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Abstract
In recent years, 3D skeleton-based action recognition has become a popular tech-

nique of action classification, thanks to development and availability of cheaper

depth sensors. State-of-the-art methods generally represent motion sequences as high

dimensional trajectories followed by a time-warping technique. These trajectories

are used to train a classification model to predict the classes of new sequences.

Despite the success of these techniques in some fields, particularly when the data

used are captured by a high-precision motion capture system, action classification is

still less successful than the field of image classification, especially with the advance

of deep learning. In this paper, we present a new representation of motion sequences

(Seq2Im—for sequence to image), which projects motion sequences onto the RGB

domain. The 3D coordinates of joints are mapped to red, green, and blue values, and

therefore, action classification becomes an image classification problem and algo-

rithms for this field can be applied. This representation was tested with basic image

classification algorithms (namely, support vector machine, k-nearest neighbor, and

random forests) in addition to convolutional neural networks. Evaluation of the pro-

posed method on standard 3D human action recognition datasets shows its potential

for action recognition and outperforms most of the state-of-the-art results.
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1 INTRODUCTION

Engineers have long dreamed of machines that understand human actions. In the early days of artificial intelligence, researchers

analyzed human actions from video sequences. Despite significant efforts to tackle this problem,1 it is still an unresolved chal-

lenge. Recently, this field has rapidly advanced due to the development of depth sensors. 3D human activity analysis2 has

then attracted more interest than ever before, as the articulation of a human body skeleton can be estimated in real time with

cheap cameras. Late skeletal-based approaches to recognize human activities were quite successful, thanks to their view- and

illumination-invariant representations. Typical examples include a pairwise representation of 3D joints in a lie group,3 a his-

togram of oriented displacements to describe 2D trajectories from 3D trajectories,4 and a histogram of 3D joint locations as

representation postures.5

Despite the interesting results of such methods, compared to action recognition from video sequences, this field still needs to be

improved. Recently, deep neural networks and particularly convolutional neural networks (CNNs) have shown their great power

in learning patterns from images and videos.6–10 Unfortunately, CNNs only capture local spatial patterns in data. In this paper, we
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FIGURE 1 Similarity between the XYZ and RGB spaces

present a new, yet simple, representation of 3D skeletal sequences for human action recognition. To the best of our knowledge,

this representation has not been used before and can advance this field because efficient image classification methods can be

applied. To transform a sequence into an image, 3D data are normalized and then mapped into the RGB space. As a result, the

high dimensionality of motion capture (mocap) sequences is reduced to 2D color images. In this paper, we use these images to

train regular image classifiers, such as support vector machine (SVM), k-nearest neighbor (KNN), and random forest (RF), to

see the efficiency of this representation. We also try our representation with CNNs. Most of the available datasets are small and

not suited for deep learning. However, we try fine-tuning existing models trained on ImageNet7,8,11 to exploit learned features.

The rest of this paper is organized as follows. A quick overview of the related works will be presented in Section 2. Section 3

presents the details of the proposed method, and the evaluation of this method on three datasets with analysis of the results are

presented in Section 4. Section 5 concludes this paper with future works.

2 RELATED WORKS

Many works have exploited RGB-D (Red, Green, Blue and Depth) data for human action recognition. The review of Aggarwal

et al.2 summarizes the major techniques. In this section, we briefly review works related to our method, including particularly

skeleton-based 3D action representations.

Zhang et al.12 used the Kinect sensor to track a human body skeleton and detect falling events. They used angles between

every pair of selected joints in addition to head–floor distance (the distance between the head joint and the floor plane) as

features to train a set of SVM-based classifiers. Sempena et al.13 built a feature vector from joint orientations along time series

and applied dynamic time warping (DTW) to recognize some daily human actions. Joint orientation is a good feature because

it is body invariant. However, it is less useful in the case of noisy data like the one provided by depth sensors. Bloom et al.14

extracted a set of pose-based features from 3D joint positions, such as position difference between different joints, velocity,

velocity magnitude, angular velocity, and joint angles. These features are used to recognize human gaming actions. Laraba

et al.15 followed a similar representation. They extracted a set of geometric features from different 3D joint positions, such as

the distance between the right ankle and the plane defined by the pelvis, left hip and ankle joints, and so forth. These features are

used to train hidden Markov models (HMMs) for recognition of traditional dance steps. These last works focused on 3D joint

trajectories to recognize human actions. Vemulapalli et al.3 proposed a different representation that explicitly models the 3D

geometric relationships between different body parts. A 3D skeleton was represented as a point in a lie group. A human action

was represented then as a curve in a lie group. The classification was then performed using a combination of DTW, SVM, and

Fourier temporal pyramid representation.

With the late advances in the field of deep learning, some researchers attempted to apply these methods to recognize human

actions. Huang et al.16 incorporated the lie group structure into a deep network architecture to learn more lie group features for

3D action recognition. Bao17 proposed an action recognition framework based on conceptors of skeleton joint trajectories. Con-

ceptors are neurodynamical organizations based on recurrent neural networks (RNNs) proposed by Jaeger.18 Softmax regression

is then used to recognize trajectory codes.

3 PROPOSED METHOD

The RGB space is an alternative domain to explore data by mapping XYZ coordinates into RGB components (Figure 1). Figure 2

illustrates the different steps to transform a 3D skeleton sequence into an RGB image.
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FIGURE 2 Illustration of the proposed RGB representation of a 3D skeleton sequence. From a 3D skeletal sequence, we extract X, Y , and Z
matrices, and we normalize them between 0 and 255 to extract red, green, and blue channels of a color image

3.1 3D sequence to RGB image transformation
Let S(V(f)) be a sequence of body skeletons, where V(f) = v1(f), … , vN(f) denotes a set of body joint locations, N is the number

of joints, and f is the index of the frame. For each body joint i = 1, … ,N, vi = (xi, yi, zi),∀(xi, yi, zi) ∈ R3. The sequence

S(V(f)) can be represented in a matrix form as follows:

S(V( f )) =

( x1(1)y1(1)z1(1) · · · x1(F)y1(F)z1(F)
⋮ ⋱ ⋮

xN(1)yN(1)zN(1) · · · xN(F)yN(F)zN(F)

)
,

where F is the number of frames.

In this work, we map the values of S(V(f)) onto the RGB domain by normalizing all values between 0 and 255. First, we

extract the X, Y, and Z matrices from S(V(f)) and process each one separately. S(V(f)) = (X,Y,Z), where

X =

( x1(1) · · · x1(F)
⋮ ⋱ ⋮

xN(1) · · · xN(F)

)
,

Y =

( y1(1) · · · y1(F)
⋮ ⋱ ⋮

yN(1) · · · yN(F)

)
,

Z =

( z1(1) · · · z1(F)
⋮ ⋱ ⋮

zN(1) · · · zN(F)

)
.

Then, for each xi(f), yi(f), zi(f), i = 1, … ,N, f = 1, … ,F, we compute ri(f), gi(f), bi(f), respectively the red, green, and blue

values as follows: ⎧⎪⎨⎪⎩
ri( f ) = 255 ∗ xi( f )−min(X)

min(X)−max(X)

gi( f ) = 255 ∗ yi( f )−min(Y)
min(Y)−max(Y)

bi( f ) = 255 ∗ zi( f )−min(Z)
min(Z)−max(Z)

.

(1)

The minimum and maximum values of each matrix (X, Y, and Z) are min(X), min(Y), min(Z) and max(X), max(Y), max(Z),

respectively. We obtain the new matrices as follows:

R =

( r1(1) · · · r1(F)
⋮ ⋱ ⋮

rN(1) · · · rN(F)

)
,

G =

( g1(1) · · · g1(F)
⋮ ⋱ ⋮

gN(1) · · · gN(F)

)
,

B =

( b1(1) · · · b1(F)
⋮ ⋱ ⋮

bN(1) · · · bN(F)

)
,

where (ri, gi, bi) ∈ [0, 255]3.

From these matrices, we create a single RGB image, where each matrix represents a channel in the final image. Figure 3 shows

a transformation of a random mocap sequence of one joint and 20 frames (Figure 3a) into a 1 ∗ 20 pixel RGB image (Figure 3c).

The length of a mocap sequence can be, in most cases, very large compared to the number of joints (or markers). The resulting

image, in this case, is very narrow. For example, a Kinect V2 sequence of 5 s long will result an image of 25 ∗ 150 pixels
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(a)

(b)

(c)

FIGURE 3 Transformation of motion capture sequence into an RGB image: (a) X, Y , and Z coordinates of random sequence of one joint; (b)

normalized of the sequence between 0 and 255; (c) reconstructed 1 ∗ 20 color image

approximately. In the case of a high-precision mocap system such as Vicon* or Qualisys,† which runs at a frame rate of 180

fps for instance, the width of the resulting image will be 900 pixels. Moreover, the sequences that will be used for classification

have different dimensions, depending on the number of frames. This is hard for the classifier to handle because the lengths of

the feature vectors will be different. We resize the images using a bicubic interpolation19 to have a fixed size of 256 ∗ 256 for all

sequences. Figure 4a shows a result of transforming a sequence of 380 frames long and 38 markers. The resulting image is very

blurry. Enlarging an image makes more loss than shrinking it.19 To avoid this loss, we first create a square image by repeating

each row (relative to joints) m times, where m is calculated as follows:

m = floor
(F

N

)
. (2)

In this example, m = 10. Each row is repeated 10 times, which gives a 380 ∗ 380 square image; then, the interpolation is

applied to fix the size to 255 ∗ 255. Figure 4b shows the new constructed image, which has higher quality and smoother edges.

*https://www.vicon.com/
†https://www.qualisys.com/

https://www.vicon.com/
https://www.qualisys.com/
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(a) (b)

FIGURE 4 Reconstructed image after a bicubic interpolation: (a) without preprocessing; (b) with preprocessing

(a) (b)

(c)

FIGURE 5 Reconstructed images from kicking sequences: (a) front kick with the left leg; (b) front kicks with the right leg; (c) illustration of the

left kick

Figure 5 shows two examples of transformed sequences from the HDM05 dataset.20 The images represent two kicking mocap

sequences: a front kick using the left leg and two front kicks using the right leg. Original mocap data, recorded using a Vicon

mocap system, contains 3D positions of 31 markers. Each distinctive row represents a sequence of one marker, where the order

of markers is shown in Figure 6.

First, to perform a front kick using the left foot in martial arts, the person starts from standing in a combative stance with the

left leg behind the other leg and hands are in a guard position (step 1 in Figure 5c). The left knee is then raised so that the thigh

is parallel to the ground, or higher, in some cases (step 2 in Figure 5c). The third step is to kick the leg, snapping it forward

quickly (step 3 in Figure 5c), and the last step is to unsnap the leg so that the thigh is once again parallel, or higher, to the ground

and then setting it back on the ground. It is a symmetric gesture, where the step 3 in Figure 5c is the gesture of symmetry.

The two images in Figure 5a and 5b are self-explanatory. The first one is a front kick with the left leg.

When the person raises the left leg, the red, and particularly the green, components of rows 3–6, relative to the left leg markers,

increase. Furthermore, the red and green components of rows 18–24, relative to the left arm markers, increase, although they

decrease for the right arm markers (rows 26–31). This happens because the person raises the left arm and moves forward at the

same time while he/she does the opposite for the right arm. We can also clearly see the symmetry of the gesture in the image.

The second image represents two consecutive front kicks with the right leg. The previous description also applies to this image.

This representation is powerful to have an overview of a mocap sequence without complicated processing techniques.
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FIGURE 6 Schematic representation of 31-joint skeleton from HDM05 dataset

The generated images are used to train different classifiers to see the efficiency of this representation. In the next section,

we compare our representation, applied on three public datasets and trained with four classifiers, to some results obtained from

related works.

4 EXPERIMENTS

The proposed method was evaluated on three public benchmark datasets: the Microsoft Research (MSR) Action 3D dataset,21

the Hochschule der Medien (HDM05) dataset,20 and the large Nanyang Technological University (NTU) RGB+D dataset.22

Note that these datasets are composed of everyday human actions (e.g., drinking, jumping, and calling) in addition to sports

actions (e.g., kicking, punching, and dancing). Moreover, the datasets were recorded with different mocap systems of different

precisions and frame rates. The proposed representation was tested with four classification algorithms: multiclass SVM, KNN,

RF, and CNN.

Raw 256 × 256 images were used to train each classifier. In the first three classifiers, a matrix was generated for the entire

training dataset. Each image was represented by a row in the matrix. The number of columns was 256 ∗ 256 = 65, 536. Thus,

the dimension of the training matrix was N ∗ 65, 536 (N is the number of images in the training dataset). MATLAB software‡

was used to run different experiments without changing default parameters.

In the case of CNN classifier, we focus on a popular architecture, namely, GoogleNet,8 which was designed in the context of

“Large Scale Visual Challenge” for the ImageNet.11 This architecture is very deep and wide with 22 layers. We analyze the

performances of this architecture on the three datasets by training the models from scratch in one case, and then by fine-tuning

already trained models (i.e., trained in the ImageNet dataset) using transfer learning. Each experiment runs for a total of 50

epochs, where one epoch is defined as the number of training iterations in which the particular neural network has completed

a full pass of the whole training set. The choice of 50 epochs was made based on the empirical observation that, in all of

these experiments, the learning always converged within 50 epochs. All the experiments were conducted using the open-source

NVIDIA Digits,§ which is an interactive deep learning development tool that integrates Berkeley’s Caffe framework¶ with a

friendly web-based graphical user interface.

‡MATLAB, the Language of Technical Computing: https://nl.mathworks.com/products/matlab.html
§The NVIDIA Deep Learning GPU Training System (DIGITS): https://github.com/NVIDIA/DIGITS
¶Caffe Deep Learning Framework: http://caffe.berkeleyvision.org/

https://nl.mathworks.com/products/matlab.html
https://github.com/NVIDIA/DIGITS
http://caffe.berkeleyvision.org/
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TABLE 1 Recognition accuracy with and without fine-tuning for three datasets

Dataset Without fine-tuning With fine-tuning

MSR Action 3D 63.97% 92.18%

HDM05 53.30% 83.33%

NTU RGB+D (cross-subject) 66.83% 74.27%

We evaluate our results by computing the accuracy (Acc), where we compare the predicted classes (yi
predicted

) with the ground

truth labels (yi
labels

). It is the number of correct predictions divided by the total number of testing samples (M).

E
(

yi
predicted

, yi
labels

)
=

{
1, yi

predicted
= yi

labels

0, otherwise
(3)

Acc = 100

M

M∑
i=1

E
(

yi
predicted

, yi
labels

)
(4)

From Table 1, we see that the recognition accuracy increased by almost 30% for MSR Action 3D and HDM05 after fine-tuning.

Even though the size of the training set of the NTU RGB+D is large enough to train a deep network (around 500 samples per

class), accuracy increased by more than 7% after fine-tuning.

4.1 MSR Action 3D dataset
MSR Action 3D21 is one of the earliest datasets recorded using a depth sensor. The samples of this dataset were limited to depth

sequences. Later, body joint information was added. There are 20 action classes performed by 10 subjects. Each action was

performed twice to three times by each subject. In our experiment, we focused only on the skeletal data. There are in total 557

skeletal sequences, where each sequence has 20 joint positions. In this dataset, we use the cross-subject experiment, where the

sequences of five subjects are used in training and the rest are used for testing. Table 2 compares our results with some of the

state-of-the-art skeleton-based action recognition approaches. The proposed representation used with CNN shows its superiority

over other techniques with an accuracy of 92.18%. Besides, our RGB representation used with KNN and RF achieves acceptable

results compared to other techniques.

TABLE 2 Comparison of the proposed method with existing methods

on the MSR Action 2D dataset

Method Accuracy

Sequence of Most Informative Joints23 29.41%

Recurrent neural network24 42.50%

Dynamic time warping25 54.00%

Hidden Markov models26 63.00%

Multiple instance learning27 65.70%

EigenJoints + NBNN28 72.00%

Structured Streaming Skeletons29 81.70%

DBN + HMM30 82.00%

Conceptors of Skeleton Joint Trajectories17 83.40%

Seq2Im + SVM 57.44%

Seq2Im + KNN 72.55%

Seq2Im + RF 77.94%

Seq2Im + CNN (fine-tuning) 92.18%

Note. NBNN = Naïve-Bayes-nearest-neighbor; DBN = deep belief network;

HMM = hidden Markov model; Seq2Im = sequence to image; SVM = support vec-

tor machine; KNN = k-nearest neighbor; RF = random forest; CNN = convolutional

neural network.



8 of 11 LARABA ET AL.

TABLE 3 Comparison of the proposed method with existing methods

on the HDM05 dataset

Method Accuracy

SPDNet31 61.45%

SE3 70.26%

SO32 71.31%

LieNet16 75.78%

Seq2Im + SVM 70.70%

Seq2Im + KNN 66.82%

Seq2Im + RF 80.62%
Seq2Im + CNN (fine-tuning) 83.33%

Note. SPDNet= symmetric positive definite network; SE= special Euclidean group;

SO = special Orthogonal group; Seq2Im = sequence to image; SVM = support vec-

tor machine; KNN = k-nearest neighbor; RF = random forest; CNN = convolutional

neural network.

4.2 HDM05 dataset
HDM0520 contains 2,343 sequences of 130 classes executed by various actors. Each action was performed 10 to 50 times by

each actor. The dataset was recorded using a Vicon mocap system, where 31 reflective markers were placed on the actors’

bodies. The 3D positions of these markers are provided.

Following Huang et al.,31 we conducted 10 evaluations, each of which selects randomly half of the sequences for training and

the other half for testing. However, due to the long time it takes to train CNNs, we only ran one experiment for this case. Table 3

lists the average accuracy of the proposed method and the results obtained in the previous works. Our representation achieved

the highest results in the case of RF classifier and CNNs.

4.3 NTU RGB+D dataset
To the best of our knowledge, the NTU RGB+D dataset22 is currently the largest action recognition dataset. It was collected

using three Kinect V2 sensors at the same time covering three views (i.e., −45◦
, 0◦

, 45◦) and contains more than 56,000 action

sequences. A total of 60 different action classes are performed by 40 subjects aging between 10 and 35 years. In addition to

depth maps, RGB frames, and infrared (IR) sequences, information of 25 3D joints is available. This dataset is challenging

because of the large intraclass and viewpoint variations; however, due to its large scale, it is highly suitable for deep learning.

For evaluation, this dataset has two standard testing protocols. One is cross-subject, for which half of the subjects are used for

training and the rest are used for testing. The other one is a cross-view test, for which two views are used for training and the

other one is used for testing. Due to the large size of this dataset, the tool we used (MATLAB) was not able to process the data.

We focused instead on classification using CNN. We compared our method, with and without fine-tuning, to the state-of-the-art

TABLE 4 Comparison of the proposed method with existing methods on the NTU

RGB+D dataset

Method Cross-subject Cross-view

HBRNN33 59.07% 63.97%

Deep RNN22 56.29% 64.09%

Deep LSTM22 60.69% 67.29%

PA-LSTM22 62.93% 70.27%

LieNet16 61.37% 66.95%

ST-LSTM34 69.20% 77.70%
Seq2Im + CNN (no fine-tuning) 66.83% 66.31%

Seq2Im + CNN (fine-tuning) 74.27% 75.74%

Note. HBRNN = hierarchically bidirectional recurrent neural networks; RNN = recurrent neural

network; LSTM = long short-term memory; PA-LSTM = part-aware long short-term memory;

ST-LSTM = spatio-temporal LSTM; Seq2Im = sequence to image; CNN = convolutional neural

network.
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methods. Results are summarized in Table 4. Our method has high accuracy results and overcame other techniques in the case of

cross-subject evaluation. In the case of cross-view evaluation, our method did not obtain the highest accuracy, but the results were

competitive. Most of the confusions were related to the pairs of actions “reading” and “writing,” “playing with phone/tablet”

and “typing on keyboard,” “pat on back of other person” and “point finger at the other person,” and “giving something to other

person” and “touch other person’s pocket.” These pairs are very similar and could not be handled correctly by our algorithm.

5 CONCLUSION AND FUTURE WORKS

This paper addresses the problem of skeleton-based human action recognition. An effective, yet simple, method is proposed

to represent a skeleton sequence into a 2D-RGB image. Such a representation allows us to use powerful image classifiers

to recognize human actions, particularly CNNs. Furthermore, this imagelike representation of 3D skeleton sequences allows

fine-tuning the existing CNN models without training a whole deep network from scratch. The experimental results on three

public datasets have shown the efficiency of this representation even without extracting complex features. It should be noted

that these three datasets were recorded with different mocap systems, from depth sensors (such as the two versions of Microsoft

Kinect) to a high-precision mocap system (such as Vicon), which makes our method independent of the quality of data and the

number of joints (makers). This results from the fact that image-processing techniques deal generally with noise. Moreover,

they are scale and translation invariant, particularly in the case of CNNs. In future works, we aim to improve our representation

and extend the method to online action recognition.
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