
Adaptation Procedure for HMM-Based Sensor-Dependent Gesture Recognition
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Abstract

In this paper, we address the problem of sensor-dependent ges-
ture recognition thanks to adaptation procedure. Capturing human
movements by a motion capture (MoCap) system provides very ac-
curate data. Unfortunately, such systems are very expensive, un-
like recent depth sensors, like Microsoft Kinect, which are much
cheaper, but provide lower data quality. Hidden Markov Models
(HMMs) are widely used in gesture recognition to learn the dy-
namics of each gesture class. However, models trained on one type
of data can only be used on data of the same type. For this rea-
son, we propose to adapt HMMs trained on Mocap data to a small
set of Kinect data using Maximum Likelihood Linear Regression
(MLLR) to recognize gestures captured by a Kinect. Results show
that using this method, we can achieve a recognition average accu-
racy of 84.48% using a small set of adaptation data while, using the
same set to create new models, we obtain only 72.41% of accuracy.
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1 Introduction

Traditional dances are one of the Intangible Cultural Heritage (ICH)
forms that are at risk of being forgotten with time, and thus of being
lost if they are not safeguarded and transmitted to next generations.
The advance of motion capture technology can play an important
role for the safeguarding of this form of ICH allowing the capture
and analysis of expert movements. The dance sequence recorded
can eventually be used in serious games to allow a student to learn
the dance by imitation and comparing his performance to the ex-
pert. Gesture recognition strongly depends on data quality and on
the features extracted from the data. Sophisticated Motion Capture
(Mocap) systems like Qualisys1 and Vicon2 provide very accurate
3D skeletal data. However, these systems are marker-based and
very expensive. The recent introduction of low-cost depth sensors,
particularly the Microsoft Kinect 3 allow tracking of 3D joints po-
sitions in real time at a lower price, but this comes at the expense of
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1Qualisys Motion Capture System: http://www.qualisys.com/
2Vicon Motion Capture System: http://www.vicon.com/
3Kinect for Windows - Microsoft: https://www.microsoft.com/en-

us/kinectforwindows/

data quality.
The present work is inscribed within the framework of the i-
Treasures European project 4 which addresses the use of new tech-
nologies for the preservation of ICH using Information and Com-
munication Technology (ICT), and more specifically of the dance
use case. One of the problems when considering gesture data cap-
ture and analysis is the availability of the expert who, generally, is
only available for limited time, where at the same time, accurate
data is important to better analyze the gestures and can be obtained
using high precision motion capture systems. On the other hand,
the user that will try to learn these dance steps by imitating the
expert will be captured using less accurate motion capture system
because of their lower price. In this case, data configuration and
quality is different. In addition, using different sensors at the same
time for capturing can create interference and add noise to captured
data. Our aim is to take benefit of high precision motion capture
system, when available, to capture expert gestures with high pre-
cision, then with a small amount of expert data recorded using a
low-cost sensor (it can be few gestures, recorded at the end of the
capturing session), we can create a system able to recognize ges-
tures recorded by this low-cost sensor. We extract first meaningful
features from the skeletal data instead of using only 3D locations
or angles of the joints in order to improve the accuracy of the ges-
ture recognizer, and then we use the features, extracted from the
precise data to train HMMs. Finally, we adapt these models using
a small amount of data captured by a different sensor using Maxi-
mum Likelihood Linear Regression (MLLR) technique. To test our
system, a database has been recorded using both Qualisys Mocap
system and a Kinect V2 to record an expert of traditional dance
from the Walloon region (Belgium). The rest of the paper is or-
ganized as follows: Section 2 briefly reviews existing literature. In
Section 3 we present the recorded database. Section 4 describes our
feature vector extraction and Section 5 presents some details about
HMM modeling and MLLR adaptation techniques used. Experi-
mental evaluation of our system is presented in Section 6 followed
by conclusions and future works in Section 7.

2 Related works

To our knowledge, model adaptation for sensor-dependent gesture
recognition is not found in literature. For this reason, we will hence
present here in brief, some existing works about skeleton-based ges-
ture recognition in general.
In skeleton-based gesture recognition, three main issues are to be
addressed. Data capture, extraction and representation of meaning-
ful features and modeling and learning of different gesture classes.
Generally, having precise 3D joint positions is important for ges-
ture recognition. Sophisticated motion capture (Mocap) systems
like Qualisys provide very accurate 3D joint positions. Such sys-
tems are marker-based and very expensive. Recently, cost-effective
motion capture systems and particularly the Kinect have been used
for motion capturing and produced reasonable results despite the
noisy data provided.
For feature extraction, 3D single joints or combinations of joints
have been used in [Hussein et al. 2013] and [Lv and Nevatia 2006]
for training, while in [Raptis et al. 2011], authors have used a joint
angles representation of the skeleton to recognize dance gestures.
In [Pazhoumand-Dar et al. 2015], in addition to sequences of joint
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angles, relative positions of joint pairs have been used for action
recognition. In [Müller et al. 2009], the authors have addressed
the problem of action recognition using motion templates. Patterns
from a sequence of animation have been extracted to recognize ac-
tions. [Vemulapalli et al. 2014] have used instead, a body part-
based skeletal representation for action recognition. Relationships
between different body parts are explicitly modeled using rotations
and translations in 3D space.
In the training stage, many algorithms have been used. Trajectories
of 3D locations were modeled in [Hussein et al. 2013] using tem-
poral hierarchy of covariance descriptors. Dynamic Time Warping
(DTW) has been used for sequence alignment and a threshold ap-
proach for classification of Macedonian folk dance gestures in [Pohl
and Hadjakos 2010]. DTW has also been used in [Vemulapalli
et al. 2014], combined with Fourier Temporal Pyramid represen-
tation and linear SVM. [Pazhoumand-Dar et al. 2015] classified ex-
tracted features using a similarity function based on the non-metric,
Longest Common Subsequences (LCSS) algorithm.
Up to now, gesture recognition methods are designed only for Mo-
Cap data alone or low cost sensor data alone and models from one
system’s data cannot be used for another system because of the dif-
ference of data quality, and also, representation of this data.
We find in literature a similar problem addressed in speech recog-
nition. Models being trained on a single speaker’s provide poor
recognition accuracy for any other user. To address this problem,
some transformation-based adaptation techniques have been used
to help reducing acoustic mismatch between training and testing
conditions. A method of speaker-dependent adaptation for contin-
uous density Hidden Markov Models (HMMs) named Maximum
Likelihood Linear Regression (MLLR) has been used in [Legget-
ter and Woodland 1995a] and [Leggetter and Woodland 1995b] to
improve the modeling of a new speaker by updating the parameters
of well trained HMM. [Acero et al. 2000] used a method based on
truncated Vector Taylor Series to estimate the parameters of HMM
matched to a noisy environment given a HMM trained with a clean
data. This can be projected on gesture recognition problem where
in some cases, we have data provided by a high precision Mocap
system for training, but for recognition in the final application, a
different sensor will be used. This is also the case when interesting
databases are available, recorded using a sensor that is not available
for tests.

3 Database

To investigate the effect of the quality of the recorded data on the
process of recognition and the possibility of adaptation, a database
have been recorded under the framework of the i-Treasures project.
In this database, we have captured the gestures of an expert of a tra-
ditional dance from the Walloon region of Belgium. This dance is a
bit complicated because it contains different styles that are not easy
to distinguish. The data was recorded using Qualisys Mocap system
including eleven high-speed infrared cameras, capturing 68 mark-
ers placed on the body (Figure 3.b) at a frame rate of 177 fps and
the second version of Microsoft Kinect, which provides a skeleton
of 25 joints (Figure 3.c) with a frame rate of 30 fps. The database
contains also a video, synchronized with Qualisys and Kinect data,
which will be used as a reference. Different types of steps have
been recorded. In the present study, we have focused on four ba-
sic steps: Maclotte Base (MB), repeated 42 time, Passe-Pied Base
(PB), repeated 30 times, Passe-Pied Fleuret (PF) repeated 20 times
and the Backward step which accompanies all other steps, repeated
92 times in the database. Each gesture has a duration of 1.3 to 1.7
seconds. The database contains also non-expert gestures: 22 oc-
currences of Maclotte Base and 30 occurrences of Passe-Pied Base.
The database has been manually annotated using MotionMachine
[Tillmanne and d’Alessandro 2015], a framework that allows fast

prototyping of motion features based on skeletal data.

Figure 1: a) The expert performing the gesture. b) The skeleton
reconstructed from Qualisys Data. c) The Skeleton reconstructed
from the Kinect data

4 Feature Vector Extraction

In this section, we investigate different features that are meaningful
in the case of Walloon dance.
The general scheme proposed in this paper is illustrated in Figure
2. Instead of using only 3D positions of joints to train our models,
other features have been extracted with the help of MotionMachine.

Figure 2: general scheme of the proposed method

4.1 Skeletal Representation

Before proceeding to feature extraction, a preprocessing step is
needed. A skeleton of twenty joints is formed from different mark-
ers positions (Figure 3, left). In Walloon dance steps, arms move-
ments are not important so we decided to exclude their correspond-
ing joints and we keep only twelve joints of head, torso and legs (In
red color in Figure 3, right).

Once 3D positions of joints are captured, a skeleton normalization
is performed where we take one of the skeletons in a sequence as a
reference and normalize all other skeletons in that sequence such as
part lengths are equal to the corresponding lengths of the reference
skeleton (Figure 3). This normalization makes the skeleton scale
invariant.

To make the skeletal data invariant to absolute locations of the per-
son in the scene, we center the skeleton using the pelvis joint as the
origin (Figure 4).
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Figure 3: Normalization of a Skeleton at time t relative to reference
skeleton

Figure 4: Centering skeleton to joint Pelvis

4.2 Feature Extraction

In addition to centered 3D coordinates of the selected joints, two
sets of features are extracted. The first set is named relational fea-
tures. It is a subset of features proposed by Meinard Müller [Müller
2007]. Relational features represent geometric relations between
different body joints. The extracted relational features are:

• RF1 distance between the right ankle joint and the plane de-
fined by the pelvis, left hip and left ankle joints (Figure 5.a)

• RF2 distance between the left ankle joint and the plane fixed
in the right ankle and normal to the vector (right hip, left hip)
(Figure 5.b)

• RF3 angle between the vectors (Right Knee, Right Hip) and
(Right Knee, Right Ankle).

• RF4 angle between the vectors (Left knee, Left Hip) and
(Left Knee, Left Ankle).

• RF5 angle between the vectors (Neck, Pelvis) and (Right
Hip, Right Knee). (Angle between right leg and body spine)

• RF6 angle between the vectors (Neck, Pelvis) and (Left Hip,
Left Knee). (Angle between Left leg and body spine)

• RF7 angle between the vector (Neck, Pelvis) and the vector
perpendicular to ground (verticalness of body spine)

The second set of features is named Relative Motion (RM) between
joints [Pazhoumand-Dar et al. 2015]. If we consider two joints (jx)
and (jy), it represents the sequence of distances between each other
(Figure 6) during an action (t = 1 : e).

RM(jx, jy) = {eq(f t
jx , f

t
jy )}t=e

t=1 (1)

Where eq is the Euclidean distance, f t
jx and f t

jy are the positions
of (jx) and (jy) at time t.

Figure 5: Relational Features RF1 and RF2

Figure 6: Relative Motion between joints

Only Relative Motion between lower body joints have been used in
our case. The size of the final feature vector is 76 (30 centered 3D
coordinates, 7 relational features and 39 relative motion features),
which is the input to the learning algorithm.

Figure 7 illustrates the relative features RF1 and RF2 during two
instances of a Maclotte-Base step using Qualisys data (green and
red) and Kinect data (blue and black). One can observe the clear
presence of noise in the Kinect data features.

5 HMM Modeling and Adaptation

Once features are extracted, we use them to train one HMM for
each gesture class. Our approach for HMM Model training and
adaptation is inspired by a procedure already developed for speech
recognition and based on functions implemented for speech in the
Hidden Markov Model Toolkit (HTK), publicly available on HTK
website [HTK ].

In our case, we consider the situation of having a large database
from a high precision Mocap system (Qualisys) and a small set of
Kinect data and where, for recognition, only Kinect data will be
available.

The first stage of the procedure is to train models using features
extracted from precise data captured by a Qualisys system, and in
the second stage, these models will be adapted using only a small
set of adaptation data provided by the Kinect.

5.1 Hidden Markov Model (HMM)

Hidden Markov Models (HMMs) are forms of statistical Markov
Models. A HMM λ of N states and M observations is defined
by three parameters. A transition matrix A = aij where {aij} is
the probability of transition from state qi to state qj , Output prob-
ability Matrix B = {bj(O)} where bj(k) is the probability of qj
generating the observation ok and an initial state distribution vector
Π = {πi}.
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Figure 7: RF1 and RF2 during two instances of a Maclotte Base
step

The Figure 8 shows a left-right HMM structure with no skips where
the only possible state transitions at each time are either to stay in
the same state or to go to the next state. A similar structure is used
in our work.

Figure 8: A simple three-states left-right HMM with no skip

To perform recognition using HMMs, two parts are needed: train-
ing a model and computing the probability that an observation se-
quenceO is generated by the model λ. The objective of the training
step is to optimize the parameters (A,B, π) of a HMM λ and can
be achieved using the standard Baum-Welch algorithm.

More information about Hidden Markov Models can be found in
[Rabiner 1989].

5.2 MLLR Adaptation for Sensor-Dependent gesture
recognition

The approach we follow in order to be able to use models initially
trained on sufficient amount of data from a given Mocap system
to recognize gestures recorded with another Mocap system consists
on training sensor-dependent HMMs thanks to an adaptation pro-
cedure. This approach is inspired by speech recognition where a
speaker-independent system is adapted to improve the modeling of
a new speaker by updating the HMM parameters using Maximum
Likelihood Linear Regression (MLLR) algorithm. Statistics from

the available adaptation data is used to compute a linear regression
based transformation for the mean vectors. The transformation ma-
trices are computed to maximize the likelihood of the adaptation
data. In other words, MLLR estimates a set of linear transforma-
tions W for the means component of a HMM so that these trans-
formations shift the means component in the initial system in a way
that each state in the HMM system is more likely to generate the
adaptation data. More details about MLLR approach can be found
in [Leggetter and Woodland 1995a]. The functions necessary for
MLLR adaptation are implemented in the HTK Toolkit.

6 Experimental results

In this section, we present and evaluate our sensor-dependent ges-
ture recognition system. The idea is to create a HMM for each of
the gestures that we want to recognize using Qualisys data, to adapt
these models using the available Kinect data and finally to recog-
nize gestures captured by the Kinect.
The number of HMM states was empirically determined by using a
given set of features to train models using Qualisys and then Kinect
data, then perform recognition using data from the same sensor,
changing the number of states in each case from 3 to 15. We found
that models with 11 states give the best recognition rate.
In subsection 6.1, we test the recognition on the selected features
and compare them to the use of normalized 3D positions alone and
in subsection 6.2, we present the use of model adaptation when only
little amount of training data is available to create new models while
there is enough training data from a different sensor.
In our case, we train a HMM for each of the four captured gestures.
Each gesture has a duration of 1300 to 1700 ms.

6.1 Evaluation of the selected features

To evaluate our features, we compare the results of classification ac-
curacy of each feature set (Normalized 3D positions - P, Relational
Feature – RF, that represents geometric relations between different
body joints and Relative Motion – RM, that represents the distances
between different joints during an action) using the Qualisys and the
Kinect datasets.

For each dataset, we train HMMs on 70% of data use the remaining
data as test set. Accuracy results are shown in Figure 9. We no-
tice first that classification using Qualisys data is better in all cases,
which shows the importance of data quality for recognition. Also,
the combination of the presented feature sets shows better results
than using Centered 3D positions alone.

Figure 9: Comparison of accuracy between different feature sets

The Passe-Pied Base (PB) and the Passe-Pied Fleuret (PF) steps are
very similar since they are variations of the same step, and analyz-
ing the confusion matrices (Figure 10) of the last case (combination
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of all features), we see that the classifier fails sometimes to distin-
guish between them. If we consider both steps as one, the classifier
succeeds to get 100% of accuracy using Qualisys data and 98.28%
using Kinect data.

At the end, we decided to use for rest of experiments, the combi-
nation of these features instead of using normalized 3D positions
alone.

Figure 10: Confusion matrices. a) using Qualisys data. b) using
Kinect data.

6.2 Adaptation effect on gesture classification

In this section, we study the MLLR adaptation of models initially
trained on a sufficient amount of Qualisys data to recognize ges-
tures using a Kinect, where only a small amount of Kinect data is
available, but not enough to create new models. To verify if adapta-
tion is more is better that training new models from a small amount
of data, we have trained HMM Models using reduced amount of
Kinect data (4 repetitions of Maclotte Base, 4 repetitions of Passe-
Pied Base, 4 repetitions of Passe-Pied Fleuret and 12 repetitions of
the Backward step), then we used the same data to adapt models
trained previously using the Qualisys data. We tested recognition
of gestures recorded by a Kinect using both models, before and af-
ter adaptation Figure 11 shows first, that recognition using trained
models from Qualisys data with no adaptation has an average accu-
racy of 75.86% and is even better than using Kinect data alone for
training (72.41%). Second, when we adapt Qualisys data models
using a small set of Kinect data, the average accuracy has improved
to 84.48%.

Figure 11: Comparison of recognition accuracy before and after
adaptation

Figure 12 shows the confusion matrices for the case of using a small
set of the Kinect data for training and using the same set for adap-
tation. For the first case, there were many confusions between MB
and AR and between PB and PF. 7 MB steps out of 14 were recog-
nized as AR steps and 5 PB steps out of 8 were recognized as PF
steps. However, we have less confusions when we use the adapted

models, 4 MB steps are still considered as AR, and only one PB is
recognized as PF.

Figure 12: Confusion matrices. a) training and training using
Kinect data. b) use of adaptation technique

7 Conclusion

In this paper, we have presented a set of features to be used in step
recognition in dance from the Walloon region and an adaptation
method of HMM models for sensor-dependent gesture recognition
system using a small set of adaptation data. We have first repre-
sented a human skeleton by different features extracted from 3D
locations of the joints. Using this representation we have modeled
expert gestures, captured by a high precision Mocap system, using
Hidden Markov Models and then adapted these models to a small
set of data captured using a Kinect sensor, using Maximum Likeli-
hood Linear Regression (MLLR) technique. We showed that when
a small set of adaptation data is available, adaptation results are bet-
ter than creating new models from this set of data.
As perspectives, we plan to test our method on different databases,
we plan also to extract more meaningful features and automatically
select them for each use case. We are also exploring different adap-
tation methods to improve our models, and automatic sensor-to-
sensor adaptation applied to new gestures.
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