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ABSTRACT

I-Vectors have been successfully applied in the speaker iden-
tification community in order to characterize the speaker and
its acoustic environment. Recently, i-vectors have also shown
their usefulness in automatic speech recognition, when con-
catenated to standard acoustic features. Instead of directly
feeding the acoustic model with i-vectors, we here investigate
a Multi-Task Learning approach, where a neural network is
trained to simultaneously recognize the phone-state posterior
probabilities and extract i-vectors, using the standard acous-
tic features. Multi-Task Learning is a regularization method
which aims at improving the network’s generalization ability,
by training a unique network to solve several different, but
related tasks. The core idea of using i-vector extraction as
an auxiliary task is to give the network an additional inter-
speaker awareness, and thus, reduce overfitting. Overfitting is
a commonly met issue in speech recognition and is especially
impacting when the amount of training data is limited. The
proposed setup is trained and tested on the TIMIT database,
while the acoustic modeling is performed using a Recurrent
Neural Network with Long Short-Term Memory cells.

Index Terms— automatic speech recognition, multi-task
learning, LSTM, i-vector, TIMIT

1. INTRODUCTION

Acoustic modeling based on deep learning models is currently
showing state-of-the-art results for Automatic Speech Recog-
nition (ASR) [1]. Deep Neural Networks (DNN), through
their many levels of non-linearities, are able to assimilate
concepts of higher abstraction level as the number of hidden
layers increases. Recently, more complex architectures than
the classic fully-connected feed-forward DNNs take advan-
tage of other configurations of hidden layers connections to
further improve the recognition’s accuracy. For instance,
Convolution Neural Networks (CNN) apply several localized
patches that share the same connection weights [2]. Another
more and more effective architecture uses Recurrent Neural
Networks (RNN) with Long Short-Term Memory (LSTM)
cells [3], adding an extra temporal memory to the network.

Quite often though, these deep learning models suffer
from poor generalization. As the amount of training data is
limited, the network tends to learn an accurate representation
of the training set only. As a consequence, when encounter-
ing unseen data or real life conditions, the network may not
generalize well and lead to lower recognition results. This
commonly met issue in ASR, and machine learning more
generally, is also referred to as “overfitting“.

In this article, we investigate if a single system trained
to solve multiple related tasks can decrease the overfitting is-
sue met by deep learning models. This approach is known as
Multi-Task Learning (MTL) in contrast to the usual Single-
Task Learning (STL) training [4]. The core concept is to
train a single deep learning model to solve in parallel one
main task, plus at least one auxiliary task, using the same
input features. More specifically here, we use as main task
the classic ASR estimation of phoneme-state posterior prob-
abilities, whereas the auxiliary task focuses on extracting the
associated i-vectors. If the network is able to extract the i-
vectors, while performing its main speech recognition task,
the network will then learn very valuable information about
the inter-speaker variability, their environmental characteris-
tics and the underlying link between speaker and speech. A
RNN-LSTM deep learning model is used as acoustic model
for our study.

This article is organized as follows. Section 2 presents re-
lated work. In Section 3, the MTL mechanism is described.
Further details concerning the auxiliary task are discussed in
Section 4. Section 5 introduces the experimental setup and re-
sults are shown in Section 6. Finally, we conclude and present
future work ideas in Section 7.

2. RELATED WORK

Regularization methods are sometimes essential for the net-
work’s convergence. Additionally, they aim at reducing over-
fitting. The MTL method we are investigating in this work
focuses also on improving generalization, and thus, can be
seen in conjunction to other regularization methods. For in-
stance, it is possible to stop the training earlier, once the ASR
accuracy starts to decrease on a validation set [5]. Other reg-
ularization methods, such as L1 and L2 regularization, add



a term to the cost function, thus, easing a sparser hidden ar-
chitecture [6]. It is also possible to randomly set to zero some
neuron activations, this technique referred to as “dropout“ has
led to better generalizing systems. Furthermore, limiting the
hidden weights of a DNN in an ordered and bio-inspired man-
ner, leading to a sparse DNN, has shown significant improve-
ment [7].

The drawback of these methods is that they assume that
the network’s number of parameters in unnecessarily large,
and try to reduce it by suppressing units or connections, thus,
not getting advantage of the full network’s modeling capac-
ity. Moreover, the generalization capacity of the network is
limited by the recognition task. As a result, there should
be a training configuration with one main task (estimating
the phoneme-state posterior probabilities commonly used for
ASR), and additionally force the network to solve another sig-
nificant task, therefore taking full advantage of all network’s
parameters. This training configuration is know as Multi-Task
Learning [4].

Lately, MTL applied with DNN, CNN, RNN or RNN-
LSTM acoustic models has shown promising results in sev-
eral speech and language processing areas: speech synthe-
sis [8, 9], speaker verification [10], multilingual speech recog-
nition [11, 12, 13], spoken language understanding [14, 15],
natural language processing [16], etc.

Speech recognition does also profit from MTL, through
different kind of auxiliary tasks. Gender classification was
primarily tested as an auxiliary task for ASR, by adding two
(male/female) [17] or three (male/female/silence) [18] addi-
tional output nodes to a RNN acoustic model. Using phoneme
classification, as an additional auxiliary task of the phoneme-
state posterior probabilities, indicates to a DNN which phone-
state posteriors may be related [19, 20]. Nevertheless, using
broader phonetic classification (plosive, fricative, nasal, . . . )
does not seem to be an effective auxiliary task for ASR [18].
Other studies investigate graphemes (symbolic representation
of writing rather than speech sound), showing that estimat-
ing only the current grapheme as auxiliary task is unwor-
thy [18]. However, adding the left and right grapheme con-
text improves the main recognition task [21]. Estimating the
phoneme context is also a successful auxiliary task [19].

Adapting the acoustic model to a specific speaker can be
improved by MTL as well [22]. In this case, a STL DNN
is trained in a speaker-independent manner. Then, while
the major part of the DNN’s parameters are fixed, a small
number of the network’s parameters are updated using MTL.
More specifically, phoneme and senone-cluster estimation are
tested as auxiliary tasks for adaptation.

Robustness to noise is a common speech recognition issue
that some MTL auxiliary tasks try to address. This could be
done by generating enhanced speech as an auxiliary task [17,
23], or more recently by recognizing the noise type [24].

Finally, speaker-aware ASR models based on MTL were
proposed lately. The acoustic model could be given additional

speaker information by training the network to recognize the
speakers as auxiliary task [25], or by extracting features from
a similar setup [26]. In the latter study, a first Bottle-Neck
(BN) MTL system using a RNN-LTSM acoustic model ap-
plies speaker classification as auxiliary task. Then, the BN
layer is concatenated to the standard acoustic features and
used as input for a second STL RNN-LSTM.

Additional information on MTL usage for automatic
speech recognition can be found in [27].

In this article, we are also interested in adding speaker-
awareness to the training process. But instead of using
speaker classification, we extract i-vectors [28] as auxil-
iary task. I-Vectors’ ability to discriminate speakers and
their associated environment are powerful tools for speaker
verification as well as ASR [29]. Our interest is in forc-
ing the network to extract the i-vectors from the standard
acoustic features while performing its ASR task, thus learn-
ing valuable inter-speaker information, leading to a better
generalization.

3. MULTI-TASK LEARNING

Multi-Task Learning emerged in 1997 [4]. As discussed ear-
lier, the core idea for MTL consists of training jointly and in
parallel one deep learning model on several tasks that are dif-
ferent, but related. As a rule, the network is trained on one
main task, plus at least one auxiliary task. The aim of the
auxiliary task is to improve the model’s convergence, more
specifically to the benefit of the main task. An illustration,
where the MTL has one main task and N auxiliary tasks, is
presented in Figure 1. Two fundamental characteristics are
shared among all MTL systems. First, all tasks are trained
on the same input features. Second, all tasks share the same
parameters and internal representations. The network’s pa-
rameters are updated by backpropagating the combination of
the respective task errors through the hidden layers of the net-
work, defined as:

εMTL = εMain +

N∑
n=1

λn ∗ εAuxiliaryn
,

εMTL being the error combination to be minimized, with
εMain and εAuxiliaryn

respectively the main and auxiliary
tasks errors, λn is a nonnegative weight and N the total num-
ber of auxiliary tasks. Varying the λn value will modify the
auxiliary task(s) influence on the backpropagated error. If λn
is closer to 1, then the nth auxiliary task will be as impacting
as the main task, whereas for λn near 0, the auxiliary task
would not have any influence on training. In most cases,
the auxiliary tasks are dropped at test time, keeping only the
main task outputs. Selecting relevant auxiliary tasks is cru-
cial, as MTL can improve the model’s robustness to unseen
data, hence, decrease overfitting impact. Smaller datasets
can especially benefit from this method, as generalization is



a greater issue with lower resources. Rather than process-
ing each task independently, sharing the network’s structure
among the different tasks leads to higher performance [4].
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Main Task n
th Task N
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Fig. 1. A Multi-Task Learning network with one main task
and N auxiliary tasks.

4. AUXILIARY TASK: I-VECTORS EXTRACTION

I-Vectors are low-dimensional features that are able to char-
acterize a speaker and its acoustic environment. They are
know as the state-of-the-art in the speaker identification area.
I-Vectors are a smart way to reduce a large-dimensional in-
put to a fixed-size, low-dimensional feature vector, while pre-
serving most of the relevant information. The i-vector extrac-
tion method uses the Joint Factor Analysis framework [30]
to define a new low-dimensional space referred to as the to-
tal variability space. A given speech utterance will then be
represented in the new space by an i-vector. For a given utter-
ance, the mean super-vector M corresponding to its Gaussian
Mixture Model (GMM) can be written as:

M = m+ Tw , (1)

where m is the speaker and channel independent super-vector
extracted from a Universal Background Model (UBM), T
is a low-rank rectangular matrix iteratively estimated over
the training corpus known as the total variability matrix, and
w is the i-vector. Thanks to this representation, the lower-
dimensional vector w can be used as a speaker model, rather
than the much larger GMM.

In the MTL setup we are investigating we use the already
estimated i-vectors that should be concatenated to the the
standard acoustic features, as targets of our auxiliary task.
The primary motivation here is to draw the networks atten-
tion at the correlation between the phone-state posteriors
variability and the speakers. Physical (vocal organs, gender,
age, . . . ) as well as non-physical (regional and social affilia-
tion, co-articulation, . . . ) characteristics lead to inter-speaker
diversity [31, 32]. Furthermore, if the system is able to differ-
entiate the speaker’s characteristics, then this information can
be used for a better interpretation of the distortion brought by
one speaker in comparison to another. At training time, the
network is taught to extract i-vectors from a limited number
of speakers, whereas at test time, this speaker may not be

present in the training dataset, which is true in our study. In
such case, the network should be able to extract i-vectors
from unseen speakers, which is not the case if the auxiliary
task was speaker classification, making i-vector extraction a
more robust auxiliary task.

5. EXPERIMENTAL SETUP

The proposed MTL setup is trained and tested using the free,
open-source, speech recognition toolkit Kaldi [33].

5.1. Database

The MTL approach we propose was investigated on a phone
recognition task using the TIMIT Acoustic-Phonetic Contin-
uous Speech Corpus [34].

In order to properly assess this setup, the TIMIT database
is divided in three subsets. The standard training set is com-
posed of 462 speakers. A development set of 50 speakers
is used to tune the language model weight. Finally, the 24-
speaker standard test set is used for evaluation of the model
improvement. All speakers are native speakers of American
English, from 8 major dialect divisions of the United States,
with no clinical speech pathologies. There is no overlapping
of the speakers present in one dataset to another, but all 8 di-
alects can be found in the three datasets. Each of the speakers
is reading 10 sentences. Using the the phone label outputs
and the supplied phone transcription, we compute and com-
pare the Phone Error Rate (PER) metric.

5.2. System description

The input acoustic features are 13-dimensional Mel-Frequency
Cepstral Coefficients (MFCC) features, which are normal-
ized via Cepstral Mean-Variance Normalization (CMVN).
This features are first used before training the ASR sys-
tem in order to extract 100-dimensional i-vectors, using a
256-component GMM-UBM (through the standard i-vector
extraction pipeline of Kaldi). Then, the same MFCC features
are processed by a hybrid RNN-LSTM - Hidden Markov
Model (HMM) system. The RNN-LSTM generates the
phoneme-state posterior probabilities as main task and gener-
ates i-vectors as auxiliary task, whereas the HMM deals with
the speech’s temporal nature.

Random seeds are used for input features shuffling, as
well as weight initialization. 40 frames of left context are
added to every input. The RNN-LSTM acoustic model is
composed of three uni-directional LSTM hidden layers, with
1024 cells per layer and a linear projection of 256 dimensions
for each layer [35]. We use sequences of 20 training labels
with a delay of 5 labels. The learning-rate decreases from
0.0012 to 0.00012, training is stopped after a maximum of 10
epochs, and 100 feature vectors are processed in parallel in
every mini-batch. For the main tasks, the error is computed



using cross entropy. Whereas for the auxiliary task, we back-
propagate the quadratic error as we consider i-vector extrac-
tion as a non-linear regression task. Also, a softmax output
non-linearity is added for the main task but not for the auxil-
iary one. The system is depicted in Figure 2.

During decoding, we use dictionary and language models
to establish the most likely transcription. The auxiliary task
branch is discarded throughout evaluation, leading to a regu-
lar STL system.

We use a RNN-LSTM acoustic model as the auxiliary
task, i-vector extraction, requires access to a wider time win-
dow than phone-state probabilities estimation. By keeping
track of the RNN-LSTM backward connections, we are able
to extend the temporal information used for the auxiliary task.

Input features

RNN - LSTM 

Acoustic model

Phone-state posterior  

probabilities i-vector extraction

HMM decoder

Softmax layer

Fig. 2. Illustration of the experimental setup. A RNN-LSTM
is trained for two tasks. Phone-state posterior probabilities es-
timation as main task and i-vector extraction as auxiliary task.
The estimated posterior probabilities are then fed to a HMM,
whereas the auxiliary task is discarded during evaluation.

6. RESULTS

All results presented in this section, were averaged over three
runs with random seeds, following Abdel-Hamid et al. work
with TIMIT [36].

6.1. Baseline

A STL RNN-LSTM is first trained to set the baseline. We
set the weight coefficient λ to 0. This way, the auxiliary task
does not influence training, and the system is trained in a STL
manner, estimating only the phone-state posterior probabili-
ties.

6.2. Influence of λ coefficients

In order to evaluate the impact of i-vector extraction as a MTL
auxiliary task, the weight coefficient λ is set successively to
1.10−4, 5.10−4, 1.10−3 and 5.10−3, similarly to Chen et al.
study [23]. This may seem very low, but as we are using two
different objective functions (cross entropy for the main task
and quadratic error for the auxiliary task) the error scale is
quite different. Using these λ values assured that both tasks
converged and that none of them prevail strongly over the
other one.

6.3. Results

The obtained results are presented in Table 1. Using MTL
with this auxiliary task improves the PER results in compari-
son to STL.

As Figure 3 outlines, for a λ of 1.10−4, the PER is signif-
icantly reduced in comparison to STL for both the dev set and
the test set. However, increasing λ over 5.10−3 degrades the
results as the main task is no longer benefiting from this aux-
iliary task. The results are significantly worse with this value
of λ showing the importance of a well balanced MTL system
between each task. On the other hand, choosing a λ too small
would actually lead to neglecting the auxiliary task. In this
study, even for a λ of 1.10−4 the auxiliary task was still con-
verging after each iteration. The relative improvement on the
dev set is around 2.7% and 3.8% for test set when λ equals
1.10−4, which is as a non-negligible improvement.

Table 1. Impact of i-vector extraction as auxiliary task for
MTL speech recognition.

λ coefficient dev set PER (%) test set PER (%)

0 (STL) 20.07 21.70

1.10−4 19.53 20.87
5.10−4 19.70 20.97
1.10−3 20.10 21.37
5.10−3 27.87 28.80

6.4. I-Vector extraction vs. Speaker classification

In previous work, we investigated another speaker-aware aux-
iliary task for MTL ASR: speaker classification [25]. In Ta-
ble 2 we compare the relative improvement1 brought by i-
vector extraction as auxiliary task in comparison to speaker
classification. In this speaker-aware frame, we can see that

1The input features used for this comparison are very similar, but not
exactly the same. Thus, we compare the relative improvement rather than
using directly the PER.
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Fig. 3. Phone Error Rate when varying the λ weight coeffi-
cient of i-vector extraction as auxiliary task, applied to MTL
speech recognition.

the i-vector extraction auxiliary task is much more helpful for
the main task than speaker classification. The improvement is
even more important on the test set.

As discussed in Section 4, the speaker classification task
should be much more impacted if the speakers present at
training time are no longer present at test time. Comparing
these auxiliary tasks on a database containing more speakers
may lead to a smaller difference in the relative improvement,
as the speaker classification will be more likely to find a
closer speaker.

Another explanation could be that, in the speaker verifi-
cation area, speaker classification is obtained through i-vector
features followed by Probabilistic Linear Discriminant Anal-
ysis classification. Thus, asking the network to directly clas-
sify the speakers from the the standard acoustic features may
be a much more difficult task than using i-vectors as an inter-
mediary.

Table 2. Relative improvement (%) brought by different MTL
auxiliary tasks in comparison to STL.

MTL auxiliary task dev set test set

Speaker classification 0.8 0.3
I-Vectors extraction 2.7 3.8

7. CONCLUSION

A novel MTL auxiliary task for speech recognition is investi-
gated in this article. A RNN-LSTM acoustic model is trained

simultaneously for phone-state posterior probability estima-
tion and i-vector extraction. Using i-vector extraction as an
auxiliary task is a quite easy task as it only require to ex-
tract one time the i-vectors in order to generate the auxil-
iary output labels before the training. In comparison to other
“speaker-aware“ auxiliary tasks, this method is more robust,
than speaker classification for instance, as we can apply it to
unseen speakers. Furthermore, using MTL does not require
a significantly important additional amount of computational
time as we use the same internal structure for both tasks. Re-
sults show that a small but non-negligible improvement can
be obtained using this auxiliary task.

Future work will focus on investigating other deep learn-
ing architectures (CNNs for instance) using this MTL setup.
We are also interested in training this setup on databases con-
taining more speakers. Additionally, we will consider com-
bining the i-vector extraction auxiliary task with speaker clas-
sification for a MTL system with two speaker-aware auxiliary
tasks.
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