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ABSTRACT

“Human BeatBox” (HBB) is a newly expanding contemporary
singing style where the vocalist imitates drum beats percussive
sounds as well as pitched musical instrument sounds. Drum sounds
typically use a notation based on plosives and fricatives, and instru-
ment sounds cover vocalisations that go beyond spoken language
vowels. HBB hence constitutes an interesting use case for expand-
ing techniques initially developed for speech processing, with the
goal of automatically annotating performances as well as developing
new sound effects dedicated to HBB performers. In this paper, we
investigate three complementary aspects of HBB analysis: pitch
tracking, onset detection, and automatic recognition of sounds and
instruments. As a first step, a new high-quality HBB audio database
has been recorded, carefully segmented and annotated manually
to obtain a ground truth reference. Various pitch tracking and on-
set detection methods are then compared and assessed against this
reference. Finally, Hidden Markov Models are evaluated, together
with an exploration of their parameters space, for the automatic
recognition of different types of sounds. This study exhibits very
encouraging experimental results.

Index Terms— Human beatbox, pitch tracking, onset detection,
Hidden Markov Model, automatic speech recognition

1. INTRODUCTION

Speech and voice have been an intensive research topic in the past,
leading to various technologies for synthesizing speech, and recog-
nizing words or speakers. Singing voice has been studied too, but
to a much lesser extent. Other forms of vocalization are an almost
untouched area. These include some traditional and popular vocal
expression forms such as Corsican, Sardinian, Byzantine, or contem-
porary singing expressions such as Human BeatBox (HBB). These
are currently studied in the i-Treasures project [1, 2]. In this study,
we focus on HBB.

HBB is an interesting and challenging case study related to spo-
ken language technologies. Indeed, notations proposed for drum
sound imitations often rely on the international phonetic alphabet,
and performers produce sounds that are close to stop consonants,
although they rely on a larger set of variants. Besides, performers
make use of both ingressive and egressive sounds, which is rather
unusual for standard spoken language technologies.

In the past, various studies focused on HBB, e.g. on the descrip-
tion of acoustic properties of some sounds used in HBB compared to
speech sounds [3], based on author’s observations; the investigation
of HBB as a query mechanism for music information retrieval [4];
and the automatic classification of HBB sounds amongst kick/hi-
hat/snare categories [5, 6]. More recently, the repertoire of a human
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beatboxer was analyzed by real-time magnetic resonance imaging
[7], where the articulatory phonetics involved in HBB performance
were formally described. The vocal tract behaviour in HBB was
analyzed through fiberscopic imaging [8], to understand how they
manage instrumental, rhythmic and vocal sounds at the same time.
However, to the best of our knowledge, there are no reported com-
parative evaluations of HBB pitch tracking, onset detection, and au-
tomatic recognition, to the level proposed in this paper. Also, studies
of automatic recognition of HBB pitched instrument imitations are
very scarce. These motivate the work reported here.

The paper is structured as follows. Section 2 presents the record-
ing protocol and the content of our new high-quality HBB audio
database. This database is carefully segmented and annotated man-
ually to obtain a ground truth reference, against which various pitch
tracking and onset detection methods are evaluated in Section 3. In
Section 4, we investigate the use of Hidden Markov Models (HMMs)
for the automatic recognition of different sound types present in our
HBB database. Finally, Section 5 concludes the paper.

2. CREATION OF A DATABASE WITH VARIOUS HBB
STYLES

For the purpose of this research work, a new beatbox database was
recorded. It consists of sounds produced by two male beatboxers
(Davox and Matthieu), spread over two non-consecutive sessions
(session A: Davox and Matthieu; session B: Davox only). Each ses-
sion contains 4 sets: individual drum sounds, instruments, rhythms
and freestyle. The beatboxers were placed, one at a time, inside
a soundproof room, equipped with a computer for recording, and
with a Rode Podcaster microphone at a distance of approximately
20 cm from the performer’s mouth. The audio was captured at a
sampling rate of 48 kHz, and ElectroGlottoGraphy (EGG) signals
were recorded for each beatboxer during session A. In total, we were
able to collect more than 9000 musical events. In this study, we will
use 1835 drum sounds and 1579 musical instrument notes imitation.

The first set of the database, i.e. individual drum sounds, can
be divided into five main classes: cymbal, hihat, kick, rimshot and
snare. For each of these, beatboxers have their own variants, imitat-
ing drum sound timbers typical to various music styles. For instance,
Davox pronounced several time the 17 HBB drum sounds described
in [7], while Matthieu proposed his own repertoire (the repetition
amount is detailed in Table 1). Each onset of a drum sound event is
manually annotated and labeled according to the beatboxer’s reper-
toire. In this study, we did not try to recognize those variants, but
only the five broad categories (see Section 4).

For the second set, they were asked to imitate the sound of var-
ious instruments, with custom rhythms and melodies for each (the
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Table 1: Musical classification and acoustic characteristics (and repetition number #) of drum sounds and HBB instruments.

Musical

Acoustic characteristics (#)

classification (#) Davox

[ Matthieu

Drums (#)

Hi-hat (436)

h (45), kss (32), t (18), th (32), tss (47)

t (71), th (47), ts (44), frr (44), sip (56)

Cymbal (147) kshh (32), tsh (29) fsh (31), psh (29), soh (26)
Kick (433) bf (39), bi (34), bu (39) pf (65), po (73), tu (65), voc (69), vocnas (49)
Rimshot (525) k (51), kh (39), khh (55), suckin (35) k (59), k_ing (89), k_ingvoc (51), kh (46), ko (45), ks (55)
Snare (294) clap (17), pf (48), ksh (26) ich (56), if (42), pt (59), plf (46)

Instruments (#)

Elec. guit. egr. (119)

no_effect (111), inhalation (5), sil (3)

No performance

Elec. guit. ing. (510)

voiced (153), unvoiced (39), inhalation (30), sil (4)

Guit. bass (148)

no_effect (102), inhalation (11), sil (0)

no_effect (19), inhalation (16)

Saxo. (251)

no_effect (122), pre_breath (101), inhalation (20), sil (8)

No performance

Trumpet (210)

no_effect (141), vibrato (15), inhalation (3), sil (4)

no_effect (39), tremolo (3), inhalation (1), sil (4)

Trump. cork. (137)

no_effect (67), vibrato (9), inhalation (3), sil (6)

no_effect (42), inhalation (2), sil (8)

Trump. trill. (136)

no_effect (64), tremolo (28), vibrato (3),
inhalation_tss (3), inhalation (8), sil (30)

No performance

Didgeridoo (49) No performance

didgeridoo (39), inhalation (4), sil (6)

Harmonica (19) No performance

harmonica (9), vibrato (6), inhalation (4)

collected amount of notes is detailed in Table 1). Some performances
actually contain different instrument timbres, or specific sounds pro-
duced to increase the performance realism (e.g. unvoiced sounds
to simulate more muted guitar notes, exhalation sounds preceding
saxophone notes, as well as vibrato and tremolo effects in trumpet
imitations). This set has been manually segmented and labeled, ac-
cording to its own characteristics. We also recorded some special in-
struments, which will not be used in this study: voice scratch (or the
imitation of disc jokey turntable scratch) with Davox, electric guitar
ingressive and guitar bass superimposed with beats with Matthieu.
Here also, our experiments targeted the recognition of instrument
categories rather than subtle variants proposed by the beatboxers.

3. HBB DATA ANALYSIS AND FEATURE EXTRACTION

This section aims at developing techniques enabling the extraction
of relevant features characteristic of vocal performances: pitch of
the notes and musical event onsets.

3.1. Pitch analysis

Extracting pitch makes sense for instrument imitations, as drum
sounds do not contain any pitch. Similarly to [9], we compare the
performance of 4 of the most representative state-of-the-art pitch
extraction techniques: RAPT [10], SRH & SSH [11], YIN [12].
Usually, ground truth reference pitch for voice is obtained
through EGG recordings. These signals were captured only during
session A of our database. For both sessions A and B, the reference
pitch was obtained by applying an automated pitch tracking algo-
rithm (Praat [13]), followed by manual and thorough checks and
corrections. Contrarily to standard neutral speech, we observed that
EGG is not sufficient on its own to get accurate pitch ground truth.
It should be noted that all applied algorithms allow, in addition to
pitch values extraction, Voiced/Unvoiced (VUV) decisions compu-
tation as a by-product. These two aspects of pitch extraction should
be separately evaluated, so as to find the most appropriate method
for each of them. As performance measures [14], we used Voicing
Decision Error (VDE - proportion of frames with a voicing decision
error), Gross Pitch Error (GPE - proportion of frames with relative

FO error higher than a 20% threshold) and FO Frame Error (FFE -
proportion of frames with either GPE or VDE error).

Table 2 summarizes the average pitch tracking results. Among
the four algorithms mentioned above, the best scores are achieved
by SRH for GPE, VDE and FFE. Major degradations contributing
to increase these scores may come from electric guitar egressive
from Davox, and from electric guitar ingressive from Matthieu. In-
deed, we noted the presence of strong sub-harmonics (imitating in-
termodulation distortion, which is common in heavily distorted gui-
tar sounds) in the corresponding audio signals, leading pitch tracking
algorithms to fail selecting the correct fundamental.

Table 2: Pitch tracking results, computed on around 72000 frames
(around 11 minutes of audio), for the instrument imitations.

| [ GPE[%] | VDE [%] | FFE[%] |

RAPT 29.3 13.8 19.6
SRH 12.7 11.7 15.5
SSH 14.8 14.0 17.6
YIN 14.2 14.3 18.2

MAJORITY 10.3 9.5 13.3

Finally, we proposed to use majority voting approach to further
improve pitch estimation accuracy. In case of a tie, pitch values and
VUV decisions are set from SRH, as this algorithm led to the best
scores compared to the others. This approach yields in significant
performance improvement (as clearly observed in Table 2).

3.2. Onset detection

Onset detection is a specific problem within the area of audio anal-
ysis and recognition, and can be the first step in a system designed
to interpret an audio stream in terms of its relevant audio/musical
events. It is also particularly relevant to HBB due to its mostly per-
cussive basis. It usually consists in three steps [15, 16]. First, the
audio signal is pre-processed in order to accentuate certain impor-
tant aspects, using techniques including filtering, separation into fre-
quency bands, or the separation of transient and steady-state portions
of the signal. Then, the amount of data from the processed signal is
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Table 3: Onset detection results for the drum sounds (1835 onsets,
i.e. around 10 minutes and 30 seconds of audio) and instrument
imitations (1579 onsets, i.e. around 11 minutes of audio).

] Method [| F-measure | Precision | Recall |

g S. Flux on Log Mag. 92.2% 92.4% 91.9%
2 | Weight. Phase Div. 92.1% 92.2% 91.9%
A Log Magnitude 91.0% 91.9% 91.9%
g | Weight S. Fluxon 82.4% 81.6% | 83.2%
= Log Mag.

£ | S.Flux on Log Mag 79.3% 79.3% 79.3%
E Kullback-Leibler div. 79.0% 78.3% 79.8%

reduced so as to obtain a lower sample rate onset detection function,
where the onsets manifest themselves as peaks. Finally, thresholding
and/or peak-picking can be applied to isolate potential onsets.

A well known approach consists in considering the signal high-
frequency content by linearly weighting each bin in proportion to its
frequency, hence emphasizing high-frequencies typical to disconti-
nuities, and especially onsets [17]. A more general approach con-
sists in considering changes in the spectrum and formulate detection
functions as distances between consecutive short-term Fourier trans-
forms (STFTs), such as “spectral flux” approach when distance is
computed between successive power spectra. Discontinuities in the
evolution of phase spectra, of complex spectra [18, 19] have also
been shown beneficial.

3.2.1. Method

Comparative evaluations on instrument onset detection are available
in the literature but not on HBB data. Here, evaluation is performed
using an approach similar to [19], where a detected onset is consid-
ered as correct if it lies within a tolerance margin of 50 ms before
and after the ground truth (hand annotated) onset.

The compared methods have been reimplemented by the au-
thors, and cover a range of 18 variants of magnitude-based (in-
cluding energy, log-energy domains, and their time derivatives) and
STFT-based (including spectral flux in different domains, phase-
based methods and their variants using magnitude weighting, and
complex-based methods) approaches. We optimized the detection
threshold for peak F-measure for each method. The number of
sound event being limited, a k-fold method was applied (k = 3).

3.2.2. Results

Table 3 presents the results for the three best performing methods on
drum sounds and instrument imitations.

On drums data, many approaches work very well. There is a
significant error rate due to the miss of some onsets though, such
as those of hi-hats #h and ¢, which can be up to 24 dB weaker than
kick or snare drums. Also, longer sounds such as cymbals can some-
times trigger two onsets, the second one due to modulations applied
by the performer. The three best methods were: 1) a spectral flux
approach [20] operating on the log-magnitude bins of the STFTs;
2) a STFTs phase divergence approach [19] where bin importance
is weighted according to their magnitudes; 3) a method making use
of the log-magnitude of signal frames along time (with no spectral
flux computation). This represent a simple method that has, to our
knowledge, not been proposed before.

On pitched instruments data, the performance level is lower, es-
sentially due to modulations, false attacks, and onsets detected at
the end of sounds. The three best methods were: 1) a spectral flux
approach operating on the log-magnitude bins of the STFTs where
bin importance is weighted according to equal loudness contours;
2) a spectral flux approach operating on the log-magnitude bins of
the STFTs; 3) an approach based on the modified Kullback-Leibler
distance on the log-magnitude bins of the STFTs [16].

Spectral flux computed on log-magnitude spectra appears as
a good compromise, with F-measures reaching 92% and 79% on
drums and pitched instruments respectively. These results are hence
in line with those reported on real instrument sounds (see [19]).

4. AUTOMATIC HBB SOUNDS AND INSTRUMENTS
RECOGNITION

Automatic recognition systems were initially developed for speech
(ASR, e.g. [21, 22, 23]). In this section, we assess the performance
of such systems using our HBB audio data for automatically annotat-
ing any new HBB performances. As already mentioned in Section 2,
we chose to recognize the musical classification classes, rather than
subtle timber variants (detailed in Table 1).

4.1. Method

HMM-based HBB recognizers were built relying on the implementa-
tion of the publicly available HTK toolkit [24] (version 3.4.1). Given
the nature of the audio material (similar to spoken language, but
with different dynamics), we founded necessary to re-explore the
common assumptions made when HMMs are used in ASR. Among
those, the audio analysis frame shift, the feature extraction approach
and the HMM state number for each sound. Given the large param-
eters space, we proceeded in two steps: (i) joint exploration and op-
timization of the parameters related to temporal properties (analysis
frame shift and HMM state number), (ii) selecting the best configu-
ration from the previous step, joint exploration and optimization of
feature extraction approach and number of feature coefficients. The
HBB audio data being limited, the same k-fold method (k = 3) as in
Section 3.2.1 was used on the first and second sets of the database
(i.e. 1835 drum sounds and 1579 instrument imitations), for training
and testing the HMM-based HBB recognizers.

For step (i), we extracted as filter parameterization the 54 Mel-
Frequency Cepstral Coefficients (MFCCs) traditionally used in
ASR': 18 MFCCs and their first- and second-order derivatives. The
length of the analysis window was equal to 10 ms, as individual
drum sounds as short as 10 ms were observed. We varied the frame
shift from 2 ms to 10 ms by 2 ms increments. Moreover, we also
varied the number of states composing the HMMs from 3 to 11 by
1-state increments, and from 13 to 21 by 2-state increments. For
each drums and pitched instruments type, a no-skip left-to-right
single-Gaussian monophone HMM was built. Silence and short-
pause models were also implemented, as proposed in [24]. Models
initialization and training is based on our manually-aligned corpus.

For step (ii), feature extraction approach was analyzed. HMMs
were trained using from 14 to 26 feature coefficients incremented by
4, with MFCCs, Linear Predictive Coding (LPC) coefficients, Lin-
ear Prediction Cepstral Coefficients (LPCC), PARtial CORrelation
(PARCOR) and Perceptual Linear Prediction (PLP) coefficients [21].

I'The energy coefficient was left aside and the audio recordings were not
normalized. Indeed, we are targeting a real-time application and evaluation
with actual end-users.
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Fig. 1: Automatic recognition of HBB drum sounds and instrument imitations - Evolution of the error rate: (a & b) as a function of frame
shift and state number, (c & d) as a function of feature extraction approach and number of coefficients.

The performance scoring was obtained with the sclite tool,
which is part of NIST Scoring Toolkit (SCTK [25]). This tool is
able to align a ground truth reference with a recognized sequence
taking into account the timing of the events. This was shown to be
very important here due to HBB sounds sometimes being repeated
several times in sequence. As scoring measure, we used the error
rate, which corresponds to the total number of insertions, deletions
and substitutions, divided by the total number of musical events.

4.2. Results

Figures la and 1b display the error rate evolution in the proposed
range of analysis frame shifts and of HMM state numbers, for indi-
vidual drum sounds and instrument imitations respectively. Note that
the error rate can exceed 100% as it includes insertions, deletions
and substitutions. We clearly see, on both figures, that the best per-
formance is achieved using a 2 ms analysis frame shift and a HMM
with 21 states, corresponding to error rates of 9.3% and 41% for in-
dividual drum sounds and instrument imitations respectively. This
contrasts with the typical values in speech processing (frame shift
around 5 ms and HMM with 5 states per phoneme in context), and
is probably due to the short and more dynamic nature of the signals.

Selecting optimal values from above, HMMs were trained us-
ing the proposed range of feature extraction approaches and number
of coefficients. Figures 1c and 1d exhibit the error rate evolution
when both the coefficient number and the coefficient type vary, for
individual drum sounds and instrument imitations respectively.

In the case of individual drum sounds, the best performance is
achieved when the model uses 22 MFCCs, leading to a recognition
error rate of 9%. This score is detailed in Table 4: recognition ac-
curacy (Corr.), error (Err.), substitution (Sub.), deletion (Del.) and
insertion (Ins.) percentages and number of occurrence (Num.).

Table 4: Detailed results for the automatic recognition of HBB
drums and instruments. Optimal setup: frame shift = 2 ms, state # =
21, coefficients = MFCCs and # = 22 (drums) or 18 (instruments).

Type H Num. H Corr. [ Sub. [ Del. [ Ins. [ Err.
Drums 1735 93% 7% 0% 21% | 9%
Instruments || 1381 || 65.7% | 6.6% | 27.7% | 6.6% | 41%

Regarding instrument imitations, the best performance is achie-
ved when the model uses 18 MFCCs, leading to a dramatic drop in
performance with a recognition error rate of 41% (Table 4). This can
be explained by: i) elec. guit. egr., which is almost never recognized
as such (recognition error of 96.3%) and always confused with elec.
guit. ing. and guit. bass, and ii) harmonica (recognition error of

47.4%), mostly confused with elec. guit. ing. and trump. cork. An-
other problem explaining this degradation concerns insertions and
deletions. Indeed, as already mentioned earlier, HBB sounds are
sometimes repeated several times in sequence, especially for instru-
ment imitations where repetitions only differ by their pitch. As no
pitch information is given to the HMM, the task of recognizing indi-
vidual instrument notes is problematic, and thus, can lead to frequent
insertions and/or deletions. Indeed, the percentage of correctly rec-
ognized classes for each instrument varies as: 86.6% (trump. cork.),
89.1% (trump. trill.), 92.9% (trump.), 94.6% (didgeridoo), 97.1%
(elec. guit. ing.), 98.1% (guit. bass) and even 100% (saxo.).

5. CONCLUSIONS AND FUTURE WORKS

This paper focused on the analysis and automatic recognition of
HBB sounds, a challenging task related to spoken language process-
ing. First, a new high-quality HBB audio database was recorded,
carefully segmented and annotated manually. We then investigated
three complementary aspects of HBB analysis: pitch tracking, on-
set detection, and automatic recognition of sounds and instruments.
First, various state-of-the-art pitch tracking techniques were com-
pared. Applying a majority voting on those algorithm outputs led to
interesting results on pitched instruments (GPE of 10.3%, VDE of
9.5% and FFE of 13.3%). Different onset detection methods were
also compared. Spectral flux computed on log-magnitude spectra
appears as a good compromise (with F-measures reaching 92% and
79% for drums and pitched instruments respectively). HBB sound
processing hence appears to be no harder than real instrument sound
processing. Finally, HMMs were evaluated for automatic transcrip-
tion of HBB performance. The HMM parameters space was ex-
plored and an optimum was found (in particular, the analysis frame
shift of 2 ms), differing strongly from the typical values observed in
spoken language processing. Recognition error rates at the musical
event level reached 9% and 41% for drums (5 classes) and instru-
ment imitations (8 classes) respectively.

Several future works are planned, e.g.: investigate real-time on-
set detection and recognition of HBB performances and improving
robustness to apply these technologies in less than ideal conditions
(practicing outside a soundproof room), and to more complex ma-
terial (freestyle performances combining multiple drum and instru-
ment sounds). Multimodal aspects will also be considered.
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