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1. Introduction

Nonnegative matrix factorization (NMF) consists in approximating a nonnegative matrix as the product of two low-rank
nonnegative matrices [1,2]. More precisely, given an m-by-n nonnegative matrix M and a factorization rank r, we would like
to find two nonnegative matrices V and W of dimensions m-by-r and r-by-n respectively such that

M~ VW.

This decomposition can be interpreted as follows: denoting by M the jth column of M, by V., the kth column of V and by
Wi the entry of W located at position (k, j), we want

.
M; ~ ZijV:k» 1<j=n,
k=1

so that each given (nonnegative) vector M is approximated by a nonnegative linear combination of r nonnegative basis
elements V.. Both the basis elements and the coefficients of the linear combinations have to be found. Nonnegativity of
vectors V., ensures that these basis elements belong to the same space R’ as the columns of M and can then be interpreted
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Fig. 1. Illustration of NMF on a face database. Basis elements (matrix V') obtained with NMF on the CBCL Face Database #1, MIT Center For Biological and
Computation Learning, available at http://cbcl.mit.edu/cbcl/software-datasets/FaceData2.html, consisting of 2429 gray-level images of faces (columns)
with 19 x 19 pixels (rows), for which we set the factorization rank equal to r = 49.

in the same way. Moreover, the additive reconstruction due to nonnegativity of coefficients W; leads to a part-based
representation [2]: basis elements V., will tend to represent common parts of the columns of M. For example, let each column
of M be a vectorized gray-level image of a face using (nonnegative) pixel intensities. The nonnegative matrix factorization
of M will generate a matrix V whose columns are nonnegative basis elements of the original images, which can then be
interpreted as images as well. Moreover, since each original face is reconstructed through a weighted sum of these basis
elements, the latter will provide common parts extracted from the original faces, such as eyes, noses and lips. Fig. 1illustrates
this property of the NMF decomposition.

One of the main challenges of NMF is to design fast and efficient algorithms generating the nonnegative factors. In
fact, on the one hand, practitioners need to compute rapidly good factorizations for large-scale problems (e.g., in text
mining or image processing); on the other hand, NMF is a NP-hard problem [3] and we cannot expect to find a globally
optimal solution in a reasonable computational time. This paper presents a general framework based on a multilevel
strategy leading to faster initial convergence of NMF algorithms when dealing with data admitting a simple approximate
low-dimensional representation (using linear transformations preserving nonnegativity), such as images. In fact, in these
situations, a hierarchy of lower-dimensional problems can be constructed and used to compute efficiently approximate
solutions of the original problem. Similar techniques have already been used for other dimensionality reduction tasks such
as PCA [4].

The paper is organized as follows: NMF is first formulated as an optimization problem and three well-known algorithms
(ANLS, MU and HALS) are briefly presented. We then introduce the concept of multigrid/multilevel methods and show how
and why it can be used to speed up NMF algorithms. Finally, we experimentally demonstrate the usefulness of the proposed
technique on several standard image databases, and conclude with some remarks on limitations and possible extensions of
this approach.

2. Algorithms for NMF

NMF is typically formulated as a nonlinear optimization problem with an objective function measuring the quality of the
low-rank approximation. In this paper, we consider the sum of squared errors:
min |M —VW|2 st. V>0, W>0, (NMF)
VeRrmxr
WERrXH
i.e., use the squared Frobenius norm ||A||§ = Zi,j Aizj of the approximation error. Since this standard formulation of (NMF)
is NP-hard [3], most NMF algorithms focus on finding locally optimal solutions. In general, only convergence to stationary
points of (NMF) (points satisfying the necessary first-order optimality conditions) is guaranteed.

2.1. Alternating nonnegative least squares (ANLS)

Although (NMF) is a nonconvex problem, it is convex separately in each of the two factors V and W, i.e., finding
the optimal factor V corresponding to a fixed factor W reduces to a convex optimization problem, and vice-versa. More
precisely, this convex problem corresponds to a nonnegative least squares (NNLS) problem, i.e., a least squares problem
with nonnegativity constraints. The so-called alternating nonnegative least squares (ANLS) algorithm for (NMF) minimizes
(exactly) the cost function alternatively over factors V and W so that a stationary point of (NMF) is obtained in the limit [5].
A frequent strategy to solve the NNLS subproblems is to use active-set methods [6] (see Appendix) for which an efficient
implementation' is described in [9,5]. We refer the reader to [10] for a survey about NNLS methods.

T Available at http://www.cc.gatech.edu/~hpark/. Notice that an improved version based on a principal block pivoting method has been released recently,
see [7,8], and for which our multilevel method is also applicable, see Section 7.1.


http://cbcl.mit.edu/cbcl/software-datasets/FaceData2.html
http://www.cc.gatech.edu/~hpark/
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Algorithm 1 Alternating nonnegative least squares

Require: Data matrix M € R}*" and initial iterate W € R".
1: while stopping criterion not met do
2: V <« argminy -o|M — VW|3;
3: W <« argminy.o||[M — VW |2
4: end while

2.2. Multiplicative updates (MU)

In[11] Lee and Seung propose multiplicative updates (MU) for (NMF) which guarantee nonincreasingness of the objective
function (cf. Algorithm 2). They also alternatively update V for W fixed and vice versa, using a technique which was originally
proposed by Daube-Witherspoon and Muehllehner to solve nonnegative least squares problems [12]. The popularity of
this algorithm came along with the popularity of NMF. Algorithm 2 does not guarantee convergence to a stationary point
(although it can be slightly modified in order to get this property [13,14]) and it has been observed to converge relatively
slowly, see [15] and the references therein.

Algorithm 2 Multiplicative Updates

Require: Data matrix M € R}™" and initial iterates (V, W) € R}*" x R[*".
1: while stopping criterion not met do

. mw’] .
2: V <V o VW

. v mj
3: W «— Wo WTHWT
4: end while

o (resp. L1y denotes the component-wise multiplication (resp. division).
[

2.3. Hierarchical Alternating Least Squares (HALS)

In ANLS, variables are partitioned at each iteration such that each subproblem is convex. However, the resolution of these
convex NNLS subproblems is nontrivial and relatively expensive. If we optimize instead one single variable at a time, we
get a simple univariate quadratic problem which admits a closed-form solution. Moreover, since the optimal value of each
entry of V (resp. W) does not depend of the other entries of the same column (resp. row), one can optimize alternatively
whole columns of V and whole rows of W. This method was first proposed in [16,17] and independently by [18-20], and is
herein referred to as Hierarchical Alternating Least Squares (HALS), see Algorithm 3. Under some mild assumptions, every
limit point is a stationary point of (NMF), see [21].

Algorithm 3 Hierarchical Alternating Least Squares

Require: Data M € R}™" and initial iterates (V, W) € R™" x R[".
1: while stopping criterion not met do
2: Compute A = MWT and B = WWT'.
3: fork=1 : rdo

’

4 Vi < max(o, *%W)
5 end for
Compute C =V M andD = VTV.

7 fork=1: rdo

’

Cle = 211,12k DkiWi:
8: Wi < max(O, %)
KK

9: end for
10: end while

3. Multigrid methods

In this section, we briefly introduce multigrid methods. The aim is to give the reader some insight on these techniques
in order to comprehend their applications for NMF. We refer the reader to [22-25] and the references therein for detailed
discussions on the subject.

Multigrid methods were initially used to develop fast numerical solvers for boundary value problems. Given a differential
equation on a continuous domain with boundary conditions, the aim is to find an approximation of a smooth function f
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satisfying the constraints. In general, the first step is to discretize the continuous domain, i.e., choose a set of points (a
grid) where the function values will be approximated. Then, a numerical method (e.g., finite differences, finite elements)
translates the continuous problem into a (square) system of linear equations:

findx € R" st. Ax=b, withA € R™" b e R", (1)

where the vector x will contain the approximate values of f on the grid points. Linear system (1) can be solved either by
direct methods (e.g., Gaussian elimination) or iterative methods (e.g., Jacobi and Gauss-Seidel iterations). Of course, the
computational cost of these methods depends on the number of points in the grid, which leads to a trade-off between
precision (number of points used for the discretization) and computational cost.

Iterative methods update the solution at each step and hopefully converge to a solution of (1). Here comes the utility of
multigrid: instead of working on a fine grid during all iterations, the solution is restricted to a coarser grid?> on which the
iterations are cheaper. Moreover, the smoothness of function f allows to recover its low-frequency components faster on
coarser grids. Solutions of the coarse grid are then prolongated to the finer grid and iterations can continue (higher frequency
components of the error are reduced faster). Because the initial guess generated on the coarser grid is a good approximation
of the final solution, less iterations are needed to converge on the fine (expensive) grid. Essentially, multigrid methods make
iterative methods more efficient, i.e., accurate solutions are obtained faster.

More recently, these same ideas have been applied to a broader class of problems, e.g., multiscale optimization with
trust-region methods [26] and multiresolution techniques in image processing [27].

4. Multilevel approach for NMF

The three algorithms presented in Section 2 (ANLS, MU and HALS) are iteratively trying to find a stationary point of
(NMF). Indeed, most practical NMF algorithms are iterative methods, such as projected gradient methods [28] and Newton-
like methods [29,30] (see also [31-33,18] and the references therein). In order to embed these algorithms in a multilevel
strategy, one has to define the different levels and describe how variables and data are transferred between them. In this
section, we first present a general description of the multilevel approach for NMF algorithms, and then apply it to image
datasets.

4.1. Description

Let each column of the matrix M be a element of the dataset (e.g., a vectorized image) belonging to R'}. We define the
restriction operator R as a linear operator

!R:]RT—HRT X — R(x) =Rx,
withR € Rﬂ/xm and m’ < m, and the prolongation & as a linear operator
PIRT - Ry > P(y) =Py,
withP € RTX'”/. Nonnegativity of matrices R and P is a sufficient condition to preserve nonnegativity of the solutions when
they are transferred from one level to another. In fact, in order to generate nonnegative solutions, one requires
R(x) >0, Vx>0 and L(y) >0, Vy>0.
We also define the corresponding transfer operators on matrices, operating columnwise:
R([X1X2 - - xp]) = [RXDR(X2) - - R(xy)], and
Pyy2--yaD) =[PP Y2) -+ - P )],

forx; e R, y; € Rf, 1<i<n

In order for the multilevel strategy to work, information lost when transferring from one level to another must be limited,
i.e., data matrix M has to be well represented by R (M) in the lower dimensional space, which means that the reconstruction
P (R(M)) must be close to M. From now on, we say that M is smooth with respect to R and # if and only if

_ IM — P(RM)) ¢
M|

Quantity sy measures how well M can be mapped by R into a lower-dimensional space, then brought back by 4, and
still be a fairly good approximation of itself.

Sm is small.

2 Standard multigrid techniques actually restrict the residual instead of the solution, see the discussion in Section 6.2.
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Based on these definitions, elaborating a multilevel approach for NMF is straightforward:

1. We are given M € R*" and (Vo, Wp) € R" x R

2. Compute M’ = R(M) = RM ¢ RT/X” and Vj = R(Vo) =RV € Rf”, i.e., restrict the elements of the dataset and the
basis elements of the current solution to a lower dimensional space.
3. Compute a rank-r NMF (V’, W) of M’ using (V/, Wp) as initial matrices, i.e.,

VW~ M = RM).

This can be done using any NMF iterative algorithm or, even better, using the multilevel strategy recursively (cf.
Section 4.3).
4. Since

M=~ P(RM)) = PM)~ PV'W)=PVW = 2VHW = VW,

where V is the prolongation of V', (V, W) is a good initial estimate for a rank-r NMF of M, provided that M is smooth
with respect to R and 2 (i.e., sy is small) and that V'W is a good approximation of M’ = R(M) (i.e., |[M" — V'W|| is
small); in fact,

IM—PVHWIr < M= PRM)F + [|PRM) — PV'W)]|
< sulMllr + | (RM) = V'W)¢
=

sullMIlr + [IPIFIM" — V'W .

5. Further improve the solution (V, W) using any NMF iterative algorithm.

Computations needed at step 3 are cheap (since m’ < m) and, moreover, the low-frequency components of the error>

are reduced faster on coarse levels (cf. Section 4.4). Therefore this strategy is expected to accelerate the convergence of NMF
algorithms.

We now illustrate this technique on image datasets, more precisely, on two-dimensional gray-level images. In general,
images are composed of several smooth components, i.e., regions where pixel values are similar and change continuously
with respect to their location (e.g., skin on a face or the pupil, or sclera,® of an eye). In other words, a pixel value can
often be approximated using the pixel values of its neighbors. This observation can be used to define the transfer operators
(Section 4.2). For the computation of a NMF solution, the multilevel approach can be used recursively; three strategies (called
multigrid cycles) are described in Section 4.3. Finally, numerical results are reported in Section 5.

4.2. Coarse grid and transfer operators

A crucial step of multilevel methods is to define the different levels and the transformations (operators) between them.
Fig. 2 is anillustration of a standard coarse grid definition: we note I! the matrix of dimension (2% +1) x (2°+ 1) representing
the initial image and I' the matrix of dimension (21 4+ 1) x (2P~ + 1) representing the image at level [ obtained by
keeping, in each direction, only one out of every two points of the grid at the preceding level, i.e., I'"".

The transfer operators describe how to transform the images when going from finer to coarser levels, and vice versa,
i.e., how to compute the values (pixel intensities) of the image I' using values from image I'~" at the finer level (restriction)
or from image I'+! at the coarser level (prolongation). For the restriction, the full-weighting operator is a standard choice:
values of the coarse grid points are the weighted averages of the values of their neighbors on the fine grid (see Fig. 3 for an
illustration). Noting I,.’,j the intensity of the pixel (i, j) of image I', it is defined as follows:

1
141
Ii}_ —

! I I I I I I I I
= E[’zm,zjq + D1 g1+ Biv1gj—1 F i1 + 21 + Bis 55 + hi1o5 + higjyd) + 4121‘,2]']7 (2)

except on the boundaries of the image (wheni = 0,j = 0,1 = 297! and/or j = 2~"") where the weights are adapted
correspondingly. For example, to restrict a 3 x 3 image to a 2 x 2 image, R is defined with

NN OO
S O OO

(3 x 3 images needing first to be vectorized to vectors in R®, by concatenation of either columns or rows).

3 The low-frequency components refer to the parts of the data which are well-represented on coarse levels.
4 The white part of the eye.
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Fig. 2. Multigrid Hierarchy. Schematic view of a grid definition for image processing (image from ORL face database, cf. Section 5).

Restriction

Prolongation

Fig. 3. Restriction and prolongation.

For the prolongation, we set the values on the fine grid points as the average of the values of their neighbors on the coarse
grid:
Ii’,j = mean (2 (ﬂf;)) ©)
Jerd(i/2)
where
[ {k/2) k even,
rd(k/2) = {{(k —1)/2, (k+1)/2} kodd.

For example, to prolongate a 2 x 2 image to a 3 x 3 image, & is defined with

4 20210000
pr_1fo 24012000
=%4l0 00210420

00001202 4

Note that these transformations clearly preserve nonnegativity.

o

4.3. Multigrid cycle

Now that grids and transfer operators are defined, we need to choose the procedure that is applied at each grid level as it
moves through the grid hierarchy. In this section, we propose three different approaches: nested iteration, V-cycle and full
multigrid cycle.

In our setting, the transfer operators only change the number of rows m of the input matrix M, i.e., the number of pixels
in the images of the database: the size of the images are approximatively four times smaller between each level: m’ ~ %m.
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Table 1
Number of iterations performed and time spent at each level when allocating among L levels a total computational budget T, corresponding to 4k iterations
at the finest level.

Level 1 Level 2 Level L — 1 Level L Total
(finer) (coarser)
~ #iterations 3k 3k 3k 4k BL+1)k
Time ir 2T =T =T T
1 »e
@
a 2
—
3 >
Iterations

Fig. 4. Nested iteration. Transition between different levels for nested iteration.

When the number of images in the input matrix is not too large, i.e.,, when n <« m, the computational complexity per
iteration of the three algorithms (ANLS, MU and HALS) is close to being proportional to m (cf. Appendix), and the iterations
will then be approximately four times cheaper (see also Section 6.1). A possible way to allocate the time spent at each level
is to allow the same number of iterations at each level, which seems to give good results in practice. Table 1 shows the time
spent and the corresponding number of iterations performed at each level.

Note that the transfer operators require @ (mn) operations and, since they are only performed once between each level,
their computational cost can be neglected (at least for r 3> 1 and/or when a sizable amount of iterations are performed).

4.3.1. Nested iteration (NI)

To initialize NMF algorithms, we propose to factorize the image at the coarsest resolution and then use the solution as
initial guess for the next (finer) resolution. This is referred to as nested iteration, see Fig. 4 for an illustration with three levels
and Algorithm 4 for the implementation. The idea is to start off the final iterations at the finer level with a better initial
estimate, thus reducing the computational time required for the convergence of the iterative methods on the fine grid. The
number of iterations and time spent at each level is chosen according to Table 1, i.e., three quarters of the alloted time for
iterations at the current level preceded by one quarter of the time for the recursive call to the immediately coarser level.

Algorithm 4 Nested Iteration

Require: L € N (number of levels), M € RT™" (data matrix), (Vo, Wp) € RT™" x RY*" (initial matrices) and T > 0 (total
time allocated to the algorithm).
Ensure: (V,W) > 0s.t. VW = M.

1: if L = 1then

2: [V, W] = NMF algorithm(M, Vo, Wy, T);

3: else

4: M = R(M); V§ = R(Vp);

5: [V’, W] = Nested Iteration(L — 1, M’, V{§, Wy, T/4);
6: V=2V,

7: [V, W] = NMF algorithm(M, V, W, 3T /4);

8: end if

Remark 1. When the ANLS algorithm is used, the prolongation of V' does not need to be computed since that algorithm
only needs an initial value for the W iterate. Note that this can be used in principle to avoid computing any prolongation, by
setting V directly as the optimal solution of the corresponding NNLS problem.

4.3.2. V-cycle (VC)

One can often empirically observe that multilevel methods perform better if a few iterations are performed at the fine
level immediately before going to coarser levels. This is partially explained by the fact that these first few iterations typically
lead to a relatively important decrease of the objective function, at least compared to subsequent iterations. A simple
application of this strategy is referred to as V-cycle and is illustrated on Fig. 5 with three levels; see Algorithm 5 for the
implementation. Time allocation is as follows: one quarter of the alloted time is devoted to iterations at the current level,
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Fig. 5. V-cycle. Transition between different levels for V-cycle.

followed by one quarter of the time for the recursive call to the immediately coarser level, and finally one half of the time
again for iterations at the current level (we have therefore three quarters of the total time spent for iterations at current
level, as for nested iteration).

Algorithm 5 V-cycle

Require: L € N (number of levels), M € R}*" (data matrix), (Vo, W) € R x RY" (initial matrices) and T > 0 (total
time allocated to the algorithm).
Ensure: (V,W) > 0s.t. VW =~ M.

1: if L = 1 then

2: [V, W] = NMF algorithm(M, Vy, W, T);

3: else

4: [V, W] = NMF algorithm(M, Vy, Wy, T/4);
5: M = RM);V = R(V);

6: [V, W] = V-cycle(L — 1, M, V', W, T/4),
7: V=2V,

8: [V, W] = NMF algorithm(M, V, W, T/2);
9: end if

4.3.3. Full multigrid (FMG)

Combining ideas of nested iteration and V-cycle leads to a full multigrid cycle defined recursively as follows: at each level,
a V-cycle is initialized with the solution obtained at the underlying level using a full-multigrid cycle. This is typically the
most efficient multigrid strategy [25]. In this case, we propose to partition the time as follows (T is the total time): % for the

initialization (call of the full multigrid on the underlying level) and % for the V-cycle at the current level (cf. Algorithm 6).

Algorithm 6 Full Multigrid

Require: L € N (number of levels), M € RT*" (data matrix), (Vo, Wp) € RT*" x R*" (initial matrices) and T > 0 (total
time allocated to the algorithm).
Ensure: (V,W) > 0s.t. VW ~ M.

1: if L = 1 then

2: [V, W] = NMF algorithm(M, Vy, Wy, T);

3: else

4; V=RV M = RWM); *

5: [V/, W] = Full Multigrid(L — 1, M’, V', Wy, T/4);
6: V = prolongation(V’);

7: [V, W] = V-cycle(L, M, V, W, 3T /4);

8: end if

*Note that the restrictions of M should be computed only once for each level and saved as global variables so that the call of the V-cycle (step 7) does
not have to recompute them.

4.4. Smoothing properties

We explained why the multilevel strategy was potentially able to accelerate iterative algorithms for NMF: cheaper
computations and smoothing of the error on coarse levels. Before giving extensive numerical results in Section 5, we
illustrate these features of multilevel methods on the ORL face database.

Comparing three levels, Fig. 6 displays the error (after prolongation to the fine level) for two faces and for different
numbers of iterations (10, 50 and 100) using MU. Comparing the first row and the last row of Fig. 6, it is clear that, in this
example, the multilevel approach allows a significant smoothing of the error. After only 10 iterations, the error obtained
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Fig. 6. Smoothing on coarse levels. Example of the smoothing properties of the multilevel approach on the ORL face database. Each image represents the
absolute value of the approximation error (black tones indicate a high error) of one of two faces from the ORL face database. These approximations are the
prolongations (to the fine level) of the solutions obtained using the multiplicative updates on a single level, with factorization rank r = 40 and the same
initial matrices. From top to bottom: level 1 (fine), level 2 (middle) and level 3 (coarse); from left to right: 10 iterations, 50 iterations and 100 iterations.
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Fig. 7. Evolution of the error on each level, after prolongation on the fine level, with respect to (left) the number of iterations performed and (right) the
computational time. Same setting as in Fig. 6.

Table 2

Image datasets.
Data # pixels m n r
ORL face? 112 x 92 10304 400 40
Umist face® 112 x 92 10304 575 40
Iris® 960 x 1280 1228800 8 4
Hubble telescope [34] 128 x 128 16384 100 8

2 http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.
b http://www.cs.toronto.edu/~roweis/data.html.
¢ http://www.bath.ac.uk/elec-eng/research/sipg.

with the prolongated solution of the coarse level is already smoother and smaller (see Fig. 7), while it is computed much
faster.

Fig. 7 gives the evolution of the error with respect to the number of iterations performed (left) and with respect
to computational time (right). In this example, the initial convergence on the three levels is comparable, while the
computational cost is much cheaper on coarse levels. In fact, compared to the fine level, the middle (resp. coarse) level
is approximately 4 (resp. 16) times cheaper.

5. Computational results

To evaluate the performance of our multilevel approach, we present some numerical results for several standard image
databases described in Table 2.


http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://www.cs.toronto.edu/~roweis/data.html
http://www.bath.ac.uk/elec-eng/research/sipg
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Table 3
Comparison of the mean error on the 100 runs with ANLS.
#1vl ORL Umist Iris Hubble
NMF 1 14960 26013 28934 24.35
NI 2 14683 25060 27834 15.94
3 14591 24887 27572 16.93
4 14580 24923 27453 17.20
VC 2 14696 25195 27957 16.00
3 14610 24848 27620 16.12
4 14599 24962 27490 16.10
FMG 2 14683 25060 27821 16.10
3 14516 24672 27500 16.56
4 14460 24393 27359 16.70
Table 4
Comparison of the mean error on the 100 runs with MU.
# 1vl ORL Umist Iris Hubble
NMF 1 34733 131087 64046 21.68
NI 2 23422 87 966 37604 22.80
3 20502 67 131 33114 18.49
4 19507 59879 31146 16.19
VC 2 23490 90064 36545 10.62
3 20678 69208 32086 9.77
4 19804 62420 30415 9.36
FMG 2 23422 87 966 37504 22.91
3 19170 58469 32120 15.06
4 17635 46570 29659 11.71
Table 5
Comparison of the mean error on the 100 runs with HALS.
# vl ORL Umist Iris Hubble
NMF 1 15096 27544 31571 17.97
NI 2 14517 25153 29032 17.37
3 14310 24427 28131 16.91
4 14280 24256 27744 16.92
VC 2 14523 25123 28732 17.37
3 14339 24459 28001 17.02
4 14327 24364 27670 17.04
FMG 2 14518 25153 29120 17.39
3 14204 23950 27933 16.69
4 14107 23533 27538 16.89

For each database, the three multigrid cycles (NI, V-cycle and FMG) of our multilevel strategy are tested using 100 runs
initialized with the same random matrices for the three algorithms (ANLS, MU and HALS), with a time limit of 10 s. All
algorithms have been implemented in MATLAB® 7.1 (R14) and tested on a 3 GHz Intel® Core™ 2 Dual CPU PC.

5.1. Results

Tables 3-5 give the mean error attained within 10 s using the different approaches. In all cases, the multilevel approach
generates much better solutions than the original NMF algorithms, indicating that it is able to accelerate their convergence.
The full multigrid cycle is, as expected, the best strategy while nested iteration and V-cycle give comparable performances.
We also observe that the additional speedup of the convergence when the number of levels is increased from 3 to 4 is less
significant; it has even a slightly negative effect in some cases. In general, the ‘optimal’ number of levels will depend on the
smoothness and the size of the data, and on the algorithm used (cf. Section 6.1).

HALS combined with the full multigrid cycle is one of the best strategies. Fig. 8 displays the distribution of the errors for
the different databases in this particular case. For the ORL and Umist databases, the multilevel strategy is extremely efficient:
all the solutions generated with 2 and 3 levels are better than the original NMF algorithm. For the Iris and Hubble databases,
the difference is not as clear. The reason is that the corresponding NMF problems are ‘easier’ because the factorization
rank r is smaller. Hence the algorithms converge faster to stationary points, and the distribution of the final errors is more
concentrated.
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Fig. 8. Distribution of the error among the 100 random initializations using the HALS algorithm with a full multigrid cycle: (top left) ORL, (top right) Umist,
(bottom left) Iris, and (bottom right) Hubble.

In order to visualize the evolution of the error through the iterations, Fig. 9 plots the objective function with respect
to the number of iterations independently for each algorithm and each database, using nested iteration as the multigrid
cycle (which is the easiest to represent). In all cases, prolongations of solutions from the lower levels generate much better
solutions than those obtained on the fine level (as explained in Section 4.4).

These test results are very encouraging: the multilevel approach for NMF seems very efficient when dealing with image
datasets and allows a significant speedup of the convergence of the algorithms.

6. Limitations

Although the numerical results reported in the previous section demonstrate significant computational advantages for
our multilevel technique, we point out in this section two limitations that can potentially affect our approach.

6.1. Size of the data matrix

The approach described above was applied to only one dimension of the input data: restriction and prolongation
operators are applied to columns of the input matrix M and of the first factor V. Indeed, we assumed that each of these
columns satisfies some kind of smoothness property. In contrast, we did not assume that the columns of M are related to
each other in any way, so that no such property holds for the rows of M. Therefore we did not apply our multilevel strategy
along the second dimension of the input data, and our approach only reduced the row dimension of matrix M at each level
from m tom’ &~ 7, while the column dimension n remained the same.

The fact that the row dimension of factor V becomes smaller at deeper levels clearly implies that the computational
cost associated with updating V will decrease. This reduction is however not directly proportional to the reduction from m
to nm?/, as this cost also depends on the factorization rank r and the dimensions of the other factor, which are not affected.
Similarly, although the dimensions of factor W remain the same regardless of the depth, its updates could become cheaper
because dimension m also plays a role there. The relative extent of those effects depends on the NMF algorithm used, and will
determine in which situations a reduction in the dimension m is clearly beneficial with respect to the whole computational
cost of the algorithm.

We now analyze in detail the effect of a reduction of m on the computational cost of one iteration of the algorithms
presented in Section 2:
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Umist, Iris and Hubble databases. 1 level stands
solutions obtained on the coarser levels using

MU and HALS

O (mnr + (m+n)r?)

Table 6
Number of floating point operations needed to update V and W in ANLS, MU and HALS.
ANLS
Update of V O(mnr + ms(r)r’ + nr?)
Update of W O(mnr + ns(r)r® + mr?)

Both updates O(m(nr 4 s(r)r?) + ns(r)r®)

O(mnr + (m+n)r?)
O(m(nr +r?)+nr?)

(Function s(r) is 2" in the worst case, and typically much smaller, see Appendix.)

Table 6 gives the computational cost for the updates of V .and W separately, as well a

s their combined cost (see Appendix).

Our objective is to determine for which dimensions (m, n) of the input matrix and for which rank r our multilevel strategy
(applied only to the row dimension m) is clearly beneficial or, more precisely, find when a constant factor reduction in m,
say % = 4, leads to a constant factor reduction in the total computational cost of both updates. We make the following
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observations, illustrated on Fig. 10.

e We need only consider the region where both m and n are greater than the factorization rank r (otherwise the trivial
factorization with an identity matrix is optimal).

e Looking at the last row of the table, we see that all terms appearing in the combined computational cost for both updates
are proportional to m, except for two terms: ns(r)r® for ANLS and nr? for MU and HALS. If the contributions of those
two terms could be neglected compared to the total cost, any constant factor reduction in dimension m would lead to an
equivalent reduction in the total complexity, which is the ideal situation for our multilevel strategy.

e When m > n, terms ns(r)r® for ANLS and nr? for MU and HALS are dominated respectively by ms(r)r® and mr?
(i.e., ns(r)r® < ms(r)r® and nr? < mr?), so that they cannot contribute more than half of the total computational
cost. Therefore a reduction in dimension m will guarantee a constant factor reduction in the total complexity. Let us
illustrate this on the MU (a similar analysis holds for ANLS and HALS) for which the exact total computational cost is
2m(nr + r?) + 2nr? (see Appendix). The factor reduction fyy in the total complexity satisfies

mr +r3) +nr>2  m

]< :—<—:4,
= Jw mr+r2)4+nr2 — m

and, form > n > r and % = 4, we have that

mnr +mr? +mr?  4m'nr +8m'r> _ 4m'r*> + 8m'r?

~ m'r? +5m'r?
i.e., the total computational cost of the MU updates on the coarse level is at least twice cheaper than on the fine level.
Moreover, when m is much larger than n (m > n), as is the case for our images, the terms in n can be neglected, and we
find ourselves in the ideal situation described previously (with fyiy & 4). In conclusion, when m > n, we always have an
appreciable reduction in the computational cost.

e Looking now at MU and HALS when m is smaller than n, we see that the term nr? is always dominated by mnr (i.e.,

nr? < mnr), because m > r always holds. We conclude that a constant factor reduction in the total complexity can also
be expected when m is reduced. For example, for MU, we have

fMUE ’ 112 2 ’ 112
m'nr +m'r?> + mr m'nr + 5m'r

mnr 4+ mr? + mnr 8m'nr +4m'r> 8
fMU z / ) = / 142 zz
m'nr + m'r¢ + mnr 5m'nr +m'r 5

e Considering now ANLS when m is smaller than n, we see that the term ns(r)r is dominated by mnr as soonas m > s(r)r2.
Again, in that situation, a constant factor reduction in the total complexity can be obtained®. Finally, the only situation
where the improvement due to the multilevel technique is modest when using ANLS when both m < nand m < s(r)r?
hold, in which case the term ns(r)r> can dominate all the others, and a reduction in dimension m is not guaranteed to
lead to an appreciable reduction in the total complexity.

To summarize, applying multilevel techniques to the methods presented in this paper is particularly beneficial on
datasets for which m is sufficiently large compared to n and r (for MU and HALS) and to n and s(r)r? (for ANLS). Some gains
can always be expected for MU and HALS, while ANLS will only see a significant improvement if m > min{n, s(r)r?} holds.
In Section 5, we have presented computational experiments for image datasets satisfying this requirement: the number of
images n was much smaller than the number of pixels m in each image. In particular, we observed that the acceleration

5 Itis worth noting that when m > s(r)r? the initial computation required to formulate the NNLS subproblem in W:

n n
. 2 2
W;%; M — VWall7 =D M7 — 25 V)W, + W (VT V)W, 4)

i=1

which requires the computation of V'V and MTV (cf. Appendix), takes more time than actually solving (4).
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provided by the multilevel approach to the ANLS algorithm was not as significant as for HALS: while in most cases ANLS
converged faster than HALS when using the original NMF algorithms, it converged slower as soon as the multilevel strategy
was used (see Tables 3 and 5).

To end this section, we note that, in some applications, rows of matrix M can also be restricted to lower-dimensional
spaces. In these cases, the multilevel method could be made even more effective. This is the case for example in the following
situations:

e In hyperspectral images, each column of matrix M represents an image at a given wavelength, while each row represents
the spectral signature of a pixel, see, e.g., [35,36]. Since spectral signatures feature smooth components, the multilevel
strategy can be easily generalized to reduce the number of rows n of the data matrix M.

e For a video sequence, each column of matrix M represents an image at a given time so that consecutive images share
similarities. Moreover, if the camera is fixed, the background of the scene is the same among all images. The multilevel
approach can then also be generalized to reduce the number of columns of M in a meaningful way.

o In face datasets (e.g., used for face recognition), a person typically appears several times. Hence one can imagine using
the multilevel strategy by merging different columns corresponding to the same person.

6.2. Convergence

In classical multigrid methods, when solving a linear system of equations Ax = b, the current approximate solution
Xc is not transferred from a fine level to a coarser one, because it would imply the loss of its high-frequency components;
instead, the residual is transferred, which we briefly explain here. Defining the current residual r, = b — Ax. and the error
e = X — X., we have the equivalent defect equation Ae = r. and we would like to approximate e with a correction e, in
order to improve the current solution with x, <— x. + e.. The defect equation is solved approximately on the coarser grid
by restricting the residual r, the correction obtained on the coarser grid is prolongated and the new approximation x, + e,
is computed, see, e.g., [25, p. 37]. If instead the solution is transferred directly from one level to another (as we do in this
paper), the corresponding scheme is in general not convergent, see [25, p. 156]. In fact, even an exact solution of the system
Ax = b is not a fixed point, because the restriction of x is not an exact solution anymore at the coarser level (while, in that
case, the residual r is equal to zero and the correction e will also be equal to zero).

Therefore, the method presented in this paper should in principle only be used as a pre-processing or initialization step
before another (convergent) NMF algorithm is applied. In fact, if one already has a good approximate solution (V, W) for
NMEF (e.g., a solution close to a stationary point), transferring it to a coarser grid will most likely increase the approximation
error because high frequency components (such as edges in images) will be lost. Moreover, it seems that the strategy of
transferring a residual instead of the whole solution is not directly applicable to NMF. Indeed, a ‘local linearization’ approach,
which would consist in linearizing the equation

M—-V+AVYW+AW) X0 < R=M—-VW = VAW + AVW,

where AV and AW are the corrections to be computed on the coarser grids, causes several problems. First, handling non-
negativity of the coarse versions of the factors becomes non-trivial. Second, performing this approximation efficiently also
becomes an issue, since for example computing the residual R is as expensive as computing directly a full MU or HALS
iteration on the fine grid (@ (mnr) operations). Attempting to fix these drawbacks, which seems to be far from trivial, is a
topic for further research.

To conclude this section, we reiterate that, despite these theoretical reservations, it seems our technique is still quite
efficient (see Section 5). One reason that explains that good behavior is that NMF solutions are typically part-based and
sparse [2], see Fig. 1. Therefore, columns of matrix V contains relatively large ‘constant components’, made of their zero

entries, which are perfectly transferred from one level to another, so that sy, = LY=2%WIIE i) typically be very small (in

IVilg
general much smaller than sy, ).

7. Concluding remarks

In this paper, a multilevel approach designed to accelerate NMF algorithms has been proposed and its efficiency has
been experimentally demonstrated. Applicability of this technique relies on the ability to design linear operators preserving
nonnegativity and transferring accurately data between different levels. To conclude, we give some directions for further
research.

7.1. Extensions

We have only used our multilevel approach for a specific objective function (sum of squared errors) to speed up three NMF
algorithms (ANLS, MU and HALS) and to factorize 2D images. However, this technique can be easily generalized to different
objective functions, other iterative algorithms and applied to various kinds of smooth data. In fact, the key characteristic we
exploit is the fact that a reduction of the dimension(s) of the input matrix (in our numerical examples, m) leads to cheaper
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iterations (on coarse levels) for any reasonable algorithm, i.e., any algorithm whose computational cost depends on the
dimensions of the input matrix (see also the more detailed analysis in Section 6.1).

Moreover, other types of coarse grid definition (e.g., red-black distribution), transfer operators (e.g., wavelets transform)
and grid cycle (e.g., W-cycle or flexible cycle) can be used and could potentially further improve efficiency.

This idea can also be extended to nonnegative tensor factorization (NTF), see, e.g., [32,34] and the references therein, by
using multilevel techniques for higher-dimensional spaces.

7.2. Initialization

Several judicious initializations for NMF algorithms have been proposed in the literature which allow to accelerate
convergence and, in general, improve the final solution [37,38]. The computational cost of these good initial guesses depends
on the matrix dimensions and will then be cheaper on a coarser grid. Therefore, it would be interesting to combine classical
NMEF initializations techniques with our multilevel approach for further speedups.

7.3. Unstructured data

When we do not possess any kind information about the matrix to factorize (and a fortiori about the solution), applying
a multilevel method seems out of reach. In fact, in these circumstances, there is no sensible way to define the transfer
operators.

Nevertheless, we believe it is not hopeless to extend the multilevel idea to other types of data. For example, in text
mining applications, the term-by-document matrix can be restricted by stacking synonyms or similar texts together, see [4]
where graph coarsening is used. This implies some a priori knowledge or preprocessing of the data and, assuming it is cheap
enough, the application of a multilevel strategy could be expected to be profitable in that setting.
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Appendix. Computational cost of ANLS, MU and HALS

A.1. MU and HALS

The main computational cost for updating V in both MU and HALS resides in the computation of MWT and® V(WWT),
which requires respectively 2mnr and 2(m + n)r? operations, cf. Algorithms 2 and 3. Updating W requires the same number
of operations, so that the total computational cost is @ (mnr + (m + n)r?) operations per iteration, almost proportional to
m (only the nr? term is not, but is negligible compared to the other terms, cf. Section 6.1), see also [21, Section 4.2.1].

A.2. Active-set methods for NNLS

In a nutshell, active-set methods for nonnegative least squares work in the following iterative fashion [6, Algorithm NNLS,
p. 161]

0. Choose the set of active (zero) and passive (nonzero) variables.

1. Getrid of the nonnegativity constraints and solve the unconstrained least squares problem (LS) corresponding to the set
of passive (nonzero) variables (the solution is obtained by solving a linear system, i.e., the normal equations).

2. Check the optimality conditions, i.e., the nonnegativity of passive variables, and the nonnegativity of the gradients of the
active variables. If they are satisfied, stop.

3. Exchange variables between the set of active and the set of passive variables in such a way that the objective function is
decreased at each step; and go to 1.

In (NMF), the problem of computing the optimal V for a given fixed W can be decoupled into m independent NNLS
subproblems in r variables:

min M —ViW|;, 1<i<m.
V,':E]R:_

6 In HALS, vVWWT is essentially computed one column at a time, see [21, Section 4.2.1].
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Each of them amounts to solving a sequence of linear subsystems (with at most r variables, cf. step 1 above) of
Viowwy = MW, 1<i<m.

In the worst case, one might have to solve every possible subsystem, which requires @ (g(r)) operations with’ g(r) =
Y (§)# = ©@2'r?).Note that WW' and MW can be computed once for all, which requires © (mnr+nr?) operations (see

1
previous section on MU and HALS). Updating V then requires © (mnr+ms(r)r>+nr?) operations, while updating W similarly
requires @ (mnr +ns(r)r> 4+ mr?). Finally, the total computational cost of one ANLS step is @ (mnr + (m+n)r?(rs(r) + 1)) =
O(mnr + (m + n)s(r)r?) operations per iteration, where s(r) < 2". The number of steps s(r) is @ (2") in the worst case, but
in practice is typically much smaller (as is the case for the simplex method for linear programming).
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