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Spectral Unmixing with Multiple Dictionaries
Jérémy E. Cohen and Nicolas Gillis

Abstract—Spectral unmixing aims at recovering the spectral
signatures of materials, called endmembers, mixed in a hyperspectral
or multispectral image, along with their abundances. A typical
assumption is that the image contains one pure pixel per endmember,
in which case spectral unmixing reduces to identifying these pixels.
Many fully automated methods have been proposed in recent years,
but little work has been done to allow users to select areas where
pure pixels are present manually or using a segmentation algorithm.
Additionally, in a non-blind approach, several spectral libraries may
be available rather than a single one, with a fixed number (or
an upper or lower bound) of endmembers to chose from each. In
this paper, we propose a multiple-dictionary constrained low-rank
matrix approximation model that address these two problems. We
propose an algorithm to compute this model, dubbed M2PALS, and
its performance is discussed on both synthetic and real hyperspectral
images.

Index Terms—spectral unmixing, hyperspectral imaging, nonneg-
ative matrix factorization, endmember extraction algorithms.

I. INTRODUCTION

Developments of the remote sensing technology have given
birth to efficient hyperspectral sensors producing high spec-
tral resolution images, called hyperspectral images (HSIs). Re-
searchers now have at their disposal a large quantity of HSIs
of very different landscapes on the surface of the Earth, and
even of the surface of Mars through the CRISM mission. One
of the several uses for these HSIs is to determine and monitor
the chemical composition of the scene being studied. Indeed, each
material has a recognizable spectral signature that is captured by
high resolution spectral sensors. Various types of similar materials
can be identified, which allows, for instance, the monitoring of
the evolution of the deforestation in the Amazonian forest [1], or
of the melting of Alpine snow [2].

However, because of the high spectral resolution requirements,
HSIs lack in spatial resolution. Therefore, there may be several
materials in a single pixel, resulting in a mixture of their spectral
signatures. Spectral unmixing is interested in finding these spec-
tral signatures given the HSI. Spectral unmixing has been a central
topic for signal processing research over the last ten to twenty
years; see, e.g., the surveys [3]–[5]. In particular, two approaches
to spectral unmixing can be distinguished: the blind approach
where no a priori information is available other than known
properties of spectra and abundances (such as non-negativity),
and the non-blind approach where spectral libraries containing
reference spectra are available. A list of well-known algorithms
for both approaches is given in Section II.

a) Contributions: In this paper, we introduce a new model
based on sparse coding that lies between blind and non-blind
approaches, designed to offer new possibilities for dealing with
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versité de Mons, Rue de Houdain 9, 7000 Mons, Belgium. E-mails:
tjeremy.cohen,nicolas.gillisu@umons.ac.be. The authors acknowledge the support
by the F.R.S.-FNRS (incentive grant for scientific research no F.4501.16). NG also
acknowledges the support by the ERC (starting grant no 679515).

several spectral libraries for a single HSI. For instance, it enables
a simple user-control interface for choosing pure pixels areas in
an HSI, based either on manual selection, or semi-supervised
or unsupervised segmentation. The proposed model also allows
for using multiple spectral libraries in the non-blind approach.
Spectral signatures are then chosen from a set of known libraries,
with the number of atoms to be picked in each dictionary ( or an
upper or lower bound ).

b) Outline: Section II introduces the basic spectral unmix-
ing problem cast in terms of sparse coding, along with some
state-of-the-art methods to tackle it. Section III introduces the
proposed multiple dictionary matrix factorization model and a
fast algorithm dubbed M2PALS to tackle it featuring an assign-
ment problem. Section IV shows the efficiency of the proposed
model and algorithm on synthetic data built from the Urban HSI
compared to state-of-the-art methods, and an illustration on the
Urban HSI where pure-pixel areas are either manually selected or
automatically selected using off-the-shelf segmentation methods.

c) Notations: Matrices are represented by case letters M ,
index sets by calligraphic letters K, the ith column of matrix M
is denoted Mp:, iq and Mp:,Kq denotes the subset of columns
indexed by K. We also denote #K the cardinality of K, and MT

the transpose of M .

II. A COMBINATORIAL FORMULATION OF SPARSE CODING

First, before introducing the new multiple dictionary matrix
factorization model, let us recall the single dictionary formulation.
Let M be a m-by-n data matrix. In this work, we assume the
following:

1) The matrix M admits an approximate low-rank factorization
M « ABT of size r, that is, A and B have r columns.

2) The noise is Gaussian. Missing data, stripes or impulsive
noise are ignored although common in hyperspectral imag-
ing. The factorization therefore can be written as X “

ABT `N where N is the realization of a random variable
following a white Gaussian distribution.

3) Columns of factor A are a subset of columns of the known
m-by-d dictionary matrix D.

These assumptions leads to the following low-rank factorization
model for M :

M “ ABT `N, vecpNq „ N
`

0, σ2Inm
˘

,

A “ D p:,Kq “ DS where S P t0, 1udˆr
, (1)

for a given noise variance σ2. In this model, K is a set of indices
of atoms in D corresponding to the columns of the factor matrix
A. The matrix S is a sparse selection matrix which has only 1
non-zero entry per column.

The literature on computing S and B is extensive. A first
group of methods are the continuous methods, based on applying
iterative descent algorithms like ADMM [6] or fast gradient [7] to
a relaxed version of (1). In most works, the product of S and B is
estimated directly, using another variable X “ SBT that has to be



2

row sparse, with M « DX . This constraint on X can be relaxed
using the `1 norm, the mixed norm `2{`1 or other convex norms,
making the problem convex [7]–[10]. However, it has a very large
number of parameters to be optimized (X is a d-by-n matrix) so
that continuous methods may be slow and memory consuming.
Note that continuous methods allow for adding various constraints
like non-negativity.

A second category of sparse coding methods are greedy, or not
based on a continuous optimization algorithm:
‚ A large family of geometric algorithms have been developed

in the case where D is the data M itself, which is a
common assumption in spectral unmixing referred to as
“the pure-pixel assumption”. This assumptions implies that
the spectra in M form a simplex with r vertices. These
geometric algorithms include vertex component analysis
(VCA), successive projection algorithm (SPA), successive
nonnegative projection algorithm (SNPA) and NFINDR, to
cite a few, which aim at finding these vertices by resorting
to geometric tools, such as projections [11]–[13]. These
methods are usually very fast even for very large data
set, but are restricted to the pure-pixel case and may not
behave well when the data is grossly corrupted. Also the
`2 reconstruction error may be high since no least square
criterion is minimized directly.

‚ In the general case where the dictionary is not necessar-
ily the data itself, one of the many efficient methods for
solving the general sparse coding problem is the Simulta-
neous Orthogonal Matching Pursuit algorithm [14]. It has
been referred to in the spectral unmixing community as
self dictionary simultaneous orthogonal matching pursuit
(SDSOMP) [15]. Recently, matching pursuit alternating least
squares (MPALS) has been proposed that aims at minimizing
a `2 cost function while using a fast greedy approach to find
the right atoms in the dictionary [16].

Finally, a last family of methods specific to the spectral
unmixing problem uses smart variations on the naive brute force
algorithm that computes all possible combinations of atoms to
be selected for each pixel. These methods include MESMA,
MESLUM, AUTOMCU, or more recently, AMUSES [17]–[20].
A direct consequence of the pixel-wise approach is that the low-
rank hypothesis may be violated. Also when the spectral library is
large, such methods may be time-consuming. On the other hand,
algorithms like MESMA may handle large scenes featuring more
than a hundred endmembers. Because these methods may not
produce results that satisfy our required assumptions, they will
not be used for comparison in this short paper.

In the next section, we introduce another model closely related
to (1) which allows multiple dictionaries to be used at once as a
set of admissible spectral signatures.

III. MULTIPLE-DICTIONARY MATRIX FACTORIZATION

In the self-dictionary setting, a user may want some control
over the regions of the HSI where the pure pixels are selected
from. On the other hand, hand-picking pixels that seem pure may
lead to poor results because the pure-pixel property is difficult
to assess visually. Moreover, using a segmentation algorithm
to compute homogeneous areas does not provide a good input
for usual sparse coding method since the segmented regions
would be bundled, and coherence lost. Similarly, when working

with external libraries, it is reasonable to assume that only a
few materials from a specific library should be selected. For
example, exactly, at least or at most two spectra related to
vegetation among some 20 available vegetation spectra. Lumping
the libraries together and running any methods described above
would not guarantee such an assignment.

To tackle these issues, we suggest to drop the single dictionary
constraint. Using notations from (1), the third working hypothesis
is modified to:

3. Columns of matrix A belong to matrices Di, with di the
exact number of atoms to be picked in each Di, 1 ď i ď p.

This new multi-dictionary model becomes:

M “ ABT `N, vecpNq „ N p0, σInmq ,

A “ rD1 p:,K1q , . . . , Dp p:,KpqsΠ, (2)

#Ki “ di (or ď di) and
p
ÿ

i“1

#Ki “ r,

where Ki contains the indices of the di selected atoms in
dictionary Di for 1 ď i ď p, and Π is the permutation matrix
that matches factors to their corresponding atoms. Note that
the model (2) can be adapted to handle different situations; in
particular if we have a lower bound on the number of atoms to
be selected from each dictionary (instead of the exact value or an
upper bound). In that case, we introduce a new dictionary Dp`1

containing all the other ones and choose dp`1 “ r ´
řp

i“1 di
where di is the lower bound for the ith dictionary. Let us illustrate
this on a simple example: assume we are given two dictionaries
D1 and D2 from which we have to select three endmembers. We
only know that at least one endmember has to be picked from each
dictionary (that is, d1 ě 1 and d2 ě 1). In that case, we introduce
a third dictionary D3 “ rD1, D2s and impose d1 “ d2 “ d3 “ 1
in model (2).

To compute the sets Ki’s and the abundance matrix B, we
choose to adapt the MPALS algorithm introduced in [16]. The
reason is two-fold: (1) MPALS was shown to perform extremely
well, outperforming geometric and continuous approaches in
many cases, and (2) it can be easily adapted to the multiple
dictionary scenario by solving an assignment problem (see be-
low). The proposed algorithm, named Multiple Matching Pursuit
Alternating Least Squares (M2PALS), is an alternating algorithm
that computes the second factor B using a least squares update,
while using a least squares estimate of A to serve as a proxy for
computing the sets and indices Ki. It aims at solving

argmin
A“rD1p:,K1q,...,Dpp:,Kpqs, B

}M ´ABT }F ,

by first estimating A and B without the dictionary constraint, then
projecting A onto the atoms of the dictionaries. As we will see,
the projection is a standard assignment problem.

If non-negativity is imposed on A and/or B, M2PALS can be
adapted into M2PNALS by using a non-negative least squares
solver to update A and B. Typically, these will not be solved up
to global optimality for faster computation. In this paper, we will
use a block coordinate descent method; see [21]. Other constraints
on the abundance maps, such as homogeneity constraints using
total variation regularization [22], could be easily incorporated in
M2PALS by modifying the estimation of the abundance matrix
B.
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Algorithm 1 M2PALS
Input: Data matrix M , dictionaries D1, . . . , Dp, exact (or
upper bound on the) number of atoms to pick in each library
d1, . . . , dp, initials factors A and B.
Output: Factors A and B, selected atoms K1, . . . ,Kp.
while the convergence criterion is not met do

Least squares estimate of A: A “ argminX ||M ´XBT ||F

Solve the assignment problem: Find the Ki’s to match A the
best using the available dictionaries, that is, solve (3), and
update A “ rD1p:,K1q, . . . , Dpp:,KpqsΠ
Least squares estimate of B: B “ argminY ||M ´AY T ||F

end while

a) The assignment problem: In M2PALS, after A has been
estimated through a least squares update, one has to compute the
index sets Ki’s, that is, for each column of A, find the nearest
column from one of the dictionaries Di, while satisfying the
constraints that exactly (or at most) di columns can be selected in
the dictionary Di. If only one dictionary is provided, each column
of A can be processed independently, by picking the nearest
column according to some distance criterion. However with
multiple dictionaries and the constraint on the fixed number of
atoms to be selected in each dictionary, the following assignment
problem should be solved: Given A P Rmˆn, find the index
sets Ki (1 ď i ď p) with #Ki “ di and

řp
i“1 di “ r, and

find a permutation matrix Π P t0, 1u
rˆr such that the matrix

Ã “ rD1p:,K1q, . . . , Dpp:,KpqsΠ minimizes
n
ÿ

j“1

dist
´

Ap:, jq, Ãp:, jq
¯

, (3)

where distp., .q is some distance criterion. Note that the permuta-
tion matrix Π is necessary since the columns of the input matrix
A are not necessarily ordered in the same way as the dictionaries.
The problem can be solved as follows. If we assume we know
the dictionary from which we pick the atom to approximate each
column of A, then the problem is trivial: for each column of A,
we pick the column of the given dictionary which is the closest
according to distp., .q. It remains to identify which dictionary is
used to approximate each column of A. Defining the distance
between the jth column of A and the ith dictionary as

dpi, jq “ min
k

dist pAp:, jq, Dip:, kqq ,

problem (3) reduces to an assignment problem where on the left
hand side we have the r columns of A, on the right hand side
we have di copies of dictionary Di for a total of r nodes (recall
řp

i“1 di “ r), and the weights are given by dpi, jq. If di are
upper bounds on the number of atoms to be selected, then the
total number of nodes is larger than r but the assignment problem
is solved in a similar fashion. Indeed, recall that an assignment
problem is defined as follows: given r persons, l tasks (l ď r)
and the cost ci,j to assign the ith person to the jth task, assign a
different person to each task in order to minimize the total cost.
Mathematically, it can be formulated as follows

min
xi,jPt0,1u,1ďi,jďr

ÿ

i,j

ci,jxi,j s.t.
ÿ

i

xij ď 1 and
ÿ

j

xij “ 1,

where xij “ 1 if and only if person i is assigned to task j. An
optimal assignment can be obtained using linear programming,

or the Hungarian algorithm1 [23].
Several reasonable distances can be used in the context of

spectral unmixing. The Euclidean distance is a simple choice
but may be sensitive to scaling of spectra (that can occur for
example because of inhomogeneous light intensity within the
HSI). Many authors prefer to resort to an angle measurement
through the SAM distance, or to remove the average of the
spectra before computing an angle measurement, which yields
the mean-removed spectral angle (MRSA) distance. These metrics
are equally fast to compute, thus the choice is entirely application
dependent. Note that various distance measurements may result
in various assignment results; see, e.g., the discussion in [24].
In the simulation section, we will use the normalized inner
product to asses the closeness between two vectors, that is,
distpx, yq “ 1 ´ xT y

||x||2||y||2
, which is equivalent to maximize the

sum of the normalized inner products between the selected atoms
of the dictionaries and the columns of A. If the atoms of the
dictionaries are normalized to have unit `2 norm, it can be shown
that the normalized inner product, plugged in the assignment
problem, provides the best solution for the index sets Ki for
matching A in the least square sense.

IV. APPLICATION FOR SEMI-SUPERVISED AND
UNSUPERVISED PURE-PIXEL SELECTION

This section is divided in two parts. The first one is a com-
parison of M2PNALS (the non-negative version of M2PALS) on
synthetic data with state-of-the-art spectral unmixing algorithms,
namely SPA [25], SNPA [13], NFINDR [11], Fast Gradient for
Nonnegative Sparse Regression (FGNSR) [7], Group Lasso Unit
sum Positivity constraints [6], SDSOMP [15] and MPALS [16].
A recent segmentation algorithm, hierarchical rank-one NMF
(H2NMF) [26], is also used as a preprocessing tool for M2PNALS
to compute a set of dictionaries in an unsupervised manner.

The second one is an example of using M2PNALS to develop
a user-friendly pure-pixel selection interface, based on either
manual or automatic selection of image areas containing pure
pixels.

A. Experiments on synthetic HSIs

For this experiment, we chose r “ 6 spectra from the Urban
HSI2 (162 spectral bands, images 307 by 307 pixels), which were
selected using SPA on the original image. Then the following
setting is repeated N “ 100 times: abundances are drawn from a
uniform Dirichlet distribution so that they belong to a simplex
with r vertices, and the r pure pixels are added at random
positions in the data set. The data is generated by adding a white
Gaussian noise with fixed signal to noise ratio (SNR), and then
clipping negative entries to zero3. The size of the abundance
matrix is set to n “ 200, which is rather small but allows all
methods to run in a reasonable computational time. All tests are
preformed using Matlab on a laptop Intel CORE i5-3210M CPU
@2.5GHz 6GB RAM.

At various SNR levels, for each setting and for each algorithm,
the number of wrongly-selected pixels in the synthetic image is

1We use the code available at
http://www.mathworks.com/matlabcentral/fileexchange/
20328-munkres-assignment-algorithm.

2Available on http://www.erdc.usace.army.mil/
3Clipping to zero implies that the SNR is slightly over-estimated, as the noise

is no longer Gaussian.

http://www.mathworks.com/matlabcentral/fileexchange/20328-munkres-assignment-algorithm
http://www.mathworks.com/matlabcentral/fileexchange/20328-munkres-assignment-algorithm
http://www.erdc.usace.army.mil/
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SNR 0 10 20 30 50 Time (s.)

SPA 93.66 79.16 51.83 13.33 0 0.0009
MPANLS 93.50 80.16 47.83 1.66 0 0.0955

SNPA 93.66 79.16 51.33 2.00 0 0.0420
FGNSR 97.00 86.16 58.16 17.66 0 3.7960
GLUP 96.16 82.00 31.83 6.66 0 1.1057

NFINDR 96.00 85.50 43.50 1.66 0 0.0192
SDSOMP 95.83 92.66 94.50 61.50 16.83 0.0154

M2PNALS-01 0 0 0 0 0 0.1068
M2PNALS-10 67.16 59.33 42.16 0.50 0 0.1161
M2PNALS-25 83.33 74.16 51.16 0.50 0 0.1240
M2PNALS-50 88.66 79.50 54.66 0.50 0 0.1332

H2NMF-M2PNALS 93.66 80.33 48.00 3.00 1.50 0.1057

TABLE I
PERCENTAGE OF MISS-SELECTED ATOMS IN SYNTHETIC HSIS DEPENDING ON

THE SNR (FIRST FIVE COLUMNS), AND AVERAGE RUN TIMES IN SECONDS
(THE STOPPING CRITERION FOR MPNALS AND M2PNALS IS THAT THE

RECONSTRUCTION ERROR VARIES LESS THAN 10´3% IN TWO SUCCESSIVE
ITERATIONS WHICH ALWAYS HAPPENED WITHIN 50 ITERATIONS IN THIS

SIMULATION).

stored. Average results are presented in Table IV-A in percentage
of miss-selected atoms, along with the average run times. For
M2PNALS, additionally, the size of the dictionaries is used as
a grid parameter. For instance, M2PNALS-10 means that each
dictionary contains 1 pure-pixel plus 9 other randomly chosen
spectra from the synthetic HSI (which may be one of the other
pure pixels). The M2PNALS-01 is provided for sanity check and
is trivially perfect for selecting pure pixels since each dictionary
contains exactly one pure pixel.

Not too surprisingly, M2PNALS performs better than state-
of-the-art methods in the noisy cases. This is natural since
M2PNALS makes use of a priori information provided by the
user on the location of the pure pixels. In the noiseless case,
all algorithms perform perfectly except the SDSOMP algorithm,
which is a sparse-coding method not adapted to identifying
endmembers and rather selects the most representative spectra
in the data at each iteration. Also, using H2NMF to segment the
synthetic image (here without using any spatial information) and
provide candidates Di deteriorates the results at high SNR but
improves on identification at medium SNR. This is natural since
segmentation here can be understood as a regularization of the
pure pixel selection process. In this simulated experiment, the
data lies exactly in a simplex, thus linear unsupervised methods
should perform better at high SNR. On the other hand, the
segmentation process may include two pure pixels in the same
segmented cluster, so that we set di “ 2 for H2NMF-M2PNALS.
See the next experiment for a more complete discussion on using
segmentation before M2PNALS.

Moreover, note that MPNALS is an algorithm sensitive to
initialization although it is able to identify good solutions in
most cases regardless of the initialization; see the discussion
and experiments in [16]. In this experiment, we chose SNPA for
initialization, but better results may be achieved with a different
initialization choice. The same comment applies to M2PNALS
since it is adapted from MPNALS. Also, it can be checked that
M2PNALS is fast compared to continuous algorithms. Actually,
its complexity per iteration is linear in m, n and r (assuming we
use a first-order method to solve the nonnegative least squares
subproblems), which is the same as geometrical algorithms.
Therefore, it can be used on large images, as illustrated in the
next experiment.

B. Using M2PALS for a user selection of pure-pixel areas

Our motivation for developing M2PNALS is not to outper-
form state-of-the-art spectral unmixing methods in all scenarios.
Rather, M2PNALS is meant to open new possibilities for dealing
with spectral unmixing of HSI where a user inputs several spectral
libraries.

The flexibility of M2PNALS lies in the variety of ways that
the dictionaries can be defined. Of course they can be given by
a user as external spectral libraries, but at least three other ways
come to mind that only involve the available HSI. Although well-
known dictionary learning methods do not apply here since only
one dictionary would be learned this way, any segmentation or
classification algorithm, which provides a labelled partition of the
pixels, can be used to cut the original image into several regions
that can be used directly as spectral libraries. Below, we introduce
three different strategies for segmentation: a fully supervised,
hand selection method, where the user chooses areas that she
or he believes contain pure pixels; a semi-supervised state-of-
the-art segmentation algorithm [28] based on logistic regression,
that makes use of spatial correlations, and for which the training
data has been labelled by hand; an unsupervised recent algorithm
H2NMF [26] where no spatial information is used to perform
segmentation.

These methods are illustrated in this experiment on the Urban
HSI using r “ 6 endmembers, along with the MPALS algorithm,
see Figure 1. For the manual selection method, the user is asked
to determine the number di of pure pixels in each area, whereas di
are fixed to 1 for the unsupervised segmentations, and to 2 for the
semi-supervised one since one of the cluster contained very few
atoms. In this example, the centroids of the H2NMF clusters were
used to initialize both MPNALS and M2PNALS. The relative
reconstruction error of manual, semi-supervised and unsupervised
M2PNALS here is respectively 4.28%, 4.12% and 4.20% , while
that of MPNALS is 4.05% for a running time of respectively 50,
47s, 51s and 20s. In all cases, M2PNALS provided a sightly
worse reconstruction error, because it is more constrained than
MPNALS (which can choose any pixels in the HSI) while the
selected areas do not contain the best set of pure pixels (as
in the synthetic data experiment). However, segmentation used
in conjunction with M2PNALS allowed the user to control in
which areas pure pixels were selected, which is not possible with
MPNALS nor any geometric pure pixel selection method.

CONCLUSION

In this paper, we introduced a new sparse coding model that
allows for computing spectral unmixing using unknown spectra
that belong to several classes of known spectra. This model may
be used in post-processing, for instance, after selecting areas
containing pure pixels, or after segmentation algorithms that
provide homogeneous areas. It may also be used for estimating
abundances given an HSI and a collection of libraries, as an
alternative to methods such as MESMA. The M2PALS algorithm
has been developed to identify the parameters of this multiple
dictionary matrix factorization model, and its performance have
been demonstrated on a simulated HSI, and on the Urban HSI.

Further research includes dealing with other types of noise, and
the study of the identifiability of the multiple dictionary model (1),
which should be stronger than that of the single dictionary
model (2); see [16]. Also, the authors are working on adapting
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Fig. 1. An example of a manual (left), semi-supervised (middle) and unsupervised selection (right) of pure pixel areas in the Urban HSI. In the manual selection
scenario, squares represent two areas containing two pure pixels and two areas containing one. The squares in the semi-supervised segmentation case represent the
training data. The pixels identified by M2PNALS are represented with plusses ‘+’ and lie within the selected areas, while pixels selected by fully-blind MPALS are
represented with crosses ‘ˆ’.

M2PALS for the fusion of multispectral and hyperspectral images
under the pure-pixel assumption, since the mapping from an HSI
to a MSI induces a pixel to area mapping.
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