
Microprocessors and Microsystems 50 (2017) 189–201

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

Scalable shared-memory architecture to solve the Knapsack 0/1

problem

Fernando A. Escobar a , ∗, Anthony Kolar b , Naim Harb

c , Filipe Vinci Dos Santos a ,
Carlos Valderrama

c

a Advanced Analog Systems Chair, CentraleSupélec, 3 Rue Joliot Curie, F-91192 Gif-Sur-Yvette Cedex, France
b Group of Electrical Engineering Paris, UMR CNRS 8507, CentraleSupélec, Univ. Paris-Sud, Univ. Paris-Saclay, Sorbonne Univ., UPMC Univ Paris 06, F-91192

Gif-Sur-Yvette Cedex, France
c 31 Boulevard Dolez, 70 0 0 Mons, Belgium

a r t i c l e i n f o

Article history:

Received 26 September 2016

Revised 31 March 2017

Accepted 2 April 2017

Available online 3 April 2017

Keywords:

Knapsack 01

Shared memory

Dynamic programming

FPGA

SoC

a b s t r a c t

Dynamic Programming (DP) is used to solve combinatorial optimization problems and constitutes one of

the 13 High Performance Computing (HPC) patterns. DP suffers from irregular, data-dependent memory

accesses that deteriorates performance. The Knapsack 0/1 belongs to the simplest DP algorithms which is

called Serial Monadic and has been treated in software with cache-efficient algorithms as well as parallel

threads, OpenMP or MPI.

In this paper we propose a shared memory, parametrizable architecture to compute the DP matrix

for the Knapsack 0/1. Our system has a parallel runtime of �(mC / q) for a knapsack of capacity C with

m items and q operators. Using additional off-chip space and DMA transfers it can solve knapsacks of

any size. The architecture is implemented on the ZYNQ-7020 System On Chip (SoC) that contains a dual-

core ARM plus Artix FPGA fabric. Under such architecture we make use of 64-bit High Performance ports

for off-chip transfers and asymmetric 32-bit write/64-bit read BRAMs to minimize data exchange times.

We also exploit computation synchronization to minimize BRAM address propagation and reduce routing

congestion. We present results for a base system with 70 Processing Elements (PEs) capable of solving

problems with a maximum item weight ω max = 1024 . For more complex instances we configure the ar-

chitecture with 58 PEs and ω max = 6144 , where a single BRAM is shared among 13 computing units. We

thus solve problems with 6 × bigger weights than previous works, attain a 16 × speed-up versus an op-

timized software on an Intel Xeon E5 and get the highest efficiency per core versus other architectures.

We achieve between 2 . 4 − 3 . 3 × acceleration versus previous FPGA solutions.

© 2017 Elsevier B.V. All rights reserved.

1

h

f

e

d

a

d

t

b

d

b

fi

(

N

p

a

s

c

s

o

t

K

s

h

0

. Introduction

Memory related issues are currently the main bottleneck for

igh performance systems [1,2] . Most CPU technology like pre-

etching, branch prediction, memory disambiguation, pipelining,

tc, suffer significant efficiency losses with irregular and unpre-

ictable access patterns. Dynamic Programming (DP) is one of the

lgorithmic families whose performance degrades due to such ad-

ressing. DP is a technique employed in combinatorial optimiza-

ion where overlapping sub-problems are progressively solved to

uild the global solution. As stated, its memory access is unpre-

ictable (data dependent) therefore it hardly profits from cache-

ased systems.
∗ Corresponding author.

E-mail addresses: fernando.escobar@centralesupelec.fr (F.A. Escobar),

lipe.vinci@centralesupelec.fr (F. Vinci Dos Santos).

a

i

z

t

ttp://dx.doi.org/10.1016/j.micpro.2017.04.001

141-9331/© 2017 Elsevier B.V. All rights reserved.
DP algorithms are classified into 4 categories: Serial Monadic

SMDP), Serial Polyadic (SPDP), Non-serial Monadic (NMDP) and

on-serial Polyadic (NPDP) [3] . There are two approaches to im-

lement the DP technique: bottom-up or top-down . The first one

ttempts to solve the smallest problems first and stores the re-

ults in a matrix (memoize) to solve bigger ones afterwards. On the

ontrary, the top-down solution employs a recursive strategy that

tarts from the biggest problem and go down to the base case to

btain the answer. The work presented in this article belongs to

he bottom-up , matrix-based approach.

A classic example of a Dynamic Programming application is the

napsack 0/1 problem which belongs to the SMDP group. It con-

ists in taking a set of items or objects which have a weight (ω i)

nd a profit (p i), to fill a knapsack of a total weight capacity C . The

tems are taken from a pool of m units (m is an integer bigger than

ero) and their sum of weights cannot be bigger than C . Moreover,

he optimization objective is to maximize their sum of profits un-

http://dx.doi.org/10.1016/j.micpro.2017.04.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2017.04.001&domain=pdf
mailto:fernando.escobar@centralesupelec.fr
mailto:filipe.vinci@centralesupelec.fr
http://dx.doi.org/10.1016/j.micpro.2017.04.001

190 F.A. Escobar et al. / Microprocessors and Microsystems 50 (2017) 189–201

t

t

W

p

fi

ω

p

×

o

×

u

t

s

w

1

l

i

i

S

t

T

c

a

2

a

p

o

t

i

c

s

s

c

r

M

r

b

t

M

c

e

a

a
der the previous constraint. A formal definition of the Knapsack

0/1 problem along with its proposed bottom-up DP solution is pro-

vided in Section 2 .

In general terms, the DP algorithm operates by first filling a

profit matrix of size m × C and then backtracking over the val-

ues from bottom-right to top-left. This approach has been a sub-

ject of study for VLSI and FPGA implementations for many years.

Most of the previous solutions have been based on Systolic Arrays

with minor variations. For instance, Chen et al. [4] proposed a ring-

connected systolic array of q processing elements (PE) for paral-

lel computation of the m rows; however, their solution required

full table storage (m × C) and thus more memory units. After-

wards, in a similar work [5] , further developed in [6] , Andonov

et al. presented another architecture with less memory require-

ments and scalable with respect to m, C and ω max for the gen-

eral Knapsack problem. Interestingly, the scalability with respect

to ω max was solved by allowing PEs to have a special configuration

to propagate data along them if needed. As presented, those archi-

tectures were pure systolic arrays that required internal buffers of

size ω max = 1023 on each PE.

Another study proposed a system to solve the 0/1 Knapsack

problem using less space [7] . Authors exploited the fact that only

a binary matrix called keep-table is required to perform the back-

tracking and introduced it into their systolic array. Moreover, em-

ploying a divide-and-conquer algorithm, they processed the whole

DP table in strips of p × c with p < m and c < C . Their solution was

also limited to problems with ω max = 1023 . Finally, a hypercube ar-

chitecture based on a scheduling algorithm to propagate the ω max

through its connections was proposed by gol [8] . Once more, all

the previous proposals were limited to problems with small item’s

weights with ω i < 1024 or ω max = 1023 .

Systolic arrays have also been the preferred architecture used

in other DP problems. In sequence alignment (NMDP) they have

been integrated with data compression for higher efficiency as re-

ported in [9,10] and [11] . Moreover, for the Floyd-Warshal algo-

rithm (SPDP), a systolic array composed of B PEs capable of pro-

cessing matrices of size B × B (B = 32) was proposed by Bond-

hugula et al. [12,13] for graphs of up to 16 , 384 nodes. Lastly,

in more complex DP algorithms (NPDP) like the Nussinov algo-

rithm for secondary-structure RNA prediction, Jacob et al. pro-

posed a formal space-time method to develop systolic arrays for

sequences of n = 100 maximum [14] and n = 273 [15] (very small

problem sizes). All these effort s impose limit ations to the problem

instances, like small amount of nodes or short sequences, limiting

the advantages of their parallel architectures.

Graphic Processing Units (GPUs) have also been employed to

accelerate DP algorithms. For the Knapsack problem, a GPU im-

plementation based on data compression and parallel row com-

putation in each thread was presented in [16] . Reported results

were restricted to ω max ≤ 10 0 0 although it is unclear whether it

was a platform limitation or not. Similar works on different GPUs

have also easily outperformed high-end CPUs by more than 40 ×
[17,18] . Nevertheless, due to the algorithm low arithmetic complex-

ity, high memory access and conditional execution, GPUs entail a

high power consumption with low efficiency (i.e. ratio between

the sustained floating point operations per second (FLOPs) over the

peak capacity) for the DP technique.

In this article we analyse the memory access of the Knapsack

0/1 algorithm and propose a shared-memory architecture to ef-

ficiently process the DP matrix in parallel. Our system can han-

dle problems with bigger weights than previous FPGA solutions by

maximizing on-chip storage utilization. We also overlap computa-

tion and communication through hardware-managed DMA trans-

fers to maximize parallelism and data exchange throughput. The

proposed structure can be synthesized on FPGA or Systems On

Chip (SoCs) and is scalable (since more PEs can be added for bet-
er performance in bigger devices). It also features a linear run-

ime with respect to the number of items of the problem instance.

e present experimental results for two configurations of the pro-

osed architecture implemented on a ZYNQ-7020 SoC [19] . The

rst one has 70 PEs, runs at 150 MHz and can solve problems with

 max = 1024 . It attains a 10% speed-up versus a reference GPU im-

lementation [16] , 3 × versus previous FPGA solutions [7] and 23

compared to our sequential, optimized software model. The sec-

nd configuration runs at 133 MHz and supports ω max = 6144 (6

bigger than all previous works) and reaches up to 16 × speed-

p against an optimized sequential execution on a Xeon PC. It at-

ains an average of 1.4 × higher performance than previous FPGA

olutions and is only 0.25 × slower than the same GPU reference

hich has 3.3 × more units, 9 × higher frequency and more than

0 0 0 × bigger on-chip memory. The flexibility of our system al-

ows many more configurations to be easily created by changing

nput parameters and re-synthesizing the architecture.

The rest of the article is divided as follows: In Section 2 we

ntroduce the algorithm and the problem to be solved.

ection 3 presents the proposed solution and theoretical analysis

o model the system performance and obtain maximum scalability.

hen in Section 4 we present the obtained results and analysis to

ontrast them with similar works. Section 5 concludes the article

nd summarizes our perspectives for future work.

. DP algorithm for the Knapsack 0/1 problem

The Knapsack 0/1 problem seeks to choose a set of items from

n m -item pool (m is an integer bigger than zero), each one with a

rofit p i and weight ω i to fill a bag (knapsack) of capacity C . More-

ver, the selected set of items should maximize the overall profit

hey provide. More formally the optimization problem is presented

n Eq. (1) .

maximize

m ∑

i =1

p i · x i | x i ∈ { 0 , 1 }

subject to

m ∑

i =1

ω i · x i ≤ C

(1)

Using the bottom-up DP technique, an m × C profit matrix is

onstructed since this technique progressively considers all knap-

ack weights from 0 to C . The matrix is filled adding to the knap-

ack one item at a time (row by row) and the cells store the ac-

umulated profit of the objects included. More formally, the algo-

ithm fills every cell M (i, j) as follows:

 (i, j) =

⎧ ⎨

⎩

0 if j = 0 (2)

M (i −1 , j) if j < ω i (3)

max (M (i −1 , j) , M (i −1 , j−ω i) + p i) if j ≥ ω i (4)

To compute a matrix cell M (i, j) , only two cells from the previous

ow are needed, that is M (i −1 , j) and M (i −1 , j−ω i)
. This implies that a

uffer of at least ω i words from row i − 1 is needed to compute

he cells of row i . Consider Table 1 where we present the matrix

 for a problem of C = 12 with m = 6 items. The two accesses to

ompute the circled cells (previously presented in Eq. (4)) are ex-

mplified by the arrows. These values are computed as follows:

• M(2 , 1) = max (M (1 , 1 −ω 1)
+ p 1 , M (1 , 1)) = max (M (1 , 0) + 8 , 0) = 8

• M(3 , 8) = max (M (2 , 8 −ω 3)
+ p 3 , M (2 , 8)) = max (M (2 , 3) + 5 , 21) =

26

• M(6 , 12) = max (M (5 , 12 −ω 6)
+ p 6 , M (5 , 12)) = max (M (5 , 8) +

6 , 38) = 44

After the profit matrix M is filled, the maximum profit attain-

ble can be found in the bottom-right position M (m, C) . Afterwards,

 backtracking from M (m, C) to M (0, 0) is carried on to determine

F.A. Escobar et al. / Microprocessors and Microsystems 50 (2017) 189–201 191

Table 1

Profit table for a knapsack of capacity C = 12 and m = 6 items. The maximum profit possible is 44 (bottom-right value). The arrows show

some dependencies required to compute the circled cells. At every row i , each cell (i, j) is computed as the maximum between the cell

above (i − 1 , j) and the value ω i columns to the left (i − 1 , j − ω i) added to the item profit p i .

Table 2

Keep-table for the proposed example where the backtracking determines the items to include. In this example items A, B, D and

E provide a 44 profit.

t

a

i

a

w

g

s

K

d

u

I

t

a

c

d

o

d

s

3

f

l

e

p

3

T

r

ω

h

u

c

[

l

w

t

a

i

o
he items to be included on the knapsack. However, an alternate

pproach can be used to perform the backtracking and avoid stor-

ng the profit matrix M . In fact, the backtracking can be done on

 keep or leave binary table (K) which is simultaneously computed

ith M as shown in Eq. (5). This way, at each iteration i , the DP al-

orithm only needs two profit matrix lines (M i −1 and M i) and can

tore the (much smaller) keep-table K .

 (i, j) =

{
1 if M (i −1 , j−ω i) + p i ≥ M (i −1 , j) (5)

0 otherwise (6)

For the current example, K is presented in Table 2 . Table K is

 size -times smaller than the profit table M for d size -bit profit val-

es p i . For example, using 32-bit data, K is 32 × smaller than M .

n general, due to the irregular addressing imposed by Eq. (4) and

he profit matrix M size (m × C), most of the time is spent filling K

nd thus we focus on this step. Since traditional, cache-based, ar-

hitectures are designed to exploit data locality, irregular accesses

eteriorate performance due to the increased data exchange with

ff-chip storage.

In the following section we explain the row memory depen-

encies and the strategy adopted to parallel the computations de-

cribed by Eq. (4).
. Proposed architecture

Given the limitations of the previous related works, namely,

orcing ω max < 1024 , in this section we provide the reasoning fol-

owed to develop our proposal. Afterwards, we explain the differ-

nt components of our architecture and examine theoretical as-

ects regarding performance and scalability.

.1. Global data dependency

To compute M (i, j) , only M (i −1 , j) and M (i −1 , j−ω i)
are required.

his means that a value located ω i columns to the left of the cur-

ent column j must be retrieved to fill the current cell M (i, j) . Since

 i is a problem input data, such access is unpredictable and thus

as been limited to a predictable range . In the cited works that

se systolic arrays, each PE computes a single row and has a lo-

al buffer that stores ω max = 1024 words from the previous row

6,7] . In other words, these proposals implement inter-row paral-

elism and make the predictable range equal to 1024. If problems

ith ω max = x · 1024 need to be solved (x integer bigger than zero),

hese architectures should increase x times their buffer sizes, thus

ugmenting their on-chip storage by the same proportion.

To address such a drawback in a more space-efficient way,

ntra-row parallelism is also possible, for example, as implemented

n GPU threads by boy [16] . Rows can be split into separate seg-

192 F.A. Escobar et al. / Microprocessors and Microsystems 50 (2017) 189–201

Fig. 1. Dependencies between columns of the previous and current row for PEs that

compute k columns each. If each segment is on a physically separated memory, at

most 2 PEs read from the same one when they are synchronized. A predictable

access (1) and an unpredictable one (2) occur due to input data ω i .

Fig. 2. Unsynchronised PEs lead to 3 simultaneous reads to each k -column seg-

ment. In this case PE-1 is not synchronized with the remaining units hence gen-

erating 2 concurrent access to the second memory for a total of 3 readings to the

same segment.

Fig. 3. The reading scope of each PE increases to the right of the table. If r =

ω max /k, from the r th PE, a total space of r + 1 memories are shared by the sub-

sequent PEs.

Fig. 4. When the profit matrix M has more columns X that surpass a system capac-

ity C , additional off-chip space can be used as temporal buffer. For each row i, ω i

values from row i − 1 produced during the computation of columns [0 − C] , will be

needed to process columns [C + 1 , X] .

z

a

d

a

c

e

c

l

t

m

s

f

r

c

p

f

w

p

a

ω

t

i

t

D

a

3

t

t
ments (memories) of k columns that are concurrently written by

a set of PEs. If they work synchronously, that is, all start and fin-

ish at the same time, at most two simultaneous reads to the same

segment will occur as shown in Fig. 1 . The shaded regions denote

the read cells (i − 1 , j) (numbered 1) and (i − 1 , j − ω i) (numbered

2) of PEs 1–3 for a given ω i . When column j in row i is being com-

puted on PE-0, column j + k is computed on PE-1, j + 2 k on PE-2

and so on. A total of two concurrent accesses per k -column seg-

ment would be required in order to implement a shared memory

system with this processing strategy.

If PEs worked asynchronously, that is if they started at differ-

ent times, there could be up to 3 concurrent read accesses to each

k -column segment as shown in Fig. 2 . The segment [k , 2 k] is ac-

cessed by PE-1 with two reads and by PE-2 with one read.

Since the position j − ω i is unpredictable, PEs that process any

cell j (from row i) must have access to at most ω max columns to its

left, that is the range [j − ω max , j] (from row i − 1). In the example

shown in Table 1 , only 1 column to the left was required to com-

pute the cells from row 2. On the contrary, to compute row i = 3 , a

total of 5 columns to the left of each cell (3, j), j ≥ 5 were needed.

Thus, the bigger ω i , the longer the jump. More generally, in Fig. 3

we present a graphic description of the just described dependen-

cies. In this case the PEs reading range increases until it reaches

r + 1 memories, where r = ω max /k, (r is any integer bigger than
ero). This implies that a single memory must be shared at most

mong r + 1 PEs, a fact that will be exploited in our architectural

evelopment.

In summary, three facts must be taken into account to develop

 shared-memory architecture for this DP algorithm:

1. Only the profit table row M (i −1) is needed to produce the keep-

table row K (i) .

2. PEs must work in a synchronized way to minimize concurrent

access to k -column segments which are to be implemented as

separate memory units.

3. The number of shared memories is directly related to ω max .

On the other hand, certain problem instances may require pro-

essing a profit table M that surpasses the system capacity. In gen-

ral, a system with n PEs that compute k columns will attain a pro-

essing capacity equal to C = nk . Therefore, to solve bigger prob-

ems, extra off-chip buffering can be used to split the computa-

ions. Consider a problem with a knapsack of capacity X > C and

 = 4 items. The resulting matrix M for this problem has a dimen-

ion of 4 × X as shown in Fig. 4 . The matrix can be first processed

rom top to bottom for columns 0 to C . During this phase, for each

ow i processed, their last ω i +1 words will be transferred to off-

hip storage. After all lines from the first 0 − C columns have been

rocessed, the matrix will be processed again from row 0 but now

or columns C + 1 to X . Ideally before each iteration i , the system

ould pre-fetch the corresponding ω i values automatically to com-

ute the new row columns.

With this procedure, any problem size can be treated as long

s there is enough off-chip storage space, that is, m × ω avg , where

 a v g = E[� ω] (E is the expected value function). For uniformly dis-

ributed weights ω i on the interval [0 , ω max] , ω a v g = ω max / 2 .

Summarizing, continuous data exchange with off-chip storage

s required to make the system capable of computing profit ma-

rices M that exceed the system capacity C . This solution calls for

irect Memory Access (DMA) capabilities to perform pre-fetching

nd minimize stalls.

.2. Knapsack solver architecture

The two basic techniques used in the cited works [7,16] , i.e. the

wo-line on-chip buffering and keep-table computation for back-

racking, are used in this work. We extend previous FPGA solutions

F.A. Escobar et al. / Microprocessors and Microsystems 50 (2017) 189–201 193

Fig. 5. Interleaved access on local PE. Both upper and lower memories act as rows i

or i + 1 at different times. Option (b) is chosen due to its reduced logic and routing

complexity.

b

t

a

c

t

f

m

a

3

m

m

r

s

t

m

t

t

w

o

c

t

s

I

a

p

t

a

r

o

n

m

c

F

3

d

c

t

p

c

w

o

b

o

s

a

c

w

e

s

d

l

c

ω

t

s

s

s

a

t

P

P

T

t

p

a

v

o

(

w

c

F

e

i

t

q

t

t

F

a

o

d

t

s

n

a

b

F

n

∈

c

ω

t

l

f

(

P

u
y proposing a shared-memory system (similar to the GPU archi-

ecture) with several parallel units that feature coalesced readings

nd exclusive writings. As it will be shown later in the text, this

onfiguration allows solving problems with bigger ω i compared to

raditional systolic arrays. We also propose to automate data trans-

ers through hardware-controlled DMA units that require mini-

um configuration.

Following, we present and describe the details of the proposed

rchitecture in the following order:

• Data sharing between PEs : Explains the interconnection be-

tween the system memory units and the processing logic.

• Processing architecture : Describes the main blocks composing

the knapsack solver along with their main tasks.

.2.1. Data sharing between PEs

PEs compute the row values using Eq.(4) on a k column seg-

ent. Each k -column row segment shown in Fig. 1 has two si-

ultaneous accesses: one from the local PE and one from the

 neighbouring ones. The hardware implementation of these row

egments are equivalent to dual port memories. Moreover, due to

he two-line requirement explained in Section 3.1 , two dual port

emories are needed for each k -column segment.

Consider Fig. 5 a where a possible architecture that implements

he memory access shown in Fig. 1 is presented. The PE produces

he values M (i, k) to M (i, j+ k) and writes them into its local memory

hich is the upper one at one iteration, the lower one at the next

ne and so on. The PE gets the value M (i −1 , j−ω i)
from its local k -

olumn segment or from other PE memories (Fig. 1) depending on

he value ω i .

On the contrary, the value M (i −1 , j) is always read from its local

egment (access “1” Fig. 1) thus we studied two implementations:

n Fig. 5 a two multiplexers are used to alternate between reading

nd writing addresses to each storage unit. An additional multi-

lexer is used to choose the corresponding data output from the

wo-line row segments (upper and lower memories) due to their

lternating behaviour. A second configuration presented in Fig. 5 b

educes the logic and routing complexity by using a FIFO instead

f the multiplexers. Interestingly, FIFOs are very useful since access

umbered “1” in Fig. 1 is sequential. Considering that our shared

emory structure will necessarily include several multiplexers to

hoose between many memory segments, we select configuration

ig. 5 b for our implementation.

.2.2. Processing architecture

The system’s remaining blocks have been added to maximize

ata throughput to off-chip memory whilst performing additional

omputations. Since big knapsacks (X > C) require intensive data

ransfers with main memory (Fig. 4) we included a second 2-line

rofit memory (per PE) for off-chip profit values transmission ex-
lusively. This way, data can be sent off chip by a separate module

ithout stalling PEs by accessing the same memory units.

To maximize throughput we used asymmetric port-width mem-

ries so that PEs write 32-bit values and transmission units do 64-

it readings, hence, employing half the time. In addition, the sec-

nd transfer-intensive procedure, that is the keep-table transmis-

ion from the FPGA to main memory (DDR), is also optimized with

symmetric port-width units. Notice that since columns are pro-

essed in parallel, keep-table bits are produced in a non-sequential

ay: bits 0, k , 2 k , etc. are produced at t 0 while bits 1, k + 1 , 2 k + 1 ,

tc. are produced at t 1 and so on. A special handling is required to

tore data in an ordered way to ease the transmission procedure.

To illustrate our knapsack solver architecture, we depict a block

iagram in Fig. 6 of a system with n PEs capable of solving prob-

ems with ω max = r · k, where k is the number of columns pro-

essed by each PE and r is any integer bigger than zero. Note that

 max depends on the input data and thus it changes from problem

o problem, therefore, the system must be synthesized to support a

pecific maximum weight. In this section we describe the system

tructure for a general case with r > 0 but later in Section 4 we

how results valid for two different architectures that support r = 2

nd r = 12 .

Without loss of generality, at this point k represents an arbi-

rary number of columns. In the figure, Processing Elements (PE0-

E n) produce profit values that are shared with others through the

rofit Table memories (PT0 1 -PT n 1) as previously shown in Fig. 5 b.

he second group of Profit Table memories (PT (n − r) 2 -PT n 2) are

he ones used to transfer data off-chip and they have 64-bit out-

uts to minimize transfer times. Keep-table memories (K T 0 -K T n /32)

re 32 × smaller than profit ones when using 32-bit data for profit

alues. Therefore one KT is used every 32 PEs and they use 64-bit

utputs to minimize transfer times. In this case, the keep-leave bit

Eq.(5)) sent by each PE, feeds a serial-to-parallel shift register (SR)

hose output is written to the KT memory.

Input FIFOs are added to store profit values retrieved from off-

hip storage when solving problems where X > C as shown in

ig. 4 . Other units composing the system are pipelined multiplex-

rs that receive memory segment values and select the appropriate

nput for the PE. Notice the heavily pipelined interconnect struc-

ure between every component to maximize the processing fre-

uency.

As stated in [20] , interconnection complexity and conges-

ion are key issues for shared-memory architectures. We seek

o remove these obstacles with PE synchronization: Notice from

ig. 1 (synchronized scenario) that the addresses generated by PEs

re shifted by multiples of k , that is: j + k − ω i , j + 2 k − ω i , and so

n. These addresses are however translated into local memory ad-

ress j − ω i on separated memories of size k . This way, PE1 reads

he position j − ω i from memory 0 (PT0 1), PE2 reads the same po-

ition but from memory 1 (PT1 1) and so on. It thus suffices to con-

ect the read address generated by each PE x to their memory PT x 1
nd only propagate each memory output to the remaining PEs.

To further reduce space and routing congestion, the system can

e synthesized to support a maximum weight ω max . In this case,

IFOs and transmission memories PT x 2 will be created only for the

ecessary PEs. The system in Fig. 6 is synthesized for ω max = rk (r

 positive integers), then PE 0 -PE r will have input FIFOs since they

ompute the first rk columns of the row. PE r will get the value j −
 max from column 0 from PT0 1 . Equally, only PE n − r-PE n will have

ransmission Profit Tables (PT (n − r) 2 -PT n 2) as they compute the

ast rk columns (Fig. 3). As aforementioned, this set of memories

eature 64-bit outputs and are used for data transmission only.

The system diagram also contains three Finite State Machines

FSMs), in charge of controlling data transmission, reception and

E synchronized execution. Finally, an additional 32-bit input is

sed to receive the item’s weight (ω i) and profit (p i) values, which

194 F.A. Escobar et al. / Microprocessors and Microsystems 50 (2017) 189–201

Fig. 6. Knapsack solver structure for parallel column processing with n PEs. Each processing element (PE x) writes the same data to shared memory (PT x 1) and to a trans-

mission one (PT x 2). Pipelined interconnects are represented with the smallest boxes with a numeral indicating the number of stages (x3,x5). They are used to maximize the

processing frequency.

t

t

t

t

w
are stored in a small FIFO. In this case a 32-bit wide port suffices

as they are retrieved once per row processed, thus, with sufficient

time to be pre-fetched.

In this section we described in detail the strategy to solve the

DP algorithm along with each of the units composing our architec-

ture. We now present theoretical analysis regarding its size and ex-

pected performance with respect to resource consumption require-

ments.

3.3. System size and performance analysis

To estimate the system performance we modelled the four pro-

cedures that can occur in parallel. In general, for an architecture

composed of n PEs of k size, thus capacity C = nk, we provide Eqs.

(7)–(9):

• t 1 (Eq. (7)): One C -bit keep-row needs to be stored off-chip after

an item is processed. Keep-table bits are stored as 32-bit words

and read as 64-bit values for off-chip transmission. Keep-table

size is then C /32 but at every clock cycle 2 × 32-bit words, that

is 64 bits, are read. For this reason, the whole transmission will

be done in C/ 32 / 2 = nk/ 64 clock cycles.

• t 2 (Eq. (8)): When the problem size X exceeds the system ca-

pacity C , for uniformly distributed weights, on average ω avg ·
32-bit words must be sent off-chip per item processed as ex-

plained before. Again, since PT x 2 memories use 64-bit outputs,

this takes ω avg /2 clock cycles.

• t 2 (Eq. (8)): For the same case (X > C) on average, ω avg words

must be retrieved at every iteration to fill the input FIFOs. The

same clock cycles are used.

• t 3 (Eq. (9)): Finally, the PE latency has been established to be

k + 12 clock cycles (caused by pipelining). This is the time it

takes to produce all row values.

 1 = m ·
(

C
32

)
cycles

2 · f clk

(7)

 2 = m · (ω a v g) cycles

2 · f clk

(8)

 3 = m · (k + 12) cycles

f clk

(9)

First we establish the value k . We seek to maximize the sys-

em processing capacity C so that fewer iterations are required

hen the problem capacity X is bigger than C . This is accomplished

F.A. Escobar et al. / Microprocessors and Microsystems 50 (2017) 189–201 195

Fig. 7. Time estimations at 150 MHz when the PE size is k = 512 . For ω avg ≤ 1024,

data transfers affect the system runtime after 65 PEs where transmission times sur-

pass the PE computing time. Bigger ω avg significantly increases the global execution

time due to the increment of data exchange with main memory.

t

G

s

e

s

t

p

b

c

s

E

w

p

d

y

c

a

ω

u

a

s

c

m

s

o

m

d

u

D

a

(

w

ω

f

a

o

c

c

b

t

e

R

t

R

n

i

h

R

F

ω
s

t

p

a

w

a

c

(

t

3

c

O

N

fi

w

o

t

t

F

I

6

c

F

a

m

n
hrough an optimum use of fabric memories which for Xilinx FP-

As is presented in units as small as 18 Kbit (2KB). Under this re-

triction, PE size k should be a multiple of 512 since 512 × 32-bits

quals 2KB. Any value k < 512 would result in underutilized BRAM

pace, hence, reducing the system capacity C .

The bigger the value k , the fewer the amount n of PEs required

o reach any capacity C . In addition, bigger k lead to higher row

rocessing times (k + 12 cycles). We thus assume that, under no

andwidth restrictions, the running time-per-row can be roughly

omputed as the slowest value among all parallel procedures as

hown in Eq. (10) .

xecT ime ROW

= max (t 1 , t 2 , t 3) (10)

In Fig. 7 we plot the previous equations for f clk = 150 MHz

hich is a typical working frequency on FPGAs. The comparison

resented still holds for other frequencies since Eqs. (7) –(9) are all

ivided by f clk . We also vary the value ω a v g = 0 . 5 · ω max to anal-

se its scalability. The lines show that when the system size in-

reases, the execution time is determined by t 1 since more cycles

re required to transfer the whole keep-table. For ω avg ≤ 1024 (or

 max ≤ 2048), the architecture is scalable with no timing penalties

p to about 65 PEs.

To estimate the number of PEs n that can fit on a device like

n FPGA or SoC, we compute the number of memory units con-

umed by the architecture. As a matter of fact, PEs do not perform

omplex arithmetic computations and logic resources are much

ore abundant than memory units on these devices. As it will be

hown in the following section, the system limiting factor is mem-

ry. Based on the diagram presented in Fig. 6 , we have that:

• Each PE requires a k -word FIFO and a 2 × k -word memory to

process the matrix (Fig. 5 b).

• A 2 k -word memory every 32-PEs is needed for keep-table stor-

age.

• A total of r = ω max /k input FIFOs are used.

• A total of r = ω max /k transmission memories (PTx 2) are used

transmission profit values.

More formally, this can be expressed as:

 18 Kb = n + 2 n + 2 · � n

32

� + 4 · ω max

k
(11)

The last two terms (keep-table (KT), input FIFO and PTX 2), are

oubled because memories with 64-bit ports require 2 × 18Kb

nits (on Xilinx devices). From synthesis metrics we know the AXI
ataMovers consume between 13 and 15 units for 7-series FPGAs

nd SoCs.

For instance, on a low-end Xilinx ZYNQ-7020 device, Eq.

11) states that it would be possible to synthesize n = [76 , 86] PEs

hen ω max = [1024 , 8192] . However, notice from Fig. 7 that when

 a v g = 512 and ω a v g = 1024 , there is about a 30% runtime penalty

or n = 86 compared to when n = 65 , which is the upper limit to

void timing losses due to data transfers. Considering the previ-

us analysis and following the discussion from Section 3.2 , we con-

lude that the overall runtime will be a function of (1) the system

apacity C = nk, (2) the problem instance capacity X , (3) the num-

er of items m , (4) the average item weight ω avg and (5) the data

ransfer penalty when n > 65 PEs. Formally, this quantity can be

xpressed as:

T = m ·
(

X

C

)
· max (t 1 , t 2 , t 3) (12)

Thus, considering the scenarios shown in Fig. 7 , we can model

he runtime (Eq. (12)) as:

T =

⎧ ⎨

⎩

m ·
(

X
C

)
· t 3 if n ≤ 65 , ω a v g ≤ 1024 (13)

m ·
(

X
C

)
· t 1 if n > 65 , ω a v g ≤ 1024 (14)

m ·
(

X
C

)
· t 2 if ω a v g > 1024 (15)

Taking into account Eqs. (7) –(9), the runtime for a system with

 PEs solving a knapsack instance problem of capacity X , with m

tems whose average weight is ω avg , presents the following be-

aviour:

T =

⎧ ⎨

⎩

�
(

mX
n

)
if n ≤ 65 , ω a v g ≤ 1024 (16)

�(mX) if n > 65 , ω a v g ≤ 1024 (17)

�
(

mXω a v g
n

)
if ω a v g > 1024 (18)

Compared to all the previous referenced works that include

PGA technology, our system runtime is affected by ω avg , whenever

 avg ≥ 1024 (or ω max ≥ 2048 for uniformly distributed weights) as

hown in Eq. (18). However, unlike them, this architecture is able

o solve problem instances with a wider range of ω i . Strictly com-

aring the kind of problems that can be solved by the previous

rchitectures, that is when ω max ≤ 1023 , our runtime is scalable

ith the number of PEs (Eq. (16)) up to a limit. When n > 65, it is

ffected by the system size due to the keep-table transfers to off-

hip memory (Eq. (17)). We thus propose a chained configuration

similar to a systolic array) of several knapsack solvers to reduce

he impact of data transfer times t 1 and t 2 .

.4. Chained solvers configuration

Taking into account the timing penalties after n = 65 PEs, a

hained structure can be more efficient to reach better runtimes.

n a single-solver system, the overall runtime is given by Eq. (10) .

ow consider Fig. 8 where two knapsack solvers are chained. The

rst block computes columns [0, C] and the second one [C + 1 , P] ,

here (P − C) ≤ C. This configuration is chosen whenever the cost

f transferring data from solver-1 to solver-2 is less than the run-

ime of a single solver with more than 65 PEs, that is when t 2 ≤
 1 .

Notice from Fig. 7 that t 2 ≤ t 1 will depend on the value ω avg .

or instance if ω a v g = 512 , this equation is satisfied when n = 32 .

n other words, whenever there is FPGA space to synthesize n >

5 + 32 = 97 PEs, a single-solver system should be split into a

hained configuration where every solver should have n ≤ 97 PEs.

ollowing the same reasoning, for a system solving problems with

n ω a v g = 1024 , the condition t 2 ≤ t 1 is satisfied for n = 65 . This

eans that solvers should be chained in blocks of maximum size

 = 65 + 65 = 130 PEs. Similar analysis can be done for other ω avg .

196 F.A. Escobar et al. / Microprocessors and Microsystems 50 (2017) 189–201

Fig. 8. Two knapsack solvers can be chained to overcome sequential data transfers

and improve the runtime on bigger test devices. An additional transfer port per

solver added is necessary.

Fig. 9. System block diagram using the Zynq-70 0 0 SoC from Xilinx. DataMover

transfers use the AXI Stream (AXIs) interface and are fully controlled by the ar-

chitecture.

b

d

w

s

p

p

a

a

m

4

t

c

r

s

r

P

(

P

H

D

a

i

s

g

p

t
Note however that this increment also requires an additional

access port to main memory since each additional solver must

transfer a portion of the keep-table.

According to Fig. 6 our system uses four 64-bit ports to send

and retrieve data. To see the limits of our architecture on a tar-

get device, consider the ZYNQ architecture from Xilinx [19] which

has five 64-bit ports plus two 32-bit ports. Assuming each port is

used in a single direction (read-/write-only) to reduce routing con-

gestion, only three additional solvers can be chained as there are

three free ports. For instance, if ω avg ≤ 512, we can synthesize up

to 4 chained solvers with n 1 , 2 = 97 PEs, n 3 , 4 = 48 PEs, and a to-

tal capacity C = n total · 512 = 292 · 512 = 149504 . Keep in mind that

the capacity of the two latter is half since their transfer time is

longer as they use 32-bit ports. The same straightforward analysis

can be applied to other ω avg thus we skip it.

In the following section we present the measured results af-

ter implementing the system on a ZedBoard card that includes the

ZYNQ-7020 chip.

4. Implementation results and discussion

Real world gains of our proposed knapsack solver architecture

ultimately depend on matching the functional units to the target

platform. Our solver is intended to provide power-efficient hard-

ware acceleration (co-processing) on embedded computing sys-

tems. After examining the platforms available, we selected a typi-

cal ARM-based, low-cost, low-power SoC to validate the architec-

ture functionality and measure its performance: the ZYNQ-7020

(Z-7020) SoC from Xilinx [19] . The Z-7020 is composed of a dual

core ARM A9 processor and Artix FPGA fabric. For this purpose

we utilize AVNET’s ZedBoard [21] which includes a Z-7020 chip,

512MB DDR3 and an interfacing serial port, among other periph-

erals. To connect the architecture data exchange ports with main

memory, we use two Xilinx AXI DataMovers [22] that transform

AXI stream transactions into memory mapped ones.

We present our proposed embedded system structure in Fig. 9 .

As previously mentioned, to alleviate routing congestion we use

each port on a single direction (read-only or write-only) as follows:

• CPU-to-FPGA communication is performed through the AXI

General Purpose (AXI GP0) port for IP configuration which in-

cludes knapsack size, number of items, buffer addresses to

store/retrieve information and status monitoring.

• The AXI Accelerator Coherency Port (AXI ACP) is used to re-

trieve items information (ω i , p i).

• The AXI HP0 is employed to send the keep-table to the external

memory.
• The AXI HP1 is used to retrieve profit values when the problem

capacity is bigger than the system one (X > C) as previously

explained.

• The AXI HP2 is used to send the profit values to main memory

when X > C as shown in Fig. 4 .

Notice that keep and profit matrix transfers are done in 64-bits

ut the items information (ω i , p i) is received in 32-bit words. This

ecision is taken because item’s data is continuously pre-fetched

ith enough time in advance so it does not affect the performance.

We synthesized two system configurations to analyse the knap-

ack solver performance. First, a base configuration (KP-1024) ca-

able of solving problems with ω max = 1024 was tested and com-

ared with previous works. The second one (KP-6144) takes full

dvantage of our conceptual architecture in the Z-7020 and it is

ble to treat problems with ω max = 6144 , by exploiting the shared-

emory structure proposed.

.1. KP-1024 Solver

In the first system a total of n = 70 PEs of k = 512 columns and

hus capacity C = nk = 35 , 840 were implemented on the FPGA. Ac-

ording to Fig. 3 this implies that PEs require access to at most

 + 1 = ω max /k + 1 = 3 BRAMs, or in other words, a single BRAM is

hared between 3 PEs at most. The structure presented in Fig. 6 is

eplicated from PE-0 to PE-69 but note that only the first (r = 2)

Es (PE-0, PE-1) include input FIFOs and only the last two ones

PE-68, PE-69) include transmission memories (PT68 2 , PT69 2).

Since there are 280 × 18Kb units on the Z-7020, a total of 86

Es could be synthesized according to Eq. (11) for ω max = 1024 .

owever, to operate at the maximum frequency allowed for AXI

atamovers (150 MHz), we only managed to include n = 70 PEs

nd reached a 90% BRAM utilization due to congestion and timing

ssues.

Using embedded hardware counters and the ARM processing

ystem timers we established the execution times for randomly

enerated correlated problems where:

• ω i , i ∈ { 1 , . . . m } randomly drawn in [1..1024].

• p i = ω i + 100 , i ∈ { 1 , . . . m } .
• X = { C, 2 C, 3 C, 4 C} , with C = nk = 35 , 840 .

Tests were carried on with m = [10 0 0 − 40 0 0] items due to the

latform space constrains (DDR = 512 MB). From this values we ob-

ained an execution time model using the runtime obtained with

F.A. Escobar et al. / Microprocessors and Microsystems 50 (2017) 189–201 197

Table 3

Area consumption for the main parts of the whole embedded system described in Fig. 9

on a ZYNQ-7020 device.

Block LUT LUTRAM Registers BRAM

AXI Datamover 0 1795 [3.4%] 17 [0.1%] 2631 [2.4%] 8.5 [6%]

AXI Datamover 1 1349 [2.5%] 17 [0.1%] 2087 [1.9%] 4 [2.8%]

Single PE 286 [0.1%] 0 [0%] 383 [0.3%] 1.5 [1%]

Knapsack Arch. 33,568 [63.1%] 676 [3.8%] 64,689 [60.8%] 114 [81.4%]

Full System 37,502 [70.5%] 739 [4.3%] 70,344 [66.1%] 126.5 [90.4%]

m

t

t

t

i

b

l

p

e

t

i

4

v

i

t

C

l

t

r

i

m

r

(

T

s

b

a

c

t

s

e

{

d

e

t

c

d

c

b

c

c

s

i

Fig. 10. Runtime (RT) for knapsack sizes [C − 4 C] (C = 29 , 696) with 10 0 0 items and

different ω max . Stall percentages (ST) due to transfers increase consume up to 50%

of the runtime when ω max = 6144 .

d

(

t

t

1

p

E

t

b

ω

o

e

i

b

s

o

t

t

r

t

d

a

i

C

(
 = 10 0 0 items which was 3580 μs . We present Eqs. (19) and (20)

o generalize the system execution time.

 exe =

[(
m

10 0 0

)
· � X

C
� · t 10 0 0

]
μs (19)

 exe =

[(
m

10 0 0

)
· � X

35840

� · 3850

]
μs (20)

The runtime obtained is linear with respect to the number of

tems m and increases in multiples of C . This can be understood

y considering the procedure explained in Fig. 4 . When the prob-

em size X is bigger than the system capacity C , the table must be

rocessed from top to bottom for the new columns C − 2 C, 2 C − 3 C,

tc.

In the following subsection we present a more flexible system

hat can solve problems where ω i > 1024. Comparisons with sim-

lar works are also included for further analysis.

.2. KP-6144 Solver

The aim of the second system was to solve knapsacks with ω i

alues which exceeded those handled by systolic arrays as reported

n Section 1 . Using the comparatively modest resources offered by

he Z-7020, we managed to include 58 PEs obtaining a capacity

 = nk = 29 , 696 and supporting weights up to ω max = 6144 . Un-

ike the previous case, the highest frequency reached for this sys-

em was 133 MHz which can be explained due to the increased

outing complexity. As a matter of fact, for this case each BRAM

s shared between at most r + 1 = ω max /k + 1 = 13 PEs creating a

uch denser data path network. Moreover, in this case the first

 = 12 PEs (PE-0 to PE-11) include input FIFOs and the last 12 ones

PE-45 to PE-57) have transmission memories (PT45 2 to PT57 2).

he global (post-implementation) resource consumption is pre-

ented in Table 3 and differs from the previously shown system

y less than 5%.

From Table 3 we notice that the limiting factor is BRAM avail-

bility which is approximately 90%. Apart from it, LUT and register

onsumption also limited the realization of a bigger system on our

est device. On the contrary, LUTRAM and DSP (zero usage) con-

umption is negligible.

The same tests performed in the previous case were ex-

cuted for this architecture. In addition, we used ω max =
 1024 , 2048 , 3072 , 4096 , 5120 , 6144 } to measure the performance

egradation due to longer transfers. As in the previous case our

xperimental results showed a linear relation between execution

ime and number of items m . Nonetheless, the linearity ratio in-

reased with ω avg because bigger weights imply higher off-chip

ata exchange and more stalls are produced by DDR issues (bank

onflicts). We plotted on Fig. 10 the metrics retrieved after the

enchmark execution. Dedicated counters were included to dis-

riminate stall times where the system is only transmitting or re-

eiving data.

From the plotted results we derived a model to establish the

ystem behaviour on problems any size X , with any number of

tems m and with any ω max ≤ 6144 . The system running time is
escribed by Eq. (22) which can be considered an extension of Eq.

20) :

 exe =

[(
m

10 0 0

)
· � X

C
� · t 10 0 0

]
·
[

1 +

(
0 . 35 ·

(
ω max

1024

− 1

))]
μs

(21)

 exe =

[(
m

10 0 0

)
· � X

29696

� · 4049

]

·
[

1 +

(
0 . 35 ·

(
ω max

1024

− 1

))]
μs (22)

As expected from Fig. 7 , there are no timing losses for ω max =
024 or ω a v g = 512 for uniformly distributed values, but stalls ap-

ear for bigger weights. These are modelled as the second term in

q. (22) . Contrary to Fig. 7 , when ω max = 2048 (or ω a v g = 1024),

here is a 30% time increase caused by DDR access to different

anks and/or bandwidth sharing with the CPU. In general, for

 max = [2048 , 6144] , communication tasks use between 30 − 50 %

f the global execution time. Compared to the theoretical mod-

lling presented in Section 3.3 , the implementation results differ

n about 5 − 25 % which is consistent with the penalties incurred

y DDR access. Such result can also be verified by comparing the

imilarity of Eq. (12) with Eqs. (20) and (22).

To conclude the system characterization we established the

verall bandwidth reached for every test case in Fig. 10 . We added

he total number of bits transmitted corresponding to the keep-

able and profit values (when X > C) plus (1) the number of bits

eceived due to item profits and weights and (2) the received profit

able values (when X > C). Afterwards, we divide the previous ad-

ition by the total computation time obtained on each scenario

nd we present this behaviour in Fig. 11 . Globally, a peak of 1.8GB/s

s reached using three High Performance ports and the Accelerator

oherency one, which corresponds to about half the DDR3 peak

4.26GB/s). Nevertheless, note that the maximum theoretical peak

198 F.A. Escobar et al. / Microprocessors and Microsystems 50 (2017) 189–201

Table 4

Comparison with related works and optimized software execution on the ZYNQ’s ARM and an Intel XEON PC. Speed-up values are

scaled with the slowest one, the ARM processor.

ARM (baremetal) PC FPGA [7] KP-1024 GPU [16] KP-6144

Device ARM Cortex-A9 XEON E5 VirtexII Z-7020 NVIDIA GTX-260 Z-7020

Cores 2 4 64 58 190 70

Structure Multi-core Multi-core Systolic array Shared memory Many-core Shared memory

Frequency [MHz] 666 2800 N.R. a 133 1400 150

Speed-up [Times] 1 6.5 45 108 135 150

Algorithm Bellman Bellman Recursive Bellman M.Toth Bellman

Max ω i ANY ANY 1024 6144 1024 1024

OnChip memory 256KB 10MB N.R. a 560KB 896MB 560KB

Speed-up/Core 0.5 1.625 0.703 1.86 0.71 2.14

a Not reported

Fig. 11. Computed bandwidth reached for each of the previous test scenarios. The

peak value surrounds 1.8GB/s which is about 15% less than the 2.1GB/s theoretical

peak for the proposed system at 133 MHz.

v

e

t

l

H

n

s

e

r

c

ω

d

c

p

t

g

q

t

C

t

1

o

s

u

c

a

w

a

t

t

w

u

p

t

6

s

b

s

i

o

p

ω

r

f

t

t

b

for this architecture is 2.1GB/s at 133 MHz. This value is obtained

by computing the global execution time using Eq. (10). Formally,

the theoretical bandwidth is presented in Eq. (23) .

BW max =

bitsRx PT + bitsT x PT + bitsT x KT

t exec
(23)

BW max =

ω a v g · 32 + ω a v g · 32 + nk

max (t 1 , t 2 , t 3)
(24)

BW max is maximized when the PE number is n = 65 (see Fig. 7)

and at 133 MHz is 2.1GB/s. However, this value can increase to

2.4GB/s at 150 MHz and to 3.16GB/s at 200 MHz on bigger devices

like the Z-7045. Note that saturations can also be explained due

to congestion on the DDR chip generated by concurrent reads and

writes to the same banks.

In order to benchmark these results, the system performance

is compared with previously published works for FPGA and GPU.

Using the reported information from previous works [7,16] and

Eqs. 20 –22 , the global comparison is shown in Table 4 . We also

compare our solution with our own optimized (-O3) sequential

software implementation on the ZYNQ’s ARM (baremetal) as well

as in a desktop PC (Intel Xeon E5-1607 running Linux Ubuntu

14.04). Measurements on the ARM were done using its 64-bit

counter while Xeon metrics used the clock function from the

time.h C++ library.

In the table, the execution time of the ZYNQ’s ARM processor

(single core running at 6 6 6 MHz) is used to scale the rest of the
alues as it was the slowest one. We included characteristics of

ach platform and a final efficiency measure to determine the con-

ribution of each PE or core to the global speed-up. All the so-

utions presented use the same two-line and keep-table strategy.

owever, in the GPU work authors include a compressing tech-

ique to minimize data transfers to main memory. They also use a

lightly different algorithm that reduces thread computation. How-

ver, this is not critical in our case since computation-wise, every

ow is solved in k + 12 (524 cycles).

Notice we can attain a 10% better runtime using the KP-1024

onfiguration which supports ω max = 1024 . Nonetheless, when

 max = 6144 , the KP-6144 solver performance falls to a 20% slow-

own due to profit value transfers off-chip. It was not possible to

ompare their runtime when ω max > 1024 since authors do not re-

ort experiments with that configuration.

As is the case in many parallel systems, we outperform sequen-

ial executions on CPUs. The single-core, baremetal, ARM speed is

reatly exceeded by our system which worked at a 5 × lower fre-

uency and with 58 × more parallel units. On the other hand, al-

hough we used the maximum optimization possible on the Xeon

PU (-O3), we were also 16 × faster than this architecture. In fact,

he desktop was also running an OS (Linux) hence it did not have

00% dedicated resources to the knapsack application as is the case

n GPU and FPGA solutions. The performance difference with our

ystem is explained also by noting we had 14 × more processing

nits, DMA and a custom interconnect structure to minimize on-

hip latency.

Furthermore, compared to the previous FPGA solution we

chieve a better runtime (2 . 4 − 3 . 3 ×) and support 6 × bigger

eights, thus we can solve bigger problems. Although there is

 chip technology improvement, to the best of our knowledge

here are no other recent FPGA-based results to compare to this

est case. Note that unlike the typical Systolic Array (SA) solution,

here a buffer as big as ω max is required per PE, we managed to

se a constant size (k = 512) BRAM per PE to share data through

ipelined interconnections. In other words, an equivalent SA archi-

ecture to solve the problems tested on our system would require

 × more memory per PE when ω max = 6144 .

Interestingly, the cited solutions employ slightly different ver-

ions of the DP algorithm. On one hand, the FPGA proposal [7] is

uilt over an algorithm that processes the profit table M in small

trips of a few rows and columns. Their strategy consists in solv-

ng partial problems whose results are gathered to obtain the final

utcome. Although they incur in additional iterations, it is com-

ensated by reduced off-chip transfers, in part due to their limited

 max < 1024 . On the other hand, the GPU work [16] uses an algo-

ithm where some columns are not evaluated since they are not a

easible part of the solution. Using such algorithm in our architec-

ure would imply that certain PEs will not execute their computa-

ions. However, the final row processing time will not be affected

ecause it is fixed to k + 12 = 524 cycles.

F.A. Escobar et al. / Microprocessors and Microsystems 50 (2017) 189–201 199

s

c

n

s

t

8

w

p

t

c

w

b

4

c

a

u

t

f

a

ω

t

5

a

ω

t

b

a

S

o

m

e

r

p

i

y

s

1

W

o

t

t

c

b

s

l

F

t

m

d

v

u

m

o

b

d

m

o

R

Other published works on the Knapsack 0–1 problem include a

imilar GPU implementation on a NVIDIA Tesla M2050 [18] which

laims to have improved the work of boy [16] by 20%. Unfortu-

ately since authors do not provide timing metrics it was not pos-

ible for us to contrast this work against theirs. Finally, our litera-

ure review found in [23] that 500 MIPSR14000 processors spent

0 . 12 s to process a knapsack of size C = 50 0 0 and m = 10 0 0 0

hich is by far slower than our results. Using Eq. (22) , our pro-

osed architecture would only take 4 ms.

According to the results obtained, we note a compromise be-

ween processing time and ω max due to the increase of data ex-

hange off-chip. In the following subsection we study key aspects

here the proposed system can be enhanced to increase its scala-

ility and ameliorate the global runtime.

.3. Improvements for higher scalability

As seen in Section 3.3 and in the results presented here, the

urrent system is constrained by two factors: BRAM availability

nd data transmission times. The first one can be easily overcome

sing a bigger device (Z-7045, Virtex-7, etc). For the second case

here are different options to enhance the system runtime.

• According to Fig. 7 , when ω avg ≤ 1024, the system can have

up to n = 65 PEs without any data transmission penalties. On

the contrary, when these values increase, they affect the global

runtime and become a limitation in terms of runtime scalabil-

ity. Since there are a lot of redundant data to transfer in both

the keep and profit table, the strategy to decrease these times

would be to transfer only non-redundant values. For instance,

for the keep-table it is possible to verify that for any column

j < ω i , the keep bit will be zero since the item does not fit

(thus it is not kept). Moreover, keep-table bits tend to stabi-

lize in the value ‘1’ to the right of the table hence generat-

ing several redundant transfers. This fact was exploited by boy

[16] to reach the reported execution time which is very close to

ours with no compression. However, it required pre-arranging

data in decreasing order p i / ω i . Using such a strategy, theoreti-

cally our system could decrease the time t 1 employed for keep-

table transmission and more PEs could be included without any

stalls.

• The profit values transfer can also increase the global runtime

specially when ω avg > 1024 (Fig. 7). As in the keep-table case,

these values tend to repeat themselves to the right of the ta-

ble (specially for big ω i values), generating redundant data ex-

changes. For such a case, a run-length encoding algorithm can

be used before transmission to compress the words to transfer.

The systems presented are just two examples of the many dif-

erent configurations that can be constructed using the proposed

rchitecture. As a matter of fact, problems with weight values

 max � = 1024 and ω max � = 6144 can also be solved by synthesizing

he system with the desired parameters.

. Conclusions and future work

In this paper we have presented a parametrizable and scal-

ble system to process the DP matrix for the Knapsack 0/1 with

 max ≥ 1024 using parallel operators that share memory. The ob-

ained runtime is proportional to the amount of operators and can

e configured in different ways to include more processing units

nd overcome data transfer limitations due to sequentiality.

The proposed architecture can be synthesized in any FPGA or

oC device or even used on dedicated chips. We focus on mem-

ry oriented enhancements by using DMA access, asymmetric-port

emories and a deeply pipelined interconnections. To check our
xpectations experimentally, we synthesized two system configu-

ations on a ZYNQ-7020 chip: The first one (KP-1024) can solve

roblems with ω max = 1024 , runs at 150 MHz, includes 70 process-

ng elements (PEs) and achieves 23 × speed-up versus a sequential

et optimized execution on an Intel Xeon CPU. It also attains 10%

peed-up versus a previously published GPU work.

In the second system (KP-6144) we included 58 PEs that run at

33 MHz and we reached a 16 × speed up versus the Xeon PC.

e were also 1 . 4 × faster than previous reported FPGA works and

nly 0 . 2 × slower than previous GPU solutions. In addition, we at-

ain 1.8GB/s bandwidth on the ZYNQ-7020 chip by using three of

he 64-bit high performance ports for off-chip memory exchange

lose to the theoretical limit (2.1GB/s). This architecture is capa-

le of solving problems with ω max = 6144 , that is, 6 × bigger than

ystolic array counterparts.

In this work we show that by maximizing on-chip memory uti-

ization, using small, replicable and synchronized processing units,

PGAs can provide an equivalent (or even higher) performance

han GPUs at much lower frequencies (thus with less power).

We presented a way of handling designs with unpredictable

emory accesses by dedicating routing resources specifically for

ata propagation. On one hand we have used synchronization to

irtually share a single memory block into several PEs without the

se of arbiters. On the other, we profited from heavy pipelines to

aximize the system operating frequency and reduce the effects

f its interconnection complexity.

In the future we aim to explore data width reduction using 16-

it values and data and compression techniques to decrease re-

undant data transmissions that currently affect the system perfor-

ance. Moreover we intend to integrate our system with memory

ptimized algorithms.

eferences

[1] R. Bittner, E. Ruf, A. Forin, Direct gpu/fpga communication via pci express,

Cluster Comput. (2013) 1–10, doi: 10.1007/s10586- 013- 0280- 9 .
[2] G. Ballard , Avoiding Communication in Dense Linear Algebra, EECS Depart-

ment, University of California, Berkeley, 2013 Ph.D. thesis .
[3] A . Grama , A . Gupta , G. Karypis , V. Kumar , Chapter 12: Dynamic Programming,

in: Addison-Wesley (Ed.), Introduction to Parallel Computing, 2nd Ed., Pear-

son, 2003, pp. 515–532 .
[4] G. huey Chen , M. sheng Chern , J.H. Jang , Pipeline architectures for dynamic

programming algorithms, Parallel Comput. 13 (1990) 111–117 .
[5] R. Andonov , P. Quinton , S.V. Rajopadhye , D. Wilde , A shift registered-based

systolic array for the unbounded knapsack problem, Parallel Process. Lett. 5
(1995) 251–262 .

[6] R. Andonov , S. Rajopadhye , Knapsack on vlsi: from algorithm to optimal circuit,

Parallel Distrib. Syst. IEEE Trans. 8 (6) (1997) 545–561 .
[7] K. Nibbelink , S. Rajopadhye , R. McConnell , 0/1 knapsack on hardware: A com-

plete solution, in: Application -specific Systems, Architectures and Processors,
2007. ASAP. IEEE International Conf. on, 2007, pp. 160–167 .

[8] An efficient parallel algorithm for solving the knapsack problem on hyper-
cubes, J. Parallel Distrib. Comput. 64 (11) (2004) 1213–1222 .

[9] B. Sahoo , S. Padhy , A reconfigurable accelerator for parallel longest common

protein subsequence algorithm, in: Advance Computing Conference, 2009. IACC
2009. IEEE International, 2009, pp. 260–265 .

[10] M.N. Isa , M.I. Ahmad , S.A.Z. Murad , R.C. Ismail , K. Benkrid , Biological sequence
alignments: A review of hardware accelerators and a new pe computing strat-

egy, in: Region 10 Symposium, 2014 IEEE, 2014, pp. 39–44 .
[11] X. Chang , F.A. Escobar , C. Valderrama , V. Robert , Optimization strategies for

smith-waterman algorithm on fpga platform, in: Computational Science and

Computational Intelligence (CSCI), 2014 International Conference on, 1, 2014,
pp. 9–14 .

[12] U. Bondhugula , A. Devulapalli , J. Fernando , P. Wyckoff, P. Sadayappan , Parallel
fpga-based all-pairs shortest-paths in a directed graph, in: Parallel and Dis-

tributed Processing Symposium, 2006. IPDPS 2006. 20th International, 2006a,
p. 10 .

[13] U. Bondhugula , A. Devulapalli , J. Dinan , J. Fernando , P. Wyckoff, E. Stahlberg ,
P. Sadayappan , Hardware/software integration for fpga-based all-pairs short-

est-paths, in: Field-Programmable Custom Computing Machines, 2006. FCCM

’06. 14th Annual IEEE Symposium on, 2006b, pp. 152–164 .
[14] A. Jacob , J. Buhler , R.D. Chamberlain , Accelerating nussinov rna secondary

structure prediction with systolic arrays on fpgas, in: Application-Specific Sys-
tems, Architectures and Processors, 2008. ASAP 2008. International Conference

on, 2008, pp. 191–196 .

http://dx.doi.org/10.1007/s10586-013-0280-9
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0002
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0002
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0003
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0003
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0003
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0003
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0003
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0004
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0004
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0004
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0004
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0005
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0005
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0005
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0005
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0005
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0006
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0006
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0006
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0007
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0007
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0007
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0007
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0008
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0009
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0009
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0009
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0010
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0010
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0010
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0010
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0010
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0010
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0011
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0011
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0011
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0011
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0011
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0012
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0012
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0012
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0012
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0012
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0012
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0013
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0013
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0013
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0013
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0013
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0013
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0013
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0013
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0014
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0014
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0014
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0014

200 F.A. Escobar et al. / Microprocessors and Microsystems 50 (2017) 189–201

[

[15] A.C. Jacob , J.D. Buhler , R.D. Chamberlain , Rapid rna folding: Analysis and ac-
celeration of the zuker recurrence, in: Field-Programmable Custom Computing

Machines (FCCM), 2010 18th IEEE Annual International Symposium on, 2010,
pp. 87–94 .

[16] Solving knapsack problems on gpu, Comput. Oper. Res. 39 (1) (2012) 42–47 .
Special Issue on Knapsack Problems and Applications.

[17] D.M. Quan , L.T. Yang , Solving 0/1 knapsack problem for light communication
sla-based workflow mapping using cuda, in: Computational Science and Engi-

neering, 2009. CSE ’09. International Conference on, 1, 2009, pp. 194–200 .

[18] B. Suri , U.D. Bordoloi , P. Eles , A scalable gpu-based approach to accelerate the
multiple-choice knapsack problem, in: 2012 Design, Automation Test in Europe

Conference Exhibition (DATE), 2012, pp. 1126–1129 .
[19] Xilinx, Zynq-70 0 0 all programmable soc overview, 2014, URL http://www.

xilinx.com/support/documentation/data _ sheets/ds190- Zynq- 70 0 0-Overview.
pdf .
[20] T.D. Linh, T. de Souza-Daw, T.M. Hoang, N.T. Dzung, Parallel random access
memory in a shared memory architecture, in: Communications and Electron-

ics (ICCE), 2014 IEEE Fifth International Conference on, 2014, pp. 364–369,
doi: 10.1109/CCE.2014.6916731 .

[21] AVNET, Zedboard: Zynq evaluation and development hardware user’s
guide, 2014, URL http://zedboard.org/sites/default/files/documentations/

ZedBoard _ HW _ UG _ v2 _ 2.pdf .
22] Xilinx, Axi datamover v5.1. logicore ip product guide, 2015, URL http:

//www.xilinx.com/support/documentation/ip _ documentation/axi _ datamover/

v5 _ 1/pg022 _ axi _ datamover.pdf .
[23] D.E. Baz , M. Elkihel , Load balancing methods and parallel dynamic program-

ming algorithm using dominance technique applied to the 01 knapsack prob-
lem, J. Parallel Distrib. Comput. 65 (1) (2005) 74–84 .

http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0015
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0015
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0015
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0015
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0016
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0016
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0017
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0017
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0017
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0018
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0018
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0018
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0018
http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
http://dx.doi.org/10.1109/CCE.2014.6916731
http://zedboard.org/sites/default/files/documentations/ZedBoard_HW_UG_v2_2.pdf
http://www.xilinx.com/support/documentation/ip_documentation/axi_datamover/v5_1/pg022_axi_datamover.pdf
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0020
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0020
http://refhub.elsevier.com/S0141-9331(16)30225-3/sbref0020

F.A. Escobar et al. / Microprocessors and Microsystems 50 (2017) 189–201 201

July the 30st 1985. He obtained his BSc in Electronics Engineering from University of
Sc in Elctronics and Computer engineering from the same university. In June 2016 he

used in High Performance Computing (HPC) using FPGAs. Currently he works as a post-
arch interests include digital design, embedded systems, hardware verification and HPC
Fernando A. Escobar was born in Bogotá, Colombia on
Los Andes (Bogotá) in 2008. In 2011 he received his M

obtained his PhD at UMONS, Belgium, with a research foc
doctoral researcher at CentraleSupelec in France. His rese

architectures.

	Scalable shared-memory architecture to solve the Knapsack 0/1 problem
	1 Introduction
	2 DP algorithm for the Knapsack 0/1 problem
	3 Proposed architecture
	3.1 Global data dependency
	3.2 Knapsack solver architecture
	3.2.1 Data sharing between PEs
	3.2.2 Processing architecture

	3.3 System size and performance analysis
	3.4 Chained solvers configuration

	4 Implementation results and discussion
	4.1 KP-1024 Solver
	4.2 KP-6144 Solver
	4.3 Improvements for higher scalability

	5 Conclusions and future work
	 References

