
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 21, NOVEMBER 1, 2016 5571

Efficient and Non-Convex Coordinate Descent for
Symmetric Nonnegative Matrix Factorization

Arnaud Vandaele, Nicolas Gillis, Qi Lei, Kai Zhong, and Inderjit Dhillon, Fellow, IEEE

Abstract—Given a symmetric nonnegative matrix A, symmet-
ric nonnegative matrix factorization (symNMF) is the problem of
finding a nonnegative matrix H , usually with much fewer columns
than A, such that A ≈ HHT . SymNMF can be used for data anal-
ysis and in particular for various clustering tasks. Unlike standard
NMF, which is traditionally solved by a series of quadratic (con-
vex) subproblems, we propose to solve symNMF by directly solving
the nonconvex problem, namely, minimize ‖A − HHT ‖2 , which
is a fourth-order nonconvex problem. In this paper, we propose
simple and very efficient coordinate descent schemes, which solve
a series of fourth-order univariate subproblems exactly. We also
derive convergence guarantees for our methods and show that they
perform favorably compared to recent state-of-the-art methods on
synthetic and real-world datasets, especially on large and sparse
input matrices.

Index Terms—Symmetric nonnegative matrix factorization, co-
ordinate descent, completely positive matrices.

I. INTRODUCTION

NONNEGATIVE matrix factorization (NMF) has become a
standard technique in data mining by providing low-rank

decompositions of nonnegative matrices: given a nonnegative
matrix X ∈ Rm×n

+ and an integer r < min(m,n), the problem
is to find W ∈ Rm×r

+ and H ∈ Rn×r
+ such that X ≈ WHT . In

many applications, the nonnegativity constraints lead to a sparse
and part-based representation, and a better interpretability of the
factors, e.g., when analyzing images or documents [1].

In this paper, we work on a special case of NMF where the
input matrix is a symmetric matrix A. Usually, the matrix A will
be a similarity matrix where the (i, j)th entry is a measure of
the similarity between the ith and the jth data points. This is a
rather general framework, and the user can decide how to gen-
erate the matrix A from his data set by selecting an appropriate

Manuscript received October 26, 2016; revised March 8, 2016, May 4, 2016,
and June 21, 2016; accepted June 22, 2016. Date of publication July 14, 2016;
date of current version September 8, 2016. The associate editor coordinat-
ing the review of this manuscript and approving it for publication was Prof.
Cédric Fevotte. Nicolas Gillis acknowledges the support by the F.R.S.-FNRS,
through the incentive grant for scientific research no F.4501.16. This research
was supported by NSF grant CCF-1564000. (Corresponding author: Arnaud
Vandaele.)

A. Vandaele and N. Gillis are with the Department of Mathematics and
Operational Research, University of Mons, 7000 Mons, Belgium (e-mail: ar-
naud.vandaele@umons.ac.be; nicolas.gillis@umons.ac.be).

Q. Lei and K. Zhong are with the Institute for Computational Engineering and
Science, University of Texas at Austin, Austin, TX 78712-1757 USA (e-mail:
leiqi@ices.utexas.edu; zhongkai@ices.utexas.edu).

I. Dhillon is with the Institute for Computational Engineering and Science,
University of Texas at Austin, Austin, TX 78712-1757 USA, and also with the
Department of Computer Science, University of Texas at Austin, Austin, TX
78712-1757 USA (e-mail: inderjit@cs.utexas.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2016.2591510

metric to compare two data points. As opposed to NMF, we are
interested in a symmetric approximation HHT with the factor
H being nonnegative–hence symNMF is an NMF variant with
W = H . If the data points are grouped into clusters, each rank-
one factor H(:, j)H(:, j)T will ideally correspond to a cluster
present in the data set. In fact, symNMF has been used success-
fully in many different settings and was proved to compete with
standard clustering techniques such as normalized cut, spectral
clustering, k-means and spherical k-means; see [2]–[8] and the
references therein.

SymNMF also has tight connections with completely positive
matrices [9], [10], that is, matrices of the form A = HHT ,H ≥
0, which play an important role in combinatorial optimization
[11]. Note that the smallest r such that such a factorization
exists is called the cp-rank of A. The focus of this paper is
to provide efficient methods to compute good symmetric and
nonnegative low-rank approximations HHT with H ≥ 0 of a
given nonnegative symmetric matrix A.

Let us describe our problem more formally. Given a n-by-
n symmetric nonnegative matrix A and a factorization rank r,
symNMF looks for an n-by-r nonnegative matrix H such that
A ≈ HHT . The error between A and its approximation HHT

can be measured in different ways but we focus in this paper on
the Frobenius norm:

min
H≥0

F (H) ≡ 1
4

∥
∥A − HHT

∥
∥

2
F

, (1)

which is arguably the most widely used in practice. Applying
standard non-linear optimization schemes to (1), one can only
hope to obtain stationary points, since the objective function of
(1) is highly non-convex, and the problem is NP-hard [12]. For
example, two such methods to find approximate solutions to (1)
were proposed in [7]:

1) The first method is a Newton-like algorithm which ex-
ploits some second-order information without the pro-
hibitive cost of the full Newton method. Each iteration of
the algorithm has a computational complexity of O(n3r)
operations.

2) The second algorithm is an adaptation of the alternating
nonnegative least squares (ANLS) method for NMF [13],
[14] where the term ||W − H||2F penalizing the difference
between the two factors in NMF is added to the objective
function. That same idea was used in [15] where the author
developed two methods to solve this penalized problem
but without any available implementation or comparison.

In this paper, we analyze coordinate descent (CD) schemes
for (1). Our motivation is that the most efficient methods for
NMF are CD methods; see [16]–[19] and the references therein.
The reason behind the success of CD methods for NMF is

1053-587X © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

http://www.ieee.org/publications_standards/publications/rights/index.html

5572 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 21, NOVEMBER 1, 2016

twofold: (i) the updates can be written in closed-form and are
very cheap to compute, and (ii) the interaction between the
variables is low because many variables are expected to be equal
to zero at a stationary point [20].

The paper is organized as follows. In Section II, we focus on
the rank-one problem and present the general framework to im-
plement an exact CD method for symNMF. The main proposed
algorithm is described in Section III. Section IV discusses ini-
tialization and convergence issues. Section V presents extensive
numerical experiments on synthetic and real data sets, which
shows that our CD methods perform competitively with recent
state-of-the-art techniques for symNMF.

II. EXACT COORDINATE DESCENT METHODS FOR SYMNMF

Exact coordinate descent (CD) techniques are among the most
intuitive methods to solve optimization problems. At each itera-
tion, all variables are fixed but one, and that variable is updated
to its optimal value. The update of one variable at a time is
often computationally cheap and easy to implement. However
little interest was given to these methods until recently when
CD approaches were shown competitive for certain classes of
problems; see [21] for a recent survey. In fact, more and more
applications are using CD approaches, especially in machine
learning when dealing with large-scale problems.

Let us derive the exact cyclic CD method for symNMF. The
approximation HHT of the input matrix A can be written as
the sum of r rank-one symmetric matrices:

A ≈
r∑

k=1

H:,kHT
:,k , (2)

where H:,k is the kth column of H . If we assume that all columns
of H are known except for the jth, the problem comes down to
approximate a residual symmetric matrix R(j) with a rank-one
nonnegative symmetric matrix H:,jH

T
:,j :

min
H : , j ≥0

∥
∥
∥R(j) − H:,jH

T
:,j

∥
∥
∥

2

F
, (3)

where

R(j) = A −
r∑

k=1,k �=j

H:,kHT
:,k . (4)

For this reason and to simplify the presentation, we only consider
the rank-one subproblem in the following Section II-A, before
presenting on the overall procedure in Section II-B.

A. Rank-One Symmetric NMF

Given a n-by-n symmetric matrix P ∈ Rn×n , let us consider
the rank-one symNMF problem

min
h≥0

f(h) ≡ 1
4

∥
∥P − hhT

∥
∥

2
F

, (5)

where h ∈ Rn
+ . If all entries of P are nonnegative, the prob-

lem can be solved for example with the truncated singular
value decomposition; this follows from the Perron-Frobenius
and Eckart-Young theorems. In our case, the residuals R(j) will
in general have negative entries–see (4)–which makes the prob-
lem NP-hard in general [22]. The optimality conditions for (5)

are given by

h ≥ 0,∇f(h) ≥ 0, and hi ∇f(h)i = 0 for all i, (6)

with ∇f(h)i the ith component of the gradient ∇f(h). For
any 1 ≤ i ≤ n, the exact CD method consists in alternatively
updating the variables in a cyclic way:

for i = 1, 2, . . . , n : hi ← h+
i ,

where h+
i is the optimal value of hi in (5) when all other vari-

ables are fixed. Let us show how to compute h+
i . We have:

∇f(h)i = h3
i +

⎛

⎝

n∑

l=1,l �=i

h2
l − Pii

⎞

⎠

︸ ︷︷ ︸

ai

hi −
∑

l=1,l �=i

hlPli

︸ ︷︷ ︸

bi

, (7)

where

ai =
n∑

l=1,l �=i

h2
l − Pii = ‖h‖2 − h2

i − Pii, and (8)

bi = −
∑

l=1,l �=i

hlPli = hiPii − hT P:,i . (9)

If all the variables but hi are fixed, by the complementary slack-
ness condition (6), the optimal solution h+

i will be either 0
or a solution of the equation ∇f(h)i = 0, that is, a root of
x3 + aix + bi . Since the roots of a third-degree polynomial can
be computed in closed form, it suffices to first compute these
roots and then evaluate f(h) at these roots in order to identify the
optimal solution h+

i . The algorithm based on Cardano’s method
(see for example [23]) is described as Algorithm 1 and runs in
O(1) time. Therefore, given that ai and bi are known, h+

i can
be computed in O(1) operations.

The only inputs of Algorithm 1 are the quantities (8) and (9).
However, the variables in (5) are not independent. When hi is
updated to h+

i , the partial derivative of the other variables, that is,
the entries of ∇f(h), must be updated. For l ∈ {i + 1, . . . , n},
we update:

al ← al + (h+
i)2 − h2

i and bl ← bl + Pli(h+
i − hi). (10)

This means that updating one variable will cost O(n) operations
due to the necessary run over the coordinates of h for updat-
ing the gradient. (Note that we could also simply evaluate the
ith entry of the gradient when updating hi , which also requires
O(n) operations; see Section III.) Algorithm 2 describes one
iteration of CD applied on problem (5). In other words, if one
wants to find a stationary point of problem (5), Algorithm 2
should be called until convergence, and this would correspond
to applying a cyclic coordinate descent method to (5). In lines
4-7, the quantities ai’s and bi’s are precomputed. Because of the
product hT P:,i needed for every bi , it takes O(n2) time. Then,
from line 8 to line 15, Algorithm 1 is called for every variable
and is followed by the updates described by (10). Finally, Algo-
rithm 2 has a computational cost of O(n2) operations. Note that
we cannot expect a lower computational cost since computing
the gradient (and in particular the product Ph) requires O(n2)
operations.

VANDAELE et al.: EFFICIENT AND NON-CONVEX COORDINATE DESCENT FOR SYMMETRIC NONNEGATIVE MATRIX FACTORIZATION 5573

Algorithm 1: x = BestPolynomialRoot(a, b).
1: INPUT: a ∈ R, b ∈ R
2: OUTPUT: arg minx

x4

4 + ax2

2 + bx such that x ≥ 0.
3: Δ = 4a3 + 27b2

4: d = 1
2

(

−b +
√

Δ
27

)

5: if Δ ≤ 0 then
6: r = 2 3

√

|d|
7: θ = phaseangle(d)

3
8: z∗ = 0, y∗ = 0
9: for k = 0 : 2 do

10: z = r cos
(

θ + 2kπ
3

)

11: if z ≥ 0 and z 4

4 + az 2

2 + bz < y∗ then
12: z∗ = z
13: y∗ = z 4

4 + az 2

2 + bz
14: end if
15: end for
16: x = z∗

17: else

18: z = 3
√

d + 3

√

1
2

(

−b −
√

Δ
27

)

19: if z ≥ 0 and z 4

4 + az 2

2 + bz < 0 then
20: x = z
21: else
22: x = 0
23: end if
24: end if

Algorithm 2: h = rankoneCDSymNMF (P, h0).
1: INPUT: P ∈ Rn×n , h0 ∈ Rn

2: OUTPUT: h ∈ Rn
+

3: h = h0
4: for i = 1 : n do
5: ai = ‖h‖2

2 − h2
i − Pii

6: bi = hiPii − hT P:,i
7: end for
8: for i = 1 : n do
9: h+

i = BestPolynomialRoot(ai, bi)
10: for l > i do
11: al ← al + (h+

i)2 − h2
i

12: bl ← bl + Pli(h+
i − hi)

13: end for
14: hi = h+

i

15: end for

B. First exact coordinate descent method for SymNMF

To tackle symNMF (1), we apply Algorithm 2 on every col-
umn of H successively, that is, we apply Algorithm 2 with
h = H(:, j) and P = R(j) for j = 1, . . . , r. The procedure is
simple to describe, see Algorithm 3 which implements the exact
cyclic CD method applied to symNMF.

One can easily check that Algorithm 3 requires O(n2r) op-
erations to update the nr entries of H once:

Algorithm 3: H = generalCDSymNMF (A,H0).
1: INPUT: A ∈ Rn×n ,H0 ∈ Rn×r

2: OUTPUT: H ∈ Rn×r
+

3: H = H0
4: R = A − HHT

5: while stopping criterion not satisfied do
6: for j = 1 : r do
7: R(j) ← R + H:,jH

T
:,j

8: H:,j ← rankoneCDSymNMF (R(j) ,H:,j)
9: R ← R(j) − H:,jH

T
:,j

10: end for
11: end while

� In step 4, the full residual matrix R = A − HHT is pre-
computed where the product HHT requires O(rn2) oper-
ations.

� In step 7, the residual matrix R(j) can be computed using
the fact that R(j) = R + H:,jH

T
:,j , which requires O(n2)

operations.
� In step 8, Algorithm 2 is called, and requires O(n2) oper-

ations.
� In step 9, the full residual matrix R = R(j) − H:,jH

T
:,j is

updated, which requires O(n2) operations.
Algorithm 3 has some drawbacks. In particular, the heavy

computation of the residual matrix R is unpractical for large
sparse matrices (see below). In the next sections, we show how
to tackle these issues and propose a more efficient CD method
for symNMF, applicable to large sparse matrices.

III. IMPROVED IMPLEMENTATION OF ALGORITHM 3

The algorithm for symNMF developed in the previous
section (Algorithm 3) is unpractical when the input matrix A
is large and sparse; in the sense that although A can be stored
in memory, Algorithm 3 will run out of memory for n large. In
fact, the residual matrix R with n2 entries computed in step 4 of
Algorithm 3 is in general dense (for example if the entries of H
are initialized to some positive entries–see Section IV), even if
A is sparse. Sparse matrices usually have O(n) non-zero entries
and, when n is large, it is unpractical to store O(n2) entries (this
is for example typical for document data sets where n is of the
order of millions).

In this section we re-implement Algorithm 3 in order to
avoid the explicit computation of the residual matrix R; see
Algorithm 4. While Algorithm 3 runs in O(rn2) operations per
iteration and requires O(n2) space in memory (whether or not A
is sparse), Algorithm 4 runs in O(r max(K,nr)) operations per
iteration and requires O(max(K,nr)) space in memory, where
K is the number of non-zero entries of A. Hence,

� When A is dense, K = O(n2) and Algorithm 4 will have
the same asymptotic computational cost of O(rn2) oper-
ations per iteration as Algorithm 3. However, it performs
better in practice because the exact number of operations
is smaller.

5574 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 21, NOVEMBER 1, 2016

� When A is sparse, K = O(n) and Algorithm 4 runs in
O(r2n) operations per iteration, which is significantly
smaller than Algorithm 3 in O(rn2), so that it will be
applicable to very large sparse matrices. In fact, in prac-
tice, n can be of the order of millions while r is usually
smaller than a hundred. This will be illustrated in Section V
for some numerical experiments on text data sets.

In the following, we first assume that A is dense when ac-
counting for the computational cost of Algorithm 4. Then, we
show that the computational cost is significantly reduced when
A is sparse. Since we want to avoid the computation of the resid-
ual (4), reducing the problem into rank-one subproblems solved
one after the other is not desirable. To evaluate the gradient of
the objective function in (1) for the (i, j)th entry of H , we need
to modify the expressions (8) and (9) by substituting R(j) with
A −

∑r
k=1,k �=j H:,kHT

:,k . We have

∇Hi j
F (H) = ∇Hi j

(
1
4
||A − HHT ||2F

)

= H3
ij + aijHij + bij ,

where

aij = ‖Hi,:‖2 + ‖H:,j‖2 − 2H2
ij − Aii, and (11)

bij = Hi,:(HT H):,j − HT
:,jA:,i − H3

ij − Hijaij . (12)

The quantities aij and bij will no longer be updated during
the iterations as in Algorithm 3, but rather computed on the fly
before each entry of H is updated. The reason is twofold:

� it avoids storing two n-by-r matrices, and
� the updates of the bij ’s, as done in (10), cannot be per-

formed in O(n) operations without the matrix R(j) .
However, in order to minimize the computational cost, the

following quantities will be precomputed and updated during
the course of the iterations:

� ‖Hi,:‖2 for all i and ‖H:,j‖2 for all j: if the values of
‖Hi,:‖2 and ‖H:,j‖2 are available, aij can be computed
in O(1); see (11). Moreover, when Hij is updated to its
optimal value H+

ij , we only need to update ‖Hi,:‖2 and
‖H:,j‖2 which can also be done in O(1):

‖Hi,:‖2 ← ‖Hi,:‖2 + (H+
ij)

2 − H2
ij , (13)

‖H:,j‖2 ← ‖H:,j‖2 + (H+
ij)

2 − H2
ij . (14)

Therefore, pre-computing the ‖Hi,:‖2’s and ‖H:,j‖2’s,
which require O(rn) operations, allows us to compute
the aij ’s in O(1).

� The r-by-r matrix HT H: by maintaining HT H , com-
puting Hi,:(HT H):,j requires O(r) operations. Moreover,
when the (i, j)th entry of H is updated to H+

ij , updating
HT H requires O(r) operations:

(HT H)jk ← (HT H)jk − Hik (H+
ij − Hij),

k = 1, . . . , r. (15)

To compute bij , we also need to perform the product HT
:,jA:,i ;

see (12). This requires O(n) operations, which cannot be
avoided and is the most expensive part of the algorithm.

Algorithm 4: H = cyclicCDSymNMF (A,H0).
1: INPUT: A ∈ Rn×n ,H0 ∈ Rn×r

2: OUTPUT: H ∈ Rn×r

3: H = H0
4: for j = 1 : r do
5: Cj = ‖H:,j‖2

6: end for
7: for i = 1 : n do
8: Li = ‖Hi,:‖2

9: end for
10: D = HT H
11: while stopping criterion not satisfied do
12: for j = 1 : r do
13: for i = 1 : n do
14: aij ← Cj + Li − 2H2

ij − Aii

15: bij ← HT
i,:(D)j,: − HT

:,jA:,i − H3
ij − Hijaij

16: H+
ij ← BestPolynomialRoot(aij , bij)

17: Cj ← Cj + (H+
ij)

2 − H2
ij

18: Li ← Li + (H+
ij)

2 − H2
ij

19: Dj,: ← Dj,: − Hi,:(H+
ij − Hij)

20: D:,j ← Dj,:
21: end for
22: end for
23: end while

In summary, by precomputing the quantities ‖Hi,:‖2 , ‖H:,j‖2

and HT H , it is possible to apply one iteration of CD over the
nr variables in O(n2r) operations. The computational cost is
the same as in Algorithm 3, in the dense case, but no residual
matrix is computed; see Algorithm 4.

From line 4 to line 10, the precomputations are performed
in O(nr2) time where computing HT H is the most expensive
part. Then the two loops iterate over all the entries to update
each variable once. Computing bij (in line 15) is the bottleneck
of the CD scheme as it is the only part in the two loops which
requires O(n) time. However, when the matrix A is sparse, the
cost of computing HT

:,jA:,i for all i, that is computing HT
:,jA,

drops to O(K) where K is the number of nonzero entries in A.
Taking into account the term Hi,:(HT H)j,: to compute bij that
requires O(r) operations, we have that Algorithm 4 requires
O(r max(K,nr)) operations per iteration.

IV. INITIALIZATION AND CONVERGENCE

In this section, we discuss initialization and convergence
of Algorithm 4. We also provide a small modification for
Algorithm 4 to perform better (especially when random ini-
tialization is used).

a) Initialization: In most previous works, the matrix H is ini-
tialized randomly, using the uniform distribution in the interval
[0, 1] for each entry of H [7]. Note that, in practice, to obtain
an unbiased initial point, the matrix H should be multiplied by

VANDAELE et al.: EFFICIENT AND NON-CONVEX COORDINATE DESCENT FOR SYMMETRIC NONNEGATIVE MATRIX FACTORIZATION 5575

a constant β∗ such that

β∗ = arg min
β≥0

||A − (βH0)(βH0)T ||F

=

√

〈A,H0HT
0 〉

〈H0HT
0 ,H0HT

0 〉 =

√

〈AH0 ,H0〉
||HT

0 H0 ||2F
. (16)

This allows the initial approximation H0H
T
0 to be well scaled

compared to A. When using such an initialization, we observed
that using random shuffling of the columns of H before each
iteration (that is, optimizing the columns of H in a different
order each time we run Algorithm 4) performs in general much
better; see Section V.

Remark 1 (Other Heuristics to Accelerate Coordinate Des-
cent Methods): During the course of our research, we have tried
several heuristics to accelerate Algorithm 4, including three of
the most popular strategies:

� Gauss-Southwell strategies. We have updated the variables
by ordering them according to some criterion (namely, the
decrease of the objective function, and the magnitude of
the corresponding entry of the gradient).

� Variable selection. Instead of optimizing all variables at
each step, we carefully selected a subset of the variables
to optimize at each iteration (again using a criterion based
on the decrease of the objective function or the magnitude
of the corresponding entry of the gradient).

� Random shuffling. We have shuffled randomly the order in
which the variables are updated in each column. This strat-
egy was shown to be superior in several context, although
a theoretical understanding of this phenomenon remains
elusive [21].

However, these heuristics (and combinations of them) would
not improve significantly the effectiveness of Algorithm 4 hence
we do not present them here.

Random initialization might not seem very reasonable, espe-
cially for our CD scheme. In fact, at the first step of our CD
method, the optimal values of the entries of the first column
H:,1 of H are computed sequentially, trying to solve

min
H : , 1 ≥0

||R(1) − H:,1H
T
:,1 ||2F with R(1) = A −

r∑

k=2

H:,kHT
:,k .

Hence we are trying to approximate a matrix R(1) which is
the difference between A and a randomly generated matrix
∑r

k=2 H:,kHT
:,k : this does not really make sense. In fact, we

are trying to approximate a matrix which is highly perturbed
with a randomly generated matrix.

It would arguably make more sense to initialize H at zero,
so that, when optimizing over the entries of H:,1 at the first
step, we only try to approximate the matrix A itself. It turns
out that this simple strategy allows to obtain a faster initial
convergence than the random initialization strategy. However,
we observe the following: this solution tends to have a very
particular structure where the first factor is dense and the next
ones are sparser. The explanation is that the first factor is given
more importance since it is optimized first hence it will be close
to the best rank-one approximation of A, which is in general

positive (if A is irreducible, by Perron-Frobenius and Eckart-
Young theorems). Hence initializing H at zero tends to produce
unbalanced factors. However, this might be desirable in some
cases as the next factors are in general significantly sparser than
with random initialization. To illustrate this, let us perform the
following numerical experiment: we use the CBCL face data set
(see Section V) that contains 2429 facial images, 19 by 19 pixels
each. Let us construct the nonnegative matrix X ∈ R361×2429

where each column is a vectorized image. Then, we construct
the matrix A = XXT ∈ R361×361 that contains the similarities
between the pixel intensities among the facial images. Hence
symNMF of A will provide us with a matrix H where each
column of H corresponds to a ‘cluster’ of pixels sharing some
similarities. Fig. 1 shows the columns of H obtained (after
reshaping them as images) with zero initialization (left) and
random initialization (right) with r = 49 as in [1]. We observe
that the solutions are very different, although the relative ap-
proximation error ||A − HHT ||F /||A||F are similar (6.2% for
zero initialization vs. 7.5% for random initialization, after 2000
iterations). Depending on the application at hand, one of the two
solutions might be more desirable: for example, for the CBCL
data set, it seems that the solution obtained with zero initializa-
tion is more easily interpretable as facial features, while with
the random initialization it can be interpreted as average/mean
faces.

This example also illustrates the sensitivity of Algorithm 4 to
initialization: different initializations can lead to very different
solutions. This is an unavoidable feature for any algorithm trying
to find a good solution to an NP-hard problem at a relatively
low computational cost.

Finally, we would like to point out that the ability to initialize
our algorithm at zero is a very nice feature. In fact, since H = 0
is a (first-order) stationary point of (1), this shows that our co-
ordinate descent method can escape some first-order stationary
points, because it uses higher-order information. For example,
any gradient-based method cannot be initialized at zero (the
gradient is 0), also the ANLS-based algorithm from [7] cannot
escape from zero.

b) Convergence: By construction, the objective function is
nonincreasing under the updates of Algorithm 4 while it is
bounded from below. Moreover, since our initial estimate H0
is initially scaled (16), we have ||A − H0H

T
0 ||F ≤ ||A||F and

therefore any iterate H of Algorithm 4 satisfies

||HHT ||F − ||A||F ≤ ||A − HHT ||F ≤ ||A − H0H
T
0 ||F

≤ ||A||F .

Since H ≥ 0, we have for all k

||H:kHT
:k ||F ≤ ||

r∑

k=1

H:kHT
:k ||F = ||HHT ||F ,

which implies that ||H:k ||2 ≤
√

2||A||F for all k hence all
iterates of Algorithm 4 belong in a compact set. Therefore,
Algorithm 4 generates a converging subsequence (Bolzano-
Weierstrass theorem). (Note that, even if the initial iterate is not
scaled, all iterates belong to a compact set, replacing 2||A||F by
||A||F + ||A − H0H

T
0 ||F .)

5576 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 21, NOVEMBER 1, 2016

Fig. 1. Comparison of the basis elements obtained with symNMF on the CBCL data set (r = 49) with (left) zero initialization and (right) random initialization.

Unfortunately, in its current form, it is difficult to prove con-
vergence of our algorithm to a stationary point. In fact, to guar-
antee the convergence of an exact cyclic coordinate method to
a stationary point, three sufficient conditions are (i) the objec-
tive function is continuously differentiable over the feasible set,
(ii) the sets over which the blocks of variables are updated are
compact as well as convex,1 and (iii) the minimum computed
at each iteration for a given block of variables is uniquely at-
tained; see Prop. 2.7.1 in [24], [25]. Conditions (i-ii) are met
for Algorithm 4. Unfortunately, it is not necessarily the case
that the minimizer of a fourth order polynomial is unique. (Note
however that for a randomly generated polynomial, this happens
with probability 0. We have observed numerically that this in
fact never happens in our numerical experiments, although there
are counter examples.)

A possible way to obtain convergence is to apply the maxi-
mum block improvement (MBI) method, that is, at each itera-
tion, only update the variable that leads to the largest decrease
of the objective function [26]. Although this is theoretically ap-
pealing, this makes the algorithm computationally much more
expensive hence much slower in practice. (A possible fix is to
use MBI not for every iteration, but every T th iteration for some
fixed T .)

Although the solution of symNMF might not be unique and
stationary points might not be isolated, we have always observed
in our numerical experiments that the sequence of iterates gen-
erated by Algorithm 4 converged to a unique limit point. In that
case, we can prove that this limit point is a stationary point.

Proposition 1: Let (H(0) ,H(1) , . . .) be a sequence of iterates
generated by Algorithm 4. If that sequence converges to a unique
accumulation point, it is a stationary point of symNMF (1).

Proof: This proof follows similar arguments as the proof of
convergence of exact cyclic CD for NMF [19]. Let H̄ be the
accumulation point of the sequence (H(0) ,H(1) , . . .), that is,

lim
k→∞

H(k) = H̄.

1An alternative assumption to the condition (ii) under which the same result
holds is when the function is monotonically nonincreasing in the interval from
one iterate to the next [24].

Note that, by construction,

F (H(1)) ≥ F (H(2)) ≥ · · · ≥ F (H̄).

Note also that we consider that only one variable has been
updated between H(k+1) and H(k) .

Assume H̄ is not a stationary point of (1): therefore, there
exists (i, j) such that

� H̄i,j = 0 and ∇F (H̄)i,j < 0, or
� H̄i,j > 0 and ∇F (H̄)i,j �= 0.
In both cases, since F is smooth, there exists p �= 0 such that

F (H̄ + pEij) = F (H̄) − ε < F (H̄),

for some ε > 0, where Eij is the matrix of all zeros except at
the (i, j)th entry where it is equal to one and H̄ + pEij ≥ 0.

Let us define (H(n0) ,H(n1) , . . .) a subsequence of (H(0) ,
H(1) , . . .) as follows: H(nk) is the iterate for which the (i, j)th
entry is updated to obtain H(nk +1) . Since Algorithm 4 updates
the entries of H column by column, we have nk = (j − 1)n +
i − 1 + nrk for k = 0, 1,

By continuity of F and the convergence of the sequence
H(nk) , there exists K sufficiently large so that for all k > K:

F (H(nk) + pEij) ≤ F (H̄) − ε

2
. (17)

In fact, the continuity of F implies that for all ξ > 0, there
exists δ > 0 sufficiently small such that ||H̄ − H(nk) ||2 < δ ⇒
|F (H̄) − F (H(nk))| < ξ. It suffices to choose nk sufficiently
large so that δ is sufficiently small (since H(nk) converges to
H̄) for the value ξ = ε/2.

Let us flip the sign of (17) and add F (H(nk)) on both sides
to obtain

F (H(nk)) − F (H(nk) + pEij) ≥ F (H(nk)) − F (H̄) +
ε

2
.

By construction of the subsequence, the (i, j)th entry of H(nk)
is updated first (the other entries are updated afterward) to obtain
H(nk + 1) which implies that

F (H(nk + 1)) ≤ F (H(nk +1)) ≤ F (H(nk) + pEij)

VANDAELE et al.: EFFICIENT AND NON-CONVEX COORDINATE DESCENT FOR SYMMETRIC NONNEGATIVE MATRIX FACTORIZATION 5577

TABLE I
IMAGE DATASETS

1http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
2http://www.cs.toronto.edu/roweis/data.html
3http://cbcl.mit.edu/cbcl/software-datasets/FaceData2.html

hence

F (H(nk)) − F (H(nk + 1)) ≥ F (H(nk)) − F (H(nk) + pEij)

≥ F (H(nk)) − F (H̄) +
ε

2

≥ ε

2
,

since F (H̄) ≤ F (H(nk)). We therefore have that for all k > K,

F (H(nk + 1)) ≤ F (H(nk)) −
ε

2
,

a contradiction since F is bounded below. �
Note that Proposition 1 is useful in practice since it can easily

be checked whether Algorithm 4 converges to a unique accumu-
lation point, plotting for example the norm between the different
iterates.

V. NUMERICAL RESULTS

This section shows the effectiveness of Algorithm 4 on sev-
eral data sets compared to the state-of-the-art techniques. It is
organized as follows. In Section V-A, we describe the real data
sets and, in Section V-B, the tested symNMF algorithms. In
Section V-C, we describe the settings we use to compare the
symNMF algorithms. In Section V-D, we provide and discuss
the experimental results.

A. Data Sets

We will use exactly the same data sets as in [18]. Because of
space limitation, we only give the results for one value of the
factorization rank r, more numerical experiments are available
on the arXiv version of this paper [27]. In [18], authors use four
dense data sets and six sparse data sets to compare several NMF
algorithms. In this section, we use these data sets to generate
similarity matrices A on which we compare the different sym-
NMF algorithms. Given a nonnegative data set X ∈ Rm×n

+ , we
construct the symmetric similarity matrix A = XT X ∈ Rn×n

+ ,
so that the entries of A are equal to the inner products between
data points. Table I summarizes the dense data sets, correspond-
ing to widely used facial images in the data mining community.
Table II summarizes the characteristics of the different sparse
data sets, corresponding to document datasets and described in
details in [28].

B. Tested symNMF Algorithms

We compare the following algorithms
1) (Newton) This is the Newton-like method from [7].

TABLE II
TEXT MINING DATA SETS (SPARSITY IS GIVEN AS THE PERCENTAGE OF ZEROS)

2) (ANLS) This is the method based on the ANLS method
for NMF adding the penalty ||W − H||2F in the objective
function (see Introduction) from [7]. Note that ANLS has
the drawback to depend on a parameter that is nontrivial
to tune, namely, the penalty parameter for the term ||W −
H||2F in the objective function (we used the default tuning
strategy recommended by the authors).

3) (tSVD) This method, recently introduced in [29], first
computes the rank-r truncated SVD of A ≈ Ar =
UrΣrU

T
r where Ur contains the first r singular vectors

of A and Σr is the r-by-r diagonal matrix containing the
first r singular values of A on its diagonal. Then, instead
of solving (1), the authors solve a ‘closeby’ optimization
problem replacing A with Ar

min
H≥0

||Ar − HHT ||F .

Once the truncated SVD is computed, each iteration of this
method is extremely cheap as the main computational cost
is in a matrix-matrix product BrQ, where Br = UrΣ

1/2
r

and Q is an r-by-r rotation matrix, which can be com-
puted in O(nr2) operations. Note also that they use the
initialization H0 = max(0, Br)—we flipped the signs of
the columns of Ur to maximize the �2 norm of the non-
negative part [30].

4) (BetaSNMF) This algorithm is presented in ([31,
Algorithm 4], and is based on multiplicative updates (simi-
larly as for the original NMF algorithm proposed by Lee
and Seung [32]). Note that we have also implemented the
multiplicative update rules from [33] (and already derived
in [3]). However, we do not report the numerical results
here because it was outperformed by BetaSNMF in all
our numerical experiments, an observation already made
in [31].

5) (CD-X-Y) This is Algorithm 4. X is either ‘Cyclic’ or
‘Shuffle’ and indicates whether the columns of H are
optimized in a cyclic way or if they are shuffled randomly
before each iteration. Y is for the initialization: Y is ‘rand’
for random initialization and is ‘0’ for zero initialization;
see Section IV for more details. Hence, we will compare
four variants of Algorithm 4: CD-Cyclic-0, CD-Shuffle-0,
CD-Cyclic-Rand and CD-Shuffle-Rand.

Because Algorithm 4 requires to perform many loops (nr
at each step), Matlab is not a well-suited language. There-
fore, we have developed a C implementation, that can be called
from Matlab (using Mex files). Note that the algorithms above
are better suited for Matlab since the main computational cost

5578 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 21, NOVEMBER 1, 2016

resides in matrix-matrix products, and in solving linear systems
of equations (for ANLS and Newton).

Newton and ANLS are both available from http://math.
ucla.edu/dakuang/, while we have implemented tSVD and Be-
taSNMF ourselves.

For all algorithms using random initializations for the matrix
H , we used the same initial matrices. Note however that, in all
the figures presented in this section, we will display the error
after the first iteration, which is the reason why the curves do
not start at the same value.

C. Experimental Setup

In order to compare for the average performance of the dif-
ferent algorithms, we denote emin the smallest error obtained
by all algorithms over all initializations, and define

E(t) =
e(t) − emin

||A||F − emin
, (18)

where e(t) is the error ||A − HHT ||F achieved by an algorithm
for a given initialization within t seconds (and hence e(0) =
||A − H0H

T
0 ||F where H0 is the initialization). The quantity

E(t) is therefore a normalized measure of the evolution of the
objective function of a given algorithm on a given data set.

The advantage of this measure is that it separates better the
different algorithms, when using a log scale, since it goes to zero
for the best algorithm (except for algorithms that are initialized
randomly as we will report the average value of E(t) over sev-
eral random initializations; see below). We would like to stress
out that the measure E(t) from (18) has to be interpreted with
care. In fact, an algorithm for which E(t) converges to zero
simply means that it is the algorithm able to find the best solu-
tion among all algorithms (in other words, to identify a region
with a better local minima). In fact, the different algorithms are
initialized with different initial points: in particular, tSVD uses
an SVD-based initialization. It does not necessarily mean that
it converges the fastest: to compare (initial) convergence, one
has to look at the values E(t) for t small. However, the mea-
sure E(t) allows to better visualize the different algorithms.
For example, displaying the relative error ||A − HHT ||/||A||F
allows to compare the initial convergence, but then the errors
for all algorithms tend to converge at similar values and it is
difficult to identify visually which one converges to the best
solution.

For the algorithms using random initialization (namely, New-
ton, ANLS, CD-Cyclic-Rand and CD-Shuffle-Rand), we will
run the algorithms 10 times and report the average value
of E(t). For all data sets, we will run each algorithm for
500 seconds.

All tests are performed using Matlab on a PC Intel CORE i5-
4570 CPU @3.2GHz × 4, with 7.7G RAM. The codes are avail-
able online from https://sites.google.com/site/nicolasgillis/.

Remark 2 (Computation of the Error): Note that to compute
||A − HHT ||F , one should not compute HHT explicitly

(especially if A is sparse) and use instead

||A − HHT ||2F = ||A||2F − 2〈A,HHT 〉 + ||HHT ||2F
= ||A||2F − 2〈AH,H〉 + ||HT H||2F .

D. Comparison

We now compare the different symNMF algorithms listed in
Section V-B according to the measure given in (18) on the data
sets described in Section V-B, and on synthetic data sets.

1) Real Data Sets: We start with the real data sets.
a) Dense Image Data Sets: Fig. 2 displays the results for

the dense real data sets. Table III gives the number of iter-
ations performed by each algorithm within the 500 seconds,
and Table IV the final relative error ||A − HHT ||/||A||F in
percent.

We observe the following:
� In all cases, tSVD performs best and is able to generate the

solution with the smallest objective function value among
all algorithms. This might be a bit surprising since it works
only with an approximation of the original data: it appears
that for these real dense data sets, this approximation can
be computed efficiently and allows tSVD to converge ex-
tremely fast to a very good solution.
One of the reasons tSVD is so effective is because each
iteration is n times cheaper (once the truncated SVD is
computed) hence it can perform many more iterations;
see Table III. Another crucial reason is that image data
sets can be very well approximated by low-rank matri-
ces (see Section V-D2 for a confirmation of this behav-
ior). Therefore, for images, tSVD is the best method
to use as it provides a very good solution extremely
fast.

� When it comes to initial convergence, CD-Cyclic-0 and
CD-Shuffle-0 perform best: they are able to generate very
fast a good solution. In all cases, they are the fastest to
generate a solution at a relative error of 1% of the final
solution of tSVD. Moreover, the fact that tSVD does not
generate any solution as long as the truncated SVD is not
computed could be critical for larger data sets. For exam-
ple, for CBCL with n = 2429 and r = 60, the truncated
SVD takes about 6 seconds to compute while, in the mean
time, CD-Cyclic-0 and CD-Shuffle-0 generate a solution
with relative error of 0.3% from the final solution obtained
by tSVD after 500 seconds.

� For these data sets, CD-Cyclic-0 and CD-Shuffle-0 per-
form exactly the same: for the zero initialization, it seems
that shuffling the columns of H does not play a crucial
role.

� When initialized randomly, we observe that the CD method
performs significantly better with random shuffling. More-
over, CD-Shuffle-Rand converges initially slower than CD-
Shuffle-0 but is often able to converge to a better solution;
in particular for the ORL and Umistim data sets.

� Newton converges slowly, the main reason being that each
iteration is very costly, namely O(n3r) operations.

VANDAELE et al.: EFFICIENT AND NON-CONVEX COORDINATE DESCENT FOR SYMMETRIC NONNEGATIVE MATRIX FACTORIZATION 5579

Fig. 2. Evolution of the measure (18) of the different symNMF algorithms on the dense real data sets for r = 60.

TABLE III
AVERAGE NUMBER OF ITERATIONS PERFORMED BY EACH ALGORITHM WITHIN 500 SECONDS FOR THE DENSE REAL DATA SETS

TABLE IV
AVERAGE RELATIVE ERROR IN PERCENT (100 ∗ ||A − HHT ||F /||A||F) OF THE FINAL SOLUTION OBTAINED BY EACH ALGORITHM WITHIN 500 SECONDS FOR

THE DENSE REAL DATA SETS. FOR ALGORITHMS BASED ON RANDOM INITIALIZATIONS, THE STANDARD DEVIATION IS GIVEN

� ANLS performs relatively well: it never converges initially
faster than CD-based approaches but is able to generate a
better final solution for the Frey data set.

� BetaSNMF does not perform well on these data sets com-
pared to tSVD and CD methods, although performing bet-
ter than Newton and 2 out of 4 times better than ANLS.

� For algorithms based on random initializations, the stan-
dard deviation between several runs is rather small, illus-
trating the fact that these algorithms converge to solutions
with similar final errors.

Conclusion: for image data sets, tSVD performs the
best. However, CD-Cyclic-0 allows a very fast initial

5580 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 21, NOVEMBER 1, 2016

Fig. 3. Evolution of the measure (18) of the different symNMF algorithms on real sparse data sets for r = 30.

convergence and can be used to obtain very quickly a good
solution.

b) Sparse document data sets: Fig. 3 displays the results
for the real sparse data sets. Table V gives the number of it-
erations performed by each algorithm within the 500 seconds,

and Table VI the final relative error ||A − HHT ||/||A||F in
percent.

It is interesting to note that, for some data sets (namely, la1
and reviews), computing the truncated SVD of A is not possible
with Matlab within 60 seconds hence tSVD is not able to return

VANDAELE et al.: EFFICIENT AND NON-CONVEX COORDINATE DESCENT FOR SYMMETRIC NONNEGATIVE MATRIX FACTORIZATION 5581

TABLE V
AVERAGE NUMBER OF ITERATIONS PERFORMED BY EACH ALGORITHM WITHIN 500 SECONDS FOR THE SPARSE REAL DATA SETS

TABLE VI
AVERAGE RELATIVE ERROR IN PERCENT (100 ∗ ||A − HHT ||F /||A||F) OF THE FINAL SOLUTION OBTAINED BY EACH ALGORITHM WITHIN 500 SECONDS FOR

THE SPARSE REAL DATA SETS. FOR ALGORITHMS BASED ON RANDOM INITIALIZATIONS, THE STANDARD DEVIATION IS GIVEN

any solution before that time; see Remark 3 for a discussion.
Moreover, Newton is not displayed because it is not designed
for sparse matrices and runs out of memory [7].

We observe the following:
� tSVD performs very poorly. The reason is twofold: (1) the

truncated SVD is very expensive to compute and (2) sparse
matrices are usually not close to being low-rank hence
tSVD converges to a very poor solution (see Section V-D2
for a confirmation of this behavior).

� ANLS performs very poorly and is not able to generate
a good solution. In fact, it has difficulties to decrease the
objective function (on the figures, it seems it does not
decrease, but it actually decreases very slowly).

� BetaSNMF performs better than ANLS but does not com-
pete with CD methods. (Note that, for the classic and la1
data sets, BetaSNMF was stopped prematurely because
there was a division by zero which could have been avoided
but we have strictly used the description of Algorithm 4 in
[31]).

� All CD-based approaches are very effective and perform
similarly. It seems that, in these cases, nor the initialization
nor the order in which the columns of H are updated plays
a significant role.
In fact, for algorithms initialized randomly, Fig. 3 reports
the average over 10 runs but, on average, random initial-
ization performs similarly as the initialization with zero.
In one case (classic data set), CD-Cyclic-0 is able to gen-
erate a better final solution.

Conclusion: for sparse document data sets, CD-based ap-
proaches outperform significantly the other tested methods.

Remark 3 (SVD Computation in tSVD): It has to be noted
that, in our numerical experiments, the matrix A is constructed
using the formula A = XT X , where the columns of the matrix
X are the data points. In other words, we use the simple similar-
ity measure yT z between two data points y and z. In that case,
the SVD of A can be obtained from the SVD of X , hence can be
made (i) more efficient (when X has more columns than rows,
that is, m � n), and (ii) numerically more accurate (because

TABLE VII
COMPUTATIONAL TIME REQUIRED TO COMPUTE THE RANK-30 TRUNCATED

SVD OF X AND XT X USING MATLAB

the condition number of XT X is equal to the square of that
of X); see, e.g., [34, Lecture 31]. Moreover, in case of sparse
data, this avoids the fill-in, as observed in Table II where XT X
is denser than X . Therefore, in this particular situation when
A = XT X and X is sparse and/or m � n, it is much better to
compute the SVD of A based on the SVD of X . Table VII gives
the computational time in both cases. In this particular scenario,
it would make sense to use tSVD as an initialization procedure
for CD methods to obtain rapidly a good initial iterate. However,
looking at Fig. 3 and Table VI indicates that this would not nec-
essarily be advantageous for the CD-based methods in all cases.
For example, for the classic data set, tSVD would achieve a rel-
ative error of 39.8% within about 6 seconds while CD methods
obtain a similar relative error within that computing time. For
the hitech data set however, this would be rather helpful since
tSVD would only take about 1 second to obtain a relative error
of 33.3% while CD methods require about 9 seconds to do so.

However, the goal of this paper is to provide an efficient
algorithm for the general symNMF problem, without assuming
any particular structure on the matrix A (in practice the similarity
measure between data points is usually not simply their inner
product). Therefore, we have not assumed that the matrix A had
this particular structure and only provide numerical comparison
in that case.

Remark 4 (Low-Rank Models for Full-Rank Matrices):
Although sparse data sets are usually not low rank, it still
makes sense to try to find a low-rank structure that is close to
a given data set, as this often allows to extract some pertinent
information. In particular, in document classification and
clustering, low-rank models have proven to be extremely
useful; see the discussion in the Introduction and the references

5582 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 21, NOVEMBER 1, 2016

Fig. 4. Evolution of the measure (18) of the different symNMF algorithms on dense and low-rank synthetic data sets for r = 30 (left) and r = 60 (right).

Fig. 5. Evolution of the measure (18) of the different symNMF algorithms on dense full-rank synthetic data sets for r = 30 (left) and r = 60 (right).

therein. Another important application where low-rank models
have proven extremely useful although the data sets are usually
not low-rank is recommender systems [35] and community
detection (see, e.g., [36]). We also refer the reader to the recent
survey on low-rank models [37].

2) Synthetic data sets: low-rank vs. full rank matrices: In
this section, we perform some numerical experiments on syn-
thetic data sets. Our main motivation is to confirm the (expected)
behavior observed on real data: tSVD performs extremely well
for low-rank matrices and poorly on full-rank matrices.

a) Low-rank input matrices: The most natural way to
generate nonnegative symmetric matrices of given cp-rank is
to generate H∗ randomly and then compute A = H∗H

T
∗ . In

this section, we use the Matlab function H∗ = rand(n, r) with
n = 500 and r = 30, 60, that is, each entry of H∗ is generated
uniformly at random in the interval [0, 1]. We have generated
10 such matrices for each rank, and Fig. 4 displays the average
value for the measure (18) but we use here emin = 0 since it is
the known optimal value.

We observe that, in all cases, tSVD outperforms all methods.
Moreover, it seems that the SVD-based initialization is very
effective. The reason is that A has exactly rank r and hence its
best rank-r approximation is exact. Moreover, tSVD only works
in the correct subspace in which H∗ belongs hence converges
much faster than the other methods.

Except for Newton, the other algorithms perform similarly.
It is worth noting that the same behavior we observed for real
dense data sets is present here: CD-Shuffle-Rand performs bet-
ter than CD-Cyclic-Rand, while shuffling the columns of H
before each iteration does not play a crucial role with the zero
initialization.

b) Full-Rank Input Matrices: A simple way to generate
nonnegative symmetric matrices of full rank is to generate a
matrix B randomly and then compute A = B + BT . In this
section, we use the Matlab function B = rand(n) with n =
500. We have generated 10 such matrices for each rank, and
Fig. 5 displays the average value for the measure E(t) from
(18). Fig. 5 displays the results.

VANDAELE et al.: EFFICIENT AND NON-CONVEX COORDINATE DESCENT FOR SYMMETRIC NONNEGATIVE MATRIX FACTORIZATION 5583

We observe that, in all cases, tSVD performs extremely poorly
while all other methods (except for Newton and BetaSNMF)
perform similarly. The reason is that tSVD works only with the
best rank-r approximation of A, which is poor when A has full
rank.

3) Summary of results: Clearly, tSVD and CD-based ap-
proaches are the most effective, although ANLS sometimes
performs competitively for the dense data sets. However, tSVD
performs extremely well only when the input matrix is low rank
(cf. low-rank synthetic data sets) or close to being low rank (cf.
image data sets). There are three cases when it performs very
poorly:

� It cannot perform a symNMF when the factorization rank
r is larger than the rank of A, that is, when r > rank(A),
which may be necessary for matrices with high cp-rank (in
fact, the cp-rank can be much higher than the rank [9]).

� If the truncated SVD is a poor approximation of A, the
algorithm will perform poorly since it does not use any
other information; see the results for the full rank synthetic
data sets and the sparse real data sets.

� The algorithm returns no solution as long as the SVD is
not computed. In some cases, the cost of computing the
truncated SVD is high and tSVD could terminate before
any solution to symNMF is produced; see the sparse real
data sets.

To conclude, CD-based approaches are overall the most re-
liable and most effective methods to solve symNMF (1). For
dense data sets, initialization at zero allows a faster initial con-
vergence, while CD-Shuffle-Rand generates in average the best
solution and CD-Cyclic-Rand does not perform well and is not
recommended. For sparse data sets, all CD variants perform
similarly and outperform the other tested algorithms.

VI. CONCLUSION AND FURTHER RESEARCH

In this paper, we have proposed very efficient exact coordinate
descent methods for symNMF (1) that performs competitively
with state-of-the-art methods.

Some interesting directions for further research are the fol-
lowing:

� The study of sparse symNMF, where one is looking for a
sparser matrix H . A natural model would for example use
the sparsity-inducing �1 norm and try to solve

min
H≥0

1
4
||A − HHT ||2F +

r∑

j=1

Λj ||H:,j ||1 , (19)

for some penalty parameter Λ ∈ Rr
+ . Algorithm 4 can be

easily adapted to handle (19), by replacing the bij ’s with
bij + Λj . In fact, the derivative of the penalty term only
influences the constant part in the gradient; see (12). How-
ever, it seems the solutions of (19) are very sensitive to the
parameter Λ which are therefore difficult to tune. Note that
another way to identify sparser factors is simply to increase
the factorization rank r, or to sparsify the input matrix A
(only keeping the important edges in the graph induced by

A; see [38] and the references therein)—in fact, a sparser
matrix A induces sparser factors since

Aij = 0 ⇒ Hi,:H
T
j,: ≈ 0 ⇒ Hik ≈ 0 or Hjk ≈ 0∀k.

This is an interesting observation: Aij = 0 implies a (soft)
orthogonality constraints on the rows of H . This is rather
natural: if item i does not share any similarity with item j
(Aij = 0), then they should be assigned to different clus-
ters (Hik ≈ 0 or Hjk ≈ 0 for all k).

� The design of more efficient algorithms for symNMF. For
example, a promising direction would be to combine the
idea from [29] that use a compressed version of A with
very cheap per-iteration cost with our more reliable CD
method, to combine the best of both worlds.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their insight-
ful feedback that helped them improve the paper significantly.

REFERENCES

[1] D. Lee and H. Seung, “Learning the parts of objects by nonnegative matrix
factorization,” Nature, vol. 401, pp. 788–791, 1999.

[2] R. Zass and A. Shashua, “A unifying approach to hard and probabilistic
clustering,” in Proc. 10th IEEE Int. Conf. Comput. Vis. (ICCV), vol. 1,
2005, pp. 294–301.

[3] B. Long, Z. M. Zhang, X. Wu, and P. S. Yu, “Relational clustering by
symmetric convex coding,” in Proc. 24th ACM Int. Conf. Mach. Learn.,
2007, pp. 569–576.

[4] Y. Chen, M. Rege, M. Dong, and J. Hua, “Non-negative matrix factoriza-
tion for semi-supervised data clustering,” Knowl. Inf. Syst., vol. 17, no. 3,
pp. 355–379, 2008.

[5] Z. Yang, T. Hao, O. Dikmen, X. Chen, and E. Oja, “Clustering by nonneg-
ative matrix factorization using graph random walk,” in Proc. Adv. Neural
Inf. Process. Syst., 2012, pp. 1079–1087.

[6] D. Kuang, H. Park, and C. Ding, “Symmetric nonnegative matrix fac-
torization for graph clustering.” in Proc. SIAM Conf. Data Min. (SDM),
vol. 12, 2012, pp. 106–117.

[7] D. Kuang, S. Yun, and H. Park, “SymNMF: nonnegative low-rank ap-
proximation of a similarity matrix for graph clustering,” J. Global Optim.,
vol. 62, no. 3, pp. 545–574, 2014.

[8] X. Yan, J. Guo, S. Liu, X. Cheng, and Y. Wang, “Learning topics in short
texts by non-negative matrix factorization on term correlation matrix,” in
Proc. SIAM Int. Conf. Data Min., 2013, pp. 749–757.

[9] A. Berman and N. Shaked-Monderer, Completely Positive Matrices. Sin-
gapore: World Scientific, 2003.

[10] V. Kalofolias and E. Gallopoulos, “Computing symmetric nonnegative
rank factorizations,” Linear Algebra Appl., vol. 436, no. 2, pp. 421–435,
2012.

[11] S. Burer, “On the copositive representation of binary and continuous non-
convex quadratic programs,” Math. Programm., vol. 120, no. 2, pp. 479–
495, 2009.

[12] P. Dickinson and L. Gijben, “On the computational complexity of mem-
bership problems for the completely positive cone and its dual,” Comput.
Optim. Appl., vol. 57, no. 2, pp. 403–415, 2014.

[13] J. Kim and H. Park, “Toward faster nonnegative matrix factorization: A
new algorithm and comparisons,” in Proc. 8th IEEE Int. Conf. Data Min.
(ICDM), 2008, pp. 353–362.

[14] J. Kim and H. Park, “Fast nonnegative matrix factorization: An active-set-
like method and comparisons,” SIAM J. Scientif. Comput., vol. 33, no. 6,
pp. 3261–3281, 2011.

[15] N.-D. Ho, “Nonnegative matrix factorization: Algorithms and applica-
tions,” Ph.D. dissertation, Université Catholique de Louvain, Louvain,
France, 2008.

[16] A. Cichocki and A.-H. Phan, “Fast local algorithms for large scale Nonneg-
ative Matrix and Tensor Factorizations,” IEICE Trans. Fundam. Electron.,
vol. E92-A, no. 3, pp. 708–721, 2009.

5584 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 21, NOVEMBER 1, 2016

[17] L. Li and Y.-J. Zhang, “FastNMF: Highly efficient monotonic fixed-
point nonnegative matrix factorization algorithm with good applicability,”
J. Electron. Imag., vol. 18, no. 3, pp. 033 004–033 004, 2009.

[18] N. Gillis and F. Glineur, “Accelerated multiplicative updates and hier-
archical ALS algorithms for nonnegative matrix factorization,” Neural
Comput., vol. 24, no. 4, pp. 1085–1105, 2012.

[19] C.-J. Hsieh and I. Dhillon, “Fast coordinate descent methods with vari-
able selection for non-negative matrix factorization,” in Proc. 17th ACM
SIGKDD Int. Conf. Knowl. Discov. Data Min., 2011, pp. 1064–1072.

[20] N. Gillis, “Nonnegative matrix factorization: Complexity, algorithms
and applications,” Ph.D. dissertation, Université Catholique de Lou-
vain, Louvain, France, 2011. [Online]. Available: https://sites.google.com/
site/nicolasgillis/

[21] S. Wright, “Coordinate descent algorithms,” Math. Programm., vol. 151,
no. 1, pp. 3–34, 2015.

[22] M. Belachew and N. Gillis, “Solving the maximum clique prob-
lem with symmetric rank-one nonnegative matrix approximation,”
arXiv:1505.07077, 2015.

[23] G. Cardano, Ars Magna or the Rules of Algebra. New York, NY, USA:
Dover, 1968.

[24] D. Bertsekas, Corrections for the Book Nonlinear Programming, 2nd
ed. Belmont, MA, USA: Athena Scientific, 1999. [Online]. Available:
http://www.athenasc.com/nlperrata.pdf

[25] D. Bertsekas, Nonlinear Programming, 2nd ed. Belmont, MA, USA:
Athena Scientific, 1999.

[26] B. Chen, S. He, Z. Li, and S. Zhang, “Maximum block improvement and
polynomial optimization,” SIAM J. Optim., vol. 22, no. 1, pp. 87–107,
2012.

[27] A. Vandaele, N. Gillis, Q. Lei, K. Zhong, and I. Dhillon, “Coordinate
descent methods for symmetric nonnegative matrix factorization,” 2015,
arXiv:1509.01404.

[28] S. Zhong and J. Ghosh, “Generative model-based document clustering: a
comparative study,” Knowl. Inf. Syst., vol. 8, no. 3, pp. 374–384, 2005.

[29] K. Huang, N. Sidiropoulos, and A. Swami, “Non-negative matrix factor-
ization revisited: Uniqueness and algorithm for symmetric decomposi-
tion,” IEEE Trans. Signal Process., vol. 62, no. 1, pp. 211–224, 2014.

[30] R. Bro, E. Acar, and T. Kolda, “Resolving the sign ambiguity in
the singular value decomposition,” J. Chemometr., vol. 22, no. 2,
pp. 135–140, 2008.

[31] Z. He, S. Xie, R. Zdunek, G. Zhou, and A. Cichocki, “Symmetric non-
negative matrix factorization: Algorithms and applications to probabilistic
clustering,” IEEE Trans. Neural Netw., vol. 22, no. 12, pp. 2117–2131,
2011.

[32] D. Lee and H. Seung, “Algorithms for Non-negative Matrix Factorization,”
in Proc. Adv. Neural Inf. Process., vol. 13, 2001.

[33] Z. Yang and E. Oja, “Quadratic nonnegative matrix factorization,” Pattern
Recognit., vol. 45, no. 4, pp. 1500–1510, 2012.

[34] L. Trefethen and D. Bau III, Numerical Linear Algebra. Philadelphia, PA,
USA: SIAM, vol. 50, 1997.

[35] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for
recommender systems,” Comput., no. 8, pp. 30–37, 2009.

[36] I. Psorakis, S. Roberts, M. Ebden, and B. Sheldon, “Overlapping commu-
nity detection using Bayesian non-negative matrix factorization,” Phys.
Rev. E, vol. 83, no. 6, p. 066114, 2011.

[37] M. Udell, C. Horn, R. Zadeh, and S. Boyd, “Generalized low rank models,”
Found. Trends Mach. Learn., vol. 9, no. 1, pp. 1–118, 2016.

[38] J. Batson, D. Spielman, N. Srivastava, and S. Teng, “Spectral sparsifica-
tion of graphs: Theory and algorithms,” Commun. ACM, vol. 56, no. 8,
pp. 87–94, 2013.

Arnaud Vandaele received the M.Sc. degree in com-
puter science engineering from Université de Mons,
Belgium, in 2008 and the M.Sc. degree in applied
mathematics engineering from Université catholique
de Louvain, Belgium, in 2011. He is currently a Ph.D.
student at the Université de Mons, Belgium and his
research include numerical optimization and linear
algebra.

Nicolas Gillis received his Ph.D. from Université
catholique de Louvain (Belgium) in 2011. He is
currently an associate professor at the Department
of Mathematics and Operational Research, Faculté
polytechnique, Université de Mons, Belgium. His re-
search interests lie in optimization, numerical linear
algebra, machine learning and data mining.

Qi Lei received the B.S degree of Mathematics from
Zhejiang University, Zhejiang, China in 2014. She is
currently a Ph.D. student at the University of Texas at
Austin. Since 2014, she joined the Center for Big Data
Analytics under the supervision of Professor Inderjit
Dhillon and her research interests lie in large-scale
optimization and linear algebra.

Kai Zhong received the B.S. degree in physics from
Peking University in China in 2012. He is currently
working towards the doctoral degree at the Institute
for Computational Engineering and Science in the
University of Texas at Austin. His research interests
include machine learning, data mining and numerical
optimization.

Inderjit Dhillon (F’14) is the Gottesman Family
Centennial Professor of Computer Science and Math-
ematics at UT Austin, where he is also the Director
of the ICES Center for Big Data Analytics. His main
research interests are in big data, machine learning,
network analysis, linear algebra and optimization. He
received his B.Tech. degree from IIT Bombay, and
Ph.D. from UC Berkeley. He has received several
prestigious awards, including the ICES Distinguished
Research Award, the SIAM Outstanding Paper Prize,
the Moncrief Grand Challenge Award, the SIAM Lin-

ear Algebra Prize, the University Research Excellence Award, and the NSF
Career Award. He has published over 140 journal and conference papers, and
has served on the Editorial Board of the Journal of Machine Learning Research,
the IEEE TRANSACTIONS OF PATTERN ANALYSIS AND MACHINE INTELLIGENCE,
Foundations and Trends in Machine Learning and the SIAM Journal for Matrix
Analysis and Applications. He is an SIAM Fellow and an ACM Fellow.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

