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Abstract—Digital phenotyping presents a very important tool 

for scientists to measure with high accuracy the effects of external 

phenomena on plant development. Plant phenotyping is mainly 

based on imaging techniques. However, the number of images and 

parameters used to store and treat these parameters are 

continuously growing. Consequently, the high-throughput of data 

and the need of specific treatment in real or near real-time 

requires a large quantity of resources. Moreover, the increasing 

amount of particular phenotyping case studies needs the 

development of specific application. Cloud architectures offers 

means to store a wide range of numerous data and host a large 

quantity of specific software to process these data. In this paper, 

we propose a new approach that shows how logic synthesis works 

to match digital phenotyping need and cloud possibilities in a 

lambda cloud architecture in order to store and treat this 

important amount of data in real time. We also suggest a data 

platform allowing to host applications and access to the stored data 

within the lambda architecture. The present application platform 

allows to use several frameworks with a fine-grained resource use 

of the cluster. Finally, we develop a case study in a controlled 

environment system (growth chamber) where we grow basil 

plants. 

Keywords—cloud; lambda architecture; digital phenotyping; 3D 

plant model; phytotron; application platform. 

I.  INTRODUCTION  

Digital phenotyping (DP) is a combination of novel 
technologies: non-destructive imaging (thermal infrared, 
fluorescence, 3D and tomographic imaging) [1], spectroscopy 
(multispectral and hyperspectral remote sensing) [1], image 
analysis, High Performance Computing (HPC) and robotic [2]. 
Several image analysis tools for studying plant biology have 
been developed. DP can be defined as a set of methodologies 
and methods using non-destructive systems in high-throughput 
to accurately analyze traits of plant at several scales. It enables 
scientists to measure with high accuracy the effects of the 
environment on plant development. It also informs scientists on 
genomic functionality. DP covers a wide range of applications 

like for instance: breeding, developing treatments for 
cultivation, environmental monitoring and precision agriculture, 
etc. Principal applications where DP is actually used are: 
ecotoxicology, field phenotyping, functional genomics, plant 
physiology, high throughput plant phenotyping, high content 
plant phenomics, plant growth, root phenomics and stress 
response. 

Ecotoxicology uses phenotyping to quantify non-mobile 
organisms. Its colors, area size may also be measured. From 
these parameters, it is possible to have a quantitative response of 
toxicant. With mobile organisms, screening tests are performed 
to identify the present species or provide movement 
quantification in very confined vessels. These measures can 
allow for example growth rates of organism population, 
inhibitions values, etc. Images can be acquired in various 
condition of lighting: top light, back light, dark field 
illumination, custom light sources. These various conditions of 
lighting apply also flexibility in software systems. 

In the field of phenotyping, breeders and scientist search to 
quantify yield, plant development and physiology parameters, 
ecological biotic growth factors and stress response of crops 
under real climate conditions. Precise screening using 
nondestructive methods is achieved on punctual sampling. 
Image-based measurement is challenging in outdoor condition 
because light exposure evolved in quantity and quality during 
the day. 

Functional genomics combine high-throughput genotyping 
and gene sequencing. 3D high resolution phenotyping data is 
used to find similarities or differences within or between the 
phenome of different genotypes [3]. In this case, storage size is 
important. Authors of [4] reconstruct plant from a cloud of 1.2 
to 1.7 million of 3D points. The computing time with a recent 
CPU processor (Inteli7 with 3.6 Ghz and 8GB of RAM) is 
9000s. 

In the plant physiology field, digital phenotyping allows to 
see the impact of climatic parameters, water and nutrient usage 



efficiency, ability to grow on various substrates, such as 
degraded soils. Methods, like hyperspectral imagery, are widely 
used to extract information from images made under highly 
controlled light condition in greenhouse or growth chamber. 

As shown in Table 1, High Throughput Plant Phenotyping 
aims to characterize plant complex traits such as growth, 
development, tolerance, resistance, architecture, physiology, 
ecology and yield. These complex traits are determined from the 
measure of a wide range of individual quantitative parameters 
that are image-based. In this application, the interest is focused 
on the number of parameters to monitor [2] and [1] (Table 1).     

TABLE I.  EXAMPLES OF PLANTS TRAITS 

Level Parameters 

Plant volume, biomass 

Main-stem height, size, inclination 

Petiole length, Initiation angle 

Leaf 
Width, Length, Inclination, thickness, 

area, curvature, shape 

Root Morphology 

Fruit fruit characteristic 

 

 High-Content Screening is used to discriminate 
pharmaceutical tests with read-out parameters. Multiple read 
must be done one by parameter on each sample. 

 Plant growth rate is an important parameter to describe 
development over time. Growth pattern obtained from multiple 
images are used to compare growth rate between plants. 

Roots phenotyping requires 3D scanning to acquire the root 
development over the time. NIR (Near Infrared) imaging made 
at short time allows to evaluate soil water content and 
distribution. Water-Use-Efficiency (WUE) can also be 
measured to determine the volume of water used to produce 
biomass. The impact of waterlogging can also be evaluated by 
digital phenotyping. 

Finally, the stress response phenomics describes the 
influence of environmental stress on the growth of plants and the 
reduced yield in comparison with optimal growth conditions. 
NIR imagery allows the monitoring of leaf water content, and 
IR (Infrared) imagery is used to monitor water content for seeds 
and Leaf Area Index (LAI)1, while VIS (Visible Spectrum) 
imagery provides information about biomass development, plant 
architecture and leaf reactions to climate change or stress. 

The remainder of this paper is organized as follows. Related 
works are illustrated in Section 2. In Section 3, we present our 
scientific phytotron in container. Then, we describe the digital 
phenotyping and the environmental monitoring parameter of our 
case study. In Section 4, we describe the proposed cloud 
architecture and application platform. We show the application 
of our solution to our phytotron. We explain how we automated 
this growth chamber by controlling light, atmospheric 

                                                           
1 The one-sided green leaf area per unit ground surface area. 
2 Apache Zookeeper. http://hadoop.apache.orf/zookeper.  

parameters and nutriment. In section 5, we present conclusions 
and future works. 

II. RELATED WORK 

The main applications of digital phenotyping show that 
requirements for information processing are very different and 
depend on the aim of the phenotyping. For instance, measuring 
phenomena, such as foliar reactions, requires a rapid treatment 
of many images. In other cases, such as pattern of growth, there 
are many images over a long time that must be archived and 
prepared for further post-treatment. On one hand, phenotyping 
requires both rapid processing of large number of images and 
related data. On the other hand, it requires the massive storage 
of very large amounts of data and the processing capacities of all 
this mass of information. 

Large scale data storage and multiple treatment application 
of these data require a cloud architecture platform. In digital 
phenotyping, wide range of images of different kind must be 
acquired and stored. These images must be completed with 
information from other sensors before being processed and that 
actions may be taken. 

Data analysis in the field of Smart Agriculture, is growing 
rapidly. However, in parallel with the increasing amount of data 
to be processed, processing systems fails to process information 
in short delays. Hadoop ecosystem has proved its efficiency to 
overcome this problem in a wide range of use case.  

Hadoop is a highly available open-source software 
framework dedicated to store and provide access to large 
amounts of data. Hadoop is composed of a distributed file 
system (HDFS), an application framework (MapReduce) and a 
resource manager (YARN). However, it does not offer any 
performances guarantee on how quickly that data can be 
accessed. The performances decrease under heavy load. 
Furthermore, Hadoop is unable to provide the sub-second data 
ingestion latencies. Finally, it is not optimized to store and make 
data immediately readable [5] and [6]. 

A solution to reduce disk latency is to keep in memory data 
to reuse for multiples tasks. Apache Spark processes a large 
amount of data with low latency and includes fault tolerance by 
introducing a novel resilient distributed dataset abstraction. 
However, data sharing application must be written in external 
storage, such as Cassandra, Hive, Pig, Hbase, Chukwa, S3 and 
HDFS [5]. 

Stream processing frameworks like Apache Storm, Apache 
Spark Streaming and Apache Samza2 offer low-latency model 
to ingest and process stream at near real-time speed. Apache 
Samza is a distributed stream processing framework which treats 
stream coming from Apache Kafka which is a distributed 



streaming platform). Apache Hadoop YARN is used to provide 
fault tolerance. However, theses stream processing frameworks 
generally do not provide the same guarantees as batch 
processing frameworks in matter of correctness [6]. However, 
the processing may suffer from duplicated events and other 
problems of accuracy in data. 

The speed of data availability depends on how data are 
stored in the database. Opensource Relational Data Management 
systems and NoSQL key/value stores are unable to provide a low 
latency data storing. Furthermore, it is also not possible to 
provide query platform for interactive applications [7]. First, raw 
data must be transformed or cleaned before their use [6]. Hence, 
the process of data loading and batch processing can take a long 
time (several hours). 

Lambda architectures are designed to handle large amounts 
of data in conjunction with both batch and stream processing 
methods3 in combination with a serving layer [8] and [6]. The 
particularity of this cloud architecture is its compatibility with 
different cases. Lambda cloud architecture can treat all kinds of 
data e.g. images, video, temporal data, event data or classic data. 
This paradigm allows processing at real time data from stream 
and enables using rapidly data stored. The not priority or 
punctual data are processed in batch processing. 

 The aggregation of real-time and batch processed data is in 
the serving layer. 

Druid presented in [5] that a distributed column-oriented fault-
tolerant presenting real-time analytical data store. This platform 
powers high performance application with low query latencies. 
Druid is designed to solve problems around ingesting and 
exploring large quantities of times series data. The unit of 
storage in Druid is called “segment”. Each segment is composed 
of 5 to 10 million times-stamped events that covers one period 
of time. Segments can be compressed by LZ44 by default or 
LZF5 algorithm, and can also be stored in a column orientation 
database. Druid cluster is composed of 4 kinds of nodes.  

Druid uses two external dependencies. The first one is 
MySQL, PosGreSQL or SqlServer database in order to store 
metadata of segments. The second is Zookeeper that monitors 
the four kinds of nodes present in the cluster. These four nodes 
coordinate, broke, store in real-time or archive data on a 
distributed storage system. Druid is able to import data from 
Kafka, Stream data or files data (TSV, CSV and Json). Druid 
can use local storage or external service to deep store old 
segments: S3, HDFS, Microsoft Azure, Google Cloud Storage 
and Apache Cassandra. 

The large amount of applications need to treat data stored in 
the cloud on different frameworks. Nowadays, to share a cluster, 
we have two main solutions. First, we can run one framework 
on one partition of the cluster. Second, the solution consists of 
allocating a set of virtual machines to each framework. 
However, theses solution cannot allow high use and efficient 
data sharing. 

                                                           
3 Liblzf, http://freecode.com/projects/liblzf , March 2013. 
4 LZ4. http://www.lz4.org , April 2017. 
5 Apache Samza. http://samza.apache.org/ , April 2017. 

Apache Mesos is a fault-tolerant and highly available sharing 
layer that provides a framework common interface allowing a 
fine-grained sharing across diverse cluster computing 
frameworks. Fault tolerance is ensured by Apache Zookeper [9]. 
Mesos offers a scalable and resilient core for enabling various 
frameworks. This is particularly important to share efficiently 
clusters. A master node manages slave daemons running on each 
node in the cluster. 

Each framework that run on the top of Mesos use a job 
scheduler registered to the master node and ask resources while 
an executor process is on slave nodes to run tasks of the 
framework (See Fig 1).  

Slaves nodes report to the master nodes available resources 
(Number of CPU and amount of memory) (1). Then, the master 
node invokes the allocation policy module and determines the 
amount of resources to be allocated to each framework, and the 
scheduler selects each nodes of the offered resources to assign 
to the framework (2). At this step, the framework can reject the 
offered resources if they do not satisfy its constraints and wait 
another offer. If the framework accepts the offered resources 
(3), it sends to the master node a description of the tasks to 
launch on offered resources by nodes slave. A framework may 
specify a whitelist of nodes with which it can run and avoid 
node with which it always have offers reject. The master node 
sends the task to the slave node which allocate resources to the 
framework executor. 

Allocation of resources is performed by two modules. The 
first performs fair sharing between resources, and the second 
implements strict priorities. Frameworks executor on nodes 
slave are isolated by leveraging existing OS isolation. Resource 
offers are scalable and robust through three mechanisms: filers 
to the master node, the count of resources, the re-offers of 
resources. Filters avoid communication by providing filters to 
master node for frameworks which always reject certain 
resources. Mesos counts resources offered to a framework in its 
allocation of the cluster. When a framework not respond 
quickly enough to an offer, Mesos can re-offer the resources to 
another framework. Fault tolerance uses ZooKeeper to run 
multiple masters in a hot-standby configuration [10].  Mesos 
provides also three containerization modes. Mesos 

 

Fig 1. Apache Mesos Architecture 
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containerizing allows to use runtime environment, operating 
system control and additional resources like disk usage limit. 
Mesos allows also Docker containerizing [11]in order to use 
tools coming with Docker package. The composing of both 
containerization technology allows to test different types of 
resources isolations. Mesos is a good solution to implement 
multiple framework and share fine-grained resource of the 
cluster. This solution allows hosting applications for multiple 
use case of digital phenotyping. Our contribution consists of 
highlighting the important diversity of needs faced by 
researchers in digital phenotyping. In addition to that, we 
exhibit the potential of the cloud to meet these needs. Thus, we 
contribute by proposing a cloud lambda architecture allowing 
to store, analyze and host applications for plant phenotyping. 
This architecture provides strategic direction and guidance 
solution in order to process images from digital phenotyping 
and complementary sensor data.  

III. MATERIAL 

Our scientific phytotron (Fig. 2) is a closed enclosure 
located in 20’ container Advanced Fresh Air Management Plus 

                                                           
6 Akuino, Online: http://www.akuino.net , June 2017. 

 

(AFAM+) from Thermo King. The container is divided into two 
experimentation zones. Each one is composed of a shelf with 3 
levels. Each level of the shelf can store up to 100 basil plants in 
hydronic system. 

      Principal parameters monitored in the phytotron installation 
are aerial, root and light parameters. The aerial parameters 
include air temperature, air moisture, carbon dioxide 
concentration, light spectrum and intensity. The root parameters 
in hydroponic solution are solution composition including 
electrical conductivity, nutrient concentration, pH, Oxygen and 
NO3

- concentration [12]. NO3
- is acquired by a sensor Probe Pro 

and a Reference Probe Pro Libelium connected on a shield 
Smart Ion Board mount on a Waspmote 1.5 A supplementary 
module Wifi Pro Libelium is charged of the transmission of 
data to Cloud Architecture. An Akuino6 equipped with a UPS 
with an autonomy of 6 hours acquires all data in the container 
(see Fig 3). Akuino is an open source solution based on 
Raspberry Pi and Arduino adapted to agriculture production 
context. An Arduino Uno connected to the container regulation 
system controls the temperature in a day/night cycle and the 
relative humidity. The pH and concentration of nutriment in the 
hydroponic solution is maintained by an automatic system 
provided of peristaltic pump.  (see Fig 5). 
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Fig 4. Shelfs of Zone A 

 

Fig 3. Measurement of environmental parameters 

 

 

Fig 5. Hydroponic control solution 

 



One of the most important parameter that must be optimized 
is the light spectrum. This parameter influences directly the 
growth rate and phenotypic development of plants. The light 
plays a role in the life of plants in terms of growth, informative 
and biosynthetic. The light spectral composition particularly in 
red and blue regions influence directly growth and biosynthetic 
functions. Otherwise, the use of pulsed light can also improve 
plant productivity compared to continuous light [1]. Spectral 
measurement should be made with a maximal bandwidth of 20 
nm in the photomorphogenic radiation range (300-800nm) [12]. 

         Nowadays, many controllable LED lightings are available 
and offer interesting photosynthetically active radiation (PAR). 
However, they do not allow to reproduce all the required light 
spectra finely enough for a scientific phytotron.    That is why; 
our research installation use ArtNet to control each channel of 
led placed above each shelf of plants. ArtNet is a protocol over 
UDP using Ethernet or Wi-Fi to transmit Digital Multiplexing 

(DMX512) frames. Each shelf in the phytotron contains a 
variable number of channels (N). The number of channels is 
generally from 8 to 64 channels depending of the kind of 
spectrum required. Each channel of the DMX512 system is 
decomposed into 256 levels (8 bits) of intensity. This number 
of levels is largely greater than the 100 levels proposed by  

authors of [1]. The number of possible combination is 256*N. 
Considering the large number of possible combinations, it is not 
possible to systematically examine all combinations in a 
reasonable time with conventional means. The spectral 
measurement of each LED is operated at different levels of 
intensity by spectrophotometer.  

For each level of each shelf, a 3D camera Intel® RealSense™ 
SR300 is mounted on a translation stage to move the camera 
above the plants, both controlled by an Intel® Up board (see 
Fig 6). This setup allows to retrieve the 3D structure of the 
plants independently. Each 3D camera RealSense SR-300 take 
one 2,1-mega pixel photo each hour. As a 20’ container can 
contain 600 plants, in one day, 14 400 photos must be stored. In 
one year, up to 5.256 million of photos are made in the 
container. Six Intel® Up board control movements and 
acquisition of each of six cameras above the center of the pot. 
Images can be acquired in visible spectrum or in the near 
infrared spectrum. The Camera is also able to measure distance 
with the plant and evaluate the height of the plant. Then, photos 
are dispatched to the cloud where they are stored and are 
quickly made available to be treated by an application hosted in 
the application platform. Our scientific phytotron is controlled 
by a cloud algorithm, which monitor, alert and take decision on 
basis of data collected and stored in our cloud solution. 
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Fig 6. Camera position control and acquirement 



IV. METHODOLOGY 

The literature review has shown that a lambda architecture 
is able to collect and store the wide range of data from 
phenotyping and environmental parameters such as 
temperature, relative humidity, cation-exchange capacity 
(CEC), NO3, etc. The application hosting using Mesos keeps 
the structure easily adaptable to various framework while 
proposing isolation and fine-grained resources of the cluster. 

Phenotyping in growth chamber faces several major 
limitations. The first one is the limited space in the phytotron, 
which make more complex the process of data acquisition at 
advanced growth stages. Furthermore, artificial lighting can 
alter pattern of plant growth and development [9]. 

A. Cloud architecture 

We propose a cloud solution based on a lambda architecture 
to collect, store and treat data from sensors placed in the 
phytotron. The architecture is designed to host various 
applications and allows to use them with others phytotron 
commercial phytotron than those for which they were originally 
conceived. Various kinds of data must be stored: 3D picture of 
growth, temporal and event data. Our cluster is built with 
Apache Kafka, Apache Samza, Apache Hadoop, Druid, 
PostGreSQL, Zookeeper and Redis, (Fig 7). 

Apache Kafka provides a message bus between producers 
and Apache Samza. YARN containers run Apache Samza to 
clean up faults in data, performs lookups and performs events. 
Then, Druid’s real-time nodes ingest data by event reading. In 
this configuration, Druid cluster is able to consume 150 000 

events by second [5]. Druid is composed of four types of nodes: 
Real-times, Historical, Brokers and Coordinators Nodes. Real-
times nodes provide functionality to ingest, query, index event 
streams for small time range. Indexes are maintained in-memory 
to be directly queryable. A background task merges indexes 
together and build immutable blocks from data ingested by real-
time nodes. Segments are uploaded to a HDFS [13] permanent 
backup storage. HDFS is a distributed file system for storing 
distributed and replicated data in a cluster of server [8]. 
Historical Nodes contain functionalities to load and serve the 
immutable blocks of data created by real-time nodes. Brokers 
nodes route incoming queries to historical or real-times node and 
return a final consolidated result to the applicant. Brokers nodes 
contain a caching system with a LRU [14] invalidation strategy 
and using Redis [15] to store key/value. Finally, Coordinators 
nodes are in charge of data management and distribution on 
historical nodes: loading, dropping replication and moving of 
data. A PostGreSQL database connected to coordinators nodes 
store operational parameters, configurations. This database 
contains also the list of all segments that can be served by 
historical nodes and rules to create, destroy and replicate blocks 
of data in the cluster. The database can be updated by any service 
that creates persistent block of data. Batch data process event 
from static files in JSON or CSV format one at a time and 
produce segments directly uploaded in the deep storage. Batch 
data processing may take several hours by opposition of real-
time where data are treated in sub second time [6]. 

B. Application Sharing Platform 

We use a share and hosting platform to treat and explore 
data from the IoT Lambda Architecture. This platform uses 
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Apache Mesos and Docker containers to isolate and host 
applications. We can notice that Mesos isolation is better than 
Docker, that is why; we have mixed these both containerizing 
methods for compatibility reasons (Fig 8). The application 
sharing platform use a quorum of 3 nodes Zookeeper: one 
master node and two master standby nodes. These two standby 
nodes ensure fault tolerance in the cluster.  

Mesos offers several pluggable frameworks. Each 
framework sends tasks to the master node which transfer them 
to slave node available which execute the task. When the task 
is executed the result is send to node master which forward 
them to the framework. Docker slave node can host external 
application which don’t initially be developed to work on 
frameworks plugged on Mesos. They can nevertheless be 
hosted with container technology offered by Docker.  

Six frameworks plugin are installed on our application 
sharing platform. Jenkins framework allows continuous 
integration and dynamic launch of workers depending on the 
workload. Jenkins allows to researcher to develop algorithm 
and test them on the cluster. TensorFlow [16] enables to run 
distributed machine learning tasks with GPU. Tensor flow 
allows to researcher to experiment machine learning on set 
images acquire by 3D camera. Marathon is a Private as a 
Service (PaaS) ensures that an application is always “on”. It 
automatically handles hardware or software failures and 
guarantee the availability of paying services MPI [17] is a 
message-passing system to function on parallel computers. MPI 
allows to accelerate application by starting parallel jobs. It has 
been plugged for compatibility reasons for some algorithms and 
models.  Apache Hama7 is for distributed computing for 
massive scientific computations and big data analyses based on 
Bulk Synchronous Parallel (BSP) computing techniques. It 
provides also vertex and neuron centric programming models. 
Hama is principally uses in data analyses and model 
elaboration. Apache Aurora [18] is a service scheduler to run 
long-running services while benefiting of scalability, isolation 
and fault-tolerance of Mesos. Aurora is used to develop 
applications to treat raw data from the lambda architecture and 
execute cron jobs. Finally, Hadoop framework distributes 
MapReduce on the cluster which is used for cloud computing. 

C. Light optimization algorithm 

The search for an optimal spectral combination of several 
light sources is a challenge in this work. Indeed, when the 
number of intensity levels and the light sources are important, 
it is difficult to find a good solution in reasonable time. Authors 
of [19] have shown that more of 100 steps of intensity are 
necessary to achieve a good accuracy in terms of spectral 
combination. These researchers have proposed different 
approaches to optimize LED lighting and obtain specific 
spectra. 

Authors of [20] have proposed a novel LED-based tunable 
light source which comprises 31 spectral bands to reconstruct 
spectrum lighting. An algorithm is used to calculate the weight 
of each channel. This algorithm uses an interior-point method 
to minimize the distance between resulting spectrum and 

                                                           
7 Apache Foundation, “Apache Hama”, https://hama.apache.org June2017. 

targeted spectrum. Authors of [21] propose a system based on 
24 LEDs and covering a spectrum between 700 nm to 1070 nm. 
The intensity of each LED is modulable with 4000 levels. 
Therefore, the possible combinations number is 400024. They 
use an iterative algorithm based on a mobile window and a 
progressive reduction of the variation values of each led to fix 
weights. 

In our work, we use the MapReduce paradigm with data 
stored in the lambda architecture to calculate a good and 
acceptable solution by mean of a Particle Swarm Optimization 
(PSO) algorithm [22]. This meta heuristic intend for simulating 
social behavior to improve by iteratively trying a candidate 
solution. A candidate solution is composed of a combination of 
intensity of each light source. The evaluation is achieved by 
comparison with target spectrum by calculation of difference 
between both spectrum for each group of wave length of 10 nm. 
The calculation must be reproduced for each level of each shelf 
to take into consideration the aging of LEDs and to avoid 
possible failures. Indeed, each shelf can be equipped by 
different combination of LED which are not known by the 
system. The algorithm must find the best combination with the 
minimal distance between resulting and targeted spectrum. The 
optimization is obtained under conditions of non-negative 
weighting. The convolution integration is calculated on the 
range 400 to 700 nm by 10 nm step. The spectra of seven CIE 
standard illuminants (D65, D50, A, E, F2, F11 and HP1) were 
used to validate the quality of spectra reconstructed.  

V. CONCLUSIONS AND FUTURE WORKS 

The wide range of applications of digital phenotyping shows 

that it is not possible to develop all applications on only one 

framework and need a set of frameworks on the same cluster. 

The optimal solution is to implement Apache Mesos, which 

allows a fine-grained use of resource of the cluster without 

drawback of multiple Virtual Machine (VM) or portioning of 

cluster. 
We have proposed a better solution than using traditional 

ones like Hadoop. Our solution consists of a new lambda 
architecture based on Druid and an application sharing platform 
based on Mesos.   

Druid allows to treat in quasi real time incoming data and 
make them available under second time. Our architecture can 
provide large range of data mixing old data archived in deep 
storage (HDFS) and recent data which are just treated but not yet 
archived. This aspect is particularly important for critical data 
which needs rapid processing and eventually reactions. The 
Lambda Architecture proposed can ingest a large panel of data 
such as time series, images, video, etc. This lambda Architecture 
is able to adapt to significant variation of quantity of data to treat 
at real time. Moreover, Druid’s data ingestion latency is directly 
dependent of the complexity of the data set ingested [23]. 

The application sharing data proposed allows to host 
applications developed by scientist for specific application and 
to share them with the community on one hand, and on the other 
hand to test these applications with other data. The platform 
proposed is able to receive various kind of applications to exploit 



heterogenous data. Our application sharing platform uses Mesos 
which achieve a fine-grained allocation of resources in the 
cluster. Mesos allocates resources of available slave nodes in 
function of the requested tasks.  

European legislation that will be translated into national law 
will require us to ensure the safety and traceability of the use of 
the data. We will need to develop a means to guarantee the 
security and confidentiality of the data exchanged between the 
lambda architecture and the application platform. It will be 
necessary to ensure that the data transmitted can only be used 
for the concurrent license duration and for the authorized 
applications.  
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