
Amused Speech Components Analysis and
Classification: Towards an Amusement Arousal Level

Assessment System

Kevin El Haddad, Hüseyin Çakmak, Stéphane Dupont, Thierry Dutoit

TCTS lab - University of Mons

Abstract

In this paper, we present our work on analysis and classification of smiled

vowels, chuckling (or shaking) vowels and laughter syllables. This work is part

of a larger framework that aims at assessing the level of amusement in speech

using the audio modality only. Indeed all of these three categories occur in

amused speech and are considered to contribute in the expression of different

levels of amusement. We first analyze these three amused speech components

on the acoustic level. Then, we improve a classification system we previously

developed. With a limited amount of data and features, we are able to obtain

good classification results with different systems. Among the compared systems,

the best one achieved 82.8% of accuracy, therefore outperforming chance.

Keywords: Amusement Intensity Level, Laughter, Smile,

Paralinguistic, Affective Computing, Machine Learning Application

1. Introduction

Affective computing and more specifically, emotion recognition is currently

one of the hottest research topics due to its potential in many different applica-

tion areas. Applications involve Human-Computer Interactions (HCI), medical

and social areas. Emotions can trigger expressions in different modalities, one5

of the most important being speech. Previous work on emotion recognition

from speech mostly focused on classifying several types of emotions [1, 2, 3].
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The work we present here rather focuses on a single emotion of positive va-

lence: amusement. It is part of a larger framework of assessing accurately the

amusement arousal level in speech using information from the audio modality10

only. In fact most of the previous work related the emotion arousal or intensity

level estimation tackles the problem by using multimodal data. For instance

Patwardhan and Knapp present work in [4] on estimating the intensity level of

anger expressions using speech and motion capture data. Also, Yoshiko et. al.

estimate anger intensity level using speech and linguistic data [5]. Dhall and15

Goecke propose an estimation of different levels of smile and laugh using also

multimodal data in [6] (smiling and laughter in that work aren’t necessarily

expressions for amusement).

In this paper, we propose a preliminary analysis and classification work. In-

deed, we present analyses of amused speech components and improved results on20

classifying these components compared to a previous classification attempt [7].

The ultimate goal being, as mentioned earlier, to estimate accurately the inten-

sity level of amusement in speech using a single modality only, the audio.

Smiled vowels, chuckling (or shaking) vowels [8] and laughter syllables can

all be found in amused speech and are therefore considered here as its com-25

ponents. We will refer to them as Amused Speech Components (ASC). We

consider that two main dimensions constitute amusement in speech. The first

one is the smile which is not only a visual expression, but also identifiable

audibly [9, 10]. The second one is laughter. Laughter interrupting and/or inter-

mingling with speech causes what is called speech-laughs [11]. The estimation30

of the amusement arousal/intensity level in speech needs, by definition, the es-

tablishment of different levels. These levels should be based on the two main

amused speech components previously mentioned, i.e. speech-smile and laugh-

ter (and/or speech-laugh). Indeed, our hypothesis is that amusement intensity

level of an uttered sentence depends on the presence of these two components35

and is correlated with their intensities. The presence (or absence) of each ASC,

and their combination in an uttered sentence, could be representative of an

intensity level.
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In our previous works regarding ASC [12, 7], classification features were

extracted based on observations made on data we collected. The efficiency of40

these features was tested in a classification task with different machine learning

algorithms. Motivated by the good results obtained in these works, we present

a more detailed analysis of the ASC, new discriminating feature sets, and im-

proved classification results using these features.

The remaining of this paper is organized as follows. We first present the45

data collected for the purpose of this work in Section 2. In that section, we

will start by giving a more detailed definition of the ASC. We will then present

the data collection protocol, followed by the analysis of data. Section 3 will

summarize our previous works and recall the initial ASC classification results

obtained. Then, the new feature sets will be introduced in Section 4. The50

improved classification results obtained will be presented in Section 5. We will

finally conclude and give our perspectives for future work in Section 6.

2. Amused Speech Components Data

2.1. Description

a) b) c)
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Figure 1: Representation on the spectral (above) and time (below) domains of a) a smiled

vowel, b) a chuckling vowel and c) a laughter syllable

Speech-smile is a term used to describe the alteration of speech due to smil-55

ing. As already mentioned, smiles can indeed be audibly identifiable in speech

[9, 10]. It is therefore possible to make use of this dimension in this work.
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A prototypical laughter event is a sequence of fricatives and vowels. A

laughter syllable is the succession of a fricative and a vowel (e.g. a ”ha” sound).

Please note that we use the term ”fricative” here to refer only to the /h/ which60

is the most present fricative sound in laughter [13]. In this work, the pattern

for laughter syllables can also be described as the succession of two fricatives

because this pattern can be found in natural laughs and, in particular, in our

data.

Chuckling or shaking vowels, as presented in [12, 7], are vowels altered by65

some kind of tremolo in an amused sentence. This can be seen by comparing

the smiled vowels, chuckling vowels and laughter syllable patterns. Fig. 1 shows

the common temporal and spectral representations of a smiled vowel (a), a

chuckling vowel (b) and (c) two consecutive laughter syllables found in our

data. Some observations can be made out of these figures. First, a discontinuity70

in the spectral representation of the chuckling vowel can be noticed. A more

obvious and accentuated discontinuity can be observed in the laughter syllables

spectral representation separating the first vowel and the second one (V1 and

V2 respectively, in Fig 1 (c)). Since, in the case of the laugh, this discontinuity

is due to the fricative separating the two vowels and considering the fact that75

both phenomena occur in amused speech (and apparently at two different levels

of amusement), the discontinuity in the case of the chuckling vowel must also

be due to an air pulse.

After a comparison of the chuckling and smile vowels in the temporal domain,

it seems like the chuckling vowel pattern is formed of a sequence of two vowels80

separated by a ”breathy vowel” (which would be located where the discontinuity

is). The conclusion drawn from these observations is that the tremolo-like sound

perceived in chuckling vowels is produced by the alteration of a vowel (probably

a speech-smile vowel) by a muscular mechanism similar to the one producing

laughter (please refer to [13] for more details on laughter production).85
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2.2. ASC Database

For the purpose of this study, the database used is the same as the one used

in [7]. We thus have 1004 laughter syllables, 335 smile vowels and 48 chuckling

vowels in total.

The database details can be found in [7]. However for the clarity of this90

article, Table 1 gives a summary of the datasets from which the ASC were

extracted. It contains the language (Lang), the recording conditions (Rec Cond)

of the datasets and what type of data was extracted from it (Sm = smiled vowels,

Ch = chuckling vowels, Laugh = laughter syllables). The recording conditions

column contains whether the data recorded are ”clean” or ”noisy” and whether95

they are naturally expressed or acted.

Dataset Lang Rec Cond Sm Ch Laugh

DS1 French clean/acted + + -

DS2 English noisy/natural + + +

DS3 paralinguistic clean/natural - - +

Table 1: Dataset summary table: In the Lang column, ”paralinguistic” means that there was

no specific language recorded, since the dataset does not contain words (although the data

come from french speaking persons). The + indicates the presence of the type while the -

indicates its absence.

2.3. Data Analysis

In this section, some data analysis on the database presented in the previous

section will be presented.

First the durations of each amused speech component sample was computed100

and the density distribution of their values is given in Fig. 2.

As we can see, the durations of laughter syllables tend to be longer than the

two other ASCs in our database, and chuckling vowels seem to be on average,

longer than the smiled vowels.

In Section 2.1, we pointed out the discontinuity in the spectral representation105

of the chuckling vowels and of the laughter syllables. In fact this observation
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Figure 2: Amused Speech Components durations density distribution.

suggests the speech-smile vowels to have properties such as pitch and energy (or

power) that are more stable than the chuckling vowels ones. This is due to the

fact that the latter are formed by a ”concatenation” of vowels between which

air pulses might interfere. Since the laughter syllables are formed by a fricative110

followed by either a vowel or another fricative, we also expect these parameters

stability to be affected by this pattern. Indeed, as we know, fricative, breathy

and unvoiced sounds in general have low or even null pitch and energy vowels

compared to voiced sounds. These two parameters were thus investigated for

the three different amused speech components.115

Fig. 3 and Fig. 4 show the patterns of the pitch and energy values respectively

computed for smiled vowels, chuckling vowels and laughter syllables, plotted

over the temporal representations of these components. The temporal represen-

tations of the amused speech components showed here, are common patterns

that can be found in our database for each of these components. The pitch here120

was computed using the ESPS method of the Snack library [14] with a window

of 20 ms width shifted by 10 ms. The energy was computed using a 10 ms
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Figure 3: Temporal representations and pitch contours examples for different amused speech

components

Figure 4: Temporal representations and energy contours examples for different amused speech

components
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windows shifted by 10 ms. In these plots, the actual values of the pitch and

energy are not represented because their purpose is to focus on the pitch and

energy patterns with respect to the temporal waveforms.125

As can be seen, and as expected, the pitch and energy tend to be rather

monotonous for smiled vowels compared to more variant shapes for chuckling

vowels and an almost binary shape for laughter syllables, passing from a low

value during the fricative part of the laughter syllable to a high value during

the voiced part of it. These features will be therefore, the basis of the features130

used for our systems later on.

3. Stability-Bases Features Efficiency

In our previous work [12, 7], different sets of features were studied for the

classification of smiling and chuckling vowels, and for the classification of all the

ASCs defined here respectively. In these studies, we introduced Stability-based135

Features (SF) under the hypothesis that some chuckling vowels characteristics

(such as the pitch and the signal power/energy) might be less stable than the

smiled vowels ones. The SF proved to give good discriminative results. They

also proved to be discriminative for the previously mentioned ASCs and laughter

syllables.140

3.1. Stability-Based Features

The Stability-based Features were inspired from the observations made in

Section 2.1 and Section 2.3.They were originally based on the stability of the

pitch and signal power values.

So, in order to represent this stability, the pitch is first estimated on each145

sample of smile vowel, chuckling vowel and laughter syllable using the ESPS

method of the Snack library [14]. This is done, as above, on a sliding window

of length 20 ms and shifted by 10 ms. The derivative of the obtained pitch

is also calculated. Finally the standard deviation of the pitch derivative and

of the residuals of a linear regression fitted on the pitch values are computed150
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to form the first 2 features. The standard deviation values turned to have a

skewed distribution and a log transformation of these data was necessary to

obtain better discriminating features.

Then, the log-power envelope of the signal is considered. During our anal-

ysis this value showed a discriminating pattern for the three classes. In fact,155

it showed downward peaks in shaking vowels at the vowels separation (see Sec-

tion 4). It also showed higher values for the vowel parts and lower ones for the

fricative parts of the laughter vowels. Compared to these behaviors, the smiled

vowels log-power envelope variation seemed to be monotonous. The temporal

log-power of the signal is computed using the following formula:160

P (i) = 10 log
x(i)2

∆T
(1)

x(i) being the ith signal sample and ∆T the sampling period.

From this log-power value, we estimate the envelope by keeping the maxi-

mum values of a 10 ms frame shifted by 10 ms. Then, the same approach used

for the pitch is used for the power envelope, giving us the last 2 features for this

set.165

Before computing these features, 15% of the beginning and end of each

segment were removed so that the transitions with the preceding and following

phonemes affect less the extracted features.

This set of features will be referred to as ”Stability-based Features (SF)” in

the remainder of this article.170

3.2. Previous Experiment

3.2.1. Experiment Description

In the former experiment [7], a combination of the SF and commonly used

features in speech and emotion recognition were used to train different systems

(kNN, SVM, and neural network) to classify the three ASC types. These com-175

monly used features are based on the MFCCs and on the pitch estimation. The

pipeline shown in Fig. 5 was applied to each of the system compared. The same

pipeline will be used further in this work too.
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Parameters 
tuned

Predict

Error Rate Ratio

shaking 
vowels (sh)

smiled 
vowels (sm)

Laugh 
syllables (L)

Sampling

Training (75%) Testing (25%)

48 sh 50 sm 50 L

sh sm L sh sm L

Random 
Splitting

K-fold 
cross validation

Accuracy

Figure 5: Data splitting, systems training and systems testing pipeline.

To tackle the imbalanced classes problem (48 shaking vowels samples, 335

smiled vowels, and 1004 laughter syllables), a first random sampling is applied180

on the smiled vowel and the laughter syllables to obtain a balanced dataset.

Thus, 50 samples of each of these classes are randomly selected and gathered

with the 48 shaking vowel samples. We obtain a new balanced dataset with a

total of 148 samples. This new dataset is then randomly split into 75% of it to

train the system and 25% of it to test it. During the training step, a k-fold cross185
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validation scheme is undertook to tune the system’s set of parameters. When

the optimal set of parameter is found, it is used to train the system using the

whole training data this time. The testing data are then used to evaluate the

final obtained system and the accuracy is computed.

The entire process is repeated 1000 times, thus obtaining 1000 accuracy190

values for each system. The systems accuracy distributions will be compared to

each other.

In the k-folds cross-validation step, the number of folds was chosen to be 4

so that the folds contain 25% of the training data each.

Each system’s hyperparameters values/dimensions varied for every iteration195

of the process described in Fig. 5. So, several values of the corresponding pa-

rameters for each system were used during the tuning step, and only the ones

with the best performance was kept for retraining the system later on.

3.2.2. Classification Efficiency

From the previous work, we first concluded that using the SF alone gave200

better results than using the MFCC or the f0 vectors alone with any of the

systems presented. When combining the features, the results showed that the

combination SF+f0 gave better results than all other feature sets (combined and

not combined) when also used in any system compared here. The SVM with

polynomial kernel used with the SF+f0 combination gave significantly better205

results than all other systems and the single layer neural network’s results were

significantly better than any other system when using non-combined feature

vectors.

When comparing the systems, the SVM with polynomial kernel obtained

the best score when used with the SF+f0 combination (78.96%). Considering210

only one feature vector (higher table) the best score was obtained by the neural

network when used with the SF feature vector (76.2%).

The results obtained using the SF for this classification task encouraged us

to continue investigating features computed from the pitch and energy in order

to improve our system.215
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4. Improved Feature Sets

As expected, the SF features based on the varying stability of the pitch

and power for the three amused speech components, successfully classified these

latter significantly better than chance. These results, encouraged to improve

the SF feature set.220

4.1. Improved Stability-Based Features Set

In the following, the temporal log-power described in equation 1, was re-

placed with the simpler temporal log-energy since it showed to give the sames

results because the temporal energy is equal to the temporal power within a con-

stant, and its simplicity makes it more computationally efficient. The temporal225

log-energy equation is given by:

E(i) = 10 log x(i)2 (2)

Thus the power-based SF features are replaced by the energy-based SF features

by only replacing equation 1 by 2 .

After this first modification, improving the SF feature set begins by con-

sidering the mean value of the residuals extracted from the pitch and energy.230

These two new features are added to the previously described SF. Fig. 6 shows

the density distributions of the mean and standard deviation values of the pitch

and energy log value per amused speech component.

From these plots, we can see that the mean of the pitch residuals seems

actually to be the most discriminating feature among them since the distribu-235

tions for this feature are the less overlapping. The log energy residuals standard

deviation values seem to be discriminative between the speech-smile syllables

and the other two classes while the pitch residuals standard deviation and the

mean log energy residual features tend to be more discriminative between the

laughter syllables and the other two classes.240

Secondly we also consider other pitch-based features: the jitter and shimmer

features. These features represent the cycle-to-cycle fundamental frequency and

12



Figure 6: Density distributions of the mean and standard deviation values for the pitch and

the log value of the energy per Amused Speech Component (ASC).
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Figure 7: Density distributions of the mean and standard deviation values for the jitter and

shimmer for each Amused Speech Component (ASC).

amplitude variations respectively [15]. They proved to be efficient in audio

classification of emotions [16].

These were computed using the description given in [16]. Their calculation245

was made using the pitch and peak normalized cross-correlation value extracted

using the Snack library. Again, here, a 20 ms wide window was used shifted

by 10 ms in order to compute them. Fig. 7 shows the distribution of the mean

and standard variation calculated for each of the extracted jitter and shimmer.

The distributions are plotted per amused speech component for each of these250

statistics.

After observing these graphs, we can see that these features could poten-

tially contribute at discriminating mostly between the laughter syllables and

the other two classes. So, these 4 features obtained are also added to the SF

aforementioned.255
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The new SF will be referred to as newSF in the remaining of this article.

4.2. Statistical Feature Set

Also based on the pitch and the energy, another feature set was extracted

using the OpenSMILE feature extraction tool [17]. Using this tool, different

features are extracted from the energy, the pitch, the jitter and the shimmer.260

First the contours of the root mean square and log energy are extracted

from the amused speech components with a 10 ms window shifted bu 10 ms.

The pitch contour is estimated using the sub-harmonic sampling method with a

40 ms wide window shifted by 10 ms. From this contour, the jitter and shimmer

contours are also computed. All these contours are then smoothed.265

A large set of features is then extracted from each of the 2 energies, the

pitch, the jitter and the shimmer smoothed contours and each amused speech

component:

• the range

• the position of the maximum and minimum values of each signal270

• the arithmetic mean

• all the features listed in [17] concerning the quadratic and linear approxi-

mation of the segment contours.

• statistical moments features, more specifically the standard deviation, the

kurtosis and the skewness values.275

• all the time statistics in frame values, such as ”the time during which the

signal is above or below a certain percentage of its total range”

A total of 810 features were extracted for each amused speech component. This

set of feature will be referred to as OSfeats in the following.
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5. Improving the Classification System280

The two new feature sets presented in the previous section are used for the

classification task of the amused speech components. They are used with the

NN and the SVM with polynomial kernel since these two methods gave the best

results in our previous classification attempt. To these will be added an SVM

with Radial Basis Function (RBF) kernel (the features with the best results285

obtained in our previous attempt will be retrained with this algorithm too for

the sake of comparison). The pipeline for data splitting, training and testing

steps is the same as the one described in Section 3.2.1 and in Fig. 5.

5.1. Principal Component Analysis

Concerning the OSfeats, first results were obtained training each of the three290

aforementioned methods with the whole 810 OSfeats features. Even though the

average accuracy values obtained were better than chance, they were lower than

the previous results obtained (58,2% when the NN is used, 60.1% and 60.04 when

using an SVM with polynomial and RBF kernels respectively). This is due to the

systems overfitting the data because of the high number of features dimensions295

with respect to the systems used. So, a Principal Component Analysis (PCA)

was applied on this set of features for dimensionality reduction. The resulting

set of features was used for training and testing, and this, for each of the NN

and SVMs algorithms. The same pipeline as in Fig. 5 was applied here too, but

100 repetitions each time instead of 1000.300

Fig. 8 shows the average accuracy obtained per model and per number of

principal components used. On the left column of this figure, the mean accuracy

values are shown. They are obtained after training a neural network (A), an

SVM with a Radial Basis Function kernel (B) and an SVM with a polynomial

kernel (C) on the features after their dimensions were reduced to N via PCA.305

They are plotted with respect to the number of principal components N. A

line was then fitted to the obtained mean accuracy values using a third order

polynomial equation. In order to estimate the optimum dimension to use, the

16



derivative of the fitted lines is computed and plotted on the right side of the

figure.310

For each case A, B or C, we chose the dimension corresponding to the first

absolute accuracy difference lower than 0.02%. Indeed, for each curve, this

would correspond to the point on the fitted curve before this latter stabilizes

(corresponding in our case to an absolute difference value lower than 0.02%) and

then decreases (in the case of B and C). This chosen value for each case also315

has a high enough accuracy value for each of the three cases. These values were

58 components for the neural network, 70 for the SVM with polynomial kernel

and 62 for the SVM with RBF kernel. It is worth to be noted though, that

the systems generally have good performances even with a very small number

of principal components used for the dimensionality reduction.320

5.2. Improved Results

Table 2 contains the average accuracy values after training each set of fea-

tures with a feedforward neural network (NN), an SVM with RBF kernel and

an SVM with polynomial kernel.

System SF SF+f0 newSF OSfeats

NN 76.2% 78.1% 80.18% 81.4%

SVM-RBF 74.2% 79.1% 78.4% 82.3%

SVM-Poly 75.6% 78.96% 79.3% 82.8%

Table 2: Mean accuracy results of each system per feature set. The best result is a statistically

significant result under a 95% CI Student’s t-test (in bold).

The first point to be noted from this table is that the OSfeats feature set325

outperforms the other sets of features. The best obtained result was the one

obtained with the SVM-Poly trained with the OSfeats. In order to check its

statistical significance a Student’s t-test was applied on the accuracy distribu-

tion obtained with this system. The test compared the distribution to all the

distributions obtained with all other systems in Table 2. The statistical signifi-330

cance of this result could thus be verified with all other systems except with the
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Figure 8: Mean accuracy values obtained with a neural network (A), an SVM with a Radial

Basis Function kernel (B) and an SVM with a polynomial kernel (C) after dimensionality

reductions are applied to the features.
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OSfeats trained with the SVM-RBF (for which we obtained a p-value of 0.12).

The second point to be noted is that the newSF features generally outperform

SF and SF+f0 features (except for the SVM-RBF trained with SF+f0, which

outperforms SVM-RBF trained with newSF).335

It is also worth noticing that the best accuracy value obtained by training a

NN with the newSF features outperforms all accuracy values obtained with the

SF and SF+f0 features.

Since this is a multiclass classification problem, in order to analyze these

results more in-depth, Table 3 shows the Area Under the Receiver Operation340

Characteristics (AUROC) curve for each of the classes (chuckling vowels, smiled

vowels and laughter syllables), per system and per feature set. Calculating

the AUROC was made by dealing with this multiclass problem as a one-vs-all

problem.

Class System SF SF+f0 newSF OSfeats

NN 0.794 0.803 0.82 0.891

Ch SVM-RBF 0.758 0.875 0.853 0.871

SVM-Poly 0.754 0.798 0.888 0.898

NN 0.792 0.819 0.83 0.891

Sm SVM-RBF 0.76 0.844 0.879 0.904

SVM-Poly 0.747 0.854 0.866 0.872

NN 0.885 0.871 0.895 0.923

L SVM-RBF 0.892 0.869 0.899 0.899

SVM-Poly 0.871 0.872 0.921 0.934

Table 3: AUROC per class with bold being highest value per class. Ch = chuckling vowels,

Sm = Smiling vowels and L = Laughter syllables

From this table, we first notice that all the results are higher than 0.75 and345

that 83% for the values are higher than 0.8 which shows that all these feature

sets work well for each of the classes. We also notice that the newSF and the

OSfeats sets are the only ones showing AUROC values higher than 0.8 in all

cases. The second point we can note is that the results are generally similar to
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the accuracy results of table 2: the OSfeats set always show the best results and350

the best results obtained from the newSF set is better than all results from the

SF and SF+f0 sets for each class.

In general, we can see that the feature sets discriminate the laughter syllables

class (L) better than the other classes (Ch and Sm). Indeed this is coherent

with the features discrimination efficiency of the laughter syllables compared to355

the others, visible in figures 6 and 7.

From all these results it is safe to conclude that in this study the OSfeats

give the best results followed by the newSF feature set. But, although the

former outperforms the latter, the newSF feature set has the advantage of being

interpretable and not requiring a PCA to be applied, which is computationally360

more efficient. More effort should be put to discriminate between the smiling

and chuckling vowels. Doing this will most probably increase the efficiency of

the whole system for this task.

6. Conclusion and Perspective

In this paper, we first introduced Amused Speech Components which will365

be used in future work to assess amusement level in one’s speech. A summary

of our previous work regarding classifying these ASC was then given. This has

the ultimate goal of amusement intensity level assessment. We also push the

analysis of the data previously gathered further than in our previous work in

order to have a better understanding of these ASC. In this work we improve our370

previous classification results by creating new sets of features.

One limitation to be noted is that the majority of the features presented here,

discriminated individually better the laughter syllables from the other classes

than the chuckling or smiled vowels from the other classes. Another limitation

is the amount of chuckling vowels data available. Indeed, this prevents us from375

using systems that have proved to be very efficient for classification tasks but

require a larger amount of data.

We plan on tackling these limitations by first gathering a larger database.
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Then we will attempt to use systems that deal efficiently with time dependent

data, hopping to get better results (systems such as Hidden Markov Models,380

or Recurrent Neural Networks and more specifically Long Short-term Memory

networks).

Finally we plan on building an ASC detection system. Among others, the

detected ASC would be used to assess a subject’s amusement intensity level.
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and Dr. Stéphane Dupont. His research interests include multimodal synthesis

and recognition of affect signals, affective computing and machine learning ap-

plications for Human-Agent Interactions.

455
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