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Drumming sounds are substantial clues when searching audio recordings for the presence of woodpeckers.
Woodpeckers use drumming for territory defence and mate attraction to such an extent that some species
have no vocalisations for these functions. This implies that drumming bears species markers. This hypothesis
stands at the root of our project to develop an autonomous program for the identification of drumming species.
To proceed, we assembled a database of 361 recordings from open-access bird sound archives. The recordings
were for nine drumming species found on the European continent. Focusing on the signal below 1500 Hz, we
reviewed all audio files and extracted 2665 drumming rolls. For recordings where multiple birds were present,
the drumming rolls were attributed to individual birds. This allowed keeping track of the time interval between
successive rolls. The characteristic traits of drumming are decidedly temporal. Consequently, the spectral features
that have been successful in other recent bird identification studies were not applicable in our case. We devel-
oped specialized drumming parameters and automated their calculation.We thenperformed a t-SNEdimension-
ality reduction to visualise the dataset and to demonstrate that our parameters detached the different classes
properly. Eventually, a k-NN algorithm accurately labelled 87.2% of the submitted test samples. The time struc-
ture within the drumming rolls (speed, acceleration) provided the critical features. The duration of the rolls
followed in importance. The results compare well to existing literature and attest to the feasibility of monitoring
European woodpecker species by tracking drumming.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

The continuous acoustic monitoring of wildlife and birds in particu-
lar has generated terabytes of data (Aide et al., 2013; Jahn et al., 2013;
Towsey et al., 2014; Florentin et al., 2015), of which a large part is still
awaiting exhaustive processing. The dormant information pertains to
the presence or absence of species within certain areas, the evolution
of bird communities over seasons and the potential degradation of hab-
itats (Farina et al., 2011). Hence, in recent years, researchers have
steered towards the development of robust algorithms that would be
capable of identifying all species and most notably all bird species cap-
tured on audio recordings (Blumstein et al., 2011). Such algorithms
are required to performwell on the two critical functions of 1) detecting
bird sounds in the audio stream and 2) identifying the species emitting
these sounds. The work we present in the present paper primarily ad-
dresses the second function, species identification, in a context where
short extracts of bird sounds have already been made available.
cal Mechanics, Dynamics and
elgium.
entin).
It must be noted however that birdsong detection techniques some-
times inherently include the species identification step. This is the case
for spectrogram cross-correlation. This well-established technique al-
lows searching long audio recordings for one specific sound. It is well-
suited to sounds that produce repeatable spectrogram patterns, such
as stereotyped songs (Ulloa et al., 2016). The concept is to have a tem-
plate of the target spectrogram image sliding over a continuous audio
stream until a maximum in cross-correlation is reached. Swiston and
Mennill (2009) used it to detect double-knocks from two species of
woodpeckers (Campephilus guatemalensis and Campephilus principalis).
There was no expectation that potential species traits in double-knocks
would play a role and the same template was used for both species.
Mean detection rates of 24% and 8% respectively were achieved, while
the number of false positives was 77 times greater than with human
observers.

If species identification is to be addressed separately, then its object
is to automate the classification of short sound extracts lasting between
a few seconds and a few minutes. Recent works in this area engaged in
the identification of hundreds of bird species in collections of up to ten
thousand audio files (Potamitis, 2014; Stowell and Plumbley, 2014;
Lasseck, 2015). For this type of task, the choice of classifier evolved
from template comparisons (Kogan and Margoliash, 1998) towards
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hiddenMarkovmodels (Somervuo et al., 2006; Brandes, 2008), artificial
neural networks (Fox et al., 2008; Ranjard and Ross, 2008) and finally
single- or multi-label random forests (Potamitis, 2014; Stowell and
Plumbley, 2014). The most common acoustic features are the Short-
Time Fourier Transforms (STFT), either in full (Stowell and Plumbley,
2014) or compressed in the formofMel-Frequency Cepstral Coefficients
(MFCC) (Kogan and Margoliash, 1998; Somervuo et al., 2006; Fox et al.,
2008; Ranjard and Ross, 2008; Lee et al., 2013). The time dimension is
then handled by calculating the mean and standard deviation of the
acoustic features over the duration of the sound extract (Stowell and
Plumbley, 2014) or other statistics such as moments and regressions
(Lasseck, 2015). Spectrogram images are an alternative possible basis
for acoustic features (Lee et al., 2013; Potamitis, 2014; Lasseck, 2015).
Potamitis (2014) and Lasseck (2015) derived their features from
cross-correlation scores with a set of template images. Lasseck (2015)
showed that these outperform spectral features in the classification of
syllables and elements of songs. Multiple authors reported difficulties
pertaining to the “variability” of songs (Kogan and Margoliash, 1998;
Somervuo et al., 2006; Potamitis, 2014). The following species were of-
fered as difficult cases: canaries (Kogan and Margoliash, 1998), Finnish
blackcaps and pied flycatchers (Somervuo et al., 2006) and European
tits (Potamitis, 2014). All are passerines, i.e. the orderwith themost elab-
orate songs. A typical percentage of correct identifications for passerines
is 70%–80% (Somervuo et al., 2006; Brandes, 2008; Fox et al., 2008).

Overall, the success of the above classification studies is contingent on
the existence of generic acoustic features that can grasp the species traits
in the vocalisations of any species. On the other hand, Kogan and
Margoliash (1998) suggested that their classification results would have
been improved by the use of biological features. These are the features
that birds themselves use to recognize their conspecifics. They are specific
to species or to a group of species (Catchpole and Slater, 2008). Lasseck
(2015) reselected a subset of features independently for each species to
optimize the classification score. Bardeli et al. (2010) advocated
redefining the features for each new species to improve the recognition
rate. Ulloa et al. (2016) observed that spectrogram cross-correlation was
not appropriate for all vocalisations and Lasseck (2015) that it did not
render temporal structures and repetition rates in bird songs. All these
comments reflect a need to fall back on differentiated features. The conse-
quence is that it ismore realistic tomine audio streams for the presence of
a predetermined limited set of species than to aim at an exhaustive anal-
ysis. This sets the philosophy behind the presentwork: classification algo-
rithms need to be built from the bottom-up, starting from sub-groups of
species. We chose to target European woodpeckers.

2. Materials

2.1. European woodpeckers

Woodpeckers are members of the Picidae family within the order of
the Piciformes. A list of the eleven species present on the European con-
tinent is found in Table 1.
Table 1
Woodpecker species and drumming database composition.

Index Species Drumming

1 Dendrocopos leucotos Yes
2 Dendrocopos major Yes
3 Dryocopus martius Yes
4 Dendrocopos medius Rare
5 Dendrocopos minor Yes
6 Dendrocopos syriacus Yes
7 Jynx torquilla No
8 Picus canus Yes
9 Picus sharpei Rare
10 Picoides tridactylus Yes
11 Picus viridis Rare
Dendrocoposminor and Jynx torquilla are the smallest specimens, 14–
16 cm and 16–19 cm in length, respectively. D. martius is the largest
with a length of 45–50 cm. Hybrids exist between D. major and D.
syriacus, between Picus canus and P. viridis and between P. sharpei and
P. viridis. Until 2012, P. sharpei was a sub-species of P. viridis (Gorman,
2014). The reasons that make woodpeckers an interesting target for
acoustic monitoring are plenty. They are valued as ecosystem keystones
(Gorman, 2014) and indicators of forest health (Mikusinski and
Angelstam, 1998). Some species are targeted by regional conservation
programs, e.g. D. medius in Sweden (Pettersson, 1985) or P. canus in
Belgium.

Woodpeckers have relatively simple vocalisations (Gorman, 2014).
Their peculiarity is their use of drumming for territory marking and
mate attraction (Zabka, 1980; Tremain et al., 2008). Some species alto-
gether forego the use of vocal signals for these functions (D. major, D.
syriacus, D. leucotos, Picoides tridactylus) (Table 1). It follows that drum-
ming sounds have been thought to carry the species and individual in-
formation (Zabka, 1980; Dodenhoff et al., 2001). Only J. torquilla does
not use drumming. For the other species, both sexes drum.Male-female
pairs have synchronized drumming duets during the mating season.
Drumming contests also occur between neighbours andmales of differ-
ent species. Drumming Rolls (DRs) are easily recognizable in spectro-
grams. The example in Fig. 1 shows the time parameters of
drumming: the time between DRs, the time between strokes and the
DR duration. These traits are straightforward features to classify DRs.
Woodpeckers also produce isolated strokes (while foraging or digging
holes) and demonstrative tapping. The latter consists in constant-
speed rolls which are shorter, slower and quieter than drumming rolls
(Zabka, 1980). Demonstrative tapping is hypothesized to achieve near-
by communication (Zabka, 1980; Tremain et al., 2008) whereas drum-
ming would primarily be for long-distance communication (Zabka,
1980; Stark et al., 1998). Our analysis focuses on drumming only.

Zabka (1980) ran a previous study on woodpecker drumming using
240 DRs from the same nine species as in the present work, i.e. all but J.
torquilla and P. sharpei. D. major made up almost half of his collection
(Table 8). The time intervals between strokes and the duration of rolls
were measured manually on spectrograms and signal envelopes. This
author rejected the time between rolls as a viable acoustic feature be-
cause of excessive variability. His findings were that D. major had the
shortest DR, and D. leucotos and D. martius the longest. The time struc-
ture (evolution of the time between strokes) followed either a linear
law or a decreasing exponential law and was a critical species trait.
Some woodpeckers accelerated (e.g. D. major); others decelerated
(e.g. D. minor). There was a significant difference in DR duration be-
tween D. major males and females, and between D. major male neigh-
bours. Stark et al. (1998) performed another statistical analysis on
drumming parameters for 11 woodpecker species occurring in Califor-
nia (3347DRs). DR duration, number of strokes per DR, average time in-
terval between strokes and cadence (strokes per second) were
considered. Cadence was found to be the best indicator for species dif-
ferentiation. 78% of all samples were correctly reclassified using their
Advertising call Original files Drumming rolls

No 43 248
No 115 818
Yes 27 84
Yes 3 8
Yes 67 832
No 3 8
Yes 0 0
Yes 29 104
Yes 0 0
No 68 547
Yes 6 16

Total 361 2665



Fig. 1. Spectrogram with drumming rolls (XC173903; see footnote 1).
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parameter set; 91% when considering only sympatric species (i.e. with
overlapping geographical ranges). The authors argued that only species
susceptible to live in the same areas needed to differentiate their acous-
tic signals. A few drumming parameters could never be enough to fully
differentiate the 239 woodpecker species that inhabit the planet (as
counted by Gorman, 2014), unless the breeding range is factored in.
Our approach, considering only the European species, is consistent
with this observation.

2.2. Drumming database

For the present study, 267 original files were retrieved from Xeno-
Canto (XC)i and 94 from Tierstimmen (TS)ii for nine species (see Table
1). J. torquilla does not drum and there was no data for P. sharpei. The
files represent 2 h and 20 min of recordings (4 GB) with a minimum
of oneDRper file. The dataset is skewed towards themost common spe-
cies (D. major, D. minor) and species without an advertising call (D.
leucotos, P. tridactylus). P. viridis and D. medius rarely drum and thus
are poorly represented. Finally, D. syriacus is present in Eastern Europe
where fewer recordings are available. Both archives use themp3 format,
with a sampling frequency of either 44.1 kHz or 48 kHz. Thefiles can last
up to several minutes. Some were low-pass filtered or edited by the re-
cordists. We resampled all files at 11,025 Hz. For all Fourier transforms,
we used frames of 23.2 ms with 50% overlap.

3. Methods

The full process flow, from the extraction of drumming rolls from
audio records to the identification of woodpecker species, is sketched
in Fig. 2. 324 DRs were manually extracted from the TS data, and 2341
from XC. The DRs were saved in individual files including 150 ms lead-
ing and trailing silences. The different birds issuing the DRs were iden-
tified in recordings where more than one bird was drumming. This
was used to calculate the time interval between rolls; see Section
3.1.1. Subsequent sections address the parameterization of individual
DRs (Sections 3.1.2 and 3.1.3) and their classification (Section 3.2).

3.1. Acoustic features for drumming

Zabka (1980) and Stark et al. (1998) both determined that the tem-
poral parameters of drummingwere the diagnostic ones. In both studies
the time between strokeswas the primary variable for the separation of
species. This means that features based on the STFT have little chance of
successfully clustering woodpecker drums. If the STFT is averaged over
time as in Stowell and Plumbley (2014), then the rhythm is lost. The
i The Xeno-Canto Foundation, http://www.xeno-canto.org/. Audio file XCn is accessible
at http://www.xeno-canto.org/n.

ii Museum für Naturkunde Berlin, http://www.animalsoundarchive.org/.
same goes for the MFCC. Spectrogram images as in Potamitis (2014)
and Lasseck (2015) preserve the time dimension, but the time step is
imposed by the STFT processing parameters, namely the frame duration
and overlap. Numbers in Zabka (1980) indicate that a precision to the
millisecond is required (Table 8). Alas, for frames computed every
23.2 ms with a 50% overlap, the precision in time is limited to 11.6 ms.
Adapting these numbers is detrimental to the frequency resolution
and to the computational effort. Again, spectrogram images do not ren-
der temporal structures and repetition rates in bird songs well (Lasseck,
2015). Our targets are the temporal parameters indicated in Fig. 1 and
they require a different approach.

This being said, the spectral information is not entirely without
merit. Woodpeckers choose the tree on which they drum, potentially
because they like its sound. This preferred sound might be a species
trait. Stark et al. (1998) supported this hypothesis. Some birds might
also have the strength or skill to excite higher trunk harmonics. The
STFT or MFCC would reflect all this information. Therefore, we included
spectral parameters in the feature set. The final eight features are docu-
mented in Table 2, includingmathematical formulations for the tempo-
ral features. All features were normalized prior to classification.

3.1.1. Time interval between rolls
The time between the start of two successive drumming rolls (Fig. 1)

was estimated from the DR file start times. For isolated DRs (only one
DR in the original audio record), it could not be computed.We identified
series of DRs separated by at most 60 s. Hypothetically, when the inter-
val between DRs exceeds 60 s, the bird is resting or doing something
else. The time interval between rolls for one given DR was calculated
by averaging the time intervals to the previous and to the following
DR in the series. This is feature f8 in Table 2.

Multiple woodpeckers drumming in successionwere a complication
for the analysis (e.g. XC169038 contains DRs from six confirmed indi-
viduals, XC89410 from four). DRs in a sequence had to be assigned to
distinct individuals. We grouped DRs associated to one bird and one
tree using k-means unsupervised clustering. Fortunately, drumming
on different trees produces different nuances of sound, which is directly
reflected in the spectral content. We thus used the stroke spectrum as
basis for our feature vector. This is appropriate because all DRs from
one bird hitting on the same tree spot have a stable spectral content;
the sorting algorithm does not need to cope with shifts in frequency.
The stroke frames were identified as those whose spectral energy was
greater than the median frame energy for the DR. The stroke spectrum
is then the average of the spectra of all these frames. Eventually, the fea-
ture vector we used was the derivative with respect to frequency of the
normalized stroke spectrum. This provedmore resistant to variations in
signal amplitude. The feature matrix was then complemented with a
training set of 76 manually pre-selected vectors. These were triplets of
DRs issued by the same bird hitting the same tree. Within the triplets
theDRswere thus similar in spectrum, and different triplets had distinct

http://www.xeno-canto.org
http://www.xeno-canto.org/n
http://www.animalsoundarchive.org
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timbres. We selected three triplets per species if available (9 files). This
added training set was meant to help k-means gauge the level of dis-
crepancy that makes two spectra unalike. For the initial cluster centres,
we picked a set of vectors which were different from each other, yet
similar to other vectors, i.e. not isolated cases. As the number of bird/
tree combinations (clusters) was a priori unknown, a loop was imple-
mented where k-means was run for an increasing number of clusters.
As soon as the cluster centres became similar (the dot product of the
corresponding vectors yielded an angle which was less than 10°), the
loop was stopped. We enforced that the final number of clusters had
to remain below 6 to keep the worst mathematical artefacts at bay.

3.1.2. Refined frequency range and spectrum centroid
The default bandpass filter in our analyses was 300 Hz–1500 Hz.

With a low bound of 300 Hz, common background noise is
circumvented.With a high bound of 1500Hz, the characteristic low fre-
quency content of drumming is encompassed (see Fig. 1) and yet inter-
ferences from other birds are minimized. If drumming sounds must
Table 2
Acoustic features for drumming, expressed for n strokes with (ti,yi) coordinates in the envelop

Numbering Features Mathematical form

f1 First interval
(ti+1– ti )= f2 ∙( i−f2 Delta interval

f3 DR duration f3= tn– t1+ε
f4 Number of strokes f4=n
f5 Amplitude slope yi

ymax
¼ f 5 ∙ti þ η

f6 Spectrum centroid
f7 Spectrum peak
f8 Time between rolls for the pth DR in a

f8=(t1 )2−(t1 )1
f 8 ¼ 1

2 ððt1 Þpþ1−ðt
f8=(t1 )P−(t1 )P−
travel long distances in the high absorption environment of a forest,
then the lower frequency content is the essential part of the signal. In
some cases however, the maximum spectral peak lied outside the
300 Hz–1500 Hz range (see Fig. 5b) and the upper boundary had to be
extended. Variations in the spectra of the frames containing the strokes
were used to that end. Drumming produces a stable stroke spectrum,
whereas the passerine songs which populate the higher frequencies
are inherently frivolous. The distinction can be made visible using the
standard deviation of the stroke spectrum (dash-dot line in the top
right plot in Fig. 3). Above a threshold in the standard deviation, the sig-
nal corresponds either to passerines (5000 Hz peak on Fig. 3) or to the
upper tail of the strokes that can be discarded for our analysis
(2200 Hz peak).

Once a frequency rangewas adopted, themean stroke spectrumwas
used to determine the spectrum centroid and peak frequency (solid
curve and markers in the top right plot in Fig. 3; features f6 and f7 in
Table 2). The Fig. 3 plot is representative of the typical drumming spec-
trum. There is one large peak and sometimes a small harmonic. This
e curve.

ulations

1)+ f1 for i=1⋯n−1

ε takes into account the width of the first and last peaks;

for i=5⋯n
η not used;

series of P DRs:
for p=1

1 Þp−1Þ for p=2⋯(P−1)

1 for p=P



Table 3
Training set composition.

Total files Training set composition

(in number of files) (in %)

D. leucotos 248 83 33.5
D. major 818 113 13.8
D. martius 84 43 51.2
D. medius 8 5 62.5
D. minor 832 113 13.6
D. syriacus 8 5 62.5
P. canus 104 50 48.1
P. tridactylus 547 112 20.5
P. viridis 16 10 62.5

Fig. 3. Acoustic parameters calculation from spectrum and envelope (XC83280).
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explains why our spectral description is so bare. The peak frequency
captures the large peak. Then, in thepresence of harmonics, the centroid
shifts to higher frequencies. Note however that the argument for track-
ing harmonics remainsweakbecause the forest absorbs higher frequen-
cies as they propagate.

3.1.3. Time structure and DR duration
The determination of the time structure beganwith picking the time

positions of the strokes in the DR. We used the peaks of the waveform
envelope. Envelopes are generated by low-pass filtering the absolute
value of the signal (Lartillot and Toiviainen, 2007). Their time resolution
is inherited from the original signal. In our case, with a sampling fre-
quency of 11,025 Hz, the time step was 0.09 ms. We calculated two en-
velopes. The first one had a high time constant for the low-pass filter
and captured only rough energy bursts in the signal. Itwasused to select
a time interval where the curvewas above a threshold and then deduce
the DR duration (feature f3, Table 2). The second envelope had a short
time constant and retained more details from the original waveform.
The individual strokes were visible and well detached. This envelope
was used for peak picking and the determination of the time structure
(Fig. 3, lower left image).

Peaks located within the DR duration interval were selected. The
fringes were checked for additional peaks that approximately matched
the time structure. The number of strokes in the DRwas set as the num-
ber of selected peaks (feature f4, Table 2).

The time structure is a first-degree polynomial fit through the (t,δt)
data where t is the time position of a stroke and δt the time interval be-
tween this stroke and the next one (Fig. 3, lower right image). The final
polynomial was modified to match the form in Zabka (1980), i.e. time
interval versus stroke number. The two polynomial coefficients were
saved as acoustic parameters for the classification. They are the initial
time interval (feature f1, Table 2) and the delta interval (feature f2,
Table 2). The delta interval is the slope of the polynomial or the differ-
ence in the duration of two successive intervals. In mechanical terms,
it relates to acceleration, while the initial time interval is the inverse of
speed. Zabka used both first-degree polynomials and decreasing
exponentials to describe time structures. We did not find in our data
the necessity for the exponential form. His exponential functions were
converted back to polynomials to allow the comparisonwith our results
(Table 8).

A second polynomial fit was produced on the amplitude of the peaks
(normalized to the maximum value). This was to capture the fact that
some birds drum with an increasing intensity, others with a stable or
decreasing intensity. Only the slope coefficient was saved (feature f5,
Table 2).

Fig. 3 summarizes the calculation of features f1 through f7 for a typi-
cal DR extracted fromXC83280. The top left image is the spectrogramof
the segment; the boundaries of the band-pass filter are showed with
dashed lines. The bottom left image contains the envelopes and the
peak selection. The DR duration and amplitude trend are annotated.
The bottom right image shows the time intervals involved in the deter-
mination of the time structure polynomial.

3.2. Visualisation and classification

We used two techniques: k-Nearest Neighbour (k-NN) for the clas-
sification, and t-Distributed Stochastic Neighbour Embedding (t-SNE)
for a preliminary visualisation of the database and a health check on



Table 4
Mean parameter values.

Number of files First interval Delta interval DR duration Number of strokes Amplitude slope Spectrum centroid Spectrum peak Time between rolls

(ms) (ms) (s) (Hz) (Hz) (s)

D. leucotos 248 71.3 −1.6 1.60 30.1 −0.45 1206 1041 18.6
D. major 818 60.1 −2.4 0.65 13.0 −0.68 1481 1323 11.7
D. martius 84 68.7 −0.7 1.86 31.0 −0.22 801 683 13.2
D. medius 8 42.5 −0.6 1.11 25.5 0.18 1387 624 4.3
D. minor 832 53.6 0.1 1.16 21.1 0.07 1708 1581 5.7
D. syriacus 8 58.6 −1.6 0.97 19.4 −0.58 1486 1330 20.1
P. canus 104 48.3 0.1 1.57 31.5 −0.03 1116 965 19.1
P. tridactylus 547 77.6 −0.5 1.36 18.9 0.07 1231 1041 16.2
P. viridis 16 50.6 0.3 1.27 23.0 −0.02 1150 918 11.5
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our features. The t-SNE unsupervised scheme (van der Maaten and
Hinton, 2008) produces 2D coordinates based on feature vectors of
any dimension. Provided the acoustic features have any merit, the dif-
ferent classes form separate clusters in the resulting scatterplot. This is
similar to Linear Discriminant Analysis (LDA). However, the dimension-
ality reduction in t-SNE is a non-linear operation and the final 2D coor-
dinates have no physical interpretation. This is because t-SNE does not
represent distances between feature vectors. It replaces themwith con-
ditional probabilities between pairs of points both in the high and in the
low dimensional space. The probability that point Aj is similar to point Ai
derives from a distribution centred on Ai. The probability is high for
points close to Ai and low at greater distances. The distribution is Gauss-
ian in the high-dimensional space and Student-t in the low-dimensional
Fig. 4. Parameter distributions per species for (a) initial interval (
space. The Student-t distribution has heavier tails, i.e. there ismoremar-
gin to position points away from the distribution centre. Thus, a modest
distance in the high dimension produces a greater distance in the low
dimension. This avoids crowding certain regions of the map. The vari-
ance of the distributions is chosen so as to keep 5–50 points in the
bulk of the distribution close to Ai. This number of points is called the
perplexity and is left to the preference of the user. Finally, t-SNE opti-
mizes the coordinates in the low-dimensional space so as to match
the pairwise probabilities of both spaces. The t-SNE visualisation typi-
cally offers more separation of the classes than LDA because there is
more freedom to spread out the points. Another advantage is that two
dimensions are sufficient by design. t-SNE has enjoyed a widespread
success in the machine learning community (Dupont et al., 2013) due
(a)

(b)

b) delta interval; in grey, classes with less than 20 samples.



(a)

(b)

Fig. 5. Parameter distributions per species for (a) number of strokes (b) maximum spectral peak; in grey, classes with less than 20 samples.
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to its unique ability to translate the qualities of large and high-dimen-
sional databases into simple maps. In our case, producing a t-SNE map
provides qualitative information about the adequacy of our acoustic fea-
tures and about the classes that are insufficiently characterized. Author
van der Maaten readily supplies a Matlab implementation of t-SNEiii

where a Principal Component Analysis (PCA) is performed on the fea-
tures before the actual dimensionality reduction.

For the classification itself, we chose k-NN with k = 5 (Mitchell,
1997). Test sampleswere thusmatched to their five nearest neighbours
in the training base. The class that received themajority of the voteswas
assigned. In this way, the test samples were not matched to anomalies
in the training base. Values of k greater than 5 were found to diminish
the accuracy; they require larger training sets. More trial runs showed
that a training set comprising 20% of the total database (i.e. 534 files
out of 2665) was adequate. The accuracy of the classification plateaued
for greater percentages.We also observed that correct identifications in-
creased with the class size. We thus adjusted the composition of the
training set (Table 3) to have the small classes (D. medius, D. syriacus
and P. viridis) contribute approximately 60% of their sample count and
the larger classes a reduced percentage. In absolute terms 60% only
amounts to 5–10 files for the small classes. This remains insufficient.
On the other hand, we were able to set aside close to 50 training sam-
ples for the intermediate classes D. martius and P. canus.

The k-NN classificationwas run twohundred times, each timewith a
different randomly selected training set. Fewer runs would have
worked as well, as eventually the standard deviation in the accuracy re-
sults was only 0.8%. The sample selection for the training set was
iii

http://lvdmaaten.github.io/tsne/.
restricted to samples having a value defined for the time interval be-
tween rolls (feature f8). The test samples with and without f8 values
were classified separately, using the full training set each time.
4. Results

4.1. Individual birds

The detection of individual bird/tree combinations was tested on 16
D. major files for which the XC or TS annotations report several birds.iv

These files typically contain 20 to 40 DRs and two to four birds. The so-
lutions were perfect for nine files; three more had two wrongly classi-
fied DRs; only one had poor results (5 misclassified DRs out of 15).
Further checks on other species confirmed that the bird/tree assign-
ments are realistic. For example, for D. minor XC171084 where 109
DRs were identified in a 35-minute file, long series of identical DRs
(same bird/tree) were detected, followed by transitional phases. This
complies with the ornithologist's notes, which indicate that the bird
kept going back and forth between two trees. The bird/tree assignments
are also in agreement with the audio. In the full drumming database,
42% of the recordings (153 out of 361) were found to have more than
one bird/tree combination. Eventually, it was possible to assign a
value of time interval between rolls to 92% of the 2665 DRs. Amongst
the remaining 8%, 2% correspond to files where only one DRwas record-
ed and 6% (171 DRs) are DRs that were isolated by the clustering (i.e.,
associated with no other DR).
iv TS14, TS29, XC45165, XC71449, XC84275, XC89410, XC92455, XC94435, XC94436,
XC125675, XC128132, XC130203, XC138947, XC169038, XC169486, XC 170195.

http://lvdmaaten.github.io/tsne/


Table 5
Parameter correlations; values greater than 0.8 in bold.

Delta int. First int. DR dur. N. strokes Sp. cent. Sp. peak Amplitude Time btw. rolls

Delta interval 1,00 −0,26 0,46 0,39 0,11 0,11 0,63 −0,10
First interval −0,26 1,00 0,25 −0,05 −0,26 −0,24 0,02 0,24
DR duration 0,46 0,25 1,00 0,91 −0,15 −0,15 0,35 0,16
Number of strokes 0,39 −0,05 0,91 1,00 −0,12 −0,11 0,23 0,14
Spectrum centroid 0,11 −0,26 −0,15 −0,12 1,00 0,83 0,07 −0,22
Spectrum peak 0,11 −0,24 −0,15 −0,11 0,83 1,00 0,06 −0,19
Amplitude slope 0,63 0,02 0,35 0,23 0,07 0,06 1,00 −0,08
Time btw. rolls −0,10 0,24 0,16 0,14 −0,22 −0,19 −0,08 1,00

Table 6
Parameter prospective quality.

Fisher discriminating power Variation
(%)

First interval 1.56 16%
Delta interval 1.23
DR duration 1.01 29%
Number of strokes 0.85 29%
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4.2. Acoustic parameter values

Parameter mean values are documented in Table 4. Figs. 4 and 5
show box plotsv for the time structure, the number of strokes and the
maximum spectral peak. The light grey boxes are used to differentiate
the small classes (D.medius, D. syriacus and P. viridis), for which the re-
sults should be treated with caution. As expected, there is a strong cor-
relation between the number of peaks and the DR duration (0.91), and
between the spectrum centroid and themaximum spectral peak (0.83);
see Table 5. All outliers were checked manually for the time structure
and the number of strokes. Because of the short DR duration for D.
major, there were fewer peaks available for a robust polynomial fit
and ultimately more algorithm failures for this taxon. Table 4 and Fig.
5(a) show that D. major consistently has the lowest number of strokes
per DR, whileD. leucotos,D.martius and P. canus have the greatest num-
bers of strokes.

Most species accelerate while drumming (negative polynomial
slope in Table 4 and Fig. 4(b); the time interval between strokes dimin-
ishes), with D. major exhibiting the largest gradients. D. minor and P.
canus are the two significant exceptions amongst the species with
large datasets; here the values indicate slight deceleration or constant
speed drumming. This is coherent with the fact that D. minor and P.
canus are the fastest drummers, as reflected by their short initial inter-
vals (Table 4 and Fig. 4(a)). Starting at a high speed, they tend to decel-
erate. P. tridactylus is the overall slowest bird, with multiple initial
interval values far above the likely range of 40 ms–90 ms inferred
from Zabka (1980) and marked on Fig. 4(a). For example, intervals of
120 ms are measured in XC153234.

Three species produce frequencies above 2000 Hz (D. major, D.
minor, P. tridactylus) as seen in the extent of the whiskers on Fig. 5(b).
Overall, the data justify our assumption that the low frequency content
below 1500Hz is characteristic for drumming.D.minor uses the highest
pitch (and is the smallest bird) and D. martius the lowest (and is the
largest bird). D. major, D. syriacus, D. leucotos and to a lesser extent D.
martius display trends of decreasing peak amplitudes, while other spe-
cies appear to drum with a constant intensity (Table 4). We note that
pairs of twin species (D. major and D. syriacus; P. canus and P. viridis)
have similar time structures but differ in the duration of the DR or in
the number of strokes.

Table 6 shows Fisher's discriminating power for all parameters and
the variation for the ones with positive values. Fisher's discriminating
power Dk (Eq. (1)) is calculated to calibrate expectations regarding the
acoustic indicator k. In Eq. (1), C is the number of classes, ni the number
of samples of class i, μik the mean of the kth indicator over class i sam-
ples, μk the mean of the kth indicator over all samples and σik

2 the vari-
ance of the kth indicator over class i samples. Following Zabka (1980),
the variation Vik for the kth indicator over class i samples is computed
as the standard variation over the mean (Eq. (2)). Table 6 documents
its average over all classes. We obtain 16% for the first interval and
around 30% for DR duration, number of strokes and spectrum centroid.
v The boxes in Fig. 4 are bounded by the first and third quartiles of the data. The line
within the box is the median. The whiskers extend to the values whose distance to the
box is at most 1.5 times the height of the box (Tukey boxplot). Crosses are outliers.
With a variation of 66%, we confirm that the time interval between rolls
is a volatile parameter. The discriminating powers are in agreement
with these numbers: the time structure parameters are the critical
ones, with DR duration in second line and other parameters (spectral
parameters, amplitude, time between rolls) being less promising.

Dk ¼
∑C

i¼1 ni: μ ik−μkð Þ2
∑C

i¼1 ni:σ ik
2

ð1Þ

Vik ¼
σ ik

μ ik
ð2Þ

4.3. Visualisation and classification

The t-SNE visualisation is in Fig. 6. The data groups are clustered to-
gether in separate regions of the map, which indicates that the param-
eter set achieves discrimination of the classes. This is more efficient
for the largest classes (D.major, D.minor, D. leucotos and P. tridactylus),
while there is some degree of overlapping for the medium-size classes
(D. martius and P. canus). Again, the point coordinates in t-SNE maps
have no physical meaning. Yet, the optimisation seemingly exploited
DR duration in the horizontal direction and drumming speed in the ver-
tical direction. D. major with the shortest DRs is to the left, whereas D.
leucotos, D. martius and P. canus with DRs longer than 1.5 s are to the
right. The fast D. minor and P. canus are at the top and the slow P.
tridactylus at the bottom. As it seems, the parameters with themost dis-
criminating power were prioritized.

The accuracy and the confusion matrix of the k-NN classification are
documented in Table 7. The accuracy is the percentage of test samples
that are correctly identified per class. The scores follow the class size
and agree with the levels of clustering observed on the t-SNE map.
The confusion matrix also agrees with the t-SNE map. For example,
some D. martius samples are misclassified as D. leucotos and P.
tridactylus. These three species are neighbours on the t-SNE maps. The
accuracy for the full test dataset (i.e. excluding training set) is 87.2%. In-
evitably, the small classes are poorly classified.

Following thework in Dupont et al. (2013), we also attempted the k-
NN classification on the low-dimensional space, i.e. the coordinates of
the points in the t-SNEmap in Fig. 6. We correctly predicted an average
Amplitude slope 0.76
Spectrum centroid 0.36 30%
Spectrum peak 0.27 41%
Time between rolls 0.40 66%
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Fig. 6. t-SNE map with 2665 drumming roll samples.
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of 86.1% of the test samples in 200 trials, with a standard deviation of
1.2%. Therefore in our case, t-SNE does not extract attributes from the
database that were not already in evidence with our initial features.
The technique provides us with visualisation but does not improve
classification.

5. Discussion

The parameter values for the time structure and DR duration are re-
markably in line with Zabka's numbers for the classes that are well rep-
resented in both studies (this study: Table 4; Zabka: Table 8). The
associated variation coefficients also compare well. The delta interval
value is particularly stable. This speaks to the independence of these pa-
rameters from the content and the size of the database. Zabka's sound
files were not recovered for the present study and the ratio in database
size is 11 to 1.

The time interval between rolls drove an important programming
effort including the recognition of different individuals but proved inef-
ficient in separating the species. For all well-represented taxa, the
values essentially spanned the entire allowed range of 0–60 s. A few es-
timates were terminally unreliable as some recordists posting on XC
edit silence out of their files (e.g. XC171084). No evidence was found
in the data that the time interval between rolls depends on the bird
drumming alone or with other birds.

The present study shows that time parameters are essential in char-
acterizing woodpecker drumming. With this in mind, it follows that a
parameterization that focuses on spectral content is inadequate to
Table 7
k-NN confusion matrix and accuracy.

Actual classes ↓

Predicted classes: mean number of samples over 200 trials

D. leuc. D. maj. D. mart. D. med.

D. leucotos 138.9 12.6 3.3 0.0
D. major 15.3 625.6 0.9 0.0
D. martius 5.7 0.8 26.4 0.0
D. medius 0.0 0.9 0.0 0.6
D. minor 0.8 27.4 1.3 1.7
D. syriacus 0.8 1.7 0.0 0.0
P. canus 0.2 1.2 0.1 0.0
P. tridactylus 6.2 16.3 6.5 0.2
P. viridis 0.1 0.3 1.0 0.0
identify woodpecker species from their drumming sounds. Neither are
spectrograms a good base to derive parameters because their limited
time resolution (11.6 ms) blurs the differences between the taxa. The
variations in drumming speed are subtler than that. For example, D.
martius loses 0.7mswith every stroke (Table 4). Once adequate acoustic
parameters are obtained, the power of the classification algorithm is
secondary. A simple scheme like k-NN is sufficient to obtain acceptable
classification scores. If the acoustic features were deficient, there would
be no significant recovery to be hoped from an advanced classifier such
as random forest.

Finally, we join the praise for t-SNE which provided us with a re-
markable visualisation of our database and its dynamics. The map in
Fig. 6 is convincing evidence of the discriminating power of our feature
set. We used a default perplexity of 30, which seemed to aggregate the
largest classes well. Perplexity relates to the size of the typical core
group of samples that can be considered as close neighbours. For the
classes with 100 samples or less (D.martius and P. canus), disconnected
sub-clusters suggest gaps in the dataset.

In a few instances, our program failed to calculate the drumming pa-
rameters. This may explain a few dubious placements in the t-SNEmap
in Fig. 6. The failures occurred when the program could not produce an
envelope with clearly detached peaks. The two problematic situations
are a) when the drumming roll is distant and is heard only faintly on
the recording and b) when the drumming roll is superposed with an-
other vocalisation. Option a) is hard to recover from. It means that re-
cording stations can only process drumming within a certain distance.
Option b) is not that common because the frequency range of
AccuracyD. min. D. syr. P. can. P. tri. P. vir.

0.6 0.4 0.3 8.9 0.0 84.2%
38.7 0.9 1.1 22.2 0.2 88.7%
2.2 0.2 1.5 4.3 0.0 64.4%
1.1 0.0 0.4 0.0 0.0 19.8%

647.1 0.2 24.2 15.9 0.4 90.0%
0.0 0.4 0.0 0.1 0.0 12.3%
6.3 0.1 44.7 1.1 0.4 82.8%
26.0 0.5 4.2 374.6 0.4 86.1%
3.0 0.0 1.2 0.2 0.1 1.2%



Table 8
Parameter mean values and variation published in Zabka (1980).

Number of files

Delta interval First interval DR duration Number of strokes

Mean Mean Variation Mean Variation Mean Variation

(ms) (ms) (%) (s) (%) (%)

D. leucotos 17 −1.2a 80.2a 8b 1.64 11.3 34.4 13.8
D. major 104 −2.0a 61.5a 8b 0.56 28.7 13.1 27.2
D. martius 21 −0.6a 72.0a 12b 1.61 31.3 29.2 27.2
D. medius 17 0.2 57.1 4b 1.29 10.9 23.0 26.4
D. minor 40 0.0 48.9 12b 1.19 24.1 24.6 22.9
D. syriacus 11 −2.0a 72.9a 8b 0.89 16.8 21.6 20.6
P. canus 16 0.1 52.3 13b 1.37 21.0 26.4 21.2
P. tridactylus 9 −0.5 76.1 3b 1.34 25.4 20.8 19.1
P. viridis 5 0.6 40.4 – 1.15 24.3 25.8 27.5

a Transformed from exponential form.
b Inferred from illustrations.
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drumming is depleted in European forests. In any case, failure to process
sporadic drumming rolls is not a road block because birds produce them
in large quantities. There will be enough clean drumming rolls to make
an identification.
6. Conclusion

The present study demonstrates the feasibility of identifying Euro-
pean woodpecker species from their drumming. In support of this, the
calculation of drumming features was automated and k-NN classifica-
tion was demonstrated to achieve an accuracy greater than 82.8%
when sufficient training data was available. For the taxa that are less re-
liant on drumming, a characterization of the most remarkable
vocalisations is still a necessity.

Robustness of the methodology is supported by the size of the data-
base on which the algorithms were tested (2665 drumming rolls) and
by the agreement in the parameter values, including their variation,
with the previous study of Zabka (1980). The work would benefit
from access to additional samples forD.martius and D. syriacus. The lat-
ter is seldom recorded. Other small classes correspond to rare drum-
mers for which data cannot be abundant (D. medius, P. viridis and P.
sharpei).

Last, we reiterate that our methodology is based on the assumption
that the best characterizing parameters are species-specific (or genus-
specific, or family-specific). This creates limitations on the number of
taxa under consideration and is well-suited to mining problems. Inci-
dentally, futurework includes the development of a detection algorithm
that could autonomously search long audio recordings for drumming
rolls.
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