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Dictionary-Based Tensor Canonical Polyadic
Decomposition

Jérémy Emile Cohen and Nicolas Gillis

Abstract—To ensure interpretability of extracted sources in ten-
sor decomposition, we introduce in this paper a dictionary-based
tensor canonical polyadic decomposition, which enforces one fac-
tor to belong exactly to a known dictionary. A new formulation of
sparse coding is proposed, which enables high-dimensional tensors
dictionary-based canonical polyadic decomposition. The benefits
of using a dictionary in tensor decomposition models are explored
both in terms of parameter identifiability and estimation accuracy.
Performances of the proposed algorithms are evaluated on the de-
composition of simulated data and the unmixing of hyperspectral
images.

Index Terms—Tensor, multiway analysis, sparse coding, con-
strained optimization, spectral unmixing.

I. INTRODUCTION

G IVEN a mixture of several components, a classic problem
in signal processing is to separate the contribution of each

of these components using solely the information contained in
the data. This problem is known as blind source separation
and has been a particularly widely studied topic for the last two
decades [1]. When the available data are contained in a multiway
array, that is, a table of three entries or more, blind source separa-
tion has been successfully achieved by means of tensor decom-
position techniques in a large variety of applications, ranging
from telecommunications [2] to chemometrics [3], spectral un-
mixing [4], neuroimaging [5], social sciences [6] and machine
learning [7].

The key concept behind tensor decomposition methods is the
linearity of blocks of parameters of interest such as spectra,
concentrations or time signatures with respect to experimental
parameters such as wavelength, pixel index, subject index or
time. For the canonical polyadic decomposition (CPD) model
studied in this paper, each block of parameters of interest de-
pends respectively on only one experimental parameter.

As an illustration, tensor decomposition techniques can be
used to perform source separation with hyperspectral images,
a task often referred to as spectral unmixing. Hyperspectral
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images are 2D images collected for a large number of wave-
lengths, and possibly along time. In this scenario, the blocks of
parameters of interest are spectral signatures (characteristic re-
sponses of materials to light stimulation), abundances (relative
concentrations) and time evolution.

For most applications, tensor decomposition models are how-
ever not exactly following a physical models because of their
strong multilinearity assumptions. As a consequence, modeling
error has to be accounted for when processing the results of the
source separation using tensors. This matters when the goal of
the source separation is to identify the components in the mix-
ture. The estimated parameters of interest have to be compared
with benchmarks, and modeling error induces error on the es-
timated parameters which may in turn deteriorate identification
performances.

In this paper, we want to avoid splitting the identification
procedure and the source separation procedure. It is shown that
using a formalism inspired from sparse coding [8], merging
source separation and identification is not only possible but also
offers advantages in term of uniqueness properties of the tensor
decomposition, and may reduce estimation error on identified
factors provided the a priori information is accurate.

OUTLINE AND CONTRIBUTIONS

In this work, after discussing notations and vocabulary, we
make the following contributions:

� Formalize high order tensor sparse coding by modifying
the usual sparse coding formulation for matrices [8], [9].
We call the obtained tensor model dictionary canonical
polyadic decomposition (DCPD).

� Provide tools for introducing flexibility in the DCPD for-
mulation. This makes the DCPD model more suitable for
practical problems.

� Study the identifiability of parameters of the DCPD for
matrices and higher order tensors, and study the existence
of a best low rank DCPD approximation.

� Develop greedy and continuous algorithms to compute the
DCPD and its flexible variants.

� Check the identification performances of the DCPD model
on synthetic data with respect to the CPD model. We also
use DCPD in the matrix case to perform spectral unmixing
under pure-pixel assumption of the Urban and Terrain data
sets1 and compare our results with state-of-the-art methods
[10]–[13].

1available at http://www.agc.army.mil/
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TABLE I
BASIC DEFINITIONS FROM LINEAR ALGEBRA

TABLE II
SOME DEFINITIONS AND PROPERTIES OF MULTILINEAR OPERATORS

NOTATION AND VOCABULARY

Among various notation habits in the multiway array pro-
cessing community, we choose to follow notation from [14],
[15], as presented in Tables I and II. Although our results will
be applicable to tensors of any order, we focus in this paper on
third order tensor in order to simplify the presentation. We call a
third-order real K × L×M tensor T a vector from a tensor
space (IRK ⊗ IRL ⊗ IRM ,⊗) with ⊗ being a tensor product. A
three way array is an element from (IRK×L×M ,⊗) where ⊗
is the outer product. In other words, the set of arrays is a tensor
space when the outer product is used as the tensor product. A
higher order tensor is a vector from a tensor space featuring at
least three linear subspaces.

In Table II, some useful properties of multilinear opera-
tors acting on tensors are specified. Multilinear operators gen-
eralize linear operators acting on vectors by defining linear
operations on each vector space IRN composing the tensor
space. These multilinear operators also form a tensor space
(IRR1×K ⊗op IRR2×K ⊗op IRR3×K ,⊗op) where ⊗op will be
abusively denoted ⊗ although it is not the outer product. In-
deed, ⊗op is defined by (U ⊗op V )(a⊗ b) = Ua⊗V b.

Given a K × L×M tensor T , its canonical polyadic de-
composition (CPD) of rank R can be written as follows:

T =
R∑

r=1

Dr , (1)

where Dr are decomposable tensors of the form Dr =
ar ⊗ br ⊗ cr . The rank of T is the minimal value of R such
that (1) holds exactly, while we define the rank of a CPD model
as the number of component R in that model. A CPD model or
a tensor is said to be a low-rank model or a low-rank tensor if
R is small with respect to all dimensions of the data or tensor.

Finding the CPD of a third-order tensor means finding rank-
one tensors Dr . Yet, each tensor Dr may be defined by three
vectors ar , br and cr , only up to two scaling ambiguities; in
fact, ar ⊗ br ⊗ cr = αar ⊗βbr ⊗ cr /αβ, ∀α, β �= 0.

Next, it is often convenient to store these vectors in matri-
ces called factors as A = [a1 , . . . ,aR ], B = [b1 , . . . , bR ] and
C = [c1 , . . . , cR ]. This leads to a convenient writing:

T = (A⊗B⊗C) IR , (2)

where A ∈ IRK×R , B ∈ IRL×R and C ∈ IRM×R are called fac-
tor matrices, and IR =

∑R
r=1ei ⊗ ei ⊗ei belongs to IRR×R×R

with ei a canonical basis vector of IRR , that is, IR is a diag-
onal core tensor with only ones on the diagonal. A convenient
interpretation of (2) is to see it as a change of basis. Indeed,
(2) means that the vector T is expressed by coefficients IR in
the image of multilinear operator A⊗B⊗C, with linear op-
erators A, B and C spanning respectively the first, second and
third mode of T . Note that model (2) now contains 2R scaling
indeterminacies whereas definition (1) did not contain any.

Conditions on the dimensions of the tensor and rank of the
decomposition are given in the literature [16]–[18] to ensure
uniqueness of the factors in an unconstrained CP model, but
only when noise is absent. When these conditions are satisfied,
the factors in the CPD model are unique up to permutation
ambiguity and the scaling described above. The model is then
said to be identifiable. For higher order tensors, that is, arrays
of three ways and more, these conditions are mild.

Matrices are a particular case of tensors with only two modes.
One of the main differences of the CPD for matrices compared
with the CPD of higher order tensors is that it is never identifiable
without additional constraints as soon as R > 1. Note that, since
the two modes of a matrix are the column space and the row
space, the CPD of a matrix can be written as M = ABT .

A difficult problem not adressed in this manuscript is finding
the rank of a tensor, in both an exact decomposition and an
approximate decomposition scenario. A naive approach is to
look at the singular value profiles of the unfoldings, but an
interested reader may refer to [20], [21] and references therein.

A tool that needs to be introduced here is the unfolding of
three-way arrays. By choosing three particular ways to cut the
cube of data into slices and stacking the obtained matrices, it is
possible to rewrite the CPD in a matrix format. We chose the
unfolding defined in [15], yielding the following matrix format
CPD :

T 1 = A (B �C)T ,

T 2 = B (A�C)T ,

T 3 = C (A�B)T . (3)

Unfolding T i contains all the vectors along the mode i. For
instance, T 1 contains all the L×M columns of T , thus its
column space is the subspace spanned on the first mode by T ,
that is, the span of columns of A.

II. DICTIONNARY CPD : MODEL DEFINITION

An important property of low-rank models is that the com-
puted factors bear physical meaning. Factors are interpretable
when the multilinear relationship between the experimental pa-
rameters and the block of parameters of interest stems from a
meaningful modeling, and when the model is identifiable.
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The first condition is met in many applications of low-rank
models, for instance in fluorescence spectroscopy where spectra
and concentrations depend linearly, as a first-order approxima-
tion, on the emission wavelength, the excitation wavelength
and the mixture index [22]. When mining a collection of text
documents, low-rank factorization techniques can identify char-
acteristic words and documents [23].

The identifiability condition may however not be verified in
practice. For matrices, it is indeed well known that identifiability
is never achieved without imposing additional constraints for R
greater than one, since

M = ABT = APP−1BT (4)

for any invertible matrix P . In the higher-order case, condi-
tions on the rank of the model and the dimensions of the data
have been reported in the literature with some variations, but
are mild enough to ensure identifiability of the CPD in most
applications [16]–[18].

If the factors are meaningful, it may be of crucial importance
to identify them. In the example of fluorescence spectroscopy,
once emission and excitation spectra have been extracted from
the data using a CPD model, the final step is to recognize which
chemical compound is present in the mixtures by matching the
extracted spectra with known spectra of known chemicals. The
goal of the models presented below is to merge this identification
step with the source separation procedure using the a priori
information available on the factors.

A. Dictionary-Based CPD

Formally, assume the following relationship between a matrix
D ∈ IRL×d called the (over-complete) dictionary and factor B:

B = DS, ‖si‖0 = 1 for i ∈ {1, . . . , R}, (5)

where S ∈ {0, 1}d×R is a binary matrix, ‖si‖0 counts the num-
ber of non-zero values in the ith column of S, and d is much
larger than R. Here S has exactly one 1 in each column and
is a selection matrix that identifies, among the d atoms of the
dictionary, R atoms present in factor B. The chosen columns of
D that constitute B are given by the row index of all the ones in
S. A priori, no restrictions on the atoms are assumed although
some technical conditions to ensure identifiability in particular
settings are discussed in Section IV.

Viewing (5) as a parameterization of B, a dictionary CPD
model (DCPD) can be written as follows:

{
T = (A⊗DS⊗C) IR + E,

‖si‖0 = 1 for i ∈ {1, . . . , R}, S ∈ {0, 1}d×R .
(6)

In this model, the parameters are A, S and C. Tensor E rep-
resent the noise, and typically its entries follow i.i.d. known
distributions such as a zero-mean Gaussian distribution. In that
case, it is possible to derive the maximum likelihood estimator

of parameters A, S and C:

argmin
A,S,C

‖T − (A⊗DS⊗C) IR‖2F

such that ‖si‖0 = 1 for i ∈ {1, . . . , R} and S ∈ {0, 1}d×R .
(7)

Of course, the DCPD does not apply in any situation where the
CPD works. It is far from obvious that for a given application,
a dictionary containing exactly all the factors on one mode is
available. Even if such a dictionary is available, it is likely that
some variability has to be accounted for between the atoms and
the factors. Below, we try to tackle respectively cases where the
relation (5) should not be exact, and cases where no dictionary
is available.

B. Accounting for Variability

In spectral unmixing, two different approaches have been
studied in the literature: the fully blind unmixing and the semi-
blind approach, using already known spectra to compute re-
gression [24]. However in this particular application, it is well
known that the same material emits a slightly different spectrum
depending on additional parameters not accounted for in a low-
rank model. These variations are called spectral variability and
are a major issue to using both blind unmixing and semi-blind
unmixing [25]. Learning from this example, we emphasize that
a naive DCPD as introduced above in (6) may be viewed as
unrealistic.

Therefore, it may be necessary to introduce flexibility in the
DCPD model. A first way is to generalize the relationship be-
tween factor B and the dictionary D:

B = f(DS, θ), (8)

for some function f(x, θ) mapping to IRL×R and where θ is
a random variable following some known probability p(θ). A
simple instance of (8) is obtained by setting f(x, θ) = x + θ
and p(θ) is a Gaussian distribution of zero mean and known
white covariance σcIK ⊗ IR . Then (8) is a noisy version of (5)
and interpreting (8) as a priori information on B, a maximum
a posteriori estimator yields (MAP derivation similar to [26]):

argmin
A,B,S,C

‖T − (A⊗B⊗C) IR‖2F +
1
σ2

c

‖B −DS‖2F

such that ‖si‖0 = 1 for i ∈ {1, . . . , R} and S ∈ {0, 1}d×R .
(9)

In the case where atoms can be grouped with sufficient group
population, the user may want to identify the columns of factor
B with a group of atoms rather than with a single element of
D. This is the method used in [27] for hyperspectral imaging,
where the dictionary contains multiple spectra for each class of
mineral. In this scenario, a solution is to cluster the available
atoms and use the centroids as columns of D along with inter-
class covariance. Then comparing B to multiple classes of atoms
with known averages and covariances amounts to penalizing
using the Mahalanobis distance [27] in (9).
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Dictionary-Based PARAFAC2: There are other ways to ac-
count for discrepancy between the dictionary and the true phe-
nomena underlying the data. In particular, it is not unreasonable
that this discrepancy depends on the other experimental param-
eters (that is, the first or third mode in our case). For instance,
in hyperspectral imaging, a modification of the geometry of the
ground due to weather conditions can modify the spectra. If
the data is collected along time, then the spectrum of a partic-
ular material can relate to one atom in the dictionary but with
a time-dependent discrepancy. Since modeling variability is a
topic-dependent task, we only provide one instance of a modi-
fied DCPD that handles this task, to serve as a guide for further
works.

A well-known modified CPD model that accounts for vari-
ability is the PARAFAC2 model [28], [29]. Here we show that
the PARAFAC2 model can be adapted incorporating dictionary
information. The model is the following: for all positive integer
m smaller than M ,

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Mm = ADiag(cm )BT
m ,

Bm = P m Q,

P T
m P m = IR ,

Q = DS,

‖si‖0 = 1 for i ∈ {1, . . . , R}, S ∈ {0, 1}d×R ,

(10)

where Mm ∈ IRK×L is the mth slice of data tensor T along
the third mode, cm is the mth row of a matrix of parameters C,
matrices P m with orthogonal columns are unknown and Q is an
unknown latent factor related to all the factors Bm . Dictionary
D has sizes D × d where D can be different from M .

Here the three-way data is seen as a collection of matrices with
shared first mode factor A and similar factors Bm = P m Q. The
matrix Q stands for a latent shared factor among matrices Bm .
To include additional knowledge provided by the dictionary,
is it assumed that this Q follows equation (5). Because the
columns of P are orthogonal, the underlying hypothesis here is
that all Bm have the same covariance matrix, which is a relaxed
assumption with respect to the underlying hypothesis in (6), that
is, Bm = Q for all m.

An hidden advantage of the PARAFAC2 version of DCPD
is that row dimension of the dictionary can be different from
the number of samples on the second mode, since P m does
not need to be square. In practice this means that when using
the PARAFAC2 dictionary model, the measured spectral bands
can be different than the spectral bands at which atoms are
sampled.

C. Self-Dictionnary

If no dictionary is available on any of the factor, it is still
possible in some specific cases to obtain the dictionary from
the data. The topic of learning a dictionary from auxiliary data
will be dealt with in future works. Rather, we focus here on the
separability assumption [30], [31], that is when the data itself
can be used as a dictionary. In the matrix case, the separabil-
ity has been well studied in the context of nonnegative matrix

factorization (NMF), see next section for details. With the sug-
gested formalism, the self-dictionary CPD for matrices is written
as follows:

M = A
(
MT S

)T
, (11)

where ‖si‖0 = 1 for i ∈ {1, . . . , R}, S ∈ {0, 1}d×R . A work-
ing hypothesis of this model for matrices is that the second mode
factor is a subset of the rows of M .

A generalization of the separability assumption to higher or-
der tensors is however not straightforward. Recently, an attempt
was made to define “pure slices” [32], but another possible gen-
eralization is obtained by supposing the columns of factor B
are contained in all the K ×M columns of the unfolding matrix
T 2 . The drawback of this model is the possibly very large num-
ber of correlated atoms in the obtained dictionary T 2 . There
are various approaches to extend the separability assumption to
high-order tensors, but this paper only deals with the case where
D = T 2 . Considering other variants is a direction for further
research.

III. RELATED WORKS

A. Sparse Coding

Dictionary CPD presented in this paper can be seen as an
extension of sparse coding for higher order tensors, see for
instance [8], [9]. In sparse coding, a dictionary D is available,
and the data is to be expressed as linear combinations of a small
number of R atoms:

M = DX, (12)

where X is imposed to have at most R non-zero rows. This
constraint can be formulated using the �0/�q pseudo norm
of XT for any q ≥ 0, where the �p/�q norm of a matrix is
defined as

||X||�p /�q
= ||v||p , where vi = ||xi ||q ∀i. (13)

In fact, X has at most R non-zero rows if and only if ||XT ||�0 /�q

≤ R.
This model is equivalent to dictionary CPD for matrices by

setting SBT = X . Nevertheless there is a crucial difference
between the two formulations:

� By splitting the variable X into two variables SBT , the
linear constraint M = DX becomes non-convex with re-
spect to S or B.

� The sparse coding formulation involves a large number of
variables, d×m if M is n by m, whereas the DCPD for-
mulation for matrices involves (d + m)×R parameters.

In summary, sparse coding involves much more parameters but
yields a convex parametrization of the data.

In practice, because of the presence of noice, the constraint
M = DX is replaced by the minimization of ||M −DX||
(which is convex for any norm ||.||). Since the mixed pseudo
norm �0/�q is non-convex, most methods for computing sparse
coding rely on convex relaxations. Row-sparsity of X can be
achieved in different ways; in particular using convexifications
based on the �1 norm, e.g., �1/�2 [9], [33], �1/�∞ [34], or using



1880 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 66, NO. 7, APRIL 1, 2018

more sophisticated models [35], [36]. As far as we know, it is
the first time sparse coding is tackled using the reformulation
X = SBT . Although the resulting problem cannot be relaxed
easily, it involves significantly fewer variables hence will be
applicable to large-scale problems.

Recently, Salhoun et al. suggested a direct extension of sparse
coding for higher order tensors [37] in the particular context of
harmonic retrievals, but an obvious difficulty is that the row-
sparsity has to be imposed on Khatri-Rao products of factors.

B. NMF with Self Dictionary in Spectral Unmixing

Similarly, self dictionaries have been studied for matrices
using the sparse coding formalism, by setting D = M . This is
often called the pure-pixel assumption in spectral unmixing [24],
since the self-dictionary model assumes some columns of the
matrix M are not mixtures of more than one column of B. As
far as we know, there are mainly two types of approaches to
tackle (11):

� Geometric approaches that selects the atoms in the dic-
tionary based on some geometric criteria, typically based
on the volume of the convex hull of MT S. These ap-
proaches include for example vertex component analy-
sis (VCA) [11] and the successive projection algorithm
(SPA) [13], [38]–[40]. They are usually fast, running in
O(mnR) operations. However, they do not always se-
lect atoms leading to a small data fitting term ||M −A
(MT S)T ||F since, most of them do not take it into ac-
count directly, as they usually put an emphasis on some
geometric properties of MT S (such as having a large vol-
ume). In particular, these methods are in general sensitive
to outliers.

� Sparse regression approaches that are based on the sparse
coding reformulation of (11)

min
X∈Rd×n

+

||M −XM ||2F

such that X has r non-zero columns,

and achieve column sparsity constraints on the scores X
in different ways [9], [33]–[36]. These methods have the
advantage to better model (11) than geometric approaches
as they take into account the data fitting term explicitly.
They usually provide good solutions but are rather costly
as an optimization problem in dn variables must be solved,
where n stands for the column dimension of M . In par-
ticular, since here D = MT , we have d = n hence n2

variables. In hyperspectral unmixing, n is the order of mil-
lions and these approaches are impractical. Hence pixels
have to be selected in a preprocessing step [41] (e.g., using
a geometric approach). Moreover, the problem solved is an
approximation of the original problem, which results may
not be as close as desired to the solutions of the non-convex
problem.

In Section V, we describe several algorithms to tackle the
proposed formulation (11). They combine the advantages of the
two types of approaches described above: they are fast, running

inO(mnR) operations, but taking explicitly the data fitting term
||M −XM ||2F into account.

C. Constrained Tensor Decompositions

The DCPD can be understood as a constrained CPD model. It
is similar in spirit to computing CPD when a basis of represen-
tation is known for one of the factors, which typically happens
when using Tucker Decomposition [42] or a basis of splines
[43] for compression. Other linearly constrained tensor decom-
position model are obtained when the components are linearly
dependent [44], or when the factors are stuctured, e.g. Hankel
or Toeplitz matrices [45].

From a constrained tensor decomposition perspective, the
novelty of the present work is that the dictionary is overcom-
plete and is therefore not a basis of the factor space. Thus sparsity
constraints are imposed on the coefficients and our approach is
rather combinatorial. We have already published some prelim-
inary results focusing on matrices and applications to spectral
unmixing [46].

D. Parameterized Factors in Tensor Decomposition

Using a dictionary to help with recovering factor B of the
CPD is also closely related to parameterizing the columns of
that factor. Parametrization is a viable option when an analyti-
cal formulation of the atoms of the dictionary is possible. The
dictionary is then a continuous dictionary, see for instance [47,
Section IV] and references therein. This continuous parameteri-
zation may yet not always be achievable in real-life applications.
The motivation behind the two methods is however the same:
reduce the number of degrees of freedom in the tensor decom-
position model by providing a set of admissible solutions to
improve estimation accuracy, and to restore identifiability in
some pathological cases, some of which are discussed in the
next section.

E. Abundances Estimation in Hyperspectral Unmixing

In the context of spectral unmixing of hyperspectral images,
using a known library of spectra to estimate the second factor
B is a widely studied topic. Matrix A contains the abundances
and refers to relative concentrations of materials on each pixel.
Except for the methods described above, the most widely used
techniques to compute A when D is known are, to the best
of our knowledge, MESMA [48], MELSUM [49], BSMA [50]
and AutoMCU [51], which all rely on a more or less exhaustive
search of all combinations of atoms in D, except AutoMCU
which only draws randomly a subset of possible atoms. For
all possible combinations, abundances are computed, and the
best abundances are those that minimize reconstruction error in
addition to satisfying some interpretability criteria.

The proposed approach differs from these techniques since it
merges blind source separation techniques for spectral unmix-
ing, namely NMF, but featuring atom selection. To the best of
our knowledge, our approach has not been described yet in the
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spectral unmixing literature, and is bound to be computationally
less expensive than an exhaustive search.

IV. IDENTIFIABILITY

The following section contains partial results on the identifia-
bility of the DCPD model, cast in particular cases of interest. In
propositions 1, 3 and 4 below, the assumption that no atoms are
picked twice is made. This assumption is necessary for proving
the identifiability of the DCPD parameters, but should not be
necessarily imposed in the higher-order case. For instance, time
series of hyperspectral images may require multiple abundance
and time components for a single material when decomposed
with the CPD model.

A. Matrix Case

It is well known that for matrices, the low rank CPD model
is not identifiable because of the rotation ambiguity, see equa-
tion (4). However, when a dictionary is available for one of
the modes, this rotation ambiguity may be fixed given some
conditions on D:

Proposition 1: Let M be a real n×m matrix of rank R,
and let D be a real n× d matrix with spark(D) > R where
spark(D) is the minimum integer k such that at least one subset
of k columns of D is rank-defficient. If there exist a full column-
rank S ∈ {0, 1}d×R with column sparsity set to 1, and A ∈
IRn×R with nonzero columns such that M = A(DS)T , then
S and A are unique up to permutation ambiguity.

Proof: Since spark(D) > R and S is full column rank,
B = DS has full column rank hence A is unique up to permu-
tations in the decomposition M = ABT if B is unique up to
permutations. Moreover, given M = ABT , because A has no
zero columns, the column space of B and the row space of M
are equal. Such a B is built by selecting R atoms in D that both
span and belong to the row space of M . Because the span of D
is strictly larger than R, there is only one such set of R atoms.
Thus B is unique up to permutation. �

B. CPD and DCPD Uniqueness

For all applications where the identifiability of the CPD is
usually verified, a natural question to ask is whether the DCPD
will automatically be identifiable or if some additional condi-
tions need to be checked before trying to use the DCPD model.
It turns out that given the uniqueness of the CPD up to scaling
and permutations of the factors, the only requirement to obtain
uniqueness of the DPCD is the uniqueness of the factorization
B = DS, which itself is quite simple to check.

Proposition 2: Let T ∈ IRK×L×M be such that T admits a
unique rank R CPD up to scaling and permutations. Then if D
does not contain collinear atoms and there exist S verifying (5),
the DCPD is also unique up to scaling and permutations.

Proof: Because the CPD of T = (A⊗B⊗C) I is unique,
the DCPD is unique if and only if Ω = {S|B = DS} is a
singleton. The set Ω is not empty by assumption, and if S1 ,S2
belong to Ω, then the columns they select in D have to be
collinear (or equal if there was no scaling ambiguity on B).

By hypothesis this implies S1 = S2Π, where Π is a column
permutation matrix. �

The existence of S is what is really difficult to asses in prac-
tice. On the other hand, the dictionary may contain very corre-
lated atoms, but not exactly collinear atoms, so that the DCPD
as a model is identifiable in practice whenever the CPD is iden-
tifiable.

Moreover, using proposition 1, it is possible to derive a mild
sufficient condition for uniqueness of DCPD.

Proposition 3: Let T be a real K × L×M tensor of rank
R and D a real L× d matrix. If there exist a full column-
rank S ∈ {0, 1}d×R with column sparsity set to 1, and A ∈
IRK×R and C ∈ IRM×R such that T = (A⊗DS⊗C) IR , if
spark(D) > R and if A�C is full column-rank and A and C
do not have zero columns, then S, A and C are unique up to
permutation and scaling ambiguity.

Proof: By applying Proposition 1 to the rank R matrix T 2 =
DS (A�C)T , S and the Khatri-Rao product P = A�C
are unique up to permutation ambiguity. It remains to prove
that the decomposition of P into A�C is unique provided
that the dimensions of the problem are fixed. Column-wise, we
need to check that the factorization matr(pi) = aic

T
i is unique.

This rank-one approximation is moreover up to scaling, and
because this fixed matricization operator is an isomorphism, the
decomposition of P is therefore unique. �

An important remark is that Proposition 3 is true for any
order, since rank-one decompositions are always unique up to
scaling. Similar discussion on identifiability when one factor is
unique can be found in [52] and references therein. Moreover, if
A has many collinear columns as may be the case with spectra
in spectral unmixing, if A has no zero column and C is full
column rank, then A�C is full column-rank and the DCPD
model does not suffer from the rotation ambiguity inherent to
the CPD with collinear columns in factors. Colinear columns in
factors appear when multiple columns of a factor in one mode
are necessary to express the evolution of only one physically
meaningful component.

C. Existence of the Best Low-Rank DCPD

For third-order tensors, another important advantage of
DCPD is that it makes the optimization problem well-posed.
In fact, for CPD, the optimal solution may not exist as the fea-
sible set is open; see for example [53].

Proposition 4: Let spark(D) > R and impose that S is full
column rank, then the optimal solution of (7) is attained.

Proof: Since spark(D) > R, for any full column rank S,
B = DS has rank R. Note that there are a finite number of such
S. It remains to show that for any B of rank R, the infimum of

inf
A,C
‖T − (A⊗B⊗C) IR‖2F

is attained. Without loss of generality, we can assume that
||ar ||2 = 1 for 1 ≤ r ≤ R by the scaling degree of freedom
of each rank-one tensor Dr = ar ⊗ br ⊗ cr . Using unfolding,
the infimum of the above problem is attained if and only if the
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infimum of

inf
A,||ar ||2 =1∀r,C

‖T 3 −C (A�B)T ‖2F
is attained. Moreover, since C = 0 is a feasible solution, we can
add the constraint

‖T 3 −C (A�B)T ‖F ≤ ‖T 3‖F
implying ‖C (A�B)T ‖F ≤ 2‖T 3‖F . For rank(B) = R and
||ar ||2 = 1∀r, we can show that

σR (A�B) ≥ σR (B) > 0,

where σR (B) is the Rth singular value of B. In fact, denoting
aj the jth row of A,

σ2
R (A�B) = min

||x||2 =1
||(A�B)x||22

= min
||x||2 =1

∑

j

||B(x � aj )||22

≥ σ2
R (B) min

||x||2 =1

∑

j

||x � aj ||22

= σ2
R (B) min

||x||2 =1

R∑

r=1

|xr | ||ar ||22 = σ2
R (B).

Finally, ‖C‖F ≤ 2 ‖T 3 ‖F
σm in (B) hence the feasible set can be reduced

to a compact set hence the infimum is attained since the objective
function is continuous and bounded below. �

V. DECOMPOSITION ALGORITHMS : GREEDY AND

NON-GREEDY APPROACHES

In the literature of sparse approximation, two families of
algorithms have been studied extensively: greedy approaches
based on matching pursuit, and continuous approaches based on
convex relaxations of the �0 pseudo norm [54], [55]. In the same
spirit, we develop in the next two sections the two same kind of
algorithms to attack (6). We will compare these approaches in
Section VI.

This paper does not explicitly discuss algorithms for com-
puting the CPD itself. In DCPD, factor matrices A and C can
be estimated using any off-the-shelf CPD algorithm assuming
B is fixed. This can be done for instance using the alternat-
ing least squares procedure in the unconstrained case, or exact
non-negative least squares for non-negative CPD [56], [57].
Therefore, below, only the estimation of S and B for fixed A
and C is discussed.2

A. Greedy Algorithms: Matching Pursuit

Let us first provide an algorithm to compute the minimum
(7) with respect to S. Since the set of solution for S is discrete,
the underlying optimization problem is combinatorial. On the
other hand, computing the unconstrained CPD can be done ef-
ficiently using alternating least squares (ALS). We want to take

2Algorithms introduced in this section are available at https://jeremy-e-
cohen.jimdo.com/downloads/

advantage of both unconstrained CPD and greedy algorithms
for computation efficiency when estimating respectively factors
A,B,C and the selection matrix S.

This is what the matching pursuit-ALS (MPALS) described
below does. The variable B is injected in the problem to be a
proxy of DS. The matrix B is estimated using the least square
update3

B̂ = T 2 (A�C)† = T 2 (A�C)
(
AT A � CT C

)−1
,
(14)

and Ŝ is then evaluated by choosing the closest atom in D up to
a scaling factor. Finally B is reevaluated as B̂ = DŜ. In other
words, B is estimated through a projected least squares update,
where the projection space is the set spanned by DS for all S
with coefficients in {0, 1} and column sparsity set to 1.

Like most projected ALS algorithms such as the ALS algo-
rithm for NMF4 [58], convergence of the global MPALS algo-
rithm, that is including the alternating least squares estimation
of A and C, cannot be ensured since the cost function is not
guaranteed to decrease at each step. Indeed, the least squares
update of B decreases the cost function, but the projection step
increases it. Therefore MPALS is bound to have few provable
results in term of convergence, contrary to continuous algo-
rithms presented below. It is however a very simple algorithm
to implement with no parameter to tune and it provides good
results in both simulated and real data experiments reported in
Section VI. In particular, we observed convergence in practice,
and the cost function decreases for most iterations in simula-
tions. The complexity of O(RKLM + RLd) operations per
iteration of MPALS inside an ALS algorithm is about the same
as plain ALS if the dictionary is not excessively large.

Note that the term greedy is a bit abusive since an atom chosen
to belong to B at some iteration of the global procedure may
be discarded at a further iteration. What is greedy in MP-ALS
is the procedure to choose atoms in the dictionary at each inner
iteration. Also, MP-ALS can be easily adapted if the constraint
on the number of elements in S is modified to allow for more
than one atom to be used to approximate the columns of B, thus
the borrowed name matching pursuit.

MPALS can also easily be adapted to tackle other similar
optimization problems. If the factors are constrained to be non-
negative, then the estimates of factors A and C can be obtained
by nonnegative least squares as mentioned earlier, while factor
B should be nonnegative since the dictionary should be non-
negative in this case. Also, if no column of D may be selected
twice, then after computing the scores maxj

〈Bi |Dj 〉
‖Dj ‖ for each

column of B, the atoms are assigned to each such column by
solving an assignment problem in order to maximize the sum of
the scores [59].

A smooth version of MPALS: MPALS features a projection of
B on the atoms of the dictionary at each outer iteration, which
is a very rough way to impose the sparsity constraint on the

3The inverse is not actually computed, rather we solve the least square
problem using any efficient solver. The bottleneck here is the large product
T 2 (A�C) since R 
 min(K, L, M ).

4In Matlab, this is the ‘als’ algorithm of ‘nnmf’.
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Algorithm 1: Matching Pursuit Alternating Least Squares.
INPUT: array T , factors A and C, dictionary D.

B estimate: B = T 2 (A�C)
(
ATA � CTC

)−1

S estimate:
for i from 1 to R do

Sj ∗i = 1 ⇐⇒ j∗ = argmaxj
〈Bi |Dj 〉
‖Dj ‖

end for
B reevaluation: B = DS
OUTPUT: Estimated scores S and factor B = DS.

Algorithm 2: Smooth Matching Pursuit Alternating Least
Squares.

INPUT: array T , factors A and C, dictionary D, coupling
parameter λ > 0 and update rate p > 1.
B least squares estimate:

B =
(
T (2) (A�C) + λDS

)(
ATA � CTC + λIR×R

)−1

S estimate:
for i from 1 to R do

Sj ∗i = 1 ⇐⇒ j∗ = argmaxj
〈Bi |Dj 〉
‖Dj ‖

end for
λ update
if ‖B −DS‖2F > 0.01‖B‖2F then

λ = pλ
end if
OUTPUT: Estimated scores S and factor B = DS.

scores S. To obtain a smoother optimization algorithm, we sug-
gest to enforce sparsity constraints in a continuous manner using
the flexible formulation of the DCPD for factor B, while using
the projected factor DS when estimating the other factors. We
call this algorithm smooth MPALS (SMPALS), it is summarized
in Algorithm 2. This algorithm also finds the minimum of (9)
solving the flexible dictionary problem with Gaussian noise.
MPALS is modified in a straightforward manner, by making
the least squares update of B depend on S, and not reevalu-
ate B after evaluating S. This means removing B = DS in
Algorithm 1, and replacing B first estimate with

B̂ = (T 2 (A�C) + λDS)
(
AT A � CT C + λIR×R

)−1

(15)
where λ is a given parameter, set by the user at the beginning of
the algorithm, meant to approach 1

σ 2
c

in (9).
In the alternating outer loop, B can be set either to the

exact DS, or to the approximate version computed by (15).
The first choice provides the algorithm we called SMPALS,
while the second is fully flexible, therefore called Flex-MPALS.
For Flex-MPALS, λ is also kept constant. In SMPALS, until
‖B −DS‖2F ≥ 0.01‖B‖2F is reached, the coupling strength λ
increases by a multiplicative constant p. We chose a relatively
aggressive choice for the increase p = 1.1 for third-order ten-
sors. For matrices, even a higher value of p = 1.5 gave good
results and allowed faster convergence.

Convergence of Proposed Algorithms: Although it is difficult
to asses the convergence of MPALS, results for SMPALS and

Flex-MPALS can be derived. The convergence of SMPALS is
guaranteed if λ is allowed to grow to infinity. Here is a sketch of
the proof. The update of B can be written as follows; see (15):

B = DS + O

(
1
λ

)
. (16)

This means that B gets arbitrarily close to DS as λ goes to
infinity. This implies that, for λ sufficiently large, S and B will
no longer be modified: if B does not change sufficiently, S
does not change because of the discrete nature of the problem.
In the mean time, the updates of A and C, that use DS, de-
crease the cost function and converge to a stationary point of
the corresponding objective function (for S fixed) [60].

The convergence of Flex-MPALS, i.e. with a fixed λ and no
replacement B by DS, is also guarantied for a normalized dic-
tionary. Indeed, Flex-MPALS is a block-coordinate descent al-
gorithm where the blocks A,B,C are updated using an optimal
least squares estimate, while the estimated S in Flex-MPALS
minimizes ‖B −DS‖2F if the atoms of the dictionary have unit
norm. Therefore the cost function decreases at each step of Flex-
MPALS hence convergence to some value (since it is bounded
below by zero).

B. Continuous Approaches

As explained above, the original optimization problem un-
derlying the DCPD model is combinatorial because of the �0
pseudo-norm and the fact that S is binary. To develop continu-
ous algorithms such as gradient descent, a first step is to derive a
continuous relaxation for the DCPD formulation. The first relax-
ations that comes to mind when working on �0/�p pseudo-norm
is a mixed norm �1/�2 which encourages sparsity column-wise.
However in the DCPD model, S can only have one non-zero
coefficient per column, which makes a �1/�2 based optimization
difficult to tune. Rather than mixed norm, we choose to use the
�1 norm as a sparsity enhancing penalization on all the entries
of S, but under the constraint that the �2 norm of the columns
of S are set to one (which is not convex). Indeed, if B(1, �2) is
the unit ball of the �2 norm, the solutions to

argmin
x ∈B(1,�2 )

‖x‖1 (17)

are exactly located on the coordinate axes, which is also the
constraint imposed on the columns of S. In light of this remark,
solely imposing a �1 penalization on coefficients of S, that could
be easily done with for instance ADMM, may not be sufficient
to ensure the high level of column sparsity that is sought.

We chose to use the fast gradient from Nesterov [61] which
can be understood as a proximal gradient descent with averaged
steps. Although our problem is not convex, this method can
still be applied and has been shown to work well in the non-
convex case [62]. Fast gradient is used to solve the following
subproblem in S

{
minS γ(S) = 1

2 ‖T − (A⊗DS⊗C) IR‖2F + δ‖S‖1
such that ‖si‖22 = 1 ∀i � R, S � 0,

(18)
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Algorithm 3: Fast Gradient for Estimating S.
INPUT: array T , factors A, C, initial scores S, dictionary
D, regularization parameter δ > 0, fast gradient parameter
α ∈]0, 1].
step size computation:

εS = product of squared largest eigenvalues
of DT D and

(
AT A � CT C

)

while convergence criterion is not met do
gradient computation:

gS = DT DS
(
AT A � CT C

)−DT T 2 (A�C) +
δ1d×R

gradient descent correction:
Sold = S
S = max(0,S − step gS ) where step is computed as in
(20) to guarantee si �= 0 for all i

normalize columns of S using the �2 norm
αold = α
α = 1

2 (−α2
old +

√
α4

old + 4αold)
β = αo l d (1−αo l d )

(α2
o l d +α)

update:
S = S + β(S − Sold)
B = DS

end while
OUTPUT: Estimated factor and scores B and S.

for a given parameter δ fixed by the user, and where si is the
ith column of S. The non-negativity constraint on S makes γ
differentiable with respect to S:

∂γ

∂S
= DT DS

(
AT A � CT C

)−DT T 2 (A�C) + δ1d×R

(19)
and the gradients of (18) with respect to A and C can be found
for instance in [63] (we set B = DS) if an all-at-once optimiza-
tion is sought. The normalization constraint on the columns of S
is imposed by normalization of S at each iteration. To avoid all
values of a column of S to be non-positive, which would make
the normalization meaningless, the gradient step is constrained
as follows to ensure all columns of S after the gradient update
have at least one positive entry:

step = min
(

1
εS

,min
j

max
i|gS (i,j )>0

S(i, j)
gS (i, j)

− 10−12
)

(20)

where εS is the Lipschitz constant and gS is the gradient of the
cost function with respect to S. M(i, j) refers to the entry of
matrix M indexed by (i, j).

The global optimization procedure we suggest is therefore a
mixture of ALS and fast gradient, denoted ALS-FG and summa-
rized in Algorithm 3. An important remark is that this algorithm
is to be used inside an outer loop consisting of least squares
problems. To ensure a smooth transition from the unconstrained
problem to enforcing the dictionary, the penalty coefficient δ
is linearly increased up from zero to a maximum value at the
last outer iteration specified by the user. We observed that using
the fast gradient improves convergence speed with respect to a
simple coordinate descent, but other methods can also be im-
plemented to solve the subproblem. Again, a flexible version of

ALS-FG tackling optimization problem (9) can be derived from
Algorithm 3 by adapting the gradient of γ with respect to S and
using B as a variable.

a) Stopping Criterion: Choosing the stopping criterion is
application-dependent, and we let this parameter be tuned by
interested users. Nevertheless, a baseline that we used in simu-
lations below is to compute the residual error Ei at iteration i of
the global optimization procedure, every few iterations, and to
check whether the error is still decreasing enough by computing
|Ei−Ei−1 |

Ei
. We set the number of iterations of the fast gradient

inside ALS-FG to 10.
b) Normalization: An inherent ambiguity of the CPD model

which is also present in the DCPD model is the scaling ambigu-
ity, that is, the norm of columns of the factors is not determined
solely by the model. It is possible to fix the norm of factors in
both MPALS and ALS-FG by normalizing the columns of factor
A after each update of this factor, but this is not mandatory.

c) Initialization: Because the global optimization problems
underlying the DCPD model and its flexible counterparts are
non-convex and the proposed optimization algorithms work lo-
cally, it is a priori crucial to use a good initial point. If any
information is available on the factors like non-negativity, it
should be used in the initialization procedure. However, in the
general case where no such information is available, one pos-
sible strategy is to compute an unconstrained CPD and use the
obtained factors as an initialization for MPALS and ALS-FG.
In the experiments below, we observed that indeed MPALS is
highly sensitive to initialization. In particular, using a single
random initialization leads in many cases to poor results for
third-order tensors. Note however that is worked well for hyper-
spectral images.

VI. EXPERIMENTS ON SIMULATED AND HYPERSPECTRAL DATA

A. Simulated Data Experiments

1) Methodology: A critical question yet unanswered is
whether using a dictionary within the tensor factorization model
improves on identification error, which is the percentage of
columns of B correctly matched to atoms of D, with respect to
only projecting the result of an unconstrained factorization on
the set of atoms. Because information is added about factor B
in the model, the identification error is expected to be smaller by
using DCPD, in particular if the simulations are made challeng-
ing in terms of signal to noise ratio (SNR), rank under-estimation
and over-estimation, or conditioning of the factors.

If the SNR is high, if the tensor is well-conditioned and if
the rank is known, unconstrained CPD may provide relatively
low identification error because of the generic uniqueness of
the solution. For this reason, we choose difficult scenarios to
compare DCPD to unconstrained CPD with outputs identified
using a projection on the set of atoms. The dictionary used is
constituted of atoms as follows:

di
k = |aku + bk + νi

k sinc
(π

6
u− ei

k

)

+ μi
k

(
tri(u− fi

k + 2)− tri(u− fi
k − 2)

) | (21)

where u = {1, . . . , L}, ak , bk , νi
k , μi

k , ei
k , f i

k are realizations
of uniformly distributed random variables on respectively
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Fig. 1. Four dictionary atoms belonging to two different classes.

[−1/L, 1/L], [−1, 1], [−1/4, 1/4], [−1/4, 1/4], {1, . . . , L},
{1, . . . , L} and tri is a triangular pulse function, of support
[−2, 2]. Atoms are then normalized with the �2 norm. Index
k ∈ {1, . . . , c} is a class index, c being the number of classes,
and i ∈ {1, . . . , d

c } indexes individual atoms in each class. This
means that atoms of the dictionary are a sum of a linear baseline
common to groups of atoms and of two individual features; see
Figure 1 for an example. This design is meant to bluntly echo
spectral signatures of materials in hyperspectral imaging, where
only a small number of features discriminate materials from the
same family. For the experiments below, a single realization of
the dictionary was used, with no collinear columns (as to satisfy
Proposition 2), but it could not be checked whether its spark sat-
isfied the condition stated in Proposition 1. However, spark(D)
is equal to the dimension of the atoms plus one with probability
one, which ensures that the parameters of the DCPD models
used in these simulations are identifiable almost surely.

The data are generated as follows: each entry of the factors
A and C is drawn according to a unitary centered Gaussian
distribution, and the columns of A and C are then normalized
with the �2 norm, which makes these factors well-conditioned
matrices. Matrix S is fixed in all experiments so that only one
atom of each class is contained in the columns of B. White
Gaussian noise of fixed variance σ is added to the data tensor.

Given the structure of the dictionary, the correlation among
atoms of the same class can be quite high. The dictionary is
constituted of a large number of atoms (d = 1000) subdivided in
c = 50 groups. The dimensions of the tensors are 20× 50× 7,
yielding an inter-group correlation of atoms that reaches 0.999
at most. We choose a noise variance of σ = 0.01 which leads to
an average SNR of about 11.5 dB, and set the rank to R = 10.

As explained above, the simulations focus on the impact on
identification performance when the rank is wrongly estimated,
and when one of the factor matrix, here C, is ill-conditioned.
Therefore, we chose to grid over an estimated rank Re ranging
from 7 to 13 with a good conditioning of C. The impact of the
conditionning of C is studied through a grid on a parameter ρ
such that given a randomly-drawn well conditioned C(0) , it is
modified as follows

C ← C(0)
(

ρIR +
(1− ρ)

R
1R×R

)
, (22)

and is then normalized. When ρ is equal to 0, C has column rank
equal to 1, while its entries follow i.i.d. Gaussian distributions
when ρ is 1. The estimated rank is set equal to the true rank when
studying the ill-conditioned case. The number of realization in
each setting is set to N = 100.

The CPD algorithm used as a baseline for comparison and
for initialization is the NWAY toolbox [64]. We compare pro-
jected results of the NWAY toolbox with MPALS, SMPALS,

Fig. 2. Identification rates of various methods for varying estimated rank.
True rank R is 10. The oracle is the best possible identification rate.

Fig. 3. Identification rates of various methods for various conditionning of
factor matrix C, tuned using parameter ρ defined in (22). True rank R is 10.

Flex-MPALS and ALS-FG. Coupling strength in Flex-MPALS
is fixed to λ = 0.04 in this experiment. The value 0.04 provided
spectra close to the dictionary, while allowing some flexibility. In
practice, λ could be tuned for example in order to achieve a given
relative error between the columns of B of the corresponding
matched atoms of the dictionary (for example 1% relative error).
The number of iterations is fixed to a maximum of 1000, except
for the rand-MPALS (MPALS initialized randomly) where the
maximum iteration number is 5000. Algorithm also stops if the
stopping criterion mentioned in the previous section goes below
10−4 .

Finally, in both cases we use the NWAY toolbox for initial-
ization, except for the randomly initialized MPALS which is
initialized with factors following the same distribution as the
true factors.

2) Results: Figures 2 and 3 report the mean identification
rate that measures the percentage of well-matched columns be-
tween B and B̂. In the case where the rank and the estimated
rank are miss-matched, the unmatched factors of B and B̂ are
considered miss-matched. This leads to a best possible iden-
tification rate given by |Re−R |

max(Re,R)) and refered to as “oracle”.
Figure 4 reports the relative mean square error on factor B given
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Fig. 4. Relative mean square error on factor B that quantifies the distance
between the selected atoms and the true ones, as a function of ρ.

TABLE III
AVERAGE RUNTIME OF VARIOUS ALGORITHMS OVER N = 100 REALIZATION

WHEN R = Re

by IE[ ‖B−B̂Π‖2F
‖B‖2F

] where Π is a permutation matrix computed to
match the estimated factors to the true factors. Table III reports
the mean run time of each algorithm in the first experiment when
R equals Re.

As expected the identification rate increases with respect to
projected NWAY when using MPALS and its variants, with a
gain ranging from a few percent to over ten percent. This is a
direct but non-obvious consequence of the increased estimation
performances. It can be seen that MPALS performs the best in
almost all cases, especially when the factor C is ill-conditioned.
However, the wrong estimation of the rank does not impact the
gain in performance between projected CPD and DCPD. No-
tably, SMPALS performs slightly worse than the naive MPALS.

An important result to observe is the steady performance of
the randomly initialized MPALS over various values of ρ, both
in terms of mean square error and identification rate. Because
DCPD is supposed to be identifiable even when ρ tends to 0,
the performance of MPALS should not depend too much on it,
as observed with the random initialization. However, when the
unconstrained CPD model is used as an initialization method,
the results of MPALS do depend heavily on ρ. This shows that
MPALS and all other proposed algorithm are very sensitive to
initialization, a fact also supported by the experiment in the
next section. As a consequence, a good initialization method is
crucial for the performance of MPALS, this is a topic for further
research.

Even though the identification rates evolve similarly for all
methods in the ill-conditioning experiment, the mean square
error on B tells a different story. Since many atoms in the
dictionary are very correlated, it is reasonable to assume that
the mean square error on B could be small even though all

TABLE IV
RECONSTRUCTION ERROR (%) FOR THE URBAN AND TERRAIN AIRPORT HSI

Best Results are Highlighted in Bold. Computation Time Does not Include 500
Iterations of Nonnegative Least Squares Update for the Abundances After Each
Method (Which Takes About 10 Seconds on Average).

atoms are wrongly identified. It can be observed on Figure 4 that
on average, all proposed algorithms for computing the DCPD
significantly outperform the projected ALS method when C is
ill-conditioned. As a conclusion, the atoms picked by MPALS
and its variants are on average much closer to the true atoms
than the ones picked using a projected ALS method. This is
especially true for the randomly initialized MPALS.

Finally, from this experiment, we observe that computing the
DCPD with a combinatorial greedy approach performs better
than a continuous approach, since the performance of ALS-
FG is relatively poor. We believe the reason for this is that
the greedy approaches can escape the basin of attraction of a
local minimum during the projection step, which a (standard)
continuous approach will not be able to do. In fact, we observed
that, in most cases, once an entry is set to zero by ALS-FG, it
remains zero in the course of the iterations, which is not the case
for MPALS and its variants.

B. Spectral Unmixing with the Self-Dictionary Model

For this communication on dictionary based tensor factor-
ization models, we choose to try out the different models and
algorithms on a well-known sparse coding problem, namely
spectral unmixing under the pure-pixel assumption. As ex-
plained in Section II, the data itself can be used as the dic-
tionary, and models described in this paper for matrices can be
straightforwardly compared with state-of-the-art sparse coding
approaches for spectral unmixing, namely the succesive projec-
tion algorithm (SPA) [38], the successive nonnegative projection
algorithm (SNPA) [10], the Hierarchical Clustering algorithm
(H2NMF) [65] and FGNSR [41]. Below, the spectra contained
in the data are used as atoms, so that the dictionary has row
dimension equals to the number of spectral bands (≈150), and
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Fig. 5. Estimated spectra on the Urban HSI with d-H2NMF (top) and on the Terrain HSI with d-H2NMF (bottom).

number of atoms equals to the number of pixels in the hyper-
spectral images (HSI) (≈105).

The two data sets that will be used to compare DCPD with
these methods are Urban and Terrain. These two HSI satisfy
approximately the pure pixel assumption. The dimensions of the
HSI after vectorization of the pixel dimensions are respectively
3072 × 162 and (500× 307)× 166. We chose to decompose
the two data sets with respective ranks Rurban = 6 and Rterrain =
5 according to what has been done previously in the literature;
see [41] and the references therein. The maximal number of
iterations of the DCPD algorithms is set to 50. Also because it
does not perform well, results for the continuous fast gradient
algorithm are not presented below.

We initialize the MPALS algorithm and its variants with each
state-of-the-art algorithm with 10 additional A-HALS steps. For
instance MPALS and SMPALS initialized with SPA are respec-
tively denoted as d-SPA and ds-SPA. Results are presented in
Table IV. Additionally, considering the performance of pro-
jected ALS in the multiway experiment above, the performance
of projected NMF is also shown, for instance nmf-SPA refers to
the A-HALS algorithm initialized with SPA, which endmembers
output are projected onto the data points and which abundances
are re-estimated using non-negative least squares.

The relative reconstruction error is used as a performance
metric, since it is not possible to assess the identification perfor-
mance without a ground-truth. Therefore, this experiment only
studies the efficiency of the MPALS algorithm for minimizing
the objective function.

In all cases, using either SMPALS or MPALS improves on
the initial values for identified spectra. As shown already in
the previous experiment, initialization plays an important role
in the final reconstruction error, but at least using the DCPD
model always refines the solutions, even when it is initially low
like for FGNSR-100. Moreover, the DCPD algorithms are not
excessively costly with respect to other state-of-the-art meth-
ods. There is no significant difference between MPALS and its
smooth counterpart. Figure 5 shows the estimated abundances
and spectra with the H2NMF-MPALS algorithm for both Urban
and Terrain, and materials can be identified for each compo-
nent by the user (no ground truth is available). Finally, Figure 6
shows the reconstruction error map on Urban and Terrain HSIs
for the H2NMF-MPALS. Clearly the remaining error is not dis-
tributed as an i.i.d. Gaussian noise, which means the Frobenius
norm used as the distance metric is not adapted. Also, most of
the remaining error comes from rooftops and roads in the Urban
HSI, a zone probably corrupted by large spectral variability.

Because Flex-MPALS does not require exactly that the pure
pixel assumption is verified, we do not include it in this simula-
tion. Indeed, using a reconstruction error criteria, Flex-MPALS
would outperform the other methods, but that would not mean
that obtained abundances and endmembers are better. On the
other hand, the flexible model better tackles spectral variability
since it can modify to some extent the spectra extracted from
the pure pixels.5

5Interested readers will find the code for matrix Flex-MPALS online.
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Fig. 6. Residual error maps on the Urban (left) and Terrain (right) HSIs for d-H2NMF. The black crosses mark the selected pure pixels.

VII. CONCLUSIONS

To jointly separate and identify sources using tensor canonical
polyadic decomposition and a known dictionary, we introduced
in this paper the DCPD model along with some flexible variants.
Identifiability of the DCPD model parameters was discussed in
both the matrix and the higher-order tensor cases. We proposed
both greedy and continuous algorithms for DCPD and com-
pared them on synthetic data sets and hyperspectral images. We
observed that (i) the greedy algorithms provide in most cases
better results, and that (ii) our DCPD formulation improves re-
sults with respect to standard CPD on the synthetic data sets,
and with respect to spectral unmixing approaches based either on
convex relaxation or geometric methods. A particularly promis-
ing direction for further research would be the design of efficient
initialization schemes for the proposed greedy algorithms which
are particularly sensitive to initialization.

An interesting continuation of this work would also be to com-
pute the Cramér Rao bounds of the parameters in the DCPD to
formally support what was presented in the simulation section.
Moreover, in most application cases the dictionary is either un-
known, or describes only a subset of the components. Thus a
partial DCPD model should be investigated, as well as a dictio-
nary learning scheme for tensors following the DCPD model.
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