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ABSTRACT
In the recent domain of motion capture and analysis, a new chal-
lenge has been the automatic evaluation of skill in gestures. Many
methods have been proposed for gesture evaluation based on fea-
ture extraction, skill modeling and gesture comparison. However,
movements can be influenced by many factors other than skill,
including morphology. All these influences make comparison be-
tween gestures of different people difficult. In this paper, we propose
a new method based on constrained linear regression to remove
the influence of morphology on motion features. To validate our
method, we compare it to a baseline method, consisting in a scaling
of the skeleton data [14]. Results show that our method outper-
forms previous work both in removing morphology influence on
feature, and in improving feature relation with skill. For a set of
326 features extracted from two datasets of Taijiquan gestures, we
show that morphology influence is completely removed for 100% of
the features using our method, whereas the baseline method only
allows limited reduction of morphology influence for 74% of the
features. Our method improves correlation with skill as assessed
by an expert by 0.04 (p < 0.0001) in average for 98% of the features,
against 0.001 (p = 0.68) for 58% of the features with the baseline
method. Our method is also more general than previous work, as it
could potentially be applied with any interindividual factor on any
feature.

CCS CONCEPTS
• Information systems → Content analysis and feature se-
lection; • Theory of computation → Data modeling; • Com-
puting methodologies → Motion capture; Factor analysis;
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1 INTRODUCTION
The development of motion capture technologies has unleashed
research possibilities in many areas, including robotics, medicine,
human computer interaction, games and education. One of the
outstanding challenges is the analysis, recognition and more par-
ticularly evaluation of skill. Gesture evaluation is essential in many
disciplines, and has already been explored in different areas, includ-
ing sports [9, 13, 16], music [4], dance [1, 6], rehabilitation [12],
driving [17] and even surgery [8]. Regardless of the discipline, the
typical approach to evaluating a gesture can be divided in four main
steps:

• First, motion data must be captured. A database is recorded,
generally including several individuals with different skill
levels, for instance professionals or teachers and learners.

• Secondly, from these rawmotion data, relevant features must
be extracted. These features aim to represent movement in
an efficient way regarding the targeted task. They can be
derived for instance from body kinematics, kinetics, and
frequency analysis. They can also represent higher-level
relations based on prior domain-knowledge and semantic in-
terpretation, such as expressivity, biomechanics, ergonomics
or functionality [2, 7, 10, 11].

• Thirdly, features can be analyzed for selection of the best
feature set for the targeted task. A common technique for
multi-factor dependent data such as a motion capture data-
base is factor analysis [15]. The goal of this step is to reduce
the global amount of information contained in the database
to keep the most relevant and reliable information regarding
the targeted task. For instance, this step enables to discard
unwanted bias, such as morphology, age or expression, while
keeping features more dependent on the targeted factor, i.e.
skill.

• Finally, the selected features are used to evaluate the gesture.
A score can be directly derived from the features and provide
an index of the quality of the gesture [12]. Another way is
to compute a similarity measure between the features and a
model [4, 9].

The problem of feature selection is that it removes information
contained in non-selected features. In a motion capture database,
many factors may influence features, including psychological, social
or physiological factors. The goal of this work is to reduce thehttps://doi.org/10.1145/3077981.3078037
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influence of some of these factors on the data, to improve the
information related to the targeted factor. Morphology is a factor
that has a direct influence on motion, making comparisons between
gestures of different individuals difficult. To alleviate this issue,
different motion data representations have been proposed. Sie et
al. [14] proposed a simple skeleton scaling method, by placing
the coordinate system on a reference node of the body (i.e. on
the pelvis), and dividing all nodes coordinates by the torso height.
Features can then be extracted on these scaled data. This method
was later used by Morel et al. [9] for evaluation of tennis serve. It
has the advantage to be very simple, but has many limitations. It is
based on the simplistic hypothesis that the movement of a short
individual should be an homothety of those of a tall individual.
However, weight, height of the center of mass, shoulder width,
and hips width, among others, may also influence movement in
different ways, including inertia, balance, speed and power. These
characteristics will be altered by this basic scaling.

Kulpa et al. [5] developed amorphology-invariant representation
of motion, originally developed for animation, where they defined
imbs with variable lengths. Each limb (legs and arms) is defined by
the position of its end-effector, and by a plane where the middle
joint (knee and elbow) is located. The spine is represented as a
spline. This representation allows reconstruction of the movement
to fit specific constraints. However, it does not fully store the actual
movement, and it modifies it to fit these constraints. It is relevant
for animation and motion retrieval, but is not suited for movement
analysis, which can require details of the movement that are lost in
this representation.

Müller et al. [10] proposed a specific feature set based on 40 logi-
cal relational features, originally developed for whole-body motion
classification and retrieval. E.g., these relations may correspond to
a foot being raised, a hand being in front of the body, legs being
crossed, etc. The boundaries for the logical decision are defined
by different body segment lengths such as the humerus length or
the shoulders width, so that each feature is scaled by a custom
pre-defined body characteristic. However, these features do not
represent the whole movement of the body, and they do not allow
extraction of higher-level features.

In this paper, we propose a method to remove the influence of
morphology in a motion capture database right after the feature
extraction step, i.e. before the feature selection step. Our method
estimates and removes the correlation between a feature and a
morphology factor, independently of raw spatial skeleton data. It
allows avoidance of direct manipulation of spatial skeleton data
that alters body characteristics. The estimated relationship is based
on linear regression of individual means and standard deviations
of features with morphological factors, which is more general than
basic individual scaling. Our method can be seen as a tuning of
each feature, to extract more relevant information for a targeted
task, before the feature selection step. Our method is also more
general than previous work, as it could theoretically be used with
any factor and on any feature, whereas related work is limited to
the morphology factor.

2 METHOD
The objective of the proposed method is to remove the component
of the data distribution resulting from the influence of interindivid-
ual factors such as morphology. In order to assess the influence of a
morphological factor on a feature, we identify the best linear com-
bination of this factor to approximate the statistics of the feature.
For that purpose, constrained linear regression was used.

In a database of F features, containingN samples from I individu-
als, for each feature f ∈ {1, ..., F } and each individual i ∈ {1, ..., I },
let:

xf (n),n ∈ {1, ...,N }
xf ,i (ni ),ni ∈ {1, ...,Ni }
xf = {xf ,i , ...,xf , I }

denote the samples (xf ) of a feature f and subsamples (xf ,i ) of a
feature f and an individual i . Let:

µf (i) =mean(xf ,i )
σf (i) = std(xf ,i )

denote the mean (µf ) and standard deviation (σf ) of a feature f for
individual i , and letm(i) denote the morphological factor of indi-
vidual i . For each statistic of the feature (µf ,σf ), a linear regression
is performed with the regressorm, i.e. the morphological factor:

µpred,f = β0µ, f + β1µ, f ·m (1)
σpred,f = β0σ , f + β1σ , f ·m (2)

where β0µ, f and β1µ, f (resp. β0σ , f and β1σ , f ) are the intercept and
slope of the linear regression of individual means µf (resp. individ-
ual standard deviations σf ).

To ensure positive predictions for the standard deviation (σpred,f ),
the slope parameter (β1σ , f ) is constrained so that:

α = arдmini (σpred,f (i))

σpred,f (α) > 0 ⇔ β1σ , f >
−β0σ , f
m(α)

A negative standard deviation would lead to physically meaningless
data.

The feature engineering method is then based on the hypothesis
that the prediction of the linear regression is the part of the statistic
(µf or σf ) that can be fully described by the factor, while the residue
is the uncorrelated part of the statistic, i.e. the part that is not
influenced by the morphological factor. The residues (µr es,f and
σr es,f ) of the predictions are expressed as:

µr es,f (i) = µf (i) − µpred,f (i) (3)

σr es,f (i) =
σf (i)

σpred,f (i)
(4)

The following equation is then used to compute a version of the
feature xf corresponding to these residual statistics, where the
influence of morphology has been removed:

xr es,f ,i =
(xf ,i − µf (i))

σf (i)
· σr es,f (i) + µr es,f (i) (5)

xr es,f = {xr es,f ,1, ...,xr es,f , I } (6)
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Figure 1: Interindividual factor independent feature extrac-
tion. Graph a: feature and individual statistics (µf and σf ).
Graph b: individual morphology. Graphs c and d: linear re-
gression of means and standard deviations. The blue curve
is the regressand (µf or σf ), the red curve is the prediction
(Eq. 1 and 2), and the green curve is the residue (Eq. 3 and 4).
Graph e: residual feature extraction (Eq. 5).

where xf ,i and xr es,f ,i are the subsamples of xf and xr es,f corre-
sponding to individual i . Equation 5 can be interpreted as follows:
for each individual, the subsamples xf ,i are first standardized to
remove their initial mean (µf (i)) and standard deviation (σf (i)),
and then scaled and translated so that their mean and standard
deviation correspond to µr es,f (i) and σr es,f (i).

Figure 1 illustrates the extraction of such residues, on an example
dataset consisting of six individuals (I = 6). This number was arbi-
trarily used for illustration, but in real situation, more individuals
are required to avoid overfitting of the linear regression. The first
graph (a) displays an example feature, where data are parameterized
with individual means and standard deviations (µf and σf ). The
second graph (b) shows the morphological factorm, representing
for instance the size of each individual. The third and fourth graphs
(c and d) respectively show the results of linear regression of µf
and σf with the regressorm. The blue curve is the regressand (µf
or σf ), the red curve is the prediction (Eq. 1 and 2), and the green

curve is the residue (Eq. 3 and 4). The final graph (e) then displays
the result of the residual feature extraction, where individual means
(µr es,f ) and standard deviations (σr es,f ) are now independent of
the morphology (Eq. 5).

When the residual features are extracted, a correlation analysis
can be performed with the factor of interest, e.g. individual skill.
As skill is supposedly not correlated to morphology, we can expect
that the process will not decrease the correlation between features
and skill, but on the contrary, could increase it.

If the features were normalized before the process, they should be
normalized again afterwards, as global mean and standard deviation
may have changed.

In the remainder of the paper, our method will be referred to as
Morphology Independent Residual Feature Extraction or MIRFE.

3 RESULTS
An analysis was conducted on several feature sets extracted from
a MoCap database of Taijiquan gestures to validate our method.
The results are compared to the baseline method, i.e. skeleton data
scaling [14]. In this baseline method, all global joint coordinates
are divided by the size of the individual before feature extraction.
Section 3.1 presents the datasets used for the validation. The fea-
ture sets extracted from the data are then described in Section 3.2.
Section 3.3 explains how the morphological factor is represented
for the analysis. Finally, Section 3.4 presents a correlation analysis
of features statistics (µf and σf ) with morphology and skill factors.

3.1 Datasets
The database used to validate our work is composed of 12 individu-
als (8 females and 4 males, 50± 14 years, 168± 12.5 cm, 69.4± 16 kg,
11 ± 11 years of practice) performing different Taijiquan gestures.
Their movements were recorded at a framerate of 179fps, with a
Qualisys optical motion capture system. A total of 68 passive mark-
ers were placed on the entire body. All the data were processed to
recover missing data due to occlusions, then filtered with a low-pass
Butterworth filter with a cutoff frequency of 20Hz. Positions and
orientations of 21 anatomical joints were then extracted from the
trajectories of the surface markers with the Visual3D™ software.
The whole database was then manually segmented.

Two different datasets were extracted from the database:

• Dataset 1: the first dataset is composed of 168 renditions of
the gesture ‘heel kick’ (10 to 16 renditions per individual).

• Dataset 2: the second dataset is composed of 168 renditions
of the gesture ‘brush knee and twist step’ (10 to 16 renditions
per individual).

These two gestures were chosen among the database as they are
highly distinctive and focus on different body parts. The first gesture
(heel kick, see Figure 2) requires balance and synchronicity, and is
mainly focused on the lower-body. The second gesture (brush knee
and twist step, see Figure 3) is more focused on robustness and force
of the whole body, as the individual pushes a virtual adversary with
his hand, by transmitting his force from feet to hands.

The global skill of each individual of the database was annotated
by three Taijiquan professors, and the skill factor was defined as
the average of their annotations.
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Figure 2: Heek Kick. [3]

Figure 3: Brush knee and twist step. [3]

3.2 Features
Six different sets of features were extracted from the datasets and
tested with the proposed method:

• Global joints trajectories were directly used as a set com-
posed of 63 features, for 21 joints along three dimensions
(F = 63).

• Local joints trajectories were extracted from global trajec-
tories and orientations. The local trajectory is relative to a
local coordinate system placed and oriented according to the
parent joint (F = 63).

• Global joints trajectories were expressed in a coordinate
system stuck on the pelvis. This process allows extraction
of more relevant data for comparison between occurrences
and individuals, but does not account for the whole body
travelling on the capture scene. This feature set is called
‘Stuck Global’ or ‘S. Global’ in the rest of the paper (F = 60,
as pelvis is the origin).

• Local joints trajectories were extracted from stuck global
trajectories. This feature set is called ‘Stuck Local’ or ‘S.
Local’ in the rest of the paper (F = 60).

• Müller’s feature set [10] consists of 40 features describing
geometric relations between body parts that are used origi-
nally for motion retrieval. This set of higher-level features
is supposed to represent global movements of the full body
(F = 40).

• Taijiquan ergonomic features inspired by the work of the
ergonomist and Taijiquan teacher Eric Caulier [3] were de-
veloped as part of the present research, and are the object

of a future publication. This feature set is composed of 36
features describing the stability of the body, alignments and
optimal angles of body joints, as well as limbs kinematics.
These features are inspired fromTaijiquan fundamental rules,
but can be generalized to other forms of movements, such
as music, sport, or working gestures (F = 36).

The first four sets are low-level features, representing body joints
trajectories over time, and are supposedly very dependent to mor-
phology. On the opposite, the last two sets are higher-level features,
based on general a-priori knowledge of human movement, and
describing more functional movement characteristics. Still, most
Müller features should be strongly influenced by morphology as
they are just geometric relations between body parts.

3.3 Factor definition
Morphology can be defined with numerous variables tightly linked
together, such as the size or weight of each body segment. To extract
the most relevant variable to represent morphology, we performed
a PCA on several variables, including individual segment lengths
(foot, calf, leg, trunk, arm, forearm, hand and head), hips width,
shoulders width, size from feet to head, and size from feet to fingers.

As the first principal component alone explained 76% of the data
variance, and as it was almost equivalent to the size from feet to
fingers (R = 0.9932,p = 1.15 × 10−15), we decided to keep the size
from feet to fingers as the morphology factor. The use of only one
variable to represent morphology was done to limit the complexity
of the regression model, and thus the risks of overfitting due to
the small number of individuals (I = 12). This choice is further
discussed in Section 4.

3.4 Correlation Analysis
3.4.1 Dataset1 (heel kick).

Morphology. For each feature, absolute correlations (|R | ∈ [0−1],
simply called correlation in the following) of individual statistics
(µf and σf ) with morphology are computed, without process, after
scaling, after MIRFE process, and after combination of scaling and
MIRFE process. Figure 4 (resp. Figure 5) shows boxplots represent-
ing these correlations for µf (resp. σf ), for each feature set. We
can observe that each feature set seems globally quite influenced
by morphology (see first graph, Figure 4 and Figure 5), especially
low-level features (global and local trajectories), and Müller fea-
tures. On the other hand, Taijiquan ergonomic rules seem to be
somewhat intrinsically less influenced by morphology. We can see
in Figure 4 and Figure 5 that the MIRFE method almost removes all
influence of morphology on feature means and standard deviations.
It is clearly not the case with the scaling method, which merely
decreases morphology influence on features means. Table 1 shows
the mean reduction of correlations of features individual statistics
with morphology, for each method. Scaling method reduces this
morphology correlation by 0.124 for means, and 0.078 for standard
deviations. As a comparison, MIRFE removes almost all the present
correlation: −0.356 for means and −0.328 for standard deviations.
Combination of both methods give the same results as MIRFE alone.
We can conclude that MIRFE removes morphology influence much
better than scaling for any feature set.
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Figure 4: Correlation analysis of feature means with mor-
phology factor: 1. without process; 2. after scaling; 3. after
MIRFE; 4. after scaling and MIRFE. (dataset 1)

Figure 5: Correlation analysis of feature standard deviations
with morphology factor: 1. without process; 2. after scaling;
3. after MIRFE; 4. after scaling and MIRFE. (dataset 1)

Skill. For each feature, correlations of individual statistics (µf
and σf ) with skill are computed, without process, after scaling, after
MIRFE process, and after combination of scaling andMIRFE process.
Figure 6 (resp. Figure 7) shows boxplots representing these correla-
tions for µf (resp. σf ) without process for each feature set, and the

Table 1: Mean reduction of feature individual statistics-
morphology correlations for all features (dataset 1). ∗ : p <
0.05, ∗∗ : p < 0.01, ∗ ∗ ∗ : p < 0.001

Means Standard deviations
Scaling -0.124*** -0.078***
MIRFE -0.356*** -0.328***

Scaling + MIRFE -0.356*** -0.328***

Table 2: Mean improvement of individual mean-skill corre-
lation for each feature set (dataset 1)

Global Local S. Global S. Local Müller Taijiquan
Scaling 0.03** 0.02* 0.015* 0.02* 0.02** 0.03 (p=0.08)
MIRFE 0.045*** 0.04*** 0.05*** 0.04*** 0.07*** 0.03***
Scaling +
MIRFE

0.035*** 0.03*** 0.035*** 0.03** 0.045*** 0.04*

Table 3: Ratio of positive (>-0.005) improvement of individ-
ual mean-skill correlation for each feature set (dataset 1)

Global Local S. Global S. Local Müller Taijiquan
Scaling 0.86 0.62 0.67 0.57 0.77 0.83
MIRFE 0.98 0.98 0.98 0.97 1 0.98
Scaling +
MIRFE

0.87 0.70 0.82 0.67 0.82 0.85

Table 4: Mean improvement of feature individual statistics-
skill correlations for all features (dataset 1)

Means Standard deviations
Scaling 0.022*** 0.003(p=0.47)
MIRFE 0.044*** 0.027***

Table 5: Ratio of positive (>-0.005) improvement of fea-
ture individual statistics-skill correlations for all features
(dataset 1)

Means Standard deviations
Scaling 0.71 0.65
MIRFE 0.98 0.75

improvement1 of these correlations after each method. All feature
sets seem globally correlated to skill without any process (see first
graph, Figure 6 and Figure 7). Local trajectory means seem generally
less correlated to skill2. For both means and standard deviations,
and for all feature sets, scaling seems to increase correlation with
skill for some features, but it also seems to decrease it for others
(see second graph, Figure 6 and Figure 7). Table 2 shows the mean
improvement of correlations between individual features means
and skill. Except for Taijiquan feature set, MIRFE alone improves
the relation to skill better than scaling, and better than combination
of both methods. The best improvement of mean-skill correlations
1The improvement of correlation is simply defined as the difference of these correla-
tions without process and after process for each of the compared methods.
2Note that it does not mean that local trajectories are less relevant than global trajec-
tories to evaluate skill. Global trajectories may have globally higher correlations with
skill, but there are probably more redundancies among them.
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Table 6: Mean reduction of feature individual statistics-
morphology correlations for all features (dataset 2)

Means Standard deviations
Scaling -0.126*** -0.054***
MIRFE -0.365*** -0.296***

Table 7: Ratio of negative (<0.005) reduction of feature in-
dividual statistics-morphology correlations for all features
(dataset 2)

Means Standard deviations
Scaling 0.74 0.71
MIRFE 1.00 0.99

Table 8: Mean improvement of feature individual statistics-
skill correlations for all features (dataset 2)

Means Standard deviations
Scaling 0.001(p=0.68) -0.008(p=0.17)
MIRFE 0.043*** 0.022***

Table 9: Ratio of positive (>-0.005) improvement of fea-
ture individual statistics-skill correlations for all features
(dataset 2)

Means Standard deviations
Scaling 0.58 0.59
MIRFE 0.98 0.77

was obtained for Müller’s feature set, where mean-skill correlation
is increased by 0.07 in average.

Table 4 and Table 5 give global results of scaling and MIRFE
methods, accounting for all features. The MIRFE method outper-
forms scaling both for individual means and standard deviations
correlations with skill. The MIRFE method improves the relation
of features with skill for most features (98% for mean and 75% for
standard deviation, see Table 5). On the opposite, scaling can have
adverse effects on the features (i.e. degradation of skill influence,
see Table 5, and second graph, Figure 6 and Figure 7). Though, for
both methods, the improvement can be important for some features,
increasing correlations with skill up to 0.4, and thus showing the
interest of the use of these methods before any feature selection
step.

3.4.2 Dataset 2 (Brush knee and twist step). The same process as
for dataset 1 was performed on the second dataset. Similar results
were obtained for morphology influence reduction, as shown in Ta-
ble 6 and Table 7. The scaling method merely reduced morphology
influence (−0.126 for means, and −0.054 for standard deviations)
compared to MIRFE, which almost removes all correlation with
morphology for all features. Moreover, scaling only reduced mor-
phology influence for 74% of the features, regarding means, and
71% regarding standard deviations (see Table 7). It means the mor-
phology influence can even be worsened (i.e. increased) by the

Figure 6: Correlation analysis of feature means with skill
factor: 1. Correlation without process; 2. Improvement after
scaling; 3. Improvement after MIRFE; 4. Improvement after
scaling and MIRFE.

Figure 7: Correlation analysis of feature standard deviations
with skill factor: 1. without process; 2. after scaling; 3. after
MIRFE; 4. after scaling and MIRFE. (dataset 1)

scaling method in other cases (i.e. for 26% and 29% of the features
respectively regarding means and standard deviations).

Table 8 and Table 9 respectively show the average improvement,
and the ratio of positive improvement of skill influence for all
features. Scaling does not improve the skill influence at all for this
dataset. On the opposite, MIRFE improves skill influence for both
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feature means (+0.043) and standard deviations (+0.022), and for
almost all features (see Table 9).

4 DISCUSSION
The results show that our MIRFE method allows to remove almost
completely the morphological influence on the features (at least for
one morphological factor). We show that, by removing morphology
influence, we can improve features relations with other factors,
such as skill. This method could be used to improve analysis of
the influence of many other interindividual factors than skill on
movement, such as expression, fatigue, illness, age, etc. Unlike
other methods based on direct skeleton data manipulation, our
method could also be generalized to reduce unwanted influence
of different factors, such as age or sex. However, morphology has
a direct influence on motion, with a clearer relation, than age or
sex, and is thus more appropriate for this method. Nonetheless,
unlike previously proposed approaches, our method can easily be
used with any morphological factor, such as weight, hip width or
shoulder stature.

Another drawback of direct skeleton data manipulation, such as
basic scaling or skeleton representation adaptation, is that they only
consider spatial variability due to morphology. In fact, motion is a
spatiotemporal series, and morphology may also have an influence
on time, because of body inertia for instance. As our method can be
applied to any feature, it can be used on kinematic or kinetic features
too. Our method is based on simple linear regression, but could be
generalized to more complex methods, such as multiple linear or
non-linear regression with several interindividual factors. However,
more complex methods also lead to more risk of overfitting. In our
case, the number of individuals was small (I = 12), which would
probably be insufficient for more complex methods. Overfitting
of our residual feature extraction method would lead to almost
no residue, i.e. insufficient information in the residual features.
This limitation is owing to the specific domain of the study, i.e.
movement analysis. Indeed, data acquisition in that domain is still
particularly constraining and time-consuming with the current
state-of-the-art technologies, limiting the size of databases. Our
method could be applied to other multi-factor dependent databases
in less constraining domains, such as speech for instance. Feature
selection could directly be used instead of our method, by selecting
features less dependent of morphology, and more related to skill,
using for instance factor analysis. However, any feature selection
method would inevitably lead to the loss of information contained
in all unselected features. On the opposite, our method aims to
reduce unnecessary information (related to unwanted factors) by
tuning, but keeping, all features. A feature selection process can
then be performed on the tuned features.

Our validation method is based on correlation analysis. More ad-
vancedmethods could be used, such as gesture recognition/evaluation
methods, and verifying if our method improves the evaluation, by
comparing it to skill annotations. This is left as a prospect for future
research.

5 CONCLUSION
In this paper, we presented an original method allowing extraction
of morphology independent features from a motion capture data-
base. This method is based on constrained linear regression with
any morphological factor on individual means and standard devia-
tions of features. The residues of these regressions allow extraction
of residual features, independent of morphology. We showed that
our method efficiently removes morphology influence, and conse-
quently improves relation with other factors, such as motor skill.
Our method outperforms previous work both for morphology inde-
pendence and skill relation improvement. It is also more general
than related work, as it can be used with any interindividual fac-
tor, and on any feature. Our method could be adapted with more
complex models than linear regression, but would require larger
databases. As a prospect of future work, the proposed method will
be tested on different gesture evaluation techniques.
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