errors related to more

particular sounds like snorts or grunts which are really characteristic of certain

laughs.

As we can see, the objectives and architecture of the application will in�uence what

is considered as optimal automatic transcriptions. The measures presented above

might not tell everything, and the best can be to evaluate several con�gurations of

automatic transcriptions within the application to elect the one achieving the highest

performance. In our case, the main objective of automatic phonetic transcriptions

was to train laughter synthesis. We have relied on performance measures as well as

visual comparison between the manual and automatic transcriptions to move towards

optimal settings. These transcriptions will be evaluated in Chapter 5, but as we will

not compare several settings, we cannot guarantee that these transcriptions are the

best for laughter synthesis.

4.4 Predicting arousal curves from acoustic data

As explained in Chapter 3, arousal is an important laughter dimension, frequently and

naturally used to describe laughs. In consequence, it appeared as an important fea-

ture to drive laughter synthesis. It is also a convenient layer in interactive systems to

separate the processes of deciding to laugh (with a target intensity), which is indepen-

dent from the laughter synthesis voice and style, and synthesizing the corresponding

laugh, which obviously depends on the modeled individual traits.

Instantaneous arousal seems to us both convenient to use (it is easy to draw

or describe an arousal signal) and highly-correlated with the choice of phones used

(for instance low arousal laughs are related to closed-mouth nasal sounds, while

higher arousal examples include open vowels [Ruch & Ekman 2001, Ruch et al. 2013,

Niewiadomski et al. 2012], while it is suggested in [Edmonson 1987] that consonants

are more glottalized at low intensity). In consequence, we investigated how to es-

timate laughter arousal signals. As for phonetic transcriptions, we aimed here to

develop speaker-independent models, that can be included in applications used by
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unknown users (as the ones we will see in Chapter 6) rather than models that are

tailored to a particular laugher.

Instantaneous arousal, at the frame level, will be referred to as (per-frame) arousal

signal in the next paragraphs, in contrast to per-laugh or overall arousal (presented in

Section 3.3.1). As explained in Section 3.4, the per-frame arousal signal of 49 laughs

(among which 19 from subject #6, who is the laugher we have modeled for laughter

synthesis) were manually annotated by one labeler. This makes a total of 27693

labeled frames. An MLP was trained to predict the per-frame arousal signal from

acoustic features, using the Weka software [Hall et al. 2009]. The acoustic signal was

segmented in 32 ms frames (512 samples at 16 kHz) with a 10 ms overlap. For each

frame, 82 acoustic features�already used in previous works related to cough analysis

[Drugman et al. 2013] and already presented in Section 3.3.1�were extracted:

• Spectral centroid, spectral spread, spectral variation, four values of spectral

�atness, spectral �ux, spectral decrease [Peeters 2004].

• 13 Mel-Frequency Cepstral Coe�cients (MFCCs) (including MFCC0), their

�rst and second derivatives.

• ZCR, Root Mean Square (RMS) energy and loudness [Peeters 2004].

• Chirp group delay [Drugman et al. 2011] and four values for Harmonic to Noise

Ratios (HNRs) [Drugman et al. 2013].

• Twelve chroma features [Ellis & Poliner 2007].

• f0 computed with the SRH method [Drugman & Alwan 2011], as well as the

value of the maximum SRH peak.

• The four values provided by the Snack [Sjölander 2004] ESPS pitch estima-

tion algorithm�implementing the RAPT method [Talkin 1995]�namely the

estimated pitch, probability of voicing, local RMS measurement, and the peak

normalized cross-correlation.

• the frequency and bandwidth of the �rst four formants, computed with Snack.

The MLP was evaluated with a leave-one-subject-out process. Good match-

ing between the predicted and reference curves could be observed. An example

of reference and computed arousal signals is given in Figure 4.8 and a histogram

of the reference and predicted per-frame arousal values is shown in Figure 4.9.

The average absolute error was 0.65 (std: 0.68). Feature selection was performed

under Weka, using the correlation-based feature selection algorithm presented in

[Hall 1998]. The best features appear to be the MFCCs and the spectral �at-

ness values. Results with this subset of 17 features were close to the performance

achieved using the full training set, as the average absolute error was .71. For

the work presented in this dissertation, the most important is to have per-frame

arousal curves as accurate as possible. It was thus decided to use the full feature
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set (82 features) to estimate the per-frame arousal. Computed arousal curves for

all the laughs of the AVLaughterCycle database are available on the author's page

(http://www.tcts.fpms.ac.be/~urbain/arousal_driven_synthesis).

To further evaluate the quality of the obtained per-frame arousal signals, the

per-laugh arousal of each laugh was predicted from its estimated per-frame arousal

signal: a second MLP was trained on functionals (mean, standard deviation, mini-

mum, maximum) of the per-frame arousal signal to predict the per-laugh arousal. A

leave-one-subject-out method was used for evaluation, using only data from the 21

subjects not involved in training the per-frame MLP: the data from 20 participants

were used to train a per-laugh MLP and to predict the per-laugh arousal values of

the laughs of the remaining subject. The process was repeated 21 times in order to

obtain per-laugh arousal predictions for all the subjects. The correlation between the

reference and predicted per-laugh arousals was found to be over .7 for 19 out of the

21 subjects not involved in training the per-frame MLP. A histogram of the reference

and predicted per-laugh arousal values for the 820 laughs from the 21 considered sub-

jects is displayed on Figure 4.10, showing good correspondence between the manual

and computed values.

Figure 4.8: Laughter waveform (top) and its reference and computed per-frame

arousal signals (bottom).

4.5 Summary and perspectives

In this chapter we have reviewed works on automatic laughter analysis. We have

seen that, as expected, the performance of laughter detection in continuous streams

is slightly lower than the classi�cation performance, but still satisfying (error rates

around 10% depending on the methods and databases). We have also described the

http://www.tcts.fpms.ac.be/~urbain/arousal_driven_synthesis
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Figure 4.9: Histogram of the reference and predicted per-frame arousal values. Bins

are one unit wide, except the rightmost one.

few works that focused on the discrimination between di�erent laughs. Classi�cation

largely above chance levels was reported to identify the laugher or her/his gender or

the gender and origin of the conversational partner. The identi�cation of portrayed

laughter emotions has also been mentioned and discussed, in line with the most recent

experiments which suggest that emotional categories do not exist for spontaneous

laughter taken out of its context.

After that, we moved to our own developments in laughter characterization, with

the assumption that the input is already segmented into laughter episodes. In a �rst

study we could show that individual laughter traits are encoded in spectral features

and that similarity measures of those spectral features can help grouping laughs from

the same speaker. Finally, we have presented methods to automatically estimate

the two layers of annotations introduced in the previous chapter: phonetic transcrip-

tions and laughter arousal (both instantaneous and overall). The performance �gures

reported in this chapter are however a bit di�cult to evaluate given the absence of ref-

erence points, as these developments are totally innovative, but we will see in the next

chapter that the designed methods can be used to produce state-of-the-art laughter

synthesis.

An important direction for future works is to move towards real-time laughter

detection and characterization. High reactivity is needed in interactive applications

(such as the ones that will be presented in Chapter 6) and this implies spotting laugh-

ter as soon as it begins. Some of the methods for laughter detection work on limited

time windows (e.g., 1.2 s in Scherer et al.'s audiovisual detection [Scherer et al. 2012])

and could be applied to real-time detection. Results are however expected to slightly

decrease if the size of the windows is reduced (e.g., if detection is desired within

200 ms). For our laughter characterization algorithms, we could also explore real-time

implementations. Performance for phonetic transcriptions is expected to decrease, as
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Figure 4.10: Histogram of the reference and predicted per-laugh arousal values. Bins

are one unit wide.

for the moment the most likely sequence of phones is evaluated on the whole laughter

episode. Instantaneous arousal can already be estimated in real-time as the proposed

method is operating on short time frames. A real-time implementation has indeed

been integrated in the �Laugh When You're Winning� application (see Chapter 6).

Other areas of improvement concern the feature sets. As we have seen, most

of the times usual speech features are extracted (MFCCs, PLP coe�cients, f0,

voicing rate, formant positions, etc.). Several researchers have introduced features

that are more targeted to laughter characteristics: modulation spectrum, nasality

(e.g., [Krikke & Truong 2013]), breathiness (e.g., [Campbell 2007]) or the estima-

tions of fundamental frequency and strength of excitation proposed by Sudheer et

al. [Sudheer et al. 2009]. These features could be included in our algorithms to assess

whether they bring additional information for phonetic transcriptions or estimating

arousal. Furthermore, Sathya et al. [Sathya et al. 2013] a�rmed that the slope of

decreasing of the fundamental frequency within a call is proportional to the arousal

of the laugh. It would be interesting to investigate this parameter when computing

laughter arousal. Contextual features (features computed on neighboring frames or

at least derivatives of all the features) could also be included in the arousal estima-

tion algorithm. This would introduce delays in the estimations (hence go against

real-time), but could be useful in some o�ine applications where the quality of the

estimation is the only objective and nor the processing time, nor its delay (or latency)

do matter a lot. For laughter detection algorithms also, a thorough comparison of

all the proposed features (ideally on several corpora) would be useful to assess the

importance of each feature, including those that are more closely related to laughter

particularities.

As already explained in Section 4.3, laughter phonetic transcriptions could also

be used as a feature for laughter detection in continuous streams. Several researchers
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have relied on phonetic transcriptions produced by speech recognizers to discriminate

between laughter and other audio events. These methods could be extended with the

integration of our algorithm focusing on laughter phones.

Finally, speaker adaptation could be explored. Speech recognition is known to per-

form better when the models are trained on the speaker's voice. Commercial systems

frequently propose a training stage to their users, to adapt the speaker-independent

models towards the target speaker. Here, laugher-independent models have been de-

veloped but a similar adaptation stage could be investigated for applications where

the user is known. For estimating arousal, speaker-dependent models could also im-

prove the estimations, as arousal is probably encoded di�erently by individuals and

it should be remembered that people who rated overall arousal explained that they

scored arousal relatively to the previous laughs they had observed for a particular

laugher.
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This Chapter addresses acoustic laughter synthesis. First, Section 5.1 will present

the state-of-the-art in the �eld, which is rather scarce. The following sections will
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focus on our developments of acoustic laughter synthesis with Hidden Markov Models

(HMMs). Section 5.2 is related to the base synthesis scheme, using similar processes as

for speech synthesis. Section 5.3 compares di�erent vocoders in their capabilities for

laughter synthesis. Section 5.4 explores the possibility of building laughter voices fully

automatically (no human intervention needed after data recording, in other words

no need for human phonetic transcriptions). Section 5.5 addresses the generation

problem, which aims at producing phonetic transcriptions for synthesis from higher-

level instructions, as is done in text-to-speech, where text is �rst converted in phonetic

transcriptions before being synthesized. Finally, a summary of this chapter and future

works related to HMM-based laughter synthesis are presented in Section 5.6.

5.1 State-of-the-art

As stated by Sundaram and Narayanan [Sundaram & Narayanan 2007], building a

good model for laughter synthesis is very complex since:

• The model should be able to generate a broad range of laughter episodes, varying

in durations or sounds, as people do in real-life.

• The model needs to produce human-like variations of characteristic parameters,

inside a laughter bout. If acoustic features are kept constant, the laughter

episode does not seem natural and is rated as less positive [Kipper & Todt 2001,

Kipper & Todt 2003, Lasarcyk & Trouvain 2007] (see Section 3.1.6.4).

• The model must remain user-friendly. Laughter must be synthesized providing

simple information.

In this section we will present the few reported works on acoustic laughter syn-

thesis. Attempts to synthesize laughs have so far concentrated on voiced laughs.

The �rst e�orts related to laughter synthesis are Kipper and Todt's modi�cations of

the pitch of human laughs through Linear Prediction (LP) analysis and re-synthesis

[Kipper & Todt 2001, Kipper & Todt 2003] (see Section 3.1.6.4). This is rather mod-

i�cation than actual synthesis of laughter, but it can be seen as a pioneering work

to create new laughter signals. The following sections describe recent attempts to

(copy-)synthesize1 laughter from descriptions of its underlying units.

5.1.1 Trouvain and Schröder's diphone concatenation

Trouvain and Schröder [Trouvain & Schröder 2004] conducted a pilot study to in-

vestigate how and when laughter should be inserted in synthetic speech, a topic

1Copy-synthesis consists in extracting features from a human sample and synthesize a laugh
directly from these features. It is used to assess whether the proposed model for speech production
(e.g., source-�lter) enables to synthesize high-quality utterances, as the features fed into the model
are assumed to be perfect. In actual synthesis the trajectories of the features are predicted from a
separate modeling stage.
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that is actually not covered in this Thesis. To achieve that, they synthesized three

versions of a female two-syllable laugh with the MARY diphone speech synthesizer

[Schröder & Trouvain 2003]. The duration and f0 patterns of natural laughter were

used to query the diphone database. The versions di�ered by the vocal quality of

the diphones that were selected: soft, modal or loud. These laughs were inserted in

short synthesized dialogs. Two natural laughs from the same female voice were also

included in the study for comparison purposes, as well as one natural laugh from

another female speaker, each with di�erent arousals.

Fourteen naive listeners were asked to listen to the dialogs containing the di�erent

laughs and, after each dialog, to indicate how much the speakers liked each other and

how well the laugh �tted in the dialog on a 6-point scale. Results indicated that the

arousal of the inserted laugh had an e�ect on the ratings, and that the synthesized

laughs could not yield as positive e�ects as adequate human laughs. The best synthe-

sized laugh (the modal one) obtained a score of 2.9 out of 6 on the appropriateness

scale. The moderate-arousal human laughs reached scores of 4.7 (laugh uttered by

the speaker) and 5.4 (laugh uttered by a di�erent person than the speaker inserted

in place of the speaker's laugh).

The main objectives of this pilot study were not to develop laughter synthesis and

in consequence no particular e�ort was made to improve it or to synthesize a larger

amount of laughs. However, the technique of using diphone concatenation, even

trained on speech, is interesting and has been further investigated by other research

teams, as will appear in the following sections.

5.1.2 Lasarcyk and Trouvain's articulatory system

Lasarcyk and Trouvain [Lasarcyk & Trouvain 2007] compared two systems for gen-

erating voiced laughs, inspired by works done in speech synthesis. They relied on

the structure described in Section 3.1.1, which states that a laugh is composed of an

onset, a main part, a pause and an o�set.

The �rst synthesis system is a 3D simulation of the air�ow in the vocal tract,

yielding a source-�lter decomposition of the laughter-production process. This allows

for accurate control of the parameters, both on the source side and on the �lter side.

This system also allows to produce breathing sounds often encountered in laughs, for

example the initial exhalation and �nal inhalation.

The second system is the diphone speech synthesizer MARY already used by

Trouvain and Schröder. It was built on a regular speech database (laughs excluded).

The production of sounds is thus limited to the diphones inside the database, and it

was not possible to render breathing sounds. Only the main part of laughs could be

synthesized with this second system.

The input parameters for generating a laughter episode were the duration of each

part (onset, calls, pause, o�set), the intensity contour of the episode, its fundamental

frequency (f0) contour and the vowel qualities of the calls. These parameters were

copied from an actual human laugh. Three synthetic versions of the human laugh
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were created. The �rst two, versions V and S, were obtained with the articulatory

model. Version V contained a lot of variations in glottal gestures (inspired by the

human laugh) in all parts of the laugh (onset, main, o�set). Version S was a more

stereotyped version, as identical glottal gestures were applied in all calls of the main

part. Finally, version D was obtained through diphone concatenation with the f0 and

duration patterns of the human calls as targets.

A perceptual evaluation was conducted to evaluate the naturalness of the synthe-

sized laughs. Two experiments were conducted. In the �rst one, human conversations

containing laughter were presented to 14 naive listeners. The laugh in the dialog

was either the actual human laugh or a synthesized version of it. Conversations were

presented via loudspeakers and the listeners were asked to rate the naturalness of

the dialog on a 4-point scale labeled �natural�, �less natural�, �rather unnatural� and

�unnatural�. Lasarcyk and Trouvain did not report the overall scores received by each

version of the dialog but their average rank. The dialogs with synthesized laughs

were not judged much more unnatural than the human ones, except for the diphone

concatenation (version D), with the full articulatory system (version V ) yielding the

best performance.

In the second experiment, only laughs (human and synthetic) were presented to

the listeners, and human laughs were evaluated signi�cantly more natural than syn-

thesized ones. Again, version V performed better than the others. This reinforces

the conviction that synthesized laughs must present variations in the acoustic char-

acteristics to sound natural and that breathy sounds play an integral role in laughter.

As discussed by the authors, the good performance achieved by placing the laughs

inside a conversation might have been due to the fact that the synthesized laughter is

the laughter of a secondary speaker, that we perceive in the background of the main

speaker's laughter. Furthermore, the listeners were asked to judge the naturalness

of the whole dialog. The listeners' attention might not have been focused on this

background sound, not noticing the possibly poor quality of the synthesis. This

masking e�ect is removed when only the synthesized laughter is presented. Another

limitation of the proposed method is that it has been used only to copy-synthesize

one voiced laugh. To fully assess the performance of the method, it would be needed

to use it to produce a wider range of laughs. Nevertheless, it remains an interesting

approach to laughter synthesis, yielding acceptable laughter bouts including breathing

sounds that are often discarded from synthesis.

5.1.3 Sundaram and Narayanan's mass-spring analogy

Sundaram and Narayanan [Sundaram & Narayanan 2007] tackled the laughter syn-

thesis problem under a di�erent angle. Noticing that most of voiced bouts exhibit

an oscillatory behavior (as described in Section 3.1.1), they compared the envelope of

the laughter waveform to the evolution of the position of a mass attached to the end

of a spring. The evolution of the position x of such a mass is given by the following
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equation:

x(t) = Ae−Btcos
√
k/mt, (5.1)

where B is the damping factor (symbolizing energy dissipation), m is the mass, k is

the spring constant and A a scaling factor.

If we keep only the positive values of this temporal evolution (setting the negative

values to zero) and use the resulting signal as the energy envelope of a wave, we

obtain the graph showed in Figure 5.1, where the hypothetical oscillatory signal is

displayed together with its envelope, corresponding to the positive part of a mass-

spring trajectory. The parallel between this waveform and a stereotypical voiced

laughter bout is striking. The approximation of a real voiced laughter episode is even

better if the parameters of the mass-spring system are allowed to vary over time:

k(t) or m(t) to modify the periodicity of the envelope, B(t) to change the damping

and A(t) to reach the desired amplitude. Figure 5.2 shows the approximation of the

envelope of a real laughter episode Sundaram and Narayanan were able to obtain

with the mass-spring analogy, modifying the parameters of the mass-spring system to

match the waveform.
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Figure 5.1: Signal modulated by the position of a mass-spring system.

This method enables to model the envelope (i.e., the duration and peak amplitude

of each call) of the laughter bouts. One then needs to synthesize the calls. Sundaram

and Narayanan restricted themselves to synthesize vowel-like calls via LP. Di�erent

vowel-like sounds can be obtained by changing the coe�cients of the all-pole �lter

of the LP model. The LP model was built on vowels from regular speech. The f0
trajectory of the laugh to synthesize must also be speci�ed (through a Graphical User

Interface).
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Figure 5.2: A mass-spring model trajectory superimposed on a real laughter bout.

Source: Sundaram and Narayanan [Sundaram & Narayanan 2007].

Perceptive tests were conducted to evaluate the naturalness and acceptability of

17 synthesized laughs (with parameters inspired from real episodes), presented ran-

domly with eight acted laughs. A 5-point scale was used. The 28 listeners massively

judged the synthesized laughter bouts as non-natural (average naturalness score of

1.71 out of 5) and non-acceptable, while the real utterances received good�but not

perfect�scores (average naturalness of 4.28). Possible reasons for the non-natural

perception of the synthesis obtained with this approach can be the limited complex-

ity of the features (for example simple vowel-sounds were synthesized) or the absence

of breathing sounds. We would also like to add that, while the concepts underlying

this synthesis method are rather simple, specifying the mass-spring parameters for

modeling a given laughter episode is not straightforward. The authors also insist on

the fact that the two proposed synthesis steps can be separated and that one may

use the envelope model together with any other �speech� synthesizer (i.e., it is not re-

stricted to LP synthesis trained on speech vowels) to synthesize the calls. Depending

on the synthesizer possibilities, snort- or grunt-like calls could also be inserted.

5.1.4 Beller's unit selection and parametric modi�cation

Beller [Beller 2009] proposes an original approach to laughter synthesis, as voiced

laughter is synthesized from a neutral speech sentence. The utterance was automat-

ically transcribed in phonemes, and three phones were selected. The �rst selected
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phoneme was the occlusive exhibiting the maximum positive loudness slope, to form

the attack of the laugh. The second selected phoneme was another occlusive (as the

automatic transcription methods mislabeled laughter intercalls as occlusives) with a

minimal absolute loudness slope, to form the inter-call intervals. Finally, the central

vowel with minimal f0 slope and minimal voicing coe�cient was selected. The initial

laughter syllable was formed by the attack occlusive and the vowel, while the other

syllables consisted in a concatenation of the inter-call occlusive and the vowel.

The syllables were then individually modi�ed to respect the instructed laughter

prosody parameters: syllables could be time-stretched, transposed, scaled and fre-

quency warped to control respectively the rhythm, f0 pattern, energy pattern and

the degree of jaw opening during the laugh.

No evaluation of the obtained laughs has been performed. By listening to the re-

leased examples, we found that the synthesized sequences de�nitely sound like laugh-

ter, but in our opinion are lacking naturalness due to the repetition of the same

syllable (which is only slightly modi�ed).

5.1.5 Sathya et al.'s modi�cation of excitation characteristics

Sathya et al. [Sathya et al. 2013] synthesized voiced laughter bouts by controlling

several excitation parameters of laughter vowels: pitch period, strength of excitation

and amount of frication. After analyzing these features on a range of human laughs,

Sathya et al. concluded that the pitch contour and the strength of excitation of laugh-

ter calls can be approximated by quadratic functions, while the amount of frication

tends to decrease within and across calls.

To synthesize a call, their method uses a segment of natural or synthetic vowel

corresponding to the desired duration of the call as input. The fundamental

frequency and strength of excitation are extracted with the method proposed in

[Sudheer et al. 2009] (see Section 4.1.2.2). Pitch-synchronous Linear Prediction Anal-

ysis is then performed to obtain the LP coe�cients (approximating the �ltering e�ect

of the vocal tract) and the LP residues (representing the excitation signal). These

parameters are available for each epoch (instant of signi�cant excitation of the vo-

cal tract system), hence for each pitch period. The pitch patterns of the synthesized

calls are approximated by a quadratic curve, determined by the desired minimum and

maximum pitch periods within each call. The quadratic approximation gives the posi-

tions of the epochs in the synthetic signal. The LP parameters at these new locations

are copied from the nearest epochs of the original vowel. The LP residuals are then

modi�ed according to the desired (synthetic) pattern of the strength of excitation,

which is also modeled with a quadratic approximation. Frication (or breathiness) is

then added by band limited Gaussian noise to the signal. The noise signal consists

of white Gaussian noise of the length of the call, scaled to correspond to a desired

fraction (typically 80 to 120%) of the energy of the LP residuals within the call and

then �ltered by a band pass �lter with a resonance at 2500 Hz and a bandwidth of

500 Hz. Finally, the noise signal is weighted so that the amount of breathiness is
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linearly decreasing within the call. The noise signal is added to the residual signal to

form the excitation signal �ltered with the LP coe�cients to obtain the synthesized

call. Low amplitude band limited random noise (about 1000 times smaller than the

call energy) is used to �ll the intercalls.

To synthesize a laugh, the following parameters must be speci�ed: number of

bouts, number of calls, intensity ratio from �rst to last call, as well as the param-

eters required to synthesize calls (duration of each call and intercall, minimum and

maximum pitch period of each call and amount of frication at the beginning of each

call). Although technically all parameters can be speci�ed independently, the authors

noticed that there are some interdependencies to take into account if one wants to

avoid poor quality synthesized laughs. For instance, calls are longer when they are

fewer, long bouts tend to have higher f0 values and intercall duration depends on the

position within the bout.

Sixty laughs were synthesized with the proposed method. Each laugh uses one of

the following six input vowels: natural /i/ and /a/ from a female voice, natural /i/

and /a/ from a male voice, synthetic /i/ and /a/ from a male voice. For each of these

six input vowels, ten di�erent laughs, containing one bout of four to eight calls, are

synthesized with di�erent combinations of some synthesis parameters (ratio between

�rst and last call, ratio between the duration of calls and intercalls, breathiness).

These laughs were played in random order to 20 subjects who were asked to rate their

quality of synthesis and acceptability on a 5-point scale ranging from very poor to

excellent.

The synthesized laughs reached relatively high scores in perceived quality and

acceptability, with values around 3 on a scale ranging from 1 to 5. The variations of the

synthesis parameters had little in�uence on the scores. However, laughs synthesized

from an original synthetic vowel received signi�cantly lower scores for the quality of

synthesis (2.36 and 2.73 out of 5) than laughs using human vowels as input (which

all have scores over 3.15). It must also be noted that no human laugh was included

in the evaluation, which might have had a positive in�uence on the scores obtained

by the synthesized laughs (as there is no �perfect� reference to compare with in the

evaluation). To conclude, laughs synthesized with Sathya et al.'s method received

relatively high scores compared to Sundaram and Narayanan's, even if the results

are still far from perfect naturalness, especially when using synthetic vowels as input.

The method is currently limited to synthesize single-bout voiced laughs, as it cannot

synthesize inhalations nor unvoiced calls.

5.1.6 Cagampan et al.'s diphone concatenation

Cagampan et al. [Cagampan et al. 2013] synthesized laughs by concatenating syl-

lables from the Pinoy Laughter 2 database (see Section 2.3.7). Laughs from the

database were segmented into syllables with di�erent labels denoting laughter vowels

(`ha',`he',`hi',`ho',`hu'), grunt- and snort-like syllables as well as laughter onset and

o�set. These units were then combined to form laughs with four syllables in the
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apex, plus possibly an onset and an o�set. Di�erent laughter bouts were synthesized

by varying the vowel sounds, the time interval between them (through syllable overlap

or dynamic time warping to match the syllabic rhythm of a human laughter sound),

the amount of fade in and fade out e�ects for each syllable and the presence (or not) of

an onset and an o�set. The naturalness of the laughs was evaluated by naive listeners

on a scale from 1 to 5. Two di�erent experiments have been conducted.

In the �rst experiment, only `ha' syllables were included, possibly with an onset.

It revealed that laughs are perceived as more natural when they include an onset seg-

ment (the in�uence of o�set was not investigated) and that dynamic time warping is

bene�cial, as it introduces some variability in the laugh (by copying human patterns).

In the second experiment, all laughs contained an onset, four syllables (with varied

vowels) and an o�set. The results somehow contradict those of the �rst experiment,

as dynamic time warping led to improved naturalness in few cases only. However, it

generally seems that fade in between concatenated syllables has a positive e�ect (as it

smooths transitions between syllables) and that variability introduced by changes in

the vowel quality over the laughter bout increase the perceived naturalness. Laughs

with solely the syllable `he' were also better rated than laughs containing only the

stereotypical syllable `ha'. The authors suggest that it can be related to the expecta-

tions that listeners have about the stereotypical laughs. However, we think that the

results must be taken with caution: the study does not include su�cient variations in

vowels to draw conclusions about which vowel is perceived as more natural than the

others, as all laughs contained exactly four syllables and are highly-dependent on the

example for each vowel that was selected for concatenation. Similarly, we are quite

surprised by the overall low naturalness scores received by human laughs (�ve out of

the six humans laughs received average naturalness scores below 3.4 on the 1-5 scale)

as well as by the authors' �ndings that a laugh with an `ho-hi-ha' apex was rated as

the most natural, as such a combination does not seem natural at all, as explained

in Chapter 3. There might be some evaluation bias explaining these results, possibly

some cultural e�ects (laughers and listeners were Filipinos) or some misinterpretation

of the scale (funniness/pleasantness instead of naturalness).

Nevertheless, some laughs synthesized with this syllable concatenation technique

received high naturalness scores (the best obtaining an naturalness score of 3.6) and

were perceived as more natural than �ve of the six human laughs included in the

evaluation.

5.1.7 Oh and Wang: LOLOL

A real-time laughing instrument has been developed by Oh and Wang

[Oh & Wang 2013b]. Their main objectives were expressivity and control, rather

than quality of synthesis or laughter naturalness. They synthesized vowels by for-

mant synthesis (source-�lter decomposition). Real-time control was provided over

several parameters: rhythm, pitch, falling pitch at the end of the vowel or not, voiced-

ness/harmonicity of the vowels, formant positions (F1-F2 vowel space), inhalation or
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exhalation and glottal waveform (to control voice quality and introduce e�ects of

harshness). As the system was mainly developed as an instrument, for performance

purposes, it has not been evaluated methodically, but a video demonstration is avail-

able on the web2.

To the best of our knowledge, this is the �rst paper on real-time laughter synthesis

system3. As could be expected, the resulting laughs do not sound natural (inhalations

are not well synthesized, only vowel sounds can be rendered, etc.) but the expressivity

objective is clearly reached and they are able to convey di�erent �meanings� through

these laughter-like signals. It must also be noted that the temporal evolution of

laughter syllables over an episode is not modeled at all: the system is relying on the

capabilities of the performer to control sound parameters (pitch, rhythm, evolution

of formants) in an expressive way, which is clearly achieved by the trained performer

in the video. It is however also possible to script the evolution of parameters.

5.1.8 Oh and Wang: modulation of speech

To conclude this state-of-the-art section, it seems interesting to us to make a short

parenthesis with the recent works from Oh andWang [Oh & Wang 2013a] to modulate

speech and make it sound like speech-laugh, as opposed to all previous attempts on

pure laughter. The method takes speech as input and segments it into syllables,

based on the energy envelope. Then they provide control over several parameters

of the syllables that can be a�ected by laughter: intensity contour, maximum pitch

value, tempo regularity (the degree to which segmented speech syllables are fetched

to an isochronous tempo), rhythm (the periodicity of syllables between 4 and 6 Hz).

Examples can be listened to on the authors' page4. Modi�cations of speech are clearly

audible, although some details are probably missing to make the sentences sound like

natural speech-laugh, for example the insertion of aspiration sounds described in

Section 3.1.3. Nevertheless this is an interesting �rst approach to the problem, and

it also accounts for the current gain in interest for acoustic laughter synthesis, which

has witnessed �ve additional papers (including ours) in 2013, a similar quantity as in

all the preceding years together.

5.1.9 Summary of the state-of-the-art

As we have seen, there have been a few attempts to synthesize laughter and it seems

that the topic is currently gaining interest. Laughs synthesized with the described

methods are generally lacking naturalness. Several authors have stressed the complex-

ity of producing natural-sounding laughs, as it is a highly variable signal including

2http://vimeo.com/58348046, last consulted on February 20, 2014.
3Real-time laughter synthesis had already been informally demonstrated by Nicolas D'Alessandro

using HandSketch [D'Alessandro & Dutoit 2007] and brie�y showcased during concerts (e.g.,
[D'Alessandro et al. 2013]), but had never formed the core of a paper.

4https://ccrma.stanford.edu/~jieun5/research/IS2013/show_and_tell/

laughter-modulation.mov, last consulted on March 17, 2014

http://vimeo.com/58348046
https://ccrma.stanford.edu/~jieun5/research/IS2013/show_and_tell/laughter-modulation.mov
https://ccrma.stanford.edu/~jieun5/research/IS2013/show_and_tell/laughter-modulation.mov
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sounds that are usually not modeled, e.g. inhalation sounds. Interestingly, human

laughs do not receive a perfect naturalness score either when they are evaluated by

naive listeners: the lack of context is probably making some laughs�although totally

human and properly recorded�surprising. In the following sections, we will describe

our developments of audio laughter synthesis, using Hidden Markov Models (HMMs),

which are widely used in speech synthesis but had not yet been experimented for

laughter synthesis.

5.2 Hidden Markov Models for acoustic laughter

synthesis

5.2.1 Hidden Markov Models implementation scheme

HMM-based speech synthesis roughly uses the same models as those presented in Ap-

pendix B. One HMM is trained for each phoneme, to model the evolution of features.

Then, for synthesizing an utterance, its phonetic transcription is used to retrieve the

corresponding HMMs, put them in a sequence, and generate the sequence of obser-

vations that is most likely according to the observation probabilities of each state.

As the observation probabilities between two states are modeled independently (in

particular between states of di�erent HMMs that are modeled on di�erent pieces of

data but can still follow each other for synthesis), �rst and second order derivatives

of the features are usually included in the feature set, in order to obtain smooth

synthesized trajectories. Without the introduction of derivatives in the observation

probabilities, the most likely sequence of observations would be the sequence of the

most likely observation for each state taken independently (hence, the mean vector

associated to each state, when considering a Gaussian distribution). The presence of

derivatives pushes the system to �nd the most likely trajectory of features, which can

deviate from the local optimums.

In HMM-based parametric speech synthesis, the spectrum, fundamental frequency

and duration of phonemes are modeled in a uni�ed framework [Yoshimura et al. 1999].

Based on the resulting HMM, a maximum-likelihood parameter generation algorithm

is used to predict the source/�lter features [Tokuda et al. 2000], which are then sent

to a parametric synthesizer to produce the waveform. HMM modeling being known

for its �exibility, its use for the synthesis of non-verbal vocalizations, such as laughter

in this case, appeared to be relevant. To develop laughter synthesis we used as a

baseline the canvas provided in the demonstration scripts of the HMM-based speech

synthesis system (HTS) [Oura 2011]. HTS is a set of functions designed for HMM-

based acoustic speech synthesis and provided as a patch to the HMM Toolkit (HTK)

[Young & Young 1994].

As an alternative to the feature extraction tools used in the HTS demonstration

scripts, namely the Speech Signal Processing Toolkit (SPTK) [SPTK online 2013] for

spectrum and Snack for f0 [Sjölander 2004] (which implements the RAPT method
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[Talkin 1995]), we included the Speech Transformation and Representation using

Adaptive Interpolation of weiGHTed spectrum (STRAIGHT) tools [Kawahara 2006],

which are known in the �eld of speech processing to provide e�cient source and �l-

ter representations. Although STRAIGHT provides tools for synthesis and for the

extraction of other features than spectrum and f0, we only used it for extracting

spectrum and f0 in our baseline method.

The traditional excitation used by HMM-based speech synthesizers�denoted as

MCEP in Section 5.3�is either pulse train or white noise, during voiced and un-

voiced segments respectively. To reduce buzziness in the synthesized waveforms

of vocalized segments, we used the Deterministic plus Stochastic Model (DSM)

source model, which has been shown to improve the naturalness of synthesized

speech [Drugman & Dutoit 2012]. This tool provides an excitation signal which is

closer to the actual human excitation signal than the original pulse train. More de-

tails on the MCEP, STRAIGHT and DSM methods will be given in Section 5.3.

In addition, the fundamental frequency of the laughs was studied and it was found

that a good estimation of f0 could be obtained by setting the boundaries of the es-

timation algorithm at 100 and 800 Hz for the considered voices (see below). The

number of states per HMM was left to �ve, as qualitative experiments showed few

di�erences when using three or four states per HMM. We have chosen MFCCs as de-

scriptors of the spectrum and the state probabilities were modeled with one Gaussian

distribution per state.

5.2.2 Adaptation of laughter data to HMM-based synthesis

Several post-processing stages were required in order to adapt the AVLC data to

HMM-based synthesis. First, a speci�c voice had to be selected. The 24 subjects of

the AVLaughterCycle database laughed with variable (total) durations and acoustic

contents. As HMM-based synthesis requires a lot of training examples, we focused

on the �ve subjects who produced most laughs. Preliminary HMM-based synthesis

models have been trained for each of these �ve voices. Informal evaluation revealed

that subject #6 provided the best acoustic (laughter) quality. Only three minutes

of laughter data are available for subject #6, but he tended to use a limited set of

phones (see [Urbain & Dutoit 2011] or Section 3.2.3) and hence there are numerous

examples of these phones available for training. In addition, subject #6 is highly

expressive on the acoustic side (while other subjects tend to have more silent periods

in their laughs).

The second step was to decide how to handle the available narrow phonetic annota-

tions. Indeed, the phonetic transcriptions of the 64 laughs from subject #6 contained

45 di�erent phonetic labels, with only twelve of these appearing at least ten times.

As for automatic phonetic transcriptions, it was decided to gather acoustically close

phones into broader phonetic clusters, in order to increase the number of training

examples available for each label. For example, velar, uvular, pharyngeal and glottal

fricatives were grouped in one �fricative� cluster. The phones that were barely present
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and could not be merged with acoustically similar phones to form one representative

cluster with at least ten occurrences were assigned to an unknown set. The result-

ing phonetic clusters for subject #6 are listed in Table 5.1. The way vowels were

grouped is illustrated in Figure 5.3. The grouping is slightly di�erent than the one

used for automatic phonetic transcriptions, as here front vowels are divided in three

clusters instead of two. We do not think it makes a big di�erence. The grouping

for automatic transcriptions was actually realized after the �rst attempts for laughter

synthesis presented here, and was downsized to two clusters for front vowels after we

observed confusions between laughter phones by the HMMs. The grouping for auto-

matic transcriptions has also been used for our latest laughter synthesis experiments,

which will be presented in Sections 5.3 and 5.4.

Table 5.1: Phonetic clusters used for HMM-based laughter synthesis, ordered by

frequency of occurrence. (Note: Average arousal will be used in Section 5.5).

Respiration part Phonetic cluster Occurrences Av. arousal (std)

Exhalation fricative 439 3.4 (1.0)

Exhalation a 327 3.5 (1.0)

Exhalation silence 296 2.0 (0.9)

Exhalation @ 84 2.4 (0.8)

Inhalation fricative 49 1.9 (0.8)

Exhalation E 40 2.3 (0.6)

Exhalation o 39 3.9 (0.6)

Exhalation cackle 35 1.5 (0.5)

Exhalation I 10 2.3 (0.5)

Finally, the HTS framework enables to build context-dependent HMMs, where the

contexts that yield di�erent acoustic realizations of one phoneme are identi�ed with

the help of contextual features and decision trees [Zen et al. 2007b]. Di�erent emission

probabilities can be modeled for the same phoneme HMM and the distribution that

is used at each step is determined by the context in which the phoneme lies.

To exploit the capabilities of HTS to model phonetic context, a third post-

processing step was conducted: laughter syllable annotations were added to phonetic

transcriptions. Syllables generally contain two phones (typically a fricative �h�, and

a vowel �a�) and their syllabic label is the sequence of the involved phonetic classes

(hence, a syllable containing a fricative and a vowel is labeled FV ).

The basic information that can be provided to HTS for contextual modeling of one

phoneme is the labels of the (generally two) preceding and following phonemes. This

is immediately transposable to laughter synthesis and our baseline method includes

the labels of the preceding and following two phones. However, additional contextual

information is frequently used to improve speech synthesis, with contextual features

like the position of the phoneme in the syllable, the position of the syllable in the word,

etc. (for an example, see [Zen 2006]). Using the phonetic, syllabic and respiration

transcriptions, similar contextual features have been computed for our laughs. The
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Figure 5.3: Grouping of the vowel phones in phonetic clusters. The original vowel

chart can be found in [International Phonetic Association 1999].

following 16 contextual features have been added:

• Position of the current phone in the current syllable (forward and backward

counting, two features).

• Number of phones in the previous, current and following syllables (three fea-

tures).

• Position of the current syllable in the current respiration phase (forward and

backward counting, two features).

• Position of the current syllable in the whole laughter episode (forward and back-

ward counting, two features).

• Number of syllables in the previous, current and following respiration phases

(three features).

• Position of the current respiration phase in the whole laughter episode (forward

and backward counting, two features).

• Total number of syllables in the laughter episode.

• Total number of respiration phases in the laughter episode.
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Given all that information, HMMs could be trained with the audio and transcrip-

tion �les from subject #6 of the AVLaughterCycle database, and acoustic laughs

could then be synthesized. The outcome of the synthesis has been evaluated, and the

results will be presented in the next Section.

5.2.3 Evaluation of HMM-based laughter synthesis

5.2.3.1 Compared Synthesis Methods

In search for the best algorithms to synthesize laughs, six di�erent methods for each

laugh were included in the evaluation test for comparison purposes:

• Method H: the original human laugh, unmodi�ed.

• Method CS: the same laugh, re-synthesized through copy-synthesis (i.e., f0
and spectral parameters are extracted from the laugh and directly used in the

source-�lter model to reconstruct the laugh), including the STRAIGHT and

DSM algorithms.

• Method S1: the same laugh, synthesized with the HMM-based synthesis process

(i.e., using as only input the phonetic transcription of the laugh) with imposed

durations (i.e., each synthesized phone is forced to keep the same duration as in

the original phonetic transcription), but only using as contextual information

the labels of the preceding two and following two phones.

• Method S2: same as Method S1, with an extended context including the con-

textual information available from syllabic annotation, as explained in Section

5.2.2.

• Method S3: same as Method S2, with the addition of the STRAIGHT and

DSM algorithms.

• Method S4: same as Method S3, with the duration of each phone estimated

from the HMMs by HTS.

Method H was included to obtain a reference for naturalness, as it had already

been shown that human laughs do not achieve a perfect naturalness score. Method

CS can be seen as the maximum performance achievable with our HMM-based source-

�lter models. Method S1 is considered as our baseline HMM-based laughter synthesis

method, as it is directly available from HTS. Methods S2, S3 and S4 are possible

improvements over the baseline method. Our test hypotheses were the following:

• H1: Using full contextual information improves the results (Method S2 better

than Method S1).

• H2: Using STRAIGHT and DSM improves synthesis quality (Method S3 better

than Method S2).
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• H3: HTS can model the duration of laughter phones appropriately (Method S4

is not worse than method S3).

Each of the synthesized laughs was obtained with a leave-one-out method, to

ensure that we were not simply able to reproduce learned trajectories. The laugh to

synthesize was not included in the training phase of the HMMs.

5.2.3.2 Experimental set-up

Sixty-four laughter episodes were available for subject #6 of the AVLaughterCycle

database. Thirty-three of these included phones that were present fewer than eleven

times in the available data. These 33 laughs were not included in the evaluation, but

were used in the training phase. Each of the remaining 31 laughs was synthesized with

the methods presented in Section 5.2.3.1. For the evaluation, laughs were presented

to participants in random order and, for each laugh, only one of the methods was

randomly selected for each participant. In consequence, all participants were assigned

a di�erent set of laughs, varying both in the ordering of the laughs and in the method

to evaluate for each laugh.

The evaluation was performed through a web-based application. The �rst web-

page of the test asked participants to provide the following details: their age, gender,

whether they would rate the laughs with the help of headphones (which was sug-

gested) or not, and whether they were working either on a) speech synthesis, b) audio

processing, c) laughter, d) the ILHAIRE project5 or e) none of these topics.

Once this information was �lled, participants were presented with an instruction

page explaining the task, i.e. rating the naturalness of synthesized laughs on a 5-point

scale with the following labels: very poor (score 1), poor (2), average (3), good (4) and

excellent (5). As some laughs, with some of the methods, were extremely short and/or

quiet, participants were also allowed to indicate �I cannot rate the naturalness of this

laugh��which will be referred to as �unknown� naturalness rating in the following

sections�instead of providing a naturalness value, but asked to use this option only

if they could not hear the laugh. Participants were also explained that they could

listen to each sample as many times as they wanted before moving to the next example.

The third page contained eight laughter examples to familiarize participants with

the range of synthesis quality that they would later have to rate, with the aim to reduce

interpersonal variability during the actual evaluation. Two laughs (each presented

with four di�erent methods evaluated in the experiment) were selected to form these

examples and were excluded from the evaluation task. In consequence, there were 29

laughs remaining for evaluation. Participants were presented one laugh at a time and

asked to rate its naturalness. The test was completed after 29 evaluations.

5ILHAIRE is a European project centered on laughter, whose participants are experts in laughter
and had already been presented some examples of acoustic laughter synthesis, which could cause a
bias in the ratings.
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Figure 5.4: Average naturalness scores obtained by each method, depending on the

listening device.

5.2.3.3 Results

The focus of the evaluation was to compare synthesis methods to each other. Nev-

ertheless, analyses of variance with two independent factors have been conducted to

investigate the in�uence of gender, of using headphones or not, and of possible ex-

perience in the laughter synthesis �eld, over perceived naturalness. The synthesis

method was always one of the two independent factors. The Tukey Honestly Signi�-

cant Di�erence (HSD) adjustment has been used to compute all p-values. Generally

speaking, no statistically signi�cant di�erences related to the participants' pro�les

were found. Although using headphones or not did not yield to statistically signif-

icant di�erences in the evaluation, synthesized laughs tended to be slightly better

evaluated when listening to them via loudspeakers (see Figure 5.4). We will hence

here only report on the results related to people wearing headphones.

Sixty-six participants completed the study: 37 females (average age: 33.1; std:

10.1) and 29 males (average age: 35.6; std: 13.5). Thirty-eight of these participants

used headphones. Their pro�les are summarized in Table 5.2. Out of the 1102 received

answers from people using headphones, 53 were �I cannot rate the naturalness of this

laugh�. Table 5.3 gathers the number of ratings received, the number of �unknown�

answers and the average score for each method. As the naturalness score di�ered

for each human laugh, it was decided to compute naturalness scores relatively to the

reference human laugh: the relative rating (RRx) of the naturalness score x is the
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di�erence between the average score received by the corresponding human laugh (Hx)

and x:

RRx = Hx − x (5.2)

RRx can be seen as the distance between a synthesized laugh and its human counter-

part: the lower RRx, the more natural the laugh sounds.

Table 5.3 also presents p-values resulting from a univariate analysis of the variance,

with the relative naturalness score as dependent variable and the method as explaining

factor. Only the p-values between successive synthesis methods (corresponding to

our hypotheses) are presented in Table 5.3. The Tukey HSD correction was used.

Although the average naturalness scores of our synthesis methods di�er (S4 received

better naturalness scores than S3, for example), no statistically signi�cant di�erence

is obtained.

Table 5.2: Participant pro�les.
Loudspeakers Headphones

Total
Participant category Females Males Females Males

Non-expert 17 5 13 10 45

Synthesis expert 1 4 5

Laughter researcher 2 2 4

ILHAIRE participant 1 3 3 5 12

Total 20 8 17 21 66

Table 5.3: Received answers for each synthesis method, only including participants us-

ing headphones. Note: p-val denote the p-values of the pairwise comparisons between

one method and the method from the line above.
Method # ratings # unk. Av. score (std) Av. RR score (std) p-val

S1 176 11 2.4 (1.0) 1.7 (1.2) -

S2 166 11 2.3 (1.1) 1.7 (1.2) 1

S3 164 12 2.4 (1.1) 1.6 (1.2) .81

S4 176 2 2.5 (1.1) 1.4 (1.0) .94

CS 196 8 3.3 (1.2) 0.7 (1.2) 0

H 171 9 4.0 (1.2) 0 (1.0) 0

ALL 1049 53

5.2.3.4 Discussion

As it has already been found in previous studies, actual human laughs are not rated

as perfectly natural by participants: method H has an average score of 4 out of 5 (see

Table 5.3). Even more, the perceived naturalness for human laughs is highly variable
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from one laugh to the other, as indicated by the large variance. This is why rela-

tive ratings have been used. Nevertheless, human laughs received signi�cantly better

naturalness scores than copy-synthesized laughs and than our HMM-based synthesis

methods. It should however be noticed that being around 1 point below human utter-

ances on a 5-point naturalness scale is comparable to the performance achieved by the

best speech synthesis methods (for example, see the results in [Yamagishi et al. 2009]).

Regarding our hypotheses about synthesis methods, the results of the evaluation

contradict H1: adding more contextual information does not yield to higher natu-

ralness scores. While this goes against our initial expectations, it can possibly be

explained by the limited amount of training data: adding context enables HTS to

build contextual subgroups for each phonetic class, which gives better dynamics to

the laughs, at the expense of degraded acoustic models, as they have less training

examples. This should be veri�ed in the future with an even larger laughter database

(e.g., the AV-LASYN database which has been recorded recently, see Section 2.3.8).

Our second hypothesis, H2, was not veri�ed either: using the STRAIGHT and DSM

algorithms did not improve the quality of the synthesized laughs su�ciently to reach

statistical signi�cance. Finally, H3 has been veri�ed: letting HTS model the duration

of the phones does not impair the quality of the synthesis. Method S4 is actually

better than Method S3, although the di�erence does not reach statistical signi�cance.

This indicates that the generation step (i.e., producing, from high-level instructions,

the phonetic transcription of a laugh to synthesize) does not have to produce dura-

tion information along with the sequence of phones, as the duration can be properly

modeled by the synthesizer itself. We will come back to this in Section 5.5.

Among the four synthesis methods, method S4 yields the best results, with an

average naturalness score of 2.5 (std: 1.1; minimum: 1.64; maximum: 3.82) out of 5.

The obtained average score of 2.5 is clearly better than the 1.71 achieved by Sundaram

and Narayanan [Sundaram & Narayanan 2007] and similar to the scores obtained by

Cagampan et al. [Cagampan et al. 2013] and by Sathya et al. [Sathya et al. 2013]

when using synthetic vowels. One of the advantages of our method is the range of

sounds that can be synthesized, simply from a phonetic transcription: contrarily to

previous attempts, we did not limit ourselves to a �xed number of syllables, episodes

without inhalation/breathing sounds, solely voiced laughs nor copied acoustic param-

eters from human laughs.

5.3 Comparison of vocoders in HMM-based laughter

synthesis

We have presented our �rst developments of HMM-based laughter synthesis in the

previous section. For this �rst implementation, we had already integrated the DSM

vocoder and results have shown that including the STRAIGHT (for feature extrac-

tion) and DSM methods (for creating the excitation signal), only slightly improved

the laughter quality compared to the baseline method (the di�erence does not reach
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statistical signi�cance). Other vocoders exist, however. Most of them have been

developed for speech synthesis. In this section, we will compare the performance of

several vocoders for laughter synthesis. These developments were made in collabora-

tion with researchers from KTH (Stockohlm, Sweden) and Aalto University (Espoo,

Finland) and have been published in [Bollepalli et al. 2014].

5.3.1 Vocoders

The following vocoders were chosen for comparison:

• Impulse train excited Mel-CEPstrum based vocoder (MCEP) (the vocoder of

our baseline experiments).

• Deterministic plus Stochastic Model (DSM) [Drugman & Dutoit 2012], also al-

ready used in Section 5.2.

• STRAIGHT [Kawahara et al. 1999, Kawahara et al. 2001] using mixed excita-

tion.

• GlottHMM vocoder [Raitio et al. 2011].

All these vocoders rely on the source-�lter model of speech production. The

vocoders can di�er on the extraction of the spectrum (to build the �lter) and on

the model for the excitation signal. The vocoders and their parameters are listed in

Table 5.4 and described in more detail in the following sections.

Table 5.4: Tested vocoders and their parameters and excitation type.
System Parameters Excitation

MCEP MFCC: 35 + f0: 1 Impulse + noise

STRAIGHT MFCC: 35 + f0: 1 Mixed excitation

+ band aperiodicity: 21 + noise

DSM MFCC: 35 + f0: 1 DSM + noise

GlottHMM f0: 1 + Energy: 1 + Stored glottal

HNR: 5 + source LSF: 10 �ow pulse +

+ vocal tract LSF: 30 noise

5.3.1.1 Impulse train excited mel-cepstral vocoder

The impulse train excited mel-cepstrum based vocoder is the baseline vocoder used

in Section 5.2. In this vocoder, speech is described by only two features: f0 (for

excitation) and spectrum (the �lter). Here, spectrum is represented by MFCCs as
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they provide a good perceptual representation of the speech spectrum. Spectrum is

computed with the Speech Signal Processing Toolkit (SPTK) and f0 with Snack.

For synthesis, the excitation is either a pulse train at the desired f0 for voiced

speech, or white noise for unvoiced parts. This simple excitation method causes the

rendered speech signal to frequently sound buzzy.

5.3.1.2 STRAIGHT

The STRAIGHT method proposed by Kawahara [Kawahara et al. 1999,

Kawahara et al. 2001] decomposes speech into three components: a) the spec-

trum, again represented with mel-cepstrum coe�cients, but extracted using

pitch-adapted spectral smoothing; b) the fundamental frequency (f0) extracted using

instantaneous-frequency-based estimation; c) band-aperiodicity parameters which

represent the proportions of voiced and unvoiced contributions in spectral sub-bands.

For voiced speech excitation, STRAIGHT uses a mix between an impulse

train and noise according to the values of the band-aperiodicity parameters

[Yoshimura et al. 2001]. White Gaussian noise is used for unvoiced excitation. The

�lter corresponds to the MFCCs. STRAIGHT is widely used in speech synthesis as

it is robust and produces speech of good quality [Zen et al. 2007a].

5.3.1.3 Deterministic plus Stochastic Model (DSM)

The Deterministic plus Stochastic Model (DSM) of the residual signal

[Drugman & Dutoit 2012] �rst estimates the speech spectrum, and uses the inverse

of the �lter to reveal the speech residual. Glottal closure instant (GCI) detection

is used to extract individual GCI-centered residual waveforms, which are further re-

sampled to �xed duration. The residual waveforms are then decomposed into the

deterministic and stochastic parts in frequency domain, separated by the maximum

voiced frequency Fm �xed at 4 kHz. The deterministic part is computed as the �rst

Principal Component (PC) of a codebook of residual frames centered on glottal clo-

sure instants and having a duration of two pitch periods. The stochastic part consists

of a white Gaussian noise �ltered with the LP model of the average high-pass �ltered

residual signal, and time-modulated according to the average Hilbert envelope of the

stochastic part of the residual. White Gaussian noise is used as excitation for unvoiced

speech. The DSM vocoder has been shown to reduce buzziness and to achieve com-

parable speech synthesis quality as that of STRAIGHT [Drugman & Dutoit 2012].

Here, STRAIGHT is used to extract f0 and MFCCs for the DSM analysis. For syn-

thesis, the excitation is built with the DSM model.

5.3.1.4 GlottHMM

The GlottHMM vocoder [Raitio et al. 2011] relies on glottal inverse �ltering to sepa-

rate the excitation and �lter contributions. Inverse �ltering is actually performed

in an iterative way, according to the Iterative Adaptive Inverse Filtering (IAIF)
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method presented in [Alku 1992]. The �lter is represented by LP coe�cients. As

opposed to usual methods, the spectral contributions of the excitation are here not

included in the �lter model which is excited by white noise or a pulse train, but

are included in the excitation signal which is allowed to exhibit decaying spectral

envelopes [Raitio et al. 2011]. In the IAIF method, the glottal spectrum and vocal

tract contributions are iteratively estimated and removed from the original speech

signal in order to compute the next estimations. For the sake of completeness, we

should mention that the resulting LP coe�cients are then converted to Line Spec-

tral Frequencies (LSF) [Soong & Juang 1984], for a better parameterization for the

statistical modeling. Besides the coe�cients of the all-pole �lters representing the

spectral contributions of the glottal source and the vocal tract, f0 (estimated through

autocorrelation) and HNRs in four sub-bands ([0-2],[2-4],[4-6],[6-8] kHz) are extracted

from the glottal source signal. All these features, as well as the energy of the frames,

are modeled by the HMMs. In the case of unvoiced segments, f0 and HNR values

are set to 0, and only the glottal source estimates of voiced segments are used for

synthesis.

For synthesis, one example of glottal pulse from a human voice producing a sus-

tained vowel is used to compose the excitation of voiced frames and processed to

match the target parameters outputted by the HMMs. First, the human glottal pulse

is interpolated in the time domain to correspond to the target f0 and scaled to reach

the desired energy. Noise is then added to the pulse in the spectral domain (Fast

Fourier Transform coe�cients are modi�ed with a random factor) according to the

target HNRs. Finally, the glottal pulse is �ltered to match the target glottal spectrum.

Unvoiced excitation consists of white noise.

A perceptive evaluation of the GlottHMM vocoder was performed on speech syn-

thesis signals in [Raitio et al. 2011]: GlottHMM was preferred to STRAIGHT and

MCEP and proven more intelligible than STRAIGHT.

5.3.2 Evaluation

To compare the performance of the four vocoders for laughter synthesis, a perceptive

evaluation was conducted. For each vocoder, two types of laughs were synthesized: a)

copy-synthesis laughs, where the necessary features for synthesis were extracted from

a human laugh and synthesis was directly performed using those human features; b)

HMM-based synthesis, where laughter models were trained on a laughter database

and laughs were then synthesized, using the models, from the phonetic transcription

of a human laugh.

Copy-synthesis can be seen as the theoretically best synthesis that can be obtained

with a particular vocoder, while HMM-based synthesis shows the current performance

that can be achieved when synthesizing new laughs. Human laughs were also included

in the evaluation for reference.

It is worth noting that, contrarily to all other perceptive evaluations reported in

this dissertation, the laughs synthesized for comparing the vocoders have not been
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obtained with a leave-one-out process. In other words, the synthesized laughs be-

longed to the training set. Time constraints are the only reason for this, but it is not

expected to a�ect the comparison between vocoders, as they have all been used in

the same conditions.

5.3.2.1 Training data

For the purpose of this work, two voices from the AVLaughterCycle database

[Urbain et al. 2010a] were selected: a female voice (subject #5, 54 laughs) and a

male voice (subject #6, the same voice as in the other sections, 64 laughs). Phones

were grouped in phonetic clusters according to the grouping illustrated in Figure 4.4.

For each voice, the phonetic clusters that did not have at least eleven occurrences

were assigned to an unknown class.

For the test, �ve laughs lasting at least 3.5 seconds were randomly selected for

each voice. For each vocoder, these laughs were synthesized from their phonetic

transcriptions (HMM synthesis with HTS) as well as re-synthesized directly from their

extracted parameters (copy-synthesis). The �ve original laughs were also included in

the evaluation. This makes a total of 5 (original laughs) + 5 × 2 (HMM and copy-

synthesis) × 4 (number of vocoders) = 45 laughs in the evaluation set for each voice.

5.3.3 Results

The perceptive test was run on the web. Participants were asked to listen to all

the laughs, presented one by one in random order, and to rate the naturalness of

the synthesis on a 5-point scale. Participants were suggested to wear headphones.

Eighteen participants evaluated the male voice while 15 evaluated the female one. All

listeners were between 25�35 years of age, and some of them were speech experts.

The average results received by each vocoder, for each voice and each setting

(synthesis or copy-synthesis) are displayed in Figure 5.5, together with the 95% con-

�dence intervals over the average. The pairwise p-values between the methods (using

the conservative Bonferroni adjustment) are displayed in Tables 5.5 and 5.6.

As for the initial experiments presented in Section 5.2, we can see that: a) human

laughs are perceived as more natural than synthesized and copy-synthesized laughs;

b) copy-synthesis laughs received better scores than synthesized laughs. However, the

main aim of this study is the comparison between vocoders.

GlottHMM was rated as less natural than all other vocoders. STRAIGHT and

DSM seemed to be equivalent for copy-synthesis, but DSM received slightly better

scores (not reaching statistical signi�cance) for HMM synthesis. Regarding MCEP,

despite its simplicity and known buzziness, it reached high naturalness values for

the male voice in the copy-synthesis mode as well as for the female voice in HMM

synthesis, where it was the vocoder receiving the best scores (although the di�erence

is not statistically signi�cant with DSM in both cases).
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Figure 5.5: Average naturalness scores obtained by each vocoder, for copy-synthesis

(left) and HMM synthesis (right), for the male (top) and female (bottom) voices.

5.3.4 Discussion

According to the results, DSM and MCEP appear like the best (of the evaluated)

choices for HMM-based laughter synthesis. Both vocoders rely on the same fea-

tures (f0 and MFCCs, although for DSM these were extracted with the STRAIGHT

Table 5.5: Pairwise p-values between the vocoders copy-synthesis and natural laughs.

Statistically signi�cant results are marked in bold.
Female System DSM Glott MCEP STRAIGHT Natural

DSM − 0.006 1 1 0

Glott 0.006 − 0.04 0.002 0

MCEP 1 0.04 − 1 0

STRAIGHT 1 0.002 1 − 0

Natural 0 0 0 0 −
Male System DSM Glott MCEP STRAIGHT Natural

DSM − 0.003 1 1 0

Glott 0.003 − 0 0.002 0

MCEP 1 0 − 1 0.027

STRAIGHT 1 0.002 1 − 0

Natural 0 0 0.027 0 −
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method) and mainly di�er on the shape of the excitation signal for voiced segments.

The pulse train used by MCEP can cause buzzy signals, but it seems that this e�ect

did not appear or was not prominent compared to other possible defects. In particu-

lar, the female voice used fewer voiced segments than the male one, which can explain

why MCEP was relatively well rated for female HMM synthesis.

STRAIGHT performed well in copy-synthesis but could not maintain the good

performance in the synthesis settings. The unstable estimation of aperiodicity fea-

tures can be one explanation to this, as laughter signals are challenging for pitch

estimation. Furthermore, STRAIGHT pitch estimation is known to be unreliable

for non-modal voices [Raitio et al. 2013], and laughter does not correspond to modal

speech. Although possible pitch estimation errors themselves a�ected DSM as well,

they could have caused deviations in the STRAIGHT aperiodicity features, resulting

in poor models for the mixed excitation signal.

Regarding GlottHMM, it models the voiced sounds in a totally di�erent way than

other vocoders. It could thus su�er even more from bad estimations of voicing and

f0. Indeed, GlottHMM is known to su�er from pitch estimation errors in the case

of challenging signals, to which laughter clearly belongs. GlottHMM may also be

penalized by the use of a glottal pulse retrieved from a sustained vowel. Laughter is a

highly dynamic process and it might be di�cult to represent the evolution of laughter

glottal pulses by simply altering (interpolating, scaling, �ltering) one human sample.

To conclude, these �ndings justify the use of the DSM vocoder, at least for our

male voice, as it performs slightly better than the other studied vocoders.

Table 5.6: Pairwise p-values between HMM synthesis of di�erent vocoders. Statisti-

cally signi�cant results are marked in bold.
Female System DSM Glott MCEP STRAIGHT

DSM − 0.003 1 0.16

Glott 0.003 − 0 0.34

MCEP 1 0 − 0.02

STRAIGHT 0.16 0.34 0.02 −
Male System DSM Glott MCEP STRAIGHT

DSM − 0.14 0.46 1

Glott 0.14 − 1 1

MCEP 0.46 1 − 1

STRAIGHT 1 1 1 −
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5.4 Use of automatic phonetic transcriptions for

HMM laughter synthesis

In this section, we will investigate whether good quality HMM-based speech synthesis

can be obtained by training the models with automatic phonetic transcriptions. If

so, new laughing voices will be available without needing to manually transcribe the

training laughs, which is time-consuming, subjective and error-prone.

To do so, HMMs were trained using the same methods as described in Section

5.2. The STRAIGHT and DSM methods were included. Laughter synthesis was

trained on the voice of subject #6 of the AVLC database, with the phonetic tran-

scriptions provided by HTK (see Section 4.3). The HTK models were trained using

all the AVLaughterCycle data, except the �les from subject #6, then used to estimate

the phonetic transcriptions of subject #6's laughs. Hence, these transcriptions were

obtained in a speaker-independent way.

For synthesis, sixty-four laughs were available for training. Phones with less than

eleven occurrences in the reference transcriptions were mapped to an unknown class.

The number of occurrences of each phonetic cluster is given in Table 5.7. Laughs were

synthesized with a leave-one-out process: HMMs were trained on all the available

laughs but one, and the phonetic transcription of the remaining laugh was used as

input for synthesis.

Table 5.7: Number of occurrences in the phonetic clusters used for HMM-based laugh-

ter synthesis, for the reference and HTK phonetic transcriptions.
Inhalation Phonetic Occurrences

or Exhalation cluster reference HTK

e fricative 439 327

e a 331 266

e silence 291 203

e e 85 101

e I 50 32

i fricative 49 99

e o 45 48

e cackle 36 85

i e 11 8

As explained in Section 5.2, a syllable layer of annotations had been manually

added on the transcription �les in order to compute contextual features for HMM-

based synthesis. As we desired to use the same kind of information with the automatic

transcriptions obtained with HTK, a syllable layer was automatically added. Two-

phones syllables were formed when a fricative (or silence) was followed by a vowel, a

cackle or a nasal. All the phones that were not included in 2-phones syllables by this

process were assigned to a 1-phone syllable.
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A web-based evaluation experiment of the synthesized laughs was conducted. As in

Section 5.2, naive participants were asked to rate the naturalness of synthesized laughs

on a 5-point scale with the following labels: very poor (score 1), poor (2), average

(3), good (4), excellent (5). Laughter synthesis trained with the HTK transcriptions

was compared to synthesis trained with the manual (reference) transcriptions. For

each of these training processes, two laughs were synthesized: the �rst one with

imposed duration (HTS had to respect, for each phone, the duration provided in the

phonetic transcription), the second one with the duration of each phone estimated by

HTS. As the objective was to evaluate whether phones can be accurately modeled for

synthesis when they are trained on automatic transcriptions (and segmentation), all

laughs were synthesized using the reference transcriptions. For comparison purposes,

human laughs were also included in the evaluation. Table 5.8 summarizes the di�erent

methods compared in the evaluation experiment. Twenty-three laughs contained at

least one occurrence of an unknown phone and were not included in the evaluation.

Out of the remaining 41 laughs, two laughs were shown as examples to the participants

prior to the test, so they that could familiarize with the range of laughter qualities

they would have to rate. These laughs were not included in the evaluation, which

included the remaining 39 laughs. Each participant had to rate one laugh at a time.

Laughs were presented in random order and for each laugh, only one of the methods

was randomly selected. The test was completed after 39 evaluations.

Table 5.8: Laughter synthesis methods compared in the evaluation experiment.

Method
Training

Duration
Synthesis

transcriptions transcriptions

R1 reference imposed

reference
R2 reference estimated by HTS

A1 automatic (HTK) imposed

A2 automatic (HTK) estimated by HTS

H human laughs

Forty-four participants completed the evaluation. Each method was evaluated

between 199 and 255 times. The average naturalness score received by each method

is given in Table 5.9 and the distribution of received answers for each method is

illustrated in Figure 5.6. A univariate analysis of the variance was conducted and

the p-values of the pairwise comparisons of the di�erent methods, using the Tukey

HSD adjustment, are presented in Table 5.10. Statistically signi�cant di�erences at

a 95% con�dence level are highlighted in bold. It can be seen that, as expected,

human laughs sound more natural than synthesized laughs. Among the synthesized

laughs, method R2 performed the best. As it was already found (see Section 5.2), the

best results are achieved when HTS estimates the phone durations: R2 and A2 are

respectively better than R1 and A1, although the di�erence is signi�cant in neither

case. The synthesis methods using automatic phonetic transcriptions (A1 and A2)

are less natural than their counterparts using reference phonetic transcriptions (R1
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and R2, respectively). This is due to errors in the transcriptions (insertions, deletions,

substitutions) which degrade the quality of the estimated models. Nevertheless, the

automatic phonetic transcriptions do not yield to a dramatic drop in naturalness,

as method A2 is not signi�cantly less natural than method R1. In comparison with

previous works, all our synthesis methods (even using automatic transcriptions for

training) received higher naturalness scores than Sundaram and Narayanan's method

[Sundaram & Narayanan 2007]�which had an average naturalness score of 1.71�,

while our reference methods (R1 and R2) obtained similar naturalness scores as in

Section 5.2, which was expected as we used the same process.

Table 5.9: Average naturalness score received by each synthesis method.
Method

R1 R2 A1 A2 H

average naturalness score 2.4 2.7 2.0 2.2 4.3

naturalness score std 1.1 1.1 0.9 1.1 0.9

Figure 5.6: Distribution of naturalness scores received by the synthesis methods.

Table 5.10: Pairwise p-values between synthesis methods.
Method R1 R2 A1 A2 H

R1 - 0.11 0 0.08 0

R2 0.11 - 0 0 0

A1 0 0 - 0.24 0

A2 0.08 0 0.24 - 0

H 0 0 0 0 -

To conclude this section, it is interesting to take into account the comments given
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by some participants after evaluating the naturalness of the laughs. First, several

participants informed us that, for many laughs, a large proportion of the laugh was

nicely synthesized, but a few phones were strange and de�nitely not human. Rating

the whole laugh was then complicated, even though generally in such cases the ratings

were made towards the non-natural end of the scale. This is related to the second main

remark from the participants: what exactly is the de�nition of naturalness? Indeed�

even if in this study we purposely did not give any further indication so as to be able

to compare our results with previous studies employing the same process�several

factors can cause a laugh to be perceived as non-natural: a) the sound quality itself

(buzzy, etc.); b) the perception of the laugh to be forced/acted/faked (which can also

concern human laughs with perfect sound quality) instead of spontaneous/emotional;

c) the laugh being far from what participants expect, some kind of laughter stereotype

(again, this can also concern human laughs). These remarks can partially explain the

large standard deviations (stds) in Table 5.9. The overall inter-participant agreement

for the �ve naturalness values is quite low: Fleiss' kappa [Fleiss et al. 1981] is .167.

Participants however generally agree on whether the laugh sounds natural (score 4 or

5) or not (score 1, 2 or 3) with a kappa value of .41 which is signi�cantly di�erent

from 0 (p = 0). Another reason for the large standard deviations of the synthesized

methods is the variability between laughs: even human laughs are a�ected by a large

standard deviation, indicating that, out of their context, laughs can be perceived as

unnatural even when they were actually spontaneous (see points b and c above).

5.5 Arousal-driven generation of laughter phonetic

transcriptions

In this section, we will describe our algorithm developed to generate laughter phonetic

transcriptions from arousal signals. The objective is to simplify the overall synthesis

process by enabling users to drive it from higher-level instructions (e.g., arousal signal)

than phonetic transcriptions. The generation algorithm is �rst presented in Sections

5.5.1 and 5.5.2, before evaluating it with standard perceptive tests in Section 5.5.3.

The generation algorithm, together with evaluation of the base synthesis (see Section

5.2), has been published in [Urbain et al. 2014].

5.5.1 Generation of transcriptions by unit selection

As explained in Sections 3.4 and 4.4, the per-frame arousal of 49 laughs of the

AVLaughterCycle database has been manually annotated and neural networks have

been trained to automatically estimate the per-frame arousal of laughs.

To develop the algorithm to generate phonetic transcriptions from arousal signals,

the per-frame arousal of all the laughs from our selected voice (subject #6) were

needed. As the objective here was to design the generation algorithm in the best

possible way, rather than evaluate the quality of the speaker-independent automatic
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per-frame arousal estimation, the neural networks were here trained only with the 19

manually transcribed per-frame arousal signals from subject #6. The obtained neural

network was then used to compute the per-frame arousal signals of all the 64 laughs

from subject #6.

For each laugh, our database contained the per-frame arousal signal and the as-

sociated phonetic transcription. Our aim was to generate the phonetic transcription

(with syllable and respiration information) from the arousal signal only. To do so,

we developed a method inspired by unit selection for concatenative speech synthesis

[Hunt & Black 1996]. All the data from subject #6 (see Table 5.11) were gathered

and segmented into syllables. Target cost was set to the cumulated distance between

the target per-frame arousal and the arousal signal of each syllable (each present-

ing one value every 10 ms), divided by the syllable length as a normalization factor.

Concatenation cost was obtained as the inverse of the n-gram likelihoods trained

on the syllable sequences of subject #6 via the MIT Language Modeling Toolkit

[Hsu & Glass 2008]. Given the synthesis purposes of this work, it is interesting to use

high-order n-grams to encode long-term dependency e�ects (for example, inhalations

are more likely after a higher number of exhalation syllables, which is better encoded

with high-order n-grams than low order ones). We used 6-grams in our experiments,

taking advantage of the back-o� values [Katz 1987] to compute the likelihoods from

lower orders if they did not appear in the 6-grams.

Table 5.11: Number of available units (from subject #6).

# phones # syllables # parts # laughs

exhalation 1311 781 79
64

inhalation 64 58 50

One of our long-term objectives is to achieve real-time laughter synthesis. Re-

cently a lot of progress has been made in real-time HMM-based speech synthesis

[Astrinaki et al. 2013]. To be able to exploit these advances towards real-time syn-

thesis, the generation algorithm was implemented with a real-time approach: the

transcription was computed step by step, from left to right. As the vast majority

of laughter syllables last less than 500 ms (see Figure 5.7), we decided to use this

duration as look-ahead value. Let Sn = {s1, s2, . . . , sn} be the sequence of syllables

selected at step n, Dn the total duration of Sn, I the target arousal signal with du-

ration DI , L the library of available syllables, T (i, x) the target cost between target

arousal fragment i and the candidate syllable x (i.e., the normalized cumulated dis-

tance between the corresponding arousal signals) and C(Sn, x) the concatenation cost

of candidate syllable x given Sn (obtained via n-gram likelihoods). The algorithm is

implemented as follows:

1. Initialization: n = 0, S0 = ∅, D0 = 0.

2. While (Dn < DI):
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(a) Increment n.

(b) Cut the target arousal fragment:

In = I[Dn−1, Dn−1 + 0.5s].

(c) Build the subset Ln ⊂ L of the 20 syllables6 l with the lowest target cost

T (In, l).

(d) Select the syllable sn with minimal overall cost:

sn = argmin
lεLn

(T (In, l) + C(Sn−1, l)). (5.3)

(e) Add the selected syllable to the sequence:

Sn = {Sn−1, sn}.

3. Build the phonetic transcription P by concatenating the phonetic transcriptions

of the syllables in Sn.

This generation process is illustrated in Figure 5.8. Iteration #4 is displayed. The

current target arousal curve lasts for 500 ms after the already processed values. The

20 syllables from the syllable library that have the lowest target scores are preselected.

n-grams are used to compute the overall cost and the best syllable is added to the

sequence of validated syllables. Iteration #5 will consider the 500 ms that follow the

end of syllable #4.

The generated laughter transcriptions can then be synthesized and evaluated

through the HMM-based laughter synthesis model presented in Section 5.2.

Figure 5.7: Histogram and cumulative distribution function of the laughter syllable

durations (subject #6 of the AVLC database).

6To ensure a good correspondence between the target arousal and the selected syllables, it was
decided to only consider the q syllables that have the lowest target cost. q was empirically set to 20
in our experiments.
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Figure 5.8: Algorithm for generating laughter phonetic sequences from arousal signals.

5.5.2 Re�nements of the method

Using the aforementioned algorithm sometimes resulted in unusual phonetic se-

quences: 1) mostly short syllables were selected, resulting in an unnatural succession

of very short sounds; 2) inhalation syllables were barely selected, which is obviously

unnatural given the limited human pulmonary capacity; 3) as the selection algorithm

was only looking at syllable transcriptions and �ha� and �ho� have the same syllabic

transcription (i.e., FV ), some transcriptions had unnatural oscillations between these

these vowels (e.g., �hahahohahoha�). The generation algorithm was therefore modi�ed

as follows.

Improvement 1 In order to favor longer syllables, the overall cost (Equation 5.3)

was divided by the candidate syllable duration. Note that this is not normalization,

as the target cost was already normalized with respect to the syllable duration.

Improvement 2 To include inhalation syllables at appropriate times, the duration

and area under the arousal signal�which can be related to the pulmonary e�ort�of

the bouts have been studied. Figure 5.9 displays the cumulative distributions of the

duration and area under the arousal signal of the �rst bout of each laugh of subject

#6. It can be noticed that almost all bouts last at least 1 s and have an area under

the arousal signal greater than 2. Starting from these values, the likelihood to enter

in an inhalation phase increases almost linearly (from 1 to 3 s on the duration graph;

from 2 to 8 for the area under the curve). These observations were integrated in our

generation algorithm. If the last selected syllables (from indexes m to n) in Sn are

exhalation syllables, with a cumulated duration Dmn and a cumulated area under

the arousal signal Amn, the overall cost of the 20 candidate syllables is modi�ed as

follows:

• If the candidate syllable is an exhalation syllable, no modi�cation.
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Figure 5.9: Cumulative distribution functions of the area under the arousal signal

(left) and duration (right) of the bouts.

• If the candidate syllable is an inhalation syllable:

� divide its overall cost by 2×Dmn if Dmn ≥ 1s.

� divide its overall cost by Amn if Amn ≥ 2.

These divisions lower the cost of inhalation syllables compared to exhalation syllables,

and will in consequence favor inhalation syllables in the selection algorithm.

Modi�cation 3 Finally, to prevent disturbing oscillations between the vowels �a�

and �o�, the �o�s in the generated transcription were replaced by �a�s, as for subject

#6 �a� is much more frequent (as was shown in Table 5.1).

5.5.3 Evaluation

The evaluation was conducted with the same process as already presented in previous

sections. The only change lies in the evaluated signals.

Here, we aimed at comparing laughs synthesized in a classical way (using phonetic

transcriptions as input) with laughs synthesized from arousal signals (using the gen-

eration algorithm to produce the phonetic transcriptions that are then synthesized

by HTS). The same HTS models have been used in all cases, with STRAIGHT and

DSM.

The classical synthesis methods were methods S3 and S4 already presented in

Section 5.2:
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• Method S3: the laugh is synthesized using the HMM-based synthesis pro-

cess (using as only input the phonetic transcription of the laugh), using the

STRAIGHT algorithms for spectrum and f0 extraction and the DSM vocoder,

with the phone durations imposed by the phonetic transcriptions.

• Method S4: same as Method S3, with the duration of each phone estimated by

HTS.

The following generation methods were included in the experiment:

• Method G1: the basic generation method, as explained in Section 5.5.1, with

imposed duration for synthesis.

• Method G2: the generation algorithm was modi�ed to favor long syllables and

inhalation phases (improvements #1 and #2 explained in Section 5.5.2), with

imposed durations for synthesis.

• MethodG3: same as MethodG2, with the addition of modi�cation #3 described

in Section 5.5.2.

• Method G4: same as Method G3, with phone durations estimated by HTS

during the synthesis step.

Human laughs (method H) were also included in the evaluation.

The test hypotheses were the following:

• H4: the re�nements of the generation algorithm (see Section 5.5.2) improve the

naturalness of synthesized laughs (method G3 is better than method G2 which

is better than method G1).

• H5: the generation module is e�cient in producing natural laughter transcrip-

tions (methods G3 and G4 have comparable results to methods S3 and S4,

respectively).

Each of the produced laughs was obtained with a leave-one-out method, to ensure

that we were not simply able to reproduce learned trajectories. For the synthesis

laughs (methods S3 − 4), the laugh to synthesize was not included in the training

phase of the HMMs. For the phonetically generated laughs (methods G1 − 4), the

syllables of the laugh to generate (and synthesize) were withdrawn from the library of

available syllables. The arousal signal of the corresponding laugh was the only input

used to obtain the phonetically generated laughs. The types of data used for each of

the methods are summarized in Figure 5.10.

Table 5.12 presents the average durations of the evaluated laughter units for each

method, as well as the average f0 and its standard deviation. It can be observed

that the average f0 values are similar in all the methods. Regarding the durations,

it appears that method G1 tends to include short syllables and that the modi�cation

introduced to overcome this problem (see Improvement 1, Section 5.5.2) indeed brings
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Figure 5.10: Types of data used for the di�erent methods compared in the evaluation

experiment. Note: Methods S1-S2 and CS were not used in this evaluation, but have

been placed on the graph for clarity and completeness, as they have been used in

previous experiments.

the syllable durations back to more common values (around 200 ms, as in the original

human laughs). Examples of evaluated laughs are available on http://www.tcts.

fpms.ac.be/~urbain/arousal_driven_synthesis.

The web-based evaluation application was exactly the same as the one described

in Section 5.2. Results are presented in the next sections.

5.5.4 Results

Fifty-three participants completed the study: 16 females (average age: 30.2; std: 15.4)

and 37 males (average age: 24.5; std: 7.3). Their pro�les are summarized in Table

5.13. As in Section 5.2, only the results from participants wearing headphones will be

reported here. Out of the 841 received answers from participants using headphones,

55 were �I cannot rate the naturalness of this laugh�. Table 5.14 gathers the number

of ratings received, the number of �unknown� answers and the average score for each

method. The distribution of naturalness scores received by each method is displayed

in Figure 5.11.

A univariate analysis of the variance was conducted. Table 5.15 presents the p-

values of pairwise comparisons between the relative naturalness scores of the di�erent

http://www.tcts.fpms.ac.be/~urbain/arousal_driven_synthesis
http://www.tcts.fpms.ac.be/~urbain/arousal_driven_synthesis
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Table 5.12: f0 averages, standard deviations and average durations of the evaluated

laughter units. Note: Exh. and Inh. stand for Exhalation and Inhalation parts,

respectively.

Method
f0 (s) Average duration (ms)

Mean std Exh. Inh. Syl. Phones

S3 199 86 1522 384 207 126

S4 197 84 1523 345 205 124

G1 218 80 822 147 104 72

G2 214 91 1082 220 199 118

G3 211 80 1082 220 199 118

G4 216 86 1446 376 256 152

H 193 88 1522 384 207 126

Table 5.13: Participant pro�les. Note: the �none� or �laughter� category is related to

the experience of the participant in laughter synthesis.
Loudspeakers Headphones

Total
Category Females Males Females Males

None 8 15 8 20 51

Laughter 0 1 0 1 2

Total 8 16 8 21 53

methods, using the Tukey HSD correction. Statistically signi�cant di�erences at a

95% con�dence level are highlighted in bold.

5.5.5 Discussion

As the results indicate, the modi�cations proposed in Section 5.5.2 slightly increased

the performance, but not enough to reach statistical signi�cance. H4 is thus not

veri�ed. Again, the best results are achieved when HTS estimates the duration of the

phones, con�rming that the generation step only has to produce phonetic sequences

(phone durations are not important at this stage, they are better modeled by the

synthesizer). One explanation for the good performance achieved when durations are

estimated by HTS rather than replicating durations of actual human laughs is that

the models are less constrained and can thus produce better feature trajectories.

It is interesting to note that H5 is veri�ed: laughs generated with our best pho-

netic generation method (G3 and G4) achieve the same naturalness scores as laughs

synthesized directly from existing transcriptions (S3 and S4). The generation step

is thus e�cient, and it also supports the use of arousal signals, which indeed carry

su�cient information to generate hilarious laughs. However, it must be further in-

vestigated whether the generation algorithm tends to over-privilege the most likely

syllables, resulting in laughs that would be excessively similar to each other. This
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Table 5.14: Received answers for each method, only including participants using

headphones.
Method # ratings # unknown Av. score (std) Av. RR scorea (std)

G1 110 10 2.3 (1.1) 1.4 (1.1)

G2 105 6 2.3 (1.1) 1.5 (1.2)

G3 103 9 2.4 (1.2) 1.5 (1.2)

G4 115 10 2.4 (1.2) 1.2 (1.2)

S3 123 11 2.4 (1.1) 1.5 (1.3)

S4 125 6 2.4 (1.1) 1.4 (1.2)

H 105 3 3.9 (1.1) 0 (0.7)

ALL 786 55

aOne laugh could not be included in the relative scores, as the corresponding human laugh had
not received any evaluation.

Figure 5.11: Distribution of naturalness scores received by each method.

phenomenon could have negative e�ects on a listener involved in a human-machine

interaction who would perceive that the machine is always laughing the same way.

5.6 Summary and perspectives

In this chapter we have �rstly reviewed the state-of-the-art in acoustic laughter syn-

thesis. Then, we have presented our developments using HMMs, which achieve state-

of-the-art naturalness scores. The proposed method is largely inspired by speech syn-

thesis and ful�lls the required conditions for a laughter synthesis system formulated

in [Sundaram & Narayanan 2007]: a large variety of laughs (with di�erent phones,

number of syllables, number of bouts) can be synthesized and it relies on very simple
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Table 5.15: Pairwise p-values between the generation methods.
Method G1 G2 G3 G4 S3 S4 H

G1 - 0.99 1 0.96 0.98 1 0

G2 0.99 - 1 0.62 1 0.96 0

G3 1 1 - 0.86 1 1 0

G4 0.96 0.62 0.86 - 0.51 0.99 0

S3 0.98 1 1 0.51 - 0.92 0

S4 1 0.97 1 0.99 0.92 - 0

H 0 0 0 0 0 0 -

inputs (a phonetic transcription or even an arousal curve). Contrarily to previous

works on laughter synthesis, the presented algorithms relying on HMMs do not focus

on one particular type of laughter or phones (voiced laughter). We have to admit

that most of the laughs included in our evaluations were also voiced laughs, as it is

the type of laughs that was mostly used by the subjects who laughed the most in the

AVLaughterCycle database. But this is a consequence of the available data rather

than a choice to only address voiced laughs. In addition, some unvoiced syllables

have been synthesized (cackles or syllables containing only a fricative7), as well as

inhalation sounds, which enable to synthesize episodes with several bouts, something

that was discarded by all preceding studies.

The HMM-based laughter synthesis process is not limited to one voice, either.

Although almost all the results presented here relate to the same male voice, we have

also synthesized female laughs with the same methods, as we will see in Chapter 6.

It is expected that any laughter voice with su�cient training data (starting from a

few minutes) could be modeled with the proposed pipeline. New voices and forms

of laughter must nevertheless be developed and evaluated in the future. Laughing

styles that are particularly well suited or not to the presented methods could then be

identi�ed.

The di�erent experiments conducted within this chapter open several other per-

spectives for future works. First, regarding classic HMM-based laughter synthesis,

some developments did not conduct to improved laughter quality. The addition of

contextual information was not helpful so far. One hypothesis is that it is due to

the limited data available for training (three minutes of laughter, which is relatively

high when we consider spontaneous laughter uttered by a single participant, but is

really low compared to the large databases used for speech synthesis). This has to be

veri�ed in the future on an even larger laughter database: does more training data

enable to improve laughter synthesis quality, and is contextual information useful?

The preparation of such large data can hopefully be fastened thanks to the automatic

estimation of laughter phonetic transcriptions. Furthermore, new contextual features

7There are several of these in the evaluated laughs, even if syllables containing only a fricative are
generally of much less intensity than voiced syllables, so their presence is not striking when listening
to the laughs.



5.6. Summary and perspectives 159

could be investigated, for example arousal values could be added in the contextual

features.

Second, the HTS algorithms include a range of parameters (boundaries for f0
estimation, number of states in the HMMs, models for computing the derivatives,

number of MFCCs, etc.), to which we can add the phonetic grouping for our phonetic

transcriptions. Although these parameters have been empirically tuned in our devel-

opments, a thorough optimization would be welcome. Some of the parameters (e.g.,

boundaries for f0 estimation) should also probably be adjusted to the individual. The

parameters of the generation algorithm could also be further studied and it would be

desirable to include vowel information directly into the syllable labels to avoid having

to post-process the generated phonetic transcriptions.

Third, the results of the comparison of vocoders suggest that the robustness of

parameter estimation is crucial for laughter synthesis. E�orts on identifying robust

algorithms for laughter parameters extraction should thus be increased. Among oth-

ers, in line with the conclusions of Chapter 4, it would be interesting to investigate the

robustness of the algorithm presented by Sudheer et al. for f0 extraction in laughter�

which was actually used by Sathya et al. for laughter synthesis�for HMM-based

synthesis.

Fourth, deep analysis of which synthesis errors create the perception of unnatu-

ralness would be interesting. This is somehow related to the comments received by

the participants who rated the naturalness of the laughs. Identifying accurately what

is going wrong (is it a problem of dynamics of the laugh, badly estimated durations,

some phones that are poorly modeled and constantly poorly synthesized?) would help

better understanding the current limits of the methods and consequently improving

them. New perceptive evaluations, with re�ned questions for deeper analysis than the

fuzzy notion of �naturalness�, could be necessary to e�ciently address these issues.

Fifth, the algorithm to generate laughs from arousal curves opens new perspec-

tives for the integration of laughter synthesis in human-computer interactions. Laugh-

ter synthesis can now be driven by high-level input instead of low-level descriptors

(e.g., phonetic transcriptions or acoustic parameters used in other laughter synthesis

works), which are hard to produce in a consistent way. Further experiments with the

generation algorithm should however be conducted to investigate whether it can be

generalized to new arousal curves and new voices.

Finally, real-time laughter synthesis can be investigated. Recent developments

of real-time HMM-based speech synthesis are promising. Adaptation of the current

models to real-time (or as close to real-time as possible, by investigating how much

of the future has to be known to maintain an acceptable synthesis quality) and cou-

pling with a real-time implementation of the generation algorithm would constitute

an important step forward for a range of applications (psychological studies on the

perception of laughter, human-computer interactions, artistic performances including

synthesized laughter, etc.). Some of these applications relying on acoustic laughter

synthesis will be presented in the next chapter.
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In this chapter, we will focus on applications in which our laughter synthesis

methods have already been integrated. We will brie�y present three applications

we have been involved in. The �rst two are related to human-computer interaction:

the eNTERFACE'121 Laugh Machine project (Section 6.2) and the eNTERFACE'13

Laugh When You're Winning project (Section 6.3). The last application concerns

laughter modi�cations for psychological studies (Section 6.4). As for other chapters,

we will start with a section presenting related works, centered on human-computer

interaction involving laughter. Experiments on laughter manipulations for perceptive

experiments have already been presented in Section 3.1.6.4 (see Kipper and Todt's

experiments).

6.1 Related works

To the best of our knowledge, there exist only few�and recent�applications specif-

ically integrating laughter in human-machine interactions. None of them actually

relied on synthesized laughter, but rather include recorded human laughter.

In 2007, Melder et al. designed the Adaptive A�ective Mirror, an appli-

cation aiming at pushing participants towards positive emotions and laughter

[Melder et al. 2007]. The application consists in mirroring and distorting the face of

the participant, in order to create funny images. Acoustic laughter detection (based

on the works of Truong and van Leeuwen [Truong & van Leeuwen 2007a]), visual

smile detection, a�ective keyword spotting and hand gesture recognition (through

accelerometers) are performed in real-time to assess the emotional state of the par-

ticipant, and in particular if (s)he is smiling or laughing. The mirror feedback is a

1To recall what was introduced in Section 2.5, eNTERFACE is a one-month Summer Workshop
taking place every year and enabling researchers to work together and deliver scienti�c outcomes.
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distorted image of the participant's face, with increased modi�cations when the par-

ticipant is laughing or smiling. The objective was to create an interaction loop, i.e.

that the �rst (slightly) distorted images would push the participant to smile, which

would provoke increased distortion, leading the participant to smile more or laugh,

and so on.

In 2009, we proposed AVLaughterCycle2, similar to Adaptive A�ective Mirror in

its objectives but using a laughing agent [Urbain et al. 2010b]. The application aimed

at creating laughter loops by triggering agent laughter when the participant was laugh-

ing. It is in the framework of that project that the AVLaughterCycle database was

recorded. The recorded laughs formed a laughter library containing two modalities:

audio as well as facial movements (obtained through motion capture, and synchro-

nized with the audio). When vocal activity was detected (there was no actual laughter

detection in the application, it was assumed that any input would be a laugh), features

of the laugh were computed and the most similar laugh in the library was identi�ed,

using the similarity algorithm presented in Section 4.2. The selected laugh was then

played by the virtual agent, Greta [Niewiadomski et al. 2009]. As for Adaptive A�ec-

tive Mirror, it was expected to create laughter loops, where the �rst laugh could be

forced to trigger a �rst reaction from the agent, which would trigger more spontaneous

laughter, provoking another agent laugh, etc.

Becker-Asano et al. [Becker-Asano et al. 2009] studied the impact of auditory

and behavioral signals of laughter in di�erent social robots. They discovered that the

social e�ect of laughter depends on the situational context including the type of task

executed by the robot, and on verbal and nonverbal behaviors (other than laughing)

that accompany the laughing act [Becker-Asano & Ishiguro 2009].

Finally, Fukushima et al. [Fukushima et al. 2010] used toy robots that were shak-

ing their heads and playing recorded laughs when the system detected that the user

was laughing. The objective was again to push participants to laugh. The system was

evaluated and results showed that the application indeed enhanced the participants'

laughter activity.

6.2 Laugh Machine

The Laugh Machine project has been implemented in the framework of eNTER-

FACE'12 and of the ILHAIRE project. The objectives were a) to build an interactive

virtual agent able to laugh appropriately (right time, right arousal) when watching a

humorous video together with a human being and b) to evaluate the impact of such

a laughing agent on the participant's experience. We will only give an overview of

the system here. More detailed descriptions can be found in [Urbain et al. 2012] and

[Niewiadomski et al. 2013a].

2We have included this work in the Related Works section of this chapter as it does not include
acoustic laughter synthesis. Parts or the AVLaughterCycle project have however already been pre-
sented in this dissertation: the database in Section 2.5 and the algorithm for evaluating similarities
between laughs in Section 4.2.
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The interactive laughing agent must be able to exhibit reactions to both the stim-

ulus �lm and the participant's behavior (in this case, her/his laughter). To estimate

the funniness of the �lm, 13 researchers provided a continuous rating of the �lm funni-

ness. The average and standard deviation of the scores given at each moment formed

the funniness information used in the application.

A range of sensors were included to monitor the participant's behavior: a Kinect,

a webcam and a respiration belt. Laughter detection was performed on audio only

with Support Vector Machines (SVMs), which returned the participant's laughter

likelihood every 200 ms. The other modalities were nevertheless included in the

experiments in order to record useful data to develop multimodal laughter detection

in the future.

A decision component was trained�with recordings of human dyads watching the

same movie�to decide when and how (duration and arousal) to laugh. The inputs

of the decision component were the two streams of information (sent every 200 ms):

the funniness of the �lm and the other participant's behavior (laughter likelihood and

arousal). A simpli�ed bloc diagram of the application is displayed in Figure 6.1. The

Greta agent was then used to display a laugh corresponding to the instructed duration

and arousal. The audio was synthesized using the HMM-based method presented in

the previous chapter, trained on a female voice (subject #5 of the AVLC database).

Laughs were synthesized from the phonetic transcriptions of subject #5. The visual

display was derived from the video of the selected laugh in the AVLC database, to

animate the agent's facial action parameters. The set of available laughs from subject

#5 formed a laughter library inside which the decision component could select an

episode corresponding to the desired duration and arousal. Although decisions were

taken every 200 ms, laughs could not be interrupted: once a laugh had be chosen to

be played, it had to be played until the end.

Figure 6.1: Bloc diagram of the Laugh Machine Application.

To evaluate the application, three experimental conditions were designed. One

of the conditions is the interactive agent as presented above, i.e. reacting to both

the humorous video and the participant's video. Two control conditions were also
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implemented: �xed laughter and �xed speech. In the �xed laughter condition, the

agent was laughing at eight prede�ned time points of the 8-minute humorous movie,

where there was a peak in the funniness ratings. The participant's behavior had no

in�uence at all on the agent's behavior. In the �xed speech condition, the agent was

expressing verbal amusement (e.g., �Oh, that is funny�, �I liked that one�) at the same

�xed time points as in the �xed laughter condition.

Twenty participants took part in a pilot study to evaluate the system, presented in

[Niewiadomski et al. 2013a]. Eleven were assigned to the interactive condition, four

to the �xed speech condition and �ve to the �xed laughter condition. Participants

watched the humorous video in company with the avatar and where then asked to �ll

in questionnaires about their experience. Due to the small sample sizes, the two �xed

conditions were grouped for analyzing the results, as the focus of the work was the

impact of the agent's responsiveness.

Results indicate that the interactive agent lead to statistically signi�cant higher

felt amusement and higher perceived emotional contagion than the �xed conditions.

The feeling of social presence was also higher with the interactive agent, but the

di�erence failed to reach statistical signi�cance.

After building the full processing chain (from laughter detection to synthesis)

and following the positive results obtained with the pilot study�which indicated

that an interactive laughing agent indeed has an e�ect on amusement and emotional

contagion�, a broader study with 60 new participants was conducted. The results

of this study, with deeper analyses (including psychological outcomes) of the impact

of the interactive agent should be published soon. The main conclusions are that the

interactive laughing agent is able to enhance the participant's mood, in particular for

participants who are in a bad mood prior to watching the movie, and is perceived as

more natural, believable and human-like than the �xed agents.

One of the limitations of the Laugh Machine application was that laughter was

detected from the audio channel only, which prevented from detecting most low-

arousal laughs. This problem was addressed in the following application, Laugh When

You're Winning.

6.3 Laugh When You're Winning

The eNTERFACE'13 Laugh When You're Winning project was built upon the Laugh

Machine project, but with a di�erent scenario. Here, participants were invited to play

a game with the virtual agent, who had an active role. The game was played with two

participants at a time, in order to explore social behaviors that could not be addressed

with the Laugh Machine scenario: cooperation, competition, etc. Laughter can be

related to these behaviors (a�liation or malicious laughs). To amplify these social

behaviors through laughter, mimicry of one participant's behavior was developed.

The aim was to investigate whether mimicry has an e�ect on the perception of the

agent by both participants.
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The game was a simple yes/no game in which one participant must avoid saying

the words �yes� or �no�. Each game involved two human participants as well as the

virtual agent. One of the two participants and the virtual agent could say whatever

they wanted and were asking questions to the other participant, who had to answer

them without saying �yes� or �no�. The choice for such a simple yes/no game was

motivated by the low game development needs (as the game itself was not the focus

of the project, and we had few resources to implement it) while o�ering a complex

scenario in which diverse emotional reactions (enjoyment, frustration, etc.) and social

behaviors (cooperation, competition, etc.) could emerge along with laughter. Again,

only an overview of the project will be presented here. Extended descriptions can be

found in [Mancini et al. 2014].

The behavior of each participant was recorded with a head-mounted microphone,

a Kinect and a webcam. Green markers were placed on the participants' shoulders to

track their movements. A scheme of the application setup is displayed in Figure 6.2.

For each participant, information from the di�erent modalities (shoulder tracking with

the webcam, facial features from Kinect, audio features from the microphone) was

fused to estimate the likelihoods that the participant was smiling, laughing, speaking

or silent. One-second frames were used to compute these probabilities, which were

updated every 500 ms. Laughter arousal was also estimated from the audio channel,

using the algorithm presented in Section 4.4. In addition, the dominant frequency of

shoulder oscillations during laughter was computed.

Figure 6.2: Setup of the Laugh When You're Winning game (the agent was displayed

on the screen and acting as a third participant).
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The decision component used the speaking, smiling and laughing likelihoods from

both participants to decide whether the agent should laugh, ask a question or remain

silent. Simple politeness rules were implemented: the agent should not speak if a

participant is speaking, but it should laugh if someone is laughing. If a period of

silence was detected, the agent had to ask a question to try to make the participant fail.

From observations of humans playing the game, we realized that streams of questions

on the same topic (e.g., �What is your name?�, �Is that your full name?�, �Really?�)

were a common strategy to make the participant fail, and such streams of questions

were implemented in the agent's list. The agent was asking questions randomly from

the list, and was following a stream of questions as long as no speech was detected

from its partner (the human participant who could say anything). When laughter

was instructed, the decision engine also had to specify the duration and arousal of the

laugh. Synthesis laughs were more intense and longer when the cumulative arousal

of the participants' laughs was higher. As for the Laugh Machine project, synthesis

laughter could not be interrupted. Nevertheless, to increase the number of short

laughs in the laughter library, laughs containing several bouts were split in individual

bouts by cutting the phonetic transcriptions after inhalation parts. Shorter synthesis

laughs arti�cially made the system more reactive (as it was �frozen� for a shorter

duration).

As already explained, one of the objectives of the Laugh When You're Winning

project was to explore the e�ects of mimicry of the agent: would the participants

notice if the agent is mimicking the behavior of one participant, would the agent

be better perceived by that participant or the other participant? To start investi-

gating this question, it was decided to copy the laughter rhythm of one of the two

participants. As already explained, the frequency of shoulder oscillations from the

participants was computed for each laugh. One participant was selected to be mim-

icked and her/his average shoulder frequency was updated each time a laugh had been

detected. When laughing, the agent had to match the mimicked participant's rhythm,

in addition to display a laugh with the instructed arousal and duration. The rhythm

of the synthesis laughs was estimated as the average duration of fricative-vowel syl-

lables in exhalation parts. To increase the range of available rhythms for synthesis

laughs, we modi�ed the durations in the phonetic transcriptions: the duration of all

the laughter phones was multiplied by a factor X, so as to obtain slower (X > 1) or

faster (X < 1) rhythms. All synthesis modalities (audio, facial movements, shoulder

oscillations) were driven by the phonetic transcription, and hence synchronized to the

desired rhythm.

Three experimental conditions have been designed to evaluate the impact of the

laughing agent as well as the impact of mimicry. In the �rst condition, the agent is

not laughing and can only ask questions. In the second condition, the agent can speak

and laugh, but there is no mimicry (the rhythm of the laughs is not modi�ed and

corresponds to the modeled human voice). In the last condition, mimicry is added.

To the best of our knowledge, this is the �rst time laughter is altered to match

a participant's features (here rhythm) in a human-computer interaction. The game
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application, albeit simple, is also far more complex than previously explored scenarios,

as it introduces social dimensions that could not be explored with a laughing virtual

agent in the past.

Participants were recruited in pairs to play the game together with the agent.

Participants went through the three conditions in random order. For each condition,

two games were played as participants took turns in answering questions. Each game

lasted a maximum of one minute. If the answering participant failed within one

minute, the questioning participant was asked to click on a mouse and the game was

stopped. In that case of a lost game, the agent was acknowledging it either verbally,

in the non-laughing condition, or by laughing in the other two conditions, as it was

noticed from humans playing the game that laughter was consistently appearing when

a game was lost. If the answering participant could hold one minute without saying

�yes� or �no� (or the questioning participant did not notice it), the agent verbally

congratulated the answering participant for having won the game.

Prior to the �rst game and after each condition, participants were asked to �ll in

mood questionnaires and questionnaires about the previous set of games.

Nine pairs of participants played the game in the pilot experiment. Results and

participants' comments revealed some technical �aws that hindered the expected ef-

fects of the laughing agent. For instance, the non-laughing agent was perceived as

a more competent game player than the laughing agent. This was likely caused by

false laughter detection alarms due to the open setting: the agent's laughter was ren-

dered through loudspeakers, got back to the participants' microphones, laughter was

then detected and the agent was instructed to laugh again. This created laughter

loops where the agent was laughing over and over again without apparent reason for

the participants, which was disturbing and going against any game strategy. Other

�aws were identi�ed and are currently corrected for further experiments. Data is

also collected to train a dialog manager on this speci�c scenario, and replace the

implemented rule-based decision component. Nevertheless, the laughing agent was

generally perceived as more natural than the non-laughing agent (see Figure 6.3) and

the non-verbal behavior of the mimicry agent was statistically signi�cantly better

rated than that of the non-laughing agent (see Figure 6.4). Mimicry itself had limited

e�ects in this pilot study, partly because of interaction �aws, but probably also due to

the short experiment durations, where mimicry would at best occur for two minutes.

The biggest limitation of the scenario related to laughter synthesis is the impossi-

bility to control the synthesis in real-time. This restricts both reactivity of the agent

and mimicry options. This is hence the major development to address in the future.

6.4 Laughter variations for perceptive experiments

As introduced in the previous section, our HMM-based process enables us to easily

modify some properties of the synthesized laughs (e.g., rhythm). This opens the pos-

sibility to investigate which dimensions in�uence laughter perception, in a similar way
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Figure 6.3: Di�erence in the naturalness ratings for the three conditions. For each

participant (numbered #1 to #18), the di�erences in naturalness ratings between the

laughing and non-laughing conditions is represented in blue (left bar) and between

the mimicry and the non-laughing conditions is shown in red (right bar).

to the experiments on laughter rhythm and pitch conducted a decade ago by Kipper

and Todt (see Section 3.1.6.4), with concatenative synthesis and a phase vocoder.

The objectives are to understand which acoustic properties can make laugh be

perceived as friendly or malicious. This is of general interest for human-computer

interaction, as presented in the previous sections, in order to know which kind of laugh

to display to enhance participant's mood, show a�liation, etc. But it is particularly

important for a better understanding of gelotophobia, also known as �the fear of being

laughed at�. Gelotophobes have the tendency to misperceive any laugh as malicious

laugh (laughing at them) [Ruch & Proyer 2008]. Identifying which features (if any)

could lead to laughter being (better) accepted by gelotophobes would help treating

the disease.

Four dimensions�related to the features investigated by Kori [Kori 1987] and Kip-

per and Todt [Kipper & Todt 2001, Kipper & Todt 2003], see Section 3.1�have been

selected: rhythm, f0, energy and number of syllables. Rhythm was modi�ed in the

same way as explained above, by changing the durations of the phonetic transcrip-

tions prior to synthesis. This method was preferred to changing the playing speed

of synthesized laughs (with a phase vocoder to preserve the frequencies) in order to

keep the HMM modeling of the excitation and �lter trajectories.

To modify f0, we used the pitch trajectories generated by our HMMs. The target

f0 pattern can simply be replaced before building the excitation signal and attacking

the �lter. Here, we have decided to amplify the deviations from the average f0 of

the synthesized laugh. The modi�ed f0 value at time t, fm
0 (t), is obtained from the

initial f0 value for synthesis f0(t), the average f0 value f̄0 = 1
T

∑T
t=1 f0(t) and the

multiplying factor f by:

fm
0 (t) = f̄0 + f ∗ (f0(t)− f̄0) (6.1)
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Figure 6.4: Box plots of the ratings received in the three experimental conditions for

the questions related to the non-verbal behavior of the agent.

If f = 0, we obtain a totally �at f0 pro�le, if 0 < f < 1 we attenuate the f0 variations,

while we amplify them if f > 1.

The energy pro�le is modi�ed by linearly weighting the amplitude of the synthe-

sized laughs. The weighting factor is either decreasing or increasing linearly over the

laugh episode, with a maximum value of 1 (at the beginning or end of the laugh,

respectively) and a minimal value of I (<1) (at the end or beginning of the laugh,

respectively). This enables to attenuate the attack of the laugh (increasing patterns)

or obtain a more gently fading out of the laugh (decreasing patterns).

To vary the number of syllables, we looked for the longest series of "fricative-

vowels" syllables (FV series) in the human laugh transcription. To obtain laughs

with smaller numbers of syllables, we deleted syllables in the series in a uniform way:

if only 1 syllable has to be deleted, we select the middle syllable from the human FV

series; if 2 syllables have to be dropped, we take them at 1/3 and 2/3 of the human FV

series; if 3 syllables are removed, we take them around 1/4, 1/2 and 2/3 of the human

FV series. To obtain laughs with higher numbers of syllables, we added syllables in

the FV series in a uniform way. The duration of the inserted syllable is the average

between the durations of the preceding and following syllables, while the vowel of the

inserted syllable is copied from the preceding syllable.

Examples of modi�cations of the number of syllables, rhythm and f0 are available

from http://www.tcts.fpms.ac.be/~urbain/laugh_synthesis_examples/, for a

female and a male voice, with or without corresponding animations of a virtual

agent. All four modi�cations are currently used in psychological experiments with

gelotophobes. Some of the laughs are easily perceived as fake, for example when the

rhythm is very slow, and can be considered as malicious by certain people.

The variations introduced so far (rhythm, pitch, number of syllables and

http://www.tcts.fpms.ac.be/~urbain/laugh_synthesis_examples/
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energy pro�le) were also accessible to Kipper and Todt [Kipper & Todt 2001,

Kipper & Todt 2003]. Our aim is to push evaluation and modi�cations forward (e.g.,

they always used the same number of syllables) as well as to explore new ways of

manipulating these dimensions (e.g., amplifying the f0 trajectories modeled by our

HMMs). Possibilities are numerous and will be re�ned when evaluation results be-

come available. The evaluation and identi�cation of laughter features that create

particular perception for gelotophobes and control subjects is indeed only at its be-

ginning, but will be carried out in the future in collaboration with psychologists from

the University of Zürich.

6.5 Conclusions of the applications using laughter

synthesis

In this chapter, we have browsed a few applications integrating laughter, and in

particular some projects where our HMM-based audio laughter synthesis methods

have been used. Although the results are still limited due to the small sample sizes

reported here, it has generally been showed that a laughing agent has an impact

on the participants' experience. The development of such laughing agents should

hence continue, to further investigate what they can bring in a range of situations

(companions, game players, coaches, etc.) and understand when and how laughter

can be bene�cial in human-computer interactions. We have also seen that acoustic

parameters of laughs can easily be modi�ed, which will help to better understand the

impact of laughter features, either in isolation or within interactions.

The Laugh When You're Winning application is the �rst human-computer inter-

action in which we altered the laughter synthesis in order to match the participant's

behavior. Here we only played with the laughter rhythm to create an e�ect of mimicry.

However laughs are so far not interruptible: a laugh is selected for synthesis and must

be played until its end. Laughter-enabled human-computer interactions would clearly

bene�t from the possibility to modify laughs on the �y, in order to be more reactive,

as humans do: laughter is ampli�ed if the funny stimulus is persisting, while we would

try to suppress it if we realize it is inappropriate or the situation suddenly becomes

serious.

Another application we are currently working on involves a revised version of the

laughter similarity algorithm, including features derived from the automatic phonetic

transcriptions (rhythm, number of bouts, types of phones involved), for organizing

laughter databases and easily browse through them by acoustic similarities.
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Conclusion

This document has presented several innovative research areas in acoustic laughter

processing. For each of these areas, a signi�cant contribution to the state-of-the-art

has been brought during this PhD Thesis.

The AVLaughterCycle database itself, with its phonetic annotations, is the �rst

contribution. Even though it does not really involve signal processing, we believe this

database (and the proposed annotations) is bringing new insights for laughter analysis

and processing. The database has already been used for several studies�most of

which have been reported on in this dissertation, but there have also been analyses of

facial movements, which were beyond the scope of the present work. In addition, the

AVLC database was also a starting point for the new generation of laughter databases,

trying to overcome the limitations of existing corpora. For instance, the MAHNOB

laughter database is largely inspired by our database, but includes speech segments

and (limited) social interactions, which were both absent in the AVLaughterCycle

recordings. Recordings done in Belfast in the framework of the ILHAIRE project also

aim at increasing the amount of laughter data available from single speakers, which is

another limitation of the AVLC database: although state-of-the-art laughter synthesis

could be developed with our data, it is believed that more data for a single voice would

further improve the synthesis quality. This was also the motivation for recording the

AV-LASYN database, which is speci�cally targeting audiovisual laughter synthesis.

Second, annotations of laughter arousal, both at the frame and episode levels, have

been performed for the �rst time. Arousal is probably the characterizing dimension

of laughter that receives the biggest consensus, as attempts to identify laughter types

have so far failed to gather convincing proofs and reach agreement. We are thus

expecting that annotations and analyses of arousal will gain interest in the near

future.

Third, the proposed phonetic annotations of the AVLC database yielded to original

laughter analysis, since no one before could report on phone variations, for instance.

Di�erences in phone durations have been investigated. Individual di�erences in the

choice of phones have also been highlighted, to con�rm one of the key messages of

laughter-related studies: laughter is a highly variable signal, hence di�cult to analyze

and model.

Fourth, we have proposed methods to automatically obtain the two annotations

tracks introduced in this PhD Thesis. For estimating arousal at the frame level, we

have used neural networks fed with acoustic features. Good correlation with manual

annotations could be obtained, in a speaker-independent scheme. Arousal at the
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laughter episode level can be computed from simple statistics of the per-frame arousal

trajectory: another neural network achieved good correlation with the reference per-

laugh arousal values, again in a speaker-independent scheme. Laughter phonetic

transcriptions were automatically obtained with the help of Hidden Markov Models.

Acceptable matching with the manual transcriptions could be achieved, which was

later con�rmed by the satisfying quality of laughter synthesized with models trained

on the automatic phonetic transcriptions.

Fifth, we have adapted HMM-based speech synthesis to laughter. Our method

achieves state-of-the-art results, even though competing methods�targeted to speci�c

voiced laughter structures�have been simultaneously developed. Besides o�ering the

possibility to synthesize any laughter sounds (inhalations, nareal fricatives, etc.) as

long as there is su�cient training data, the proposed HMM-based laughter synthesis

seems to us relatively convenient to use: either from phonetic transcriptions (without

the need to also specify the duration of each phone, which can be e�ciently estimated

by the HMMs) or from high-level arousal information, using our phonetic generation

method.

Finally, we have already implemented several other applications, like laughter-

enabled virtual agents or manipulation of laughter features, that can interest a broader

community. Laughing virtual agents can be used in various applications like games,

educational companions or health coaches. We have also seen that unique psycholog-

ical experiments can be conducted thanks to laughter synthesis. Laughter is also of

interest for some artistic installations, as it is naturally conveying a�ect. All these

applications will bene�t from every improvement in the points addressed above. Let

us recall some of the directions for future research in the next paragraphs, in corre-

spondence to the major contributions summarized above.

First, more laughter data would obviously be bene�cial. We have seen that there

already exists a reasonable number of corpora containing laughter. In addition, the

e�orts are currently growing and tackling limitations of current databases. We can

thus expect that large amounts of high-quality laughter data will be available in the

next years.

Second, new annotations are required, not only for using the (new) laughter data,

but also to assess the validity of proposed dimensions to characterize the laughs.

Arousal seems to have been universally used for centuries to describe laughs, but it

would be really interesting to know whether people agree on annotating per-frame

arousal. Annotations on di�erent modalities (audio only, video only, both audio and

video, only face, face plus body movements, etc.) would also help to identify which

information is contributing to arousal. For phonetic transcriptions also, measures

of inter-rater agreements would be useful to validate the set of phones used, for

example. Furthermore, it would be nice to have annotations to study cross-cultural

variations (both in the laughs and in the way to annotate it) or how people adapt

their annotations once they know the laugher (e.g., rating arousal relatively to laughs

already seen from the same laugher).

Third, coming back to the phonetic annotations, we have proposed a two-step
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process here: �rst annotating with a lot of details, then grouping acoustically close

labels. The advantage of the �rst step is that it enables di�erent groupings without

needing to re-annotate the whole dataset. Nevertheless, the groupings we have used

in this dissertation are tentative ones, resulting from our own observations and needs.

Assessing which laughter phones actually make a perceptive di�erence�or at least

which grouping is truly optimal for the di�erent objectives of describing and synthe-

sizing laughs�is another body of work that could emerge from this dissertation and

feed back to all our developments.

Fourth, there is obviously room for improving our methods for automatic phonetic

transcriptions and arousal estimation. One path is to investigate new features, like

the slope of f0 for arousal, descriptors of breathiness or nasality for phonetic tran-

scriptions, etc. Another option would be to include contextual information to take

decisions that are less local, especially for arousal estimation. Phonetic transcriptions

are currently computed using the full laughter episode, but each frame is character-

ized by local features only, and only bigrams have been implemented to constrain the

sequence of phones. Exploring higher-order n-gram models is another research direc-

tion. As already discussed, adaptation to the speaker is also expected to be bene�cial,

both for estimating arousal and phonetic transcriptions, as laughter is exhibiting high

variability between subjects.

Fifth, the whole synthesis process could be studied point by point and tuned to

laughter. It should not be forgotten that the used methods have originally been

designed for speech and have been experimentally adapted to laughter in this disser-

tation. Optimal parameters should be looked for, and one must keep in mind that

some of them (like f0 boundaries) should probably be tuned to the individual laugher.

Further analyses of the vocoders could also help, and the development of a vocoder

that would account for laughter speci�cities (breathiness, vocal folds not closing as

decisively as in speech, etc.) would be an interesting PhD topic.

Furthermore�although we already consider the generation algorithm as an im-

portant step forward for promoting the use of laughter synthesis in a range of environ-

ments (as it is extremely easy to drive laughter synthesis from arousal curves)�the

generation method should be further evaluated to assess whether it can work for

di�erent voices and arousal patterns.

Finally, applications integrating laughter�including human-computer interac-

tions, artistic installations, etc.�would de�nitely bene�t from real-time implemen-

tations of laughter characterization and synthesis processes. Unfortunately, all algo-

rithms cannot be applied to real-time in a straightforward way or without degrading

the performance. Implementing real-time versions of all our algorithms that are not

real-time yet (in particular automatic phonetic transcriptions and laughter synthe-

sis) would be a �rst step towards increased reactivity of applications. It is however

expected that the actual research e�orts will be to optimize the algorithms so that

they do not su�er too much from real-time constraints (limited context, restricted

computational time, etc.).

To conclude this PhD, we would like to recall the importance of laughter in hu-
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man communication. Laughter is an essential social signal, generally transmitting

�socially-positive� information (politeness, a�liation, amusement). It can also convey

negative feelings, either intentionally (malicious laughs, bullying, etc.) or as a result

of misinterpretation (and not only by gelotophobes). This is why we were motivated

in advancing the state-of-the-art in laughter processing, to enable the integration of

laughter in human-computer interactions and increase their naturalness, but also as a

means of studying the complex role of laughter in human communication. Numerous

�elds are concerned by laughter (medicine, psychology, communication, engineering,

etc.). It makes the challenging tasks of laughter processing even more fun and in-

teresting to deal with. We hope this dissertation will contribute to promote these

ideas.
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Appendix A

Summary table of databases in

which acoustic laughs have been

spotted

Table A gives a summary of the features of the databases presented in Chapter 2.

Meanings of the columns and abbreviations are as follows:

1. Database: name of the database (see Chapter 2 for the corresponding refer-

ences).

2. Type of Data: S for Spontaneous laughs, I for Induced laughs, Ac for acted

laughs. Precisions about the recording scenario are provided within parentheses.

Some databases combine di�erent types of data recording, in which case they

are separated by a �+� sign.

3. Modalities: recorded signals: A for audio (all databases in this list, as we focused

on audio), V for video, K for Kinect, MC for Motion Capture. ST denotes the

use of a far-�eld microphone to record all participant on a Single Track.

4. Fs: sampling frequency of the audio recordings, in kHz.

5. #part.: total number of participants in the database.

6. #part. / rec.: number of participants simultaneously involved in recordings.

This provides information about the social context. As the presence of experi-

menters also in�uences the social context, it is also denoted when useful.

7. #laughs: total number of laughter episodes in the database.

8. Anno.: laughter annotations, i.e. whether the presence of laughs was simply

indicated (without accurate time boundaries), which is denoted Ind., or seg-

mented (i.e., with time boundaries, Seg.), or other relevant information: Emo.

for labeling in Emotional categories, V/U for voiced/unvoiced annotations, SL

for speech-laughs.

9. Relations (between participants): whether participants simultaneously involved

in recordings knew each other (and if so, what is the rapport between them:
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been spotted

Acq. for Acquaintances, friends, colleagues, etc.) or were strangers. This is

also important for social context.

Note that the information presented in Table A corresponds to the information we

could retrieve from the papers cited in Chapter 2. We made not attempt to verify

the given �gures.
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Appendix A. Summary table of databases in which acoustic laughs have

been spotted
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Appendix B

Introduction to Hidden Markov

Models

Hidden Markov Models (HMMs) enable to model the temporal evolution of features.

To do this, one HMM is composed of several states. A schematic HMM is displayed in

Figure B.1. This HMM contains three states, numbered 1, 2 and 3. Each state is asso-

ciated to a di�erent probabilistic distribution of the features, called the observations.

The probability of observing a feature vector x in state i is given by the function

Oi(x) and called emission probability. The emission probabilities are generally mod-

eled with GMMs (as shown in the �gure) or neural networks. Only one state of the

HMM is occupied at each time frame. At the next time frame, the HMM can either

stay in the same state, or move to another state. HMMs are Markovian processes,

also called memoryless, which means that the future evolution only depends on the

current state (past states do not have any impact on the future if we know the present

state). The probability of going to state j when immediately coming from state i is

given by the transition probability tij .

The HMM is fully described by its number of states, the transition probabilities

tij , the emission probabilities Oi(x) as well as the probabilities to occupy each state

at the �rst frame.

Typically for speech recognition or synthesis, one HMM is built for each phoneme.

The models are generally trained in a supervised way (i.e., transcriptions of the utter-

ances are provided along with the data) with the Expectation-Maximization algorithm

[Moon 1996]. Using an initial estimate of the HMMs (which can be randomly or uni-

formly initialized), the observations are assigned to each phoneme HMM according to

the given phonetic transcription1 and all the HMM parameters are estimated thanks

to the available observations for each state. Then, the estimated parameters of the

HMMs are used to compute the most likely sequence of states respecting the phonetic

transcription and the HMM parameters are re-estimated according to the observations

assigned to each state. Several steps of re-estimation are performed, until parameters

do not change anymore between two iterations2.

The di�erent states of each HMM enable to model the evolution of the features

across each phone. Transition probabilities between two di�erent HMMs can also

1If the phonetic transcription does not specify the time boundaries between the phonemes, ob-
servations are uniformly divided for the initialization step.

2In practice, re-estimation is usually stopped after either a pre-de�ned number of steps, or when
parameter changes between two steps fall below a pre-de�ned threshold.
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Figure B.1: Scheme of a three-state HMM

be computed on the training data: in the n-gram model [Brown et al. 1992], the

probabilities of a phoneme Zn to immediately follow a sequence of n − 1 phonemes

Y n−1
1 is estimated for all the phoneme combinations. More complex models can be

used in speech recognition to encode lexical (only a �nite number of words are allowed)

and grammatical (specifying which sequences of words are permitted) rules, but this

goes beyond the scope of this dissertation.

Once trained, the HMMs can be used to transcribe sequences of observations. The

most likely sequence of states�given the models (HMMs, n-grams)�conducting to

the observations is computed.
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