
Cloud Architecture For Digital Phenotyping And

Automation

Olivier Debauche*

Computer Science Unit

FPMs, UMons

Mons, Belgium

olivier.debauche@umons.ac.be

Saïd Mahmoudi
Computer Science Unit

FPMs, UMons

Mons, Belgium

said.mahmoudi@umons.ac.be

Pierre Manneback

Computer Science Unit

FPMs, UMons

Mons, Belgium

pierre.manneback@umons.ac.be

Mathieu Massinon

BioDynE Axis

TERRA, GxABT - ULiège

Gembloux, Belgium

m.massinon@ulg.ac.be

Nassima Tadrist

BioDynE Axis

TERRA, GxABT - ULiège

Gembloux, Belgium

nassima.tadrist@doct.ulg.ac.be

Frédéric Lebeau

BioDynE Axis

TERRA, GxABT - ULiège

Gembloux, Belgium

f.lebeau@ulg.ac.be

Sidi Ahmed Mahmoudi

Computer Science Unit,

FPMs, UMons

Mons, Belgium

sidi.mahmoudi@umons.ac.be

Abstract—Digital phenotyping presents a very important tool

for scientists to measure with high accuracy the effects of external

phenomena on plant development. Plant phenotyping is mainly

based on imaging techniques. However, the number of images and

parameters used to store and treat these parameters are

continuously growing. Consequently, the high-throughput of data

and the need of specific treatment in real or near real-time

requires a large quantity of resources. Moreover, the increasing

amount of particular phenotyping case studies needs the

development of specific application. Cloud architectures offers

means to store a wide range of numerous data and host a large

quantity of specific software to process these data. In this paper,

we propose a new approach that shows how logic synthesis works

to match digital phenotyping need and cloud possibilities in a

lambda cloud architecture in order to store and treat this

important amount of data in real time. We also suggest a data

platform allowing to host applications and access to the stored data

within the lambda architecture. The present application platform

allows to use several frameworks with a fine-grained resource use

of the cluster. Finally, we develop a case study in a controlled

environment system (growth chamber) where we grow basil

plants.

Keywords—cloud; lambda architecture; digital phenotyping; 3D

plant model; phytotron; application platform.

I. INTRODUCTION

Digital phenotyping (DP) is a combination of novel
technologies: non-destructive imaging (thermal infrared,
fluorescence, 3D and tomographic imaging) [1], spectroscopy
(multispectral and hyperspectral remote sensing) [1], image
analysis, High Performance Computing (HPC) and robotic [2].
Several image analysis tools for studying plant biology have
been developed. DP can be defined as a set of methodologies
and methods using non-destructive systems in high-throughput
to accurately analyze traits of plant at several scales. It enables
scientists to measure with high accuracy the effects of the
environment on plant development. It also informs scientists on
genomic functionality. DP covers a wide range of applications

like for instance: breeding, developing treatments for
cultivation, environmental monitoring and precision agriculture,
etc. Principal applications where DP is actually used are:
ecotoxicology, field phenotyping, functional genomics, plant
physiology, high throughput plant phenotyping, high content
plant phenomics, plant growth, root phenomics and stress
response.

Ecotoxicology uses phenotyping to quantify non-mobile
organisms. Its colors, area size may also be measured. From
these parameters, it is possible to have a quantitative response of
toxicant. With mobile organisms, screening tests are performed
to identify the present species or provide movement
quantification in very confined vessels. These measures can
allow for example growth rates of organism population,
inhibitions values, etc. Images can be acquired in various
condition of lighting: top light, back light, dark field
illumination, custom light sources. These various conditions of
lighting apply also flexibility in software systems.

In the field of phenotyping, breeders and scientist search to
quantify yield, plant development and physiology parameters,
ecological biotic growth factors and stress response of crops
under real climate conditions. Precise screening using
nondestructive methods is achieved on punctual sampling.
Image-based measurement is challenging in outdoor condition
because light exposure evolved in quantity and quality during
the day.

Functional genomics combine high-throughput genotyping
and gene sequencing. 3D high resolution phenotyping data is
used to find similarities or differences within or between the
phenome of different genotypes [3]. In this case, storage size is
important. Authors of [4] reconstruct plant from a cloud of 1.2
to 1.7 million of 3D points. The computing time with a recent
CPU processor (Inteli7 with 3.6 Ghz and 8GB of RAM) is
9000s.

In the plant physiology field, digital phenotyping allows to
see the impact of climatic parameters, water and nutrient usage

efficiency, ability to grow on various substrates, such as
degraded soils. Methods, like hyperspectral imagery, are widely
used to extract information from images made under highly
controlled light condition in greenhouse or growth chamber.

As shown in Table 1, High Throughput Plant Phenotyping
aims to characterize plant complex traits such as growth,
development, tolerance, resistance, architecture, physiology,
ecology and yield. These complex traits are determined from the
measure of a wide range of individual quantitative parameters
that are image-based. In this application, the interest is focused
on the number of parameters to monitor [2] and [1] (Table 1).

TABLE I. EXAMPLES OF PLANTS TRAITS

Level Parameters

Plant volume, biomass

Main-stem height, size, inclination

Petiole length, Initiation angle

Leaf
Width, Length, Inclination, thickness,

area, curvature, shape

Root Morphology

Fruit fruit characteristic

 High-Content Screening is used to discriminate
pharmaceutical tests with read-out parameters. Multiple read
must be done one by parameter on each sample.

 Plant growth rate is an important parameter to describe
development over time. Growth pattern obtained from multiple
images are used to compare growth rate between plants.

Roots phenotyping requires 3D scanning to acquire the root
development over the time. NIR (Near Infrared) imaging made
at short time allows to evaluate soil water content and
distribution. Water-Use-Efficiency (WUE) can also be
measured to determine the volume of water used to produce
biomass. The impact of waterlogging can also be evaluated by
digital phenotyping.

Finally, the stress response phenomics describes the
influence of environmental stress on the growth of plants and the
reduced yield in comparison with optimal growth conditions.
NIR imagery allows the monitoring of leaf water content, and
IR (Infrared) imagery is used to monitor water content for seeds
and Leaf Area Index (LAI)1, while VIS (Visible Spectrum)
imagery provides information about biomass development, plant
architecture and leaf reactions to climate change or stress.

The remainder of this paper is organized as follows. Related
works are illustrated in Section 2. In Section 3, we present our
scientific phytotron in container. Then, we describe the digital
phenotyping and the environmental monitoring parameter of our
case study. In Section 4, we describe the proposed cloud
architecture and application platform. We show the application
of our solution to our phytotron. We explain how we automated
this growth chamber by controlling light, atmospheric

1 The one-sided green leaf area per unit ground surface area.
2 Apache Zookeeper. http://hadoop.apache.orf/zookeper.

parameters and nutriment. In section 5, we present conclusions
and future works.

II. RELATED WORK

The main applications of digital phenotyping show that
requirements for information processing are very different and
depend on the aim of the phenotyping. For instance, measuring
phenomena, such as foliar reactions, requires a rapid treatment
of many images. In other cases, such as pattern of growth, there
are many images over a long time that must be archived and
prepared for further post-treatment. On one hand, phenotyping
requires both rapid processing of large number of images and
related data. On the other hand, it requires the massive storage
of very large amounts of data and the processing capacities of all
this mass of information.

Large scale data storage and multiple treatment application
of these data require a cloud architecture platform. In digital
phenotyping, wide range of images of different kind must be
acquired and stored. These images must be completed with
information from other sensors before being processed and that
actions may be taken.

Data analysis in the field of Smart Agriculture, is growing
rapidly. However, in parallel with the increasing amount of data
to be processed, processing systems fails to process information
in short delays. Hadoop ecosystem has proved its efficiency to
overcome this problem in a wide range of use case.

Hadoop is a highly available open-source software
framework dedicated to store and provide access to large
amounts of data. Hadoop is composed of a distributed file
system (HDFS), an application framework (MapReduce) and a
resource manager (YARN). However, it does not offer any
performances guarantee on how quickly that data can be
accessed. The performances decrease under heavy load.
Furthermore, Hadoop is unable to provide the sub-second data
ingestion latencies. Finally, it is not optimized to store and make
data immediately readable [5] and [6].

A solution to reduce disk latency is to keep in memory data
to reuse for multiples tasks. Apache Spark processes a large
amount of data with low latency and includes fault tolerance by
introducing a novel resilient distributed dataset abstraction.
However, data sharing application must be written in external
storage, such as Cassandra, Hive, Pig, Hbase, Chukwa, S3 and
HDFS [5].

Stream processing frameworks like Apache Storm, Apache
Spark Streaming and Apache Samza2 offer low-latency model
to ingest and process stream at near real-time speed. Apache
Samza is a distributed stream processing framework which treats
stream coming from Apache Kafka which is a distributed

streaming platform). Apache Hadoop YARN is used to provide
fault tolerance. However, theses stream processing frameworks
generally do not provide the same guarantees as batch
processing frameworks in matter of correctness [6]. However,
the processing may suffer from duplicated events and other
problems of accuracy in data.

The speed of data availability depends on how data are
stored in the database. Opensource Relational Data Management
systems and NoSQL key/value stores are unable to provide a low
latency data storing. Furthermore, it is also not possible to
provide query platform for interactive applications [7]. First, raw
data must be transformed or cleaned before their use [6]. Hence,
the process of data loading and batch processing can take a long
time (several hours).

Lambda architectures are designed to handle large amounts
of data in conjunction with both batch and stream processing
methods3 in combination with a serving layer [8] and [6]. The
particularity of this cloud architecture is its compatibility with
different cases. Lambda cloud architecture can treat all kinds of
data e.g. images, video, temporal data, event data or classic data.
This paradigm allows processing at real time data from stream
and enables using rapidly data stored. The not priority or
punctual data are processed in batch processing.

 The aggregation of real-time and batch processed data is in
the serving layer.

Druid presented in [5] that a distributed column-oriented fault-
tolerant presenting real-time analytical data store. This platform
powers high performance application with low query latencies.
Druid is designed to solve problems around ingesting and
exploring large quantities of times series data. The unit of
storage in Druid is called “segment”. Each segment is composed
of 5 to 10 million times-stamped events that covers one period
of time. Segments can be compressed by LZ44 by default or
LZF5 algorithm, and can also be stored in a column orientation
database. Druid cluster is composed of 4 kinds of nodes.

Druid uses two external dependencies. The first one is
MySQL, PosGreSQL or SqlServer database in order to store
metadata of segments. The second is Zookeeper that monitors
the four kinds of nodes present in the cluster. These four nodes
coordinate, broke, store in real-time or archive data on a
distributed storage system. Druid is able to import data from
Kafka, Stream data or files data (TSV, CSV and Json). Druid
can use local storage or external service to deep store old
segments: S3, HDFS, Microsoft Azure, Google Cloud Storage
and Apache Cassandra.

The large amount of applications need to treat data stored in
the cloud on different frameworks. Nowadays, to share a cluster,
we have two main solutions. First, we can run one framework
on one partition of the cluster. Second, the solution consists of
allocating a set of virtual machines to each framework.
However, theses solution cannot allow high use and efficient
data sharing.

3 Liblzf, http://freecode.com/projects/liblzf , March 2013.
4 LZ4. http://www.lz4.org , April 2017.
5 Apache Samza. http://samza.apache.org/ , April 2017.

Apache Mesos is a fault-tolerant and highly available sharing
layer that provides a framework common interface allowing a
fine-grained sharing across diverse cluster computing
frameworks. Fault tolerance is ensured by Apache Zookeper [9].
Mesos offers a scalable and resilient core for enabling various
frameworks. This is particularly important to share efficiently
clusters. A master node manages slave daemons running on each
node in the cluster.

Each framework that run on the top of Mesos use a job
scheduler registered to the master node and ask resources while
an executor process is on slave nodes to run tasks of the
framework (See Fig 1).

Slaves nodes report to the master nodes available resources
(Number of CPU and amount of memory) (1). Then, the master
node invokes the allocation policy module and determines the
amount of resources to be allocated to each framework, and the
scheduler selects each nodes of the offered resources to assign
to the framework (2). At this step, the framework can reject the
offered resources if they do not satisfy its constraints and wait
another offer. If the framework accepts the offered resources
(3), it sends to the master node a description of the tasks to
launch on offered resources by nodes slave. A framework may
specify a whitelist of nodes with which it can run and avoid
node with which it always have offers reject. The master node
sends the task to the slave node which allocate resources to the
framework executor.

Allocation of resources is performed by two modules. The
first performs fair sharing between resources, and the second
implements strict priorities. Frameworks executor on nodes
slave are isolated by leveraging existing OS isolation. Resource
offers are scalable and robust through three mechanisms: filers
to the master node, the count of resources, the re-offers of
resources. Filters avoid communication by providing filters to
master node for frameworks which always reject certain
resources. Mesos counts resources offered to a framework in its
allocation of the cluster. When a framework not respond
quickly enough to an offer, Mesos can re-offer the resources to
another framework. Fault tolerance uses ZooKeeper to run
multiple masters in a hot-standby configuration [10]. Mesos
provides also three containerization modes. Mesos

Fig 1. Apache Mesos Architecture

Framework 1 Framework 2 Framework N

Mesos slave 1

Executor

Job scheduler

…

…

Job scheduler Job scheduler

Mesos
master

Allocation
module

Zookeeper
quorum

JobJob JobJob JobJob

Standby
master

JobTask

Mesos slave 2

Executor

JobTask

Mesos slave Z

Executor

JobTask

Standby
master

1

2
3

4

containerizing allows to use runtime environment, operating
system control and additional resources like disk usage limit.
Mesos allows also Docker containerizing [11]in order to use
tools coming with Docker package. The composing of both
containerization technology allows to test different types of
resources isolations. Mesos is a good solution to implement
multiple framework and share fine-grained resource of the
cluster. This solution allows hosting applications for multiple
use case of digital phenotyping. Our contribution consists of
highlighting the important diversity of needs faced by
researchers in digital phenotyping. In addition to that, we
exhibit the potential of the cloud to meet these needs. Thus, we
contribute by proposing a cloud lambda architecture allowing
to store, analyze and host applications for plant phenotyping.
This architecture provides strategic direction and guidance
solution in order to process images from digital phenotyping
and complementary sensor data.

III. MATERIAL

Our scientific phytotron (Fig. 2) is a closed enclosure
located in 20’ container Advanced Fresh Air Management Plus

6 Akuino, Online: http://www.akuino.net , June 2017.

(AFAM+) from Thermo King. The container is divided into two
experimentation zones. Each one is composed of a shelf with 3
levels. Each level of the shelf can store up to 100 basil plants in
hydronic system.

 Principal parameters monitored in the phytotron installation
are aerial, root and light parameters. The aerial parameters
include air temperature, air moisture, carbon dioxide
concentration, light spectrum and intensity. The root parameters
in hydroponic solution are solution composition including
electrical conductivity, nutrient concentration, pH, Oxygen and
NO3

- concentration [12]. NO3
- is acquired by a sensor Probe Pro

and a Reference Probe Pro Libelium connected on a shield
Smart Ion Board mount on a Waspmote 1.5 A supplementary
module Wifi Pro Libelium is charged of the transmission of
data to Cloud Architecture. An Akuino6 equipped with a UPS
with an autonomy of 6 hours acquires all data in the container
(see Fig 3). Akuino is an open source solution based on
Raspberry Pi and Arduino adapted to agriculture production
context. An Arduino Uno connected to the container regulation
system controls the temperature in a day/night cycle and the
relative humidity. The pH and concentration of nutriment in the
hydroponic solution is maintained by an automatic system
provided of peristaltic pump. (see Fig 5).

Corridor

Legend

Door

Experimental zone

Technical zone

External enveloppe

Zone A

Zone B

Ventilation, Temperature & Relative humidity control

Akuino: Measurement of environmental conditions

Hydroponic solution control

Fig 2. Phytotron Container Organization

Fig 4. Shelfs of Zone A

Fig 3. Measurement of environmental parameters

Fig 5. Hydroponic control solution

One of the most important parameter that must be optimized
is the light spectrum. This parameter influences directly the
growth rate and phenotypic development of plants. The light
plays a role in the life of plants in terms of growth, informative
and biosynthetic. The light spectral composition particularly in
red and blue regions influence directly growth and biosynthetic
functions. Otherwise, the use of pulsed light can also improve
plant productivity compared to continuous light [1]. Spectral
measurement should be made with a maximal bandwidth of 20
nm in the photomorphogenic radiation range (300-800nm) [12].

 Nowadays, many controllable LED lightings are available
and offer interesting photosynthetically active radiation (PAR).
However, they do not allow to reproduce all the required light
spectra finely enough for a scientific phytotron. That is why;
our research installation use ArtNet to control each channel of
led placed above each shelf of plants. ArtNet is a protocol over
UDP using Ethernet or Wi-Fi to transmit Digital Multiplexing

(DMX512) frames. Each shelf in the phytotron contains a
variable number of channels (N). The number of channels is
generally from 8 to 64 channels depending of the kind of
spectrum required. Each channel of the DMX512 system is
decomposed into 256 levels (8 bits) of intensity. This number
of levels is largely greater than the 100 levels proposed by

authors of [1]. The number of possible combination is 256*N.
Considering the large number of possible combinations, it is not
possible to systematically examine all combinations in a
reasonable time with conventional means. The spectral
measurement of each LED is operated at different levels of
intensity by spectrophotometer.

For each level of each shelf, a 3D camera Intel® RealSense™
SR300 is mounted on a translation stage to move the camera
above the plants, both controlled by an Intel® Up board (see
Fig 6). This setup allows to retrieve the 3D structure of the
plants independently. Each 3D camera RealSense SR-300 take
one 2,1-mega pixel photo each hour. As a 20’ container can
contain 600 plants, in one day, 14 400 photos must be stored. In
one year, up to 5.256 million of photos are made in the
container. Six Intel® Up board control movements and
acquisition of each of six cameras above the center of the pot.
Images can be acquired in visible spectrum or in the near
infrared spectrum. The Camera is also able to measure distance
with the plant and evaluate the height of the plant. Then, photos
are dispatched to the cloud where they are stored and are
quickly made available to be treated by an application hosted in
the application platform. Our scientific phytotron is controlled
by a cloud algorithm, which monitor, alert and take decision on
basis of data collected and stored in our cloud solution.

Apache Kafka
Streaming Data

Apache Samza
Data processing

Druid
Real-time

Nodes

Druid
Broker Nodes

Druid
Coordinator

Nodes

Druid
Historical

Nodes

Zookeeper
Distributed

Coordination

HDFS
Deep storage

PostGreSQL
Metadata

Storage

REDIS
Key/Value

Storage

Batch
Data

Streaming
Data

Clients
Queries

Druid Nodes
External Dependencies
Streaming processing
Input/Output Data

Queries
Metadata
Data
Segments

Legend

Fig 7. Lambda Architecture Proposed

Fig 6. Camera position control and acquirement

IV. METHODOLOGY

The literature review has shown that a lambda architecture
is able to collect and store the wide range of data from
phenotyping and environmental parameters such as
temperature, relative humidity, cation-exchange capacity
(CEC), NO3, etc. The application hosting using Mesos keeps
the structure easily adaptable to various framework while
proposing isolation and fine-grained resources of the cluster.

Phenotyping in growth chamber faces several major
limitations. The first one is the limited space in the phytotron,
which make more complex the process of data acquisition at
advanced growth stages. Furthermore, artificial lighting can
alter pattern of plant growth and development [9].

A. Cloud architecture

We propose a cloud solution based on a lambda architecture
to collect, store and treat data from sensors placed in the
phytotron. The architecture is designed to host various
applications and allows to use them with others phytotron
commercial phytotron than those for which they were originally
conceived. Various kinds of data must be stored: 3D picture of
growth, temporal and event data. Our cluster is built with
Apache Kafka, Apache Samza, Apache Hadoop, Druid,
PostGreSQL, Zookeeper and Redis, (Fig 7).

Apache Kafka provides a message bus between producers
and Apache Samza. YARN containers run Apache Samza to
clean up faults in data, performs lookups and performs events.
Then, Druid’s real-time nodes ingest data by event reading. In
this configuration, Druid cluster is able to consume 150 000

events by second [5]. Druid is composed of four types of nodes:
Real-times, Historical, Brokers and Coordinators Nodes. Real-
times nodes provide functionality to ingest, query, index event
streams for small time range. Indexes are maintained in-memory
to be directly queryable. A background task merges indexes
together and build immutable blocks from data ingested by real-
time nodes. Segments are uploaded to a HDFS [13] permanent
backup storage. HDFS is a distributed file system for storing
distributed and replicated data in a cluster of server [8].
Historical Nodes contain functionalities to load and serve the
immutable blocks of data created by real-time nodes. Brokers
nodes route incoming queries to historical or real-times node and
return a final consolidated result to the applicant. Brokers nodes
contain a caching system with a LRU [14] invalidation strategy
and using Redis [15] to store key/value. Finally, Coordinators
nodes are in charge of data management and distribution on
historical nodes: loading, dropping replication and moving of
data. A PostGreSQL database connected to coordinators nodes
store operational parameters, configurations. This database
contains also the list of all segments that can be served by
historical nodes and rules to create, destroy and replicate blocks
of data in the cluster. The database can be updated by any service
that creates persistent block of data. Batch data process event
from static files in JSON or CSV format one at a time and
produce segments directly uploaded in the deep storage. Batch
data processing may take several hours by opposition of real-
time where data are treated in sub second time [6].

B. Application Sharing Platform

We use a share and hosting platform to treat and explore
data from the IoT Lambda Architecture. This platform uses

ZK

ZK

ZK

ZooKeeper
quorum

Jenkins
Framework

Tensorflow
Framework

Marathon
Framework

MPI
Framework

Hama
Framework

Master Node
Leader

Master Node
Standby

Master Node
Standby

Mesos Slave 1

Executor

Task Task

Task Task

Mesos Slave 2

Executor

Task Task

Task Task

Mesos Slave N

Executor

Task Task

Task Task

…

Mesos Slave A

Docker

Container

Container

Mesos Slave B

Docker

Container

Container

Mesos Slave Z

Docker

Container

Container

…

Aurora
Framework

Hadoop
Framework

Fig 8. Application Platform Proposed

Apache Mesos and Docker containers to isolate and host
applications. We can notice that Mesos isolation is better than
Docker, that is why; we have mixed these both containerizing
methods for compatibility reasons (Fig 8). The application
sharing platform use a quorum of 3 nodes Zookeeper: one
master node and two master standby nodes. These two standby
nodes ensure fault tolerance in the cluster.

Mesos offers several pluggable frameworks. Each
framework sends tasks to the master node which transfer them
to slave node available which execute the task. When the task
is executed the result is send to node master which forward
them to the framework. Docker slave node can host external
application which don’t initially be developed to work on
frameworks plugged on Mesos. They can nevertheless be
hosted with container technology offered by Docker.

Six frameworks plugin are installed on our application
sharing platform. Jenkins framework allows continuous
integration and dynamic launch of workers depending on the
workload. Jenkins allows to researcher to develop algorithm
and test them on the cluster. TensorFlow [16] enables to run
distributed machine learning tasks with GPU. Tensor flow
allows to researcher to experiment machine learning on set
images acquire by 3D camera. Marathon is a Private as a
Service (PaaS) ensures that an application is always “on”. It
automatically handles hardware or software failures and
guarantee the availability of paying services MPI [17] is a
message-passing system to function on parallel computers. MPI
allows to accelerate application by starting parallel jobs. It has
been plugged for compatibility reasons for some algorithms and
models. Apache Hama7 is for distributed computing for
massive scientific computations and big data analyses based on
Bulk Synchronous Parallel (BSP) computing techniques. It
provides also vertex and neuron centric programming models.
Hama is principally uses in data analyses and model
elaboration. Apache Aurora [18] is a service scheduler to run
long-running services while benefiting of scalability, isolation
and fault-tolerance of Mesos. Aurora is used to develop
applications to treat raw data from the lambda architecture and
execute cron jobs. Finally, Hadoop framework distributes
MapReduce on the cluster which is used for cloud computing.

C. Light optimization algorithm

The search for an optimal spectral combination of several
light sources is a challenge in this work. Indeed, when the
number of intensity levels and the light sources are important,
it is difficult to find a good solution in reasonable time. Authors
of [19] have shown that more of 100 steps of intensity are
necessary to achieve a good accuracy in terms of spectral
combination. These researchers have proposed different
approaches to optimize LED lighting and obtain specific
spectra.

Authors of [20] have proposed a novel LED-based tunable
light source which comprises 31 spectral bands to reconstruct
spectrum lighting. An algorithm is used to calculate the weight
of each channel. This algorithm uses an interior-point method
to minimize the distance between resulting spectrum and

7 Apache Foundation, “Apache Hama”, https://hama.apache.org June2017.

targeted spectrum. Authors of [21] propose a system based on
24 LEDs and covering a spectrum between 700 nm to 1070 nm.
The intensity of each LED is modulable with 4000 levels.
Therefore, the possible combinations number is 400024. They
use an iterative algorithm based on a mobile window and a
progressive reduction of the variation values of each led to fix
weights.

In our work, we use the MapReduce paradigm with data
stored in the lambda architecture to calculate a good and
acceptable solution by mean of a Particle Swarm Optimization
(PSO) algorithm [22]. This meta heuristic intend for simulating
social behavior to improve by iteratively trying a candidate
solution. A candidate solution is composed of a combination of
intensity of each light source. The evaluation is achieved by
comparison with target spectrum by calculation of difference
between both spectrum for each group of wave length of 10 nm.
The calculation must be reproduced for each level of each shelf
to take into consideration the aging of LEDs and to avoid
possible failures. Indeed, each shelf can be equipped by
different combination of LED which are not known by the
system. The algorithm must find the best combination with the
minimal distance between resulting and targeted spectrum. The
optimization is obtained under conditions of non-negative
weighting. The convolution integration is calculated on the
range 400 to 700 nm by 10 nm step. The spectra of seven CIE
standard illuminants (D65, D50, A, E, F2, F11 and HP1) were
used to validate the quality of spectra reconstructed.

V. CONCLUSIONS AND FUTURE WORKS

The wide range of applications of digital phenotyping shows

that it is not possible to develop all applications on only one

framework and need a set of frameworks on the same cluster.

The optimal solution is to implement Apache Mesos, which

allows a fine-grained use of resource of the cluster without

drawback of multiple Virtual Machine (VM) or portioning of

cluster.
We have proposed a better solution than using traditional

ones like Hadoop. Our solution consists of a new lambda
architecture based on Druid and an application sharing platform
based on Mesos.

Druid allows to treat in quasi real time incoming data and
make them available under second time. Our architecture can
provide large range of data mixing old data archived in deep
storage (HDFS) and recent data which are just treated but not yet
archived. This aspect is particularly important for critical data
which needs rapid processing and eventually reactions. The
Lambda Architecture proposed can ingest a large panel of data
such as time series, images, video, etc. This lambda Architecture
is able to adapt to significant variation of quantity of data to treat
at real time. Moreover, Druid’s data ingestion latency is directly
dependent of the complexity of the data set ingested [23].

The application sharing data proposed allows to host
applications developed by scientist for specific application and
to share them with the community on one hand, and on the other
hand to test these applications with other data. The platform
proposed is able to receive various kind of applications to exploit

heterogenous data. Our application sharing platform uses Mesos
which achieve a fine-grained allocation of resources in the
cluster. Mesos allocates resources of available slave nodes in
function of the requested tasks.

European legislation that will be translated into national law
will require us to ensure the safety and traceability of the use of
the data. We will need to develop a means to guarantee the
security and confidentiality of the data exchanged between the
lambda architecture and the application platform. It will be
necessary to ensure that the data transmitted can only be used
for the concurrent license duration and for the authorized
applications.

VI. ACKNOWLEDGMENT

We would like to thank our colleagues from Biosystems
Dynamics and Exchanges Axis, Biosystem Engineering
Department, Gembloux Agro Bio-Tech (ULiège) without whom
this work would not have been possible. We would especially
like to thank Mr Rudy Schartz for his technical support and for
setting up all the electronic systems necessary for carrying out
this research.

VII. REFERENCES

[1] L. Lei, Q. Zhang and D. Huang, "A Review of Imaging

Techniques for Plant Phenotyping," Sensor, pp. 20075-

20111, 2014.

[2] F. Golbach, G. Koostra, S. Damjanovic, G. Otten and R.

Van de Zedde, "Validation of plant part measurements

using a 3D reconstruction method suitable for high-

throughput seedling phenotyping," Machine Vision and

Application, pp. 663-680, 2016.

[3] M. P. Pound, A. P. French, J. A. Fozard and E. H.

Murchie, "A patch-based approach to 3D plant shoot

phenotyping," Machine Vision and Application, pp. 767-

769, 2016.

[4] J. Mack, C. Lenz, J. Teutrine and V. Steinhage, "High-

precision 3D detection and reconstruction of grapes

from laster range data for efficient phenotyping base ond

supervised learning," Computers and Eelectronics in

Agriculture, pp. 300-311, 2017.

[5] F. Yang, E. Tschetter, X. Léauté, N. Ray and G. Merlin,

"Druid. A Real-time Analytical Data Store," in

SIGMOD, Snowbird, 2014.

[6] F. Yang, G. Merlino, N. Ray, X. Léauté, H. Gupta, and

E. Tschetter, "The RADStack: Open Source Lambda

Architecture for Interactive Analytics," in The 50th

Hawaii International Conference on System Sciences,

Hilton Waikoloa Village, 2017.

[7] E. Tschetter, "Introducing Druid: Real-Time Analytics

at a Billion Rows Per Second," 30 April 2011. [Online].

Available: http://druid.io/blog/2011/04/30/introducing-

druid.html.

[8] M. Dίaz, C. Martίn and B. Rubio, "State-of-the-art,

challenges, and open issues in the integration of Internet

of things and cloud computing," Journal of Network and

Computer Applications, vol. 67, pp. 99-117, 2016.

[9] G. Bai, Y. Ge, W. Hussain, P. S. Baenziger and G. Grae,

"A multi-sensor system for high throughput field

phenotyping in soybean and wheat breeding,"

Computers and Electronics in Agriculture, pp. 181-192,

2016.

[10] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A.

D. Joseph, R. Katz, S. Shenker and I. Stoica,

"Konwinski, M. Zaharia, A. Ghodsi, A.D. Joseph, R.

Katz, S. Shenker, and I. Stoica," Mesos: A platform for

Fine-Grained Resource Sharing in the Data Center, pp.

1-14, 2011.

[11] D. Merkel, "Docker: lightweight Linux containers for

consistent development and deployment," Linux

Journal, 2014.

[12] D. K. Krizek, J. C. Sager and T. W. Tibbitts, "Chapter

15 - Guidelines for Measurement and Reporting of

Environmental Conditions," Iowa State University of

Science and Technology, Ames, 2016.

[13] K. Shvachko, H. Kuang, S. Radia and R. Chansler, "The

hadoop distributed file system," IEEE, pp. 1-10, 2010.

[14] C. S. K. Lrfu, "A spectrum of policies that subsumes the

least recently used and least frequently used policies,"

IEEE, pp. 1352-1361, 2001.

[15] J. Zawodny, "Redis: Lightweight key/value Store That

Goes the Extra Mile," Monday, 31st August 2009.

[Online]. Available: http://www.linux-

mag.com/id/7496/.

[16] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J.

Dean, M. Devin, S. Ghemawat, G. Irving, I. M, M.

Kudlur, J. Levenberg, R. Monga, S. Moore, D. G.

Murray, B. Steiner, P. Tucker, V. Vasudevan, P.

Warden, M. Wicke, Y. Yu, X. Zheng and Google Brain,

"TensorFlow: A system for large-scale machine

learning," in 12th USENIX Symposium on Operating

Sytemps Design and Implementation (OSDI’16),

Savannah, 2013.

[17] W. Gropp, E. Lusk, N. Doss and A. Skjellum, "A high-

performance, portable implementation of the MPI

message passing interface standard," Parellel

Computing, pp. 789-828, 1996.

[18] G. Lobet, X. Draye and C. Périlleux, "An online

database for plant image analysis software tools," Plant

Methods, pp. 1746-4811, 2013.

[19] F. J. Burgos, M. Vilaseca, E. Perales, J. A. Herrera-

Ramίrez, F. M. Martίnez-Verdú and J. Pujol,

"Reconstruction of CIE standard illuminants with an

LED-based spectrally tuneable light source," in

Proceedings of the 12th International AIC Congress,

Newcastle-Gateshead, 2013.

[20] F. J. Burgos-Fernández, M. Vilaseca, E. Perales, J. A.

Herrera-Ramίrez, J. A. Martίnez-Verdú and J. Pujol,

"Spectrally tunable light source based on light-emitting

diodes for custom lighting solutions," Optica Applicata,

vol. XLVI N°1, pp. 117 - 129, 2016.

[21] M. Lukovic, V. Lukovic, I. Belca, B. Kasalica, I.

Stanimirovic and M. Vicic, "LED-based Vis-NIR

spectrally tunable light source – the optimization

algorithm," Journal of the European Optical Society-

Rapid Publications, vol. 19, pp. 1-12, 2016.

[22] M. R. Bonyadi and Z. Michalewicz, "Particle swarm

optimization for single objective continuous space

problems: a review," Evolutionary Computation, pp. 1-

54, 2017.

[23] A. S. Veith, J. C. S. Anjos, E. P. Freitas, T. J.

Lampoltshammer and C. F. Geyer, "Strategies for Big

Data Analytics through Lambda Architectures in

Volatile Environments," IFAC-PapersOnLine, p. 2016,

114-119.

[24] Apache Foundation, "Aurora is a Mesos framework for

long-running services and cron jobs," 7th June 2017.

[Online]. Available: http://aurora.apache.org.

