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Abstract
Smartphones, particularly iPhone, can be relevant instruments for researchers in animal behavior because they are readily 
available on the planet, contain many sensors and require no hardware development. They are equipped with high perfor-
mance Inertial Measurement Units (IMU) and absolute positioning systems analyzing users’ movements, but they can easily 
be diverted to analyze likewise the behaviors of domestic animals such as cattle. The study of animal behavior using smart-
phones requires the storage of many high frequency variables from a large number of individuals and their processing through 
various relevant variables combinations for modeling and decision-making. Transferring, storing, treating and sharing such 
an amount of data is a big challenge. In this paper, a lambda cloud architecture innovatively coupled to a scientific sharing 
platform used to archive, and process high-frequency data are proposed to integrate future developments of the Internet 
of Things applied to the monitoring of domestic animals. An application to the study of cattle behavior on pasture based 
on the data recorded with the IMU of iPhone 4s is exemplified. Performances comparison between iPhone 4s and iPhone 
5s is also achieved. The package comes also with a web interface to encode the actual behavior observed on videos and to 
synchronize observations with the sensor signals. Finally, the use of Edge computing on the iPhone reduced by 43.5% on 
average the size of the raw data by eliminating redundancies. The limitation of the number of digits on individual variable 
can reduce data redundancy up to 98.5%.
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1  Introduction

The use of sensors in agriculture, particularly in livestock 
farming is becoming widespread, especially in dairy cat-
tle operations. Among the different parameters that can be 
monitored on the animals themselves, behavior is probably 
the most critical as it provides essential information on 
their health or reproductive status. Also, when no particu-
lar health or reproduction-related issue is at stake, it allows 
understanding how well an animal is performing in the farm-
ing environment. The feeding behavior is such a key feature. 
Three main components are required to analyze the behav-
ior of animals: (1) the location obtained by radio frequency 
triangulation or by Global Positioning System (GPS), (2) 
the low frequency component of behavior as posture of the 
animal (e.g.: position of the head, tilt of the neck, etc.), and 
(3) the high frequency component of behavior (e.g. move-
ment of the jaws) (Andriamandroso 2016). Recently, the 
use of smartphones, particularly iPhone, was suggested for 

Data from this paper were partially presented and published in 
the proceedings of the 14th International Conference on Mobile 
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this purpose (Andriamasinoro et al. 2015) as they are read-
ily available on the planet, contain the relevant sensors and 
require no hardware development. They are equipped with 
high performance Inertial Measurement Units (IMU) and 
absolute positioning systems that can easily be diverted to 
investigate the feeding behaviors of cows under a range of 
environmental conditions. Such researches aiming to the 
development of Precision Livestock Farming (PLF) appli-
cations, i.e. shifting from the management of a herd to the 
individual management of the animals in the herd, require 
the collection of many data in real or near real time and 
the setting up of a dedicated computer infrastructure. This 
infrastructure, in addition to data collection, should allow 
researchers to share their datasets and models. Most methods 
suggested, to treat the data collected to analyze the feeding 
behavior of cows, use automatically calibrated classification 
models based on complex mathematical calculations (Andri-
amasinoro et al. 2015). Although they reach accuracies as 
high as 90%, these methods are of limited use outside the 
context they have been developed for and the “black-box” 
approach they use does not allow collective improvement of 
the classification algorithms.

The collection of data from a large number of cows of 
different kinds, reared in different environments around the 
world is a corner stone in the development of new models 
and their validation on large data sets. Building such a large 
set of data will open new fields of research. Hence, a new 
open-source observer-based classification algorithm has been 
suggested based on I-phones IMU that can be used and shared 
by various researchers around the globe. To fulfill this goal, 
the experimental data must be processed and verified in order 
to guarantee on one hand its consistency; and on other hand, 
the structuration of data to facilitate the exchange between 
research groups. Using data collectively will enable the devel-
opment and the validation of new models from larger datasets 
and provide new research opportunities for animal feeding 
behavior and health as well as pasture management. This will 
also pave the way to PLF by allowing parameter identification 
or combination and the sampling frequencies that are required 
to accurately detect specific behaviors, and the development 
of specific, accurate and reliable connected sensors. Indeed, 
the Internet of The Things (IoT) will offer tremendous oppor-
tunities in PLF by making it possible to know at any moment 
the health status of the animals and to detect problems before 
they become worse. From massively collected data, the most 
appropriated variables and the frequency of sampling adapted 
for each variable must be identified in the aim to optimize 
the quantity of data to collect and store on the device. The 
accuracy (pertinent number of digits) needed for each vari-
able must also be evaluated. Moreover, the redundancy of data 
in the local storage must also be eliminated in order to limit 
de size of data to store without loss. Thus, using connected 
sensors in association with cloud computing technologies 

for research and later routinely in the farms poses a triple 
challenge. Firstly, at the level of the sensors, data must be 
collected at a high-frequency (up to 100 Hz) and processed 
to eliminate redundancy. But the compression still must be 
reversible with ideally no loss of data to allow the preser-
vation of the full extent of the original data to enable the 
use of all any recorded signals in the further improvement of 
the behavior classification algorithms or in the development 
of new applications. For these raisons data size reduction is 
essential to reduce bandwidth requirements for transmission 
and improve battery life. Sensors are generally powered by 
external batteries whose main sources of consumption are 
the network transmissions. Moreover, in order to allow farm-
ers to benefit in the future from these new technologies, the 
development of a new set of microcontrollers sensors will 
be necessary. Such sensors will be optimized based on the 
results of each type of collective research that will gener-
ate essential information like what is the best frequency to 
identify behavior with high accuracy. New sensors need also 
to be optimized to reduce power consumption through local 
processing of information and a limit transmission of infor-
mation through the network. The second challenge lies on the 
storage and the processing of large amounts of data per animal 
per day (from several Tera to several Peta bytes) arriving at 
high speed at the cloud level. Finally, the third challenge is 
the matching of data with complementary data such as those 
provided by milking robots, environmental data, etc. in order 
to refine the models and support the elaboration of decision-
support tool to help farmers to optimize dairy cattle operation 
and improve efficiency (Frost et al. 1997). No forgetting that 
data related to breeding conditions, animal performances and 
health may be sensitive and require protective measures, by 
anonymizing and controlling their use.

In this paper, we present a chain of tools fulfilling the 
above-mentioned criteria for data related to cattle behavior 
measured by means of the IMU signals of iPhone worn by 
the animals on halters (Andriamandroso et al. 2017). We 
propose and describe a new infrastructure allowing to col-
lect, store, treat and share information between scientists. 
The sharing of important amount of data is important to 
create more robust models and re-validate existing models. 
The proposed lambda architecture brings benefits in storage, 
real-time processing and abilities for large scale data storage 
and analytics.

2 � Optimizing smartphones as behavior 
sensors

Different types of sensors are used to monitor the behavior 
of Humans and animals such as microphones, pressure sen-
sors, electromyography, location sensors and accelerometers 
(Andriamandroso et al. 2016). Acceleration sensors have 
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also been successfully used to recognize human behavior 
(Chikhaoui et al. 2017). Similarly, using a GPS and an 
accelerometer implanted on the neck of a cow allowed to 
reach 90% accuracy in behavior classification (González 
et al. 2015). As stated before, smartphones are generally 
equipped with an Inertial Measurement Units (IMU) which 
contains motion and location sensors able to record signals 
at high rate (Andriamandroso et al. 2017). They are widely 
available, easy to use and they save long hardware devel-
opments. IMU generally contains a 3-axis accelerometer, 
a 3-axis gyroscope and in recent version a magnetometer 
(digital triaxial compass) (see Table 1). The accelerometer is 
used to measure inertial acceleration. The gyroscope meas-
ures angular rotation. The magnetometer improves the preci-
sion of the gyroscopic measurements by correcting the drift 
of the magnetic pole. In this field, several works have been 
published using the IMU of iPhone. iPhone have been used 
to measure human posture and movement for upper arm in 
Yang et al. (2017b), human body position (Milani 2014), and 
sports monitoring (McNab et al. 2011; Rowlands and James 
2011). Smartphones have also been used to detect falls of 
elderly people (Miccuci 2017).

2.1 � iPhone and amounts of data

In the framework of the platform that is developed in this 
manuscript, factory-calibrated IMU in an iPhone 4s/5s 
mounted on a halter were used as sensors and an appropri-
ate behavior classification algorithm was developed (Andria-
mandroso et al. 2017).

Various raw and combined signals are measured by the 
iPhone and sampled at the frequency of 100 Hz (obtained 
with iOS operating system). Those signals are recovered 

using the Data Sensor application v1.261 that is installed on 
the phone. This application stores data locally in csv files or 
use UDP protocol over IEEE 802.11 g to stream data to the 
gateway. This protocol is acceptable for short range such as 
an experimental pasture or farm, reliable connections with 
no expected loss of information packets with direct wireless 
connection ad hoc (Rowlands and James 2011).

2.2 � Testing replicability

The precision of both iPhone was evaluated by attaching 
an iPhone 4s with an iPhone 5s using elastics. The two-
solidarized iPhone were placed on an animal in order to 
compare possible variations in the IMU measurements. The 
accuracy of the accelerometer, gyroscope and location sen-
sor was evaluated with a displacements table and a checker. 
These instruments allow respectively mastered movements 
and 3D - acceleration and 3D - rotation.

2.3 � Testing battery life

The autonomy of the battery of new iPhone 4s and 5s was 
evaluated at different sampling frequencies: 1, 2, 3, 5, 10, 20, 
30, 50, 100 Hz with all the 41 parameters including 15 truly 
measured parameters and 26 calculated ones and replicated 
5 times. Those older models were tested because they are 
available at a low price on the second-hand market making 
them a readily available tool for researchers. The lowest fre-
quencies (1–5 Hz) should cover most kinds of movements 
imprinted by an animal. The frequencies 10, 20, 30 and 
50 Hz are a tenfold increase in previous sampling rates allow-
ing a good representation of phenomenon as used in most 
animal behavior applications although in theory according 
Shannon/Nyquist the double of the frequency of the studied 
phenomenon should be enough. Finally, 100 Hz frequency 
is the maximum rate supported by the device. In a second 
time, the same measurements were redone with measured 
parameters only and replicated 3 times. The replication of the 
measurements allowed to evaluate standard deviation.

2.4 � Testing data compression

An application in Xamarin2 was developed to measure the 
compressibility of data by reducing the precision. In Sensor 
Data, all raw data are logged with a decimal precision of 6 
digits. The compression of raw data has been performed in 
two wats: (1) by eliminating redundancies, i.e. replacement 
of redundant data by a time interval during which the value 

Table 1   List of signals captured by IMU of iPhone 4s/5s using sensor 
data application

Sensors Measured signals Unit

Accelerometer Acceleration on x, y, z g
Gyroscope Euler angles (pitch, roll, yaw) Radian

Attitude quaternion on x, y, z Radian
Rotation matrix (3 × 3)
Gravitational component of acceleration g
User component of acceleration g
Rotation rate rad s−1

Magnetometer Magnetic data µT
Magnetic and true heading °

Location Latitude and longitude °
Altitude and accuracies m
Course m
Speed m s−1

Proximity sensor [0,1]

1  edited by Wavefront Labs and available in the Apple App store: 
https​://itune​s.apple​.com/us/app/senso​r-data/id397​61980​2?mt=8.
2  https​://www.xamar​in.com.

https://itunes.apple.com/us/app/sensor-data/id397619802?mt=8
https://www.xamarin.com
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remains constant was applied to preserve data integrity, and 
(2) by truncating data to 3, 4 and 5 decimal digits. For the 3 
above-mentioned tests, results were obtained for 24 h of data 
collected locally and stored on the iPhone in offline mode 
and post treated on a Laptop with Intel core i7-6700HQ pro-
cessor 2.6 Ghz with 16 GB RAM. Computing time related 
to 24 h of data (1,879,596 KB) is 72.29 s.

2.5 � Results

Both iPhone 4s and 5s solidarized and placed on animal 
gave similar results in terms of accelerometric, gyroscopic 
and magnetic measurements. These measurements were con-
firmed by imposing controlled movements and vibrations on 
both iPhone. The both iPhone measured correctly controlled 
movements with a precision of 10−3.

Table 2 shows the different compression rates obtained on 
raw data by redundancy elimination without any loss of data.

Acceleration, magnetic/true heading and position data 
are weakly compressible by removal of redundancies as 
opposed to magnetometer data, course and speed, altitude 
that are extremely compressible. Other data have the same 
compressing rate of 24.13% because they are linked data or 
calculated valued.

The compression of the data allowed a reduction of the 
bandwidth consumed for their transmission to the gateway 
by 42% on average. The transmission of the float data at 
100 Hz corresponds to 16,000 bytes of data. By eliminating 
redundancies, the amount of data transmitted every second 
was reduced to 9290 bytes per second.

The truncation of raw data respectively to 5, 4 and 3 digits 
and the elimination of redundancies reduces up to 44.5% 
on average the size of data to store. The small decrease on 
average in the size of data with 6, 5, 4 and decimals can be 
explained by the combination of parameters inside groups 
that limits the possibilities of compression.

Table 3 shows the mean autonomy time of batteries for 
two models of iPhone obtained with different sampling 
frequency for 15 and 41 parameters, respectively. The 15 
parameters are those actually measured by the IMU. The 41 
parameters are measured and calculated parameters on basis 
of the 15 measured parameters.

Sensor Data can be used to collect 41 parameters from the 
IMU of the iPhone at a frequency up to 100 Hz. However, 
it is not possible to switch off the screen during the acquisi-
tion phase, autonomy of the iPhone. The use of alternative 
software such as Power Sense which operates in the back-
ground allowing putting the screen to sleep will undoubtedly 
significantly increase the acquisition time of the data.

The evolution of the compression rate with a reduction in 
the number of decimals is not sensible when variables are 
treated in groups as opposed to individual data. (Table 4). 
The combination of parameters inside groups limits indeed 
the possibilities of compression. The compressibility of 
individual parameters is much more variable because it 
depends on one hand on the precision of sensors that are 
contained in the IMU, and on the other hand of the activity 
of the animal. Furthermore, the acquisition rates of sensors 
are different and therefore the variability in data also. For 
example, positioning systems update information every sec-
ond while acceleration sensors display a potential new value 
every 0.01 s.

3 � Novel architectures options for cloud 
storage platforms

Once reduced in volume, the data collected on the phones 
must be stored and treated appropriately on the cloud.

Large-scale data collection and sharing requires indeed 
a cloud storage platform to standardize, store and exchange 
data. Several options are suggested in the literature to fulfill 

Table 2   Compression rate 
obtained for each category of 
data collected on 24 h

Type of data Variable 
number

Data treated Data size (Mb) Comp rate [%]

Acceleration in the X, Y, Z axis 3 25,920,000 98.87 4.26
Euler angles of the device 3 25,920,000 98.87 24.13
Attitude quaternion 4 34,560,000 131.84 24.13
Rotation matrix (3 × 3) 9 77,760,000 296.63 24.13
Gravitational component of 3D acceleration 3 25,920,000 98.87 24.13
User acceleration component of 3D acceleration 3 25,920,000 98.87 24.13
Rotation rate 3 25,920,000 98.87 24.13
Magnetic and true heading 3 25,920,000 98.87 0.01
Magnetometer data 3 25,920,000 98.87 60.79
Position (latitude, longitude) 3 25,920,000 98.87 0.01
Course and speed 2 17,280,000 95.92 99.75
Altitude 1 8,640,000 32.96 99.99
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this goal such as Hadoop, Apache Spark, Apache Storm, 
Apache Spark Streaming, Apache Samza and Druid.

Hadoop is a highly available open-source software frame-
work dedicated to store and provide access to large amounts 
of data. Hadoop is composed of a distributed file system 
(HDFS), an application framework (MapReduce) and a 
resource manager (YARN). However, it does not offer any 
performances guarantee on how quickly that data can be 
accessed. The performances decrease under heavy load. Fur-
thermore, Hadoop is unable to provide the sub-second data 
ingestion latencies. Finally, it is not optimized to store and 
make data immediately readable (Yang et al. 2014, 2017a).

A solution to reduce disk latency is to keep in memory 
data to reuse for multiples tasks. Apache Spark processes 
a large amount of data with low latency and includes fault 
tolerance by introducing a novel resilient distributed dataset 
abstraction. However, data sharing application must be writ-
ten in external storage, such as Apache Cassandra, Apache 
Hive, Apache Pig, Apache Hbase, Apache Chukwa, Amazon 
S3 and HDFS (Diáz et al. 2016).

Stream processing frameworks like Apache Storm, 
Apache Spark Streaming and Apache Samza3 offer low-
latency model to ingest and process stream at near real-time 
speed. Apache Samza is a distributed stream processing 
framework which treats stream coming from Apache Kafka 
which is a distributed streaming platform. Apache Hadoop 
YARN is used to provide fault tolerance. However, these 
stream processing frameworks generally do not provide the 
same guarantees as batch processing frameworks in mat-
ter of correctness (Yang et al. 2017a). Also, the processing 
may suffer from duplicated events and other problems of 
accuracy in data.

The speed of data availability depends of how data are 
stored in the database. Opensource Relational Data Man-
agement systems and NoSQL key/value stores are unable to 

provide a low latency data storing. Furthermore, it is also 
not possible to provide query platform for interactive appli-
cations4. Raw data must be transformed or cleaned before 
their use (Yang et al. 2017a). As consequence, the process 
of data loading and batch processing can take a long time 
(several hours).

Druid presented in Yang et al. 2014 is a distributed col-
umn-oriented fault-tolerant presenting real-time analytical 
data store. This platform powers high performance applica-
tion with low query latencies. Druid is designed to solve 
problems around ingesting and exploring large quantities of 
times series data. The unit of storage in Druid is called “seg-
ment”. Each segment is composed of 5–10 million times-
stamped events that covers one period of time. Segments can 
be compressed by LZ45 by default or LZF6 algorithm and 
can also be stored in a column orientation database. Druid 
cluster is composed of 4 kinds of nodes: real-time, historical, 
broker and coordinator.

Druid uses two external dependencies. The first one is 
MySQL, PostgreSQL or SqlServer database in order to store 
metadata of segments. The second is Zookeeper that moni-
tors the four kinds of nodes present in the cluster. These four 
nodes coordinate, broke, store in real-time or archive data 
on a distributed storage system. Druid is able to import data 
from Kafka, Stream data or files data (TSV, CSV and Json). 
Druid can use local storage or external service to deep store 
old segments: Amazon S3, HDFS, Microsoft Azure, Google 
Cloud Storage and Apache Cassandra.

Numerous platforms for sharing scientific data exist such 
as Mezuri (Kipf et al. 2016), DHIS2 (Manya et al. 2012), 
Open Foris (Miceli et al. 2011), Conveyor (Linke et al. 

Table 3   Autonomy in hours for 
different sampling frequency of 
all 41 parameters are measured 
and calculated parameters 
on basis of the 15 measured 
parameters

Frequency (Hz) 41 parameters 15 parameters

iPhone 4s iPhone 5s iPhone 4s iPhone 5s

1 5.47 (± 1.72) 7.68 (± 1.83) 5.10 (± 1.90) 7.95 (± 1.89)
2 6.37 (± 2.20) 10.30 (± 2.29) 7.50 (± 3.16) 9.47 (± 2.38)
3 7.21 (± 2.62) 9.16 (± 1.86) 6.58 (± 2.49) 9.32 (± 2.00)
5 5.84 (± 2.22) 8.44 (± 2.23) 5.95 (± 2.32) 8.48 (± 2.03)
10 5.26 (± 1.72) 7.75 (± 1.74) 5.26 (± 1.82) 7.80 (± 1.78)
20 5.24 (± 1.76) 7.59 (± 1.87) 5.24 (± 1.82) 7.87 (± 1.78)
30 5.15 (± 1.80) 7.68 (± 1.82) 5.23 (± 1.78) 7.80 (± 1.84)
50 5.09 (± 1.81) 7.80 (± 1.95) 5.24 (± 1.83) 7.47 (± 1.74)
100 5.15 (± 1.78) 7.65 (± 1.77) 5.11 (± 1.73) 7.56 (± 1.80)

3  Apache Samza (2017) http://samza​.apach​e.org/. Accessed 5 April 
2017.

4  Tschetter E (2011) Introducing druid: Real-time analytics at a bil-
lion rows per second. http://druid​.io/blog/2011/04/30/intro​ducin​
g-druid​.html, Accessed 4 April 2017.
5  LZ4. http://www.lz4.org, Accessed 4 April 2017.
6  Liblzf (2013) http://freec​ode.com/proje​cts/liblz​f. Accessed 4 April 
2017.

http://samza.apache.org/
http://druid.io/blog/2011/04/30/introducing-druid.html
http://druid.io/blog/2011/04/30/introducing-druid.html
http://www.lz4.org
http://freecode.com/projects/liblzf
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2011), Mobyle (N’eron et al. 2009), Taverna (Hull et al. 
2006), Kepler (Altintas et al. 2004). Those systems author-
ize the provision of previously anonymized data and with the 
prior consent of the owner of the data. Many of these plat-
forms are specific to a domain and/or only support certain 
programming languages (Kipf et al. 2016). Among this myr-
iad of platforms, the GIFT-Cloud sharing medical imaging 

platform for the research proposes an exchange of data 
between producers of data and researchers. This platform 
provides encryption and an onsite anonymization before the 
storage of data, a direct web-based data access and a REST 
API for integrate tiers software (Doel et al. 2017). In the 
present case, the principles of GIFT-Cloud were adapted 
to the data coming from the Internet of Things. Moreover, 

Table 4   Compression rate obtain after truncation of raw data

Individual data Compression rate [%] on individual data Mean compression rate [%] by group

6 decimal 5 decimal 4 decimal 3 decimal 6 decimal 5 decimal 4 decimal 3 decimal

Acceleration in the X axis 46.02 46.02 83.56 96.16 4.26 4.26 4.26 4.27
Acceleration in the Y axis 55.81 55.81 86.93 97.64
Acceleration in the Z axis 61.76 61.76 86.93 92.77
Euler angles of the device (Roll) 30.38 61.28 90.44 98.49 24.13 24.13 24.13 24.13
Euler angles of the device (Pitch) 27.10 46.62 86.10 97.84
Euler angles of the device (Yaw) 24.64 28.93 57.16 93.75
Attitude quaternion in the X axis 27.85 51.73 91.22 98.97 24.13 24.13 24.13 24.47
Attitude quaternion in the Y axis 27.77 51.34 90.77 98.99
Attitude quaternion in the Z axis 26.06 39.83 81.40 98.01
Attitude quaternion in the W axis 25.94 39.54 81.10 98.01
Rotation matrix (element 11) 25.66 37.49 80.69 98.01 24.13 24.13 24.13 24.15
Rotation matrix (element 12) 25.73 37.94 80.90 98.01
Rotation matrix (element 13) 27.83 50.20 87.98 98.57
Rotation matrix (element 21) 26.12 40.43 81.29 98.01
Rotation matrix (element 22) 25.89 39.10 81.00 98.01
Rotation matrix (element 23) 30.52 61.69 90.68 98.60
Rotation matrix (element 31) 26.09 40.98 84.59 98.26
Rotation matrix (element 32) 26.11 40.98 84.72 98.31
Rotation matrix (element 33) 31.43 66.12 94.94 99.37
3D Gravitational acceleration (X) 27.79 50.20 87.98 98.57 24.13 24.13 24.23 32.02
3D Gravitational acceleration (Y) 30.49 40.43 90.68 98.60
3D Gravitational acceleration (Z) 31.40 39.10 94.94 99.37
3D User acceleration (X) 31.29 62.49 90.49 98.10 24.13 24.13 24.13 24.25
3D User acceleration (Y) 29.62 58.60 90.09 98.19
3D User acceleration (Z) 30.90 62.41 91.73 98.56
Rotation rate in the X axis 25.70 62.02 76.10 91.65 24.13 24.13 24.13 24.13
Rotation rate in the Y axis 25.62 36.76 73.97 89.75
Rotation rate in the Z axis 25.53 35.90 69.75 84.94
Magnetic Heading 68.40 68.43 68.63 70.87 0.01 0.01 0.01 0.01
True Heading 68.25 68.28 68.51 70.78
Heading Accuracy 100.00 100.00 100.00 100.00
Magnetometer data in the X axis 79.31 82.22 94.79 97.86 60.82 60.83 60.84 60.86
Magnetometer data in the Z axis 98.22 98.22 98.22 98.22
Magnetometer data in the Z axis 72.40 72.40 75.67 88.68
Latitude 99.93 99.99 100.00 100.00 99.85 99.94 99.99 99.99
Longitude 99.92 99.98 100.00 100.00
Position Accuracy 100.00 100.00 100.00 100.00
Course 99.96 99.96 99.96 99.96 99.75 99.75 99.75 99.75
Speed 99.85 99.85 99.85 99.87
Altitude 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99
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the hosting and the isolation of software and models which 
access directly and more rapidly to data were added to the 
platform, turning it into a more complete and versatile tool.

Apache Mesos is a fault-tolerant and highly available shar-
ing layer that provides a framework common interface allow-
ing a fine-grained sharing across diverse cluster computing 
frameworks. Fault tolerance is ensured by Apache Zookeper.7 
Mesos offers a scalable and resilient core for enabling various 
frameworks. This is particularly important to share efficiently 
clusters. A master node manages slave daemons running on 
each node in the cluster (Hindman et al. 2011).

Each framework that run on the top of Mesos use a job 
scheduler registered to the master node and ask resources 
while an executor process is on slave nodes to run tasks of 
the framework (See Fig. 1).

Slaves nodes report to the master nodes available 
resources (number of CPU and amount of memory) (1). 
Then, the master node invokes the allocation policy mod-
ule and determines the amount of resources to be allocated 
to each framework, and the scheduler selects each nodes 
of the offered resources to assign to the framework (2). At 
this step, the framework can reject the offered resources if 
they do not satisfy its constraints and wait another offer. If 
the framework accepts the offered resources (3), it sends 
to the master node a description of the tasks to launch on 
offered resources by nodes slave. A framework may specify 
a whitelist of nodes with which it can run and avoid node 
with which it always have offers reject. The master node 
sends the task to the slave node which allocate resources to 
the framework executor (4) (Hindman et al. 2011).

Allocation of resources is performed by two modules. 
The first performs fair sharing between resources, and the 

second implements strict priorities. Frameworks executor on 
slave nodes are isolated by leveraging existing OS isolation. 
Resource offers are scalable and robust through three mecha-
nisms: filers to the master node, the count of resources, the 
re-offers of resources. Filters avoid communication by pro-
viding filters to master node for frameworks which always 
reject certain resources. Mesos counts resources offered to a 
framework in its allocation of the cluster. When a framework 
does not respond quickly enough to an offer, Mesos can re-
offer the resources to another framework. Fault tolerance 
uses ZooKeeper to run multiple masters in a hot-standby 
configuration (Hindman et al. 2011).

Mesos provides also three containerization modes. Mesos 
containerizing allows using runtime environment, operating 
system control and additional resources like disk usage limit. 
Mesos allows also Docker containerizing8 in order to use 
tools coming with Docker package. The composing of both 
containerization technology allows to test different types of 
resources isolations. Mesos is a good solution to implement 
multiple framework and share fine-grained resource of the 
cluster. This solution allows hosting applications for multi-
ple use case such as cattle behavior.

A large amount of applications developed on different 
frameworks are needed to treat stored data in the cloud. 
Nowadays, to share a cluster, we have two main solutions. On 
one hand, we can run one framework on one partition of the 
cluster. On the other hand, the solution consists of allocating 
a set of virtual machines to each framework. However, theses 
solution cannot allow high use and efficient data sharing.

In this field, several works have been published, for 
example: a lambda architecture to treat all kinds of data was 

Fig. 1   Apache mesos architec-
ture

7  Apache Zookeeper (2017) http://hadoo​p.apach​e.orf/zooke​per, 
Accessed 10 April 2017.

8  Merkel D (2014) Docker: lightweight Linux containers for consist-
ent development and deployment. Linux Journal 239, Article n°2.

http://hadoop.apache.orf/zookeper
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proposed in Diáz et al. (2016). Marioti et al. (2017) propose 
a novel database management system (DBMS)-based system 
for the integration of Grids and Clouds. Kozhirbayev and 
Sinnott (2017) compared virtualization technologies with 
containers-based technologies and showed that the virtual-
ization is utilized in data centers, for server consolidation 
and elastic scaling. But, they are overheads technologies 
avoided in high performance Computing (HPC) environ-
ments and limited in Input/Output (I/O), while Docker is 
horizontal scalable and low cost. They also compared per-
formances on CPU, disk I/O and memory of container-based 
technologies and show that Docker can be faster compared to 
Flockport (LXC) if it uses multi-layer unification file system 
without using of network translation module.

4 � Platform architecture

Lambda architectures are designed to handle large amounts 
of data in conjunction with both batch and stream pro-
cessing methods (Veith et al. 2016) in combination with 
a serving layer (Diáz et al. 2016; Yang et al. 2017a). The 

particularity of lambda cloud architecture is that it is eas-
ily adaptable, and it is compatible with a wide range of 
use cases. Lambda cloud architecture is able to treat all 
kinds of data e.g. images, video, temporal data, event data 
or classic data. This paradigm allows the processing of 
real time data from stream and enables the rapid use of 
stored data (Debauche et al. 2018a, b, c). The no-prior or 
punctual data are processed in batch processing. The use 
of container technology makes it easy to deploy with dif-
ferent versions of the same model. This technology also 
allows a continuous integration of changes made on the 
model and rapid deployment. Virtual machines are also 
implemented for the elastic scaling of the infrastructure 
with the load.

In this paper, we propose an architecture structure, 
shown in Fig. 2, which combines on one hand a lambda 
architecture and on the other hand a hosting and sharing 
platform. In the proposed lambda architecture, data are 
separated into video streams treated by streaming process-
ing and time/event - related data. Streaming processing 
treats video coming from behavior observations which are 
periodically acquired. Time-related and event related data 

Fig. 2   Lambda architecture with 
scientific sharing platform
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are treated by batch processing which consists of data veri-
fication (complete data). If data are not complete, they can 
be corrected, and missing data must be interpolated. Each 
interpolated data is specifically tagged as “generated data” 
in order to differentiate it from the original data. The batch 
processing treats also data recovered from private clouds 
such as genotyping, health information, production data, 
of each animal and open to external data information such 
as weather, remote sensing (e.g through UAV flights), ani-
mal phylogeny data. All this information is subsequently 
stored in a distributed database.

The behavior of the cows is studied using sensors placed 
on the animal. The information produced by the iPhone has 
been sent in online or offline mode. In the online mode, the 
data measured by the sensors can be used to calculate other 
derived parameters that are sent by UDP protocol over Wi-Fi 
to the Cloud platform. In the offline mode, the iPhone uses 
local storage to back up measured and calculated data. The 
data is saved locally in a CSV file, which is then transmitted 
and processed on a gateway before being transmitted to the 
cloud platform. The implementation of fog computing on the 
iPhone 4s/5s allows the reduction in the amount of data that 
must be transmitted to the gateway and the bandwidth used. 
It also improves storage efficiency in the distributed database 
hosted in the cloud. These sensors measure the movement 
of the cow in its environment. Videos of the behavior of the 
cows are also carried out and then synchronized with the 
data measured on the animal. Videos can also be streamed 
live or sent periodically. Such combination of videos and 
sensors signals must be treated on the platform to allow cre-
ating models of behaviors classification.

Streaming processing achieve video annotation and fea-
tures calculation. The results of both operations are stored 
in the distributed database. Video and other data are syn-
chronized manually to associate tagged behaviors on video 
with variations of sensors measures. Toolbox View allows 
to visualize the real-time data sent to the database. A moni-
toring system sends alerts when the data exceeds previously 
determined thresholds. This toolkit is available for the plat-
form for sharing scientific data. Data analytic toolbox con-
tains tools for modeling, and algorithm creation that can be 
deployed continuously on virtual machines or containers of 
the scientific sharing platform. Several versions of the same 
software can be maintained in the platform by using virtual 
machines or containers and versioning system.

The proposed scientific sharing platform is a major nov-
elty of our lambda architecture specific for Internet of Things 
in conjunction with a hosting and scientific sharing platform. 
The lambda architecture collects process and stores data. In 
this hosting and sharing scientific platform, a web service 
takes care of the anonymization and securitized the access to 
the data. This platform allows to host models and software of 
researchers by mean of containerization technologies. The 

security module provides authentication and authorization 
that enables setting up role based on permission granted per 
privacy policies. Permissions to access the data and the dif-
ferent applications are proposed by the research teams. The 
rights can be given at the individual level, for a group of 
users or to a fixed IP address.

Our cluster is built with Apache Kafka, Apache Samza, 
Apache Hadoop, Druid, PostgreSQL, a Zookeeper quorum 
and Redis, (See Fig. 3).

As shown on Fig. 3, the stream processing is treated by 
the combination Kafka, Samza, Yarn, Apache Kafka pro-
vides a message between data producers and Apache Samza. 
YARN containers run Apache Samza to clean up false data, 
performs lookups and events. Batch processing uses MapRe-
duce, Yarn, Hadoop to treat non-critical data. The treatment 
in the batch processing can take several hours. Then, Druid’s 
real-time nodes ingest data by event reading. In this configu-
ration, Druid cluster is able to consume 1,50,000 events by 
second (Yang et al. 2014).

Druid is composed of different types of nodes: Real-
times, Historical, Brokers and Coordinators Nodes. Real-
times nodes provide functionality to ingest, query, index 
event streams for small time range. The maintaining of 
Indexes in-memory allows a direct access of data. Next, 
immutable blocks appealed “segments” and merged indexes 
are created from data ingested by real-time node by a back-
ground Segments are uploaded to a HDFS (Shvachko et al. 
2010) permanent backup storage. HDFS is a distributed file 
system for storing distributed and replicated data in a cluster 
of server (Diáz et al. 2016). Historical Nodes contain func-
tionalities to load and serve the immutable blocks of data 
created by real-time nodes. Brokers nodes route incoming 
queries to historical or real-times node and return a final 
consolidated result to the applicant. Brokers nodes contain 
a caching system with a LRU (Lee et al. 2001) invalidation 
strategy and using Redis (Zawodny 2009) to store key/value. 
Finally, Coordinators nodes are in charge of data manage-
ment and distribution on historical nodes: loading, dropping 
replication and moving of data. A PostgreSQL database con-
nected to coordinators nodes store operational parameters, 
configurations. This database contains also the list of all 
segments that can be served by historical nodes and rules to 
create, destroy and replicate blocks of data in the cluster. The 
database can be updated by any service that creates persis-
tent blocks of data. Batch data process event from static files 
in JSON or CSV format one at a time and produce segments 
directly uploaded in the deep storage. Batch data processing 
may take several hours by opposition of real-time where data 
are treated in sub second time (Yang et al. 2017a).

We use a share and hosting platform to treat and explore 
data from the IoT Lambda Architecture. This platform 
uses Apache Mesos and Docker containers to isolate and 
host applications. We can notice that Mesos isolation is 
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better than Docker, that is why we have mixed these both 
containerizing methods for compatibility reasons (Fig. 1). 
The application sharing platform use a quorum of 3 nodes 
Zookeeper: one master node and two master standby nodes. 
These two standby nodes ensure fault tolerance in the 
cluster.

Mesos offers several pluggable frameworks. Each frame-
work sends tasks to the master node which transfer them to 
a slave node available to execute the task. When the task is 
executed the result is send to node master which forward 
them to the framework. Docker slave node can host external 
application which don’t initially be developed to work on 
frameworks plugged on Mesos. They can nevertheless be 
hosted with container technology offered by Docker.

Six frameworks plugin are installed on our application 
sharing platform. Jenkins framework allows continuous inte-
gration and dynamic launch of workers depending on the 
workload. Jenkins allows to researcher to develop algorithm 
and test them on the cluster. Tensor Flow (Abadi et al. 2016) 
enables to run distributed machine learning tasks with GPU. 
Tensor flow allows researchers to experiment machine learn-
ing algorithms on a set of images acquire by 3D cameras. 
Marathon is a Private as a Service (PaaS) which ensures 
that an application is always “on”. It automatically handles 
hardware or software failures and guarantee the availability 
of paying. services. MPI (Gropp 1996) is a message-pass-
ing system to function on parallel computers. MPI allows to 
accelerate application by starting parallel jobs. It has been 
plugged for compatibility reasons for some algorithms and 

Fig. 3   Components of the proposed architecture
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models. Apache Hama (Apache Foundation 2017a) is used 
for distributed computing for massive scientific computa-
tions and big data analysis based on Bulk Synchronous Par-
allel (BSP) computing techniques. It provides also vertex 
and neuron centric programming models (Apache Founda-
tion 2017a). Hama is principally uses in data analysis and 
model elaboration. Apache Aurora (Apache Foundation 
2017b) is a service scheduler used to run long-running ser-
vices while benefiting of scalability, isolation and fault-tol-
erance of Mesos. Aurora is used to develop applications to 
treat raw data from the lambda architecture and execute cron 
jobs. Finally, Hadoop framework distributes MapReduce on 
the cluster which is used for cloud computing.

5 � Conclusion

In this paper, a new data storage architecture dedicated to 
scientific research has been proposed. This lambda architec-
ture is able to collect data at high frequency and is adaptable 
easily to many cases. The main originality of the architecture 
lies on its ability to share the data and applications created 
by the different teams of scientists from a common database. 
This architecture is also able to integrate complementary 
data such UAV images, and external data from other cloud 
platforms such as health and production data. The iPhone is 
an inexpensive means of measuring cow behavior. I-Phone 
5SE, 6S, 7S and 8S are equipped with a new factory-
calibrated IMU. This new IMU is not much evaluated in 
scientific literature (Yang 2017a, b). Currently the data is 
transmitted from the iPhone to the gateway by using the 
UDP protocol on WIFI, but this protocol may cause a data 
packet loss problem when it is necessary to collect data from 
several iPhone simultaneously. The compressibility of data 
massively acquired can be reduced by 43.5% on average and 
this can hardly be improved any further. By opposition, we 
have shown that individual parameters can be highly com-
pressible. In the future when the most explicative param-
eters will be selected for a given research application, the 
compressibility of data will be improved. Finally, applying 
edge computing during the massive collection of data is not 
interesting. The future development of microcontrollers 
which acquire pertinent parameters at specific sampling 
rate and use low throughput LoRa will allow to resolve this 
issue. Indeed, using acknowledgment in the protocol LoRA 
guarantee the correct reception of payload transmitted. The 
lambda architecture proposed for collecting, storing, pro-
cessing and sharing data between research teams is flexible 
enough to be used for other uses than cow behavior provided 
such that different teams contribute to the system. Other data 
compression algorithms must be considered to optimize the 
energy consumption of the battery. The sharing platform will 

integrate a billing system to valuate on one hand the using 
of data and multi-tenancy of software on the other hand.

Acknowledgements  We would like to thank our colleagues from the 
CARE AgricultureIsLife (TERRA Teaching and Research Unit, Gem-
bloux Agro-Bio Tech) and the Precision Livestock and Nutrition Axis, 
without whom this work would not have been possible. We would also 
like to thank Prof. Ghalem Belalem for the architecture brainstorming.

References

Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghe-
mawat S, Irving G. Isard M, Kudlur M, Levenberg J, Monga R, 
Moore S, Murray DG, Steiner B, Tucker P, Vasudevan V, Warden 
P, Wicke M, Yu Y, Zheng X, Google Brain (2016) TensorFlow: 
a system for large-scale machine learning. In: 12th USENIX 
Symposium on Operating Sytemps Design and Implementation 
(OSDI’16). Novembre 2–4, 2016, ISBN: 978-1-931971-33-11

Altintas I, Berkley C, Jaeger E, Jones M, Ludascher B, Mock S (2004) 
Kepler: an extensible system for design and execution of scientific 
workflows. In: Scientific and Statistical Database Management. 
In: Proceedins of the 16th International Conference on, IEEE, pp 
423–424. https​://doi.org/10.1109/SSDM.2004.13112​41

Andriamandroso ALH, Bindelle J, Mercatoris B, Lebeau F (2016) 
Review on the use of sensors for jaw movements’ detection. Bio-
technol Agron Soc Environ 20(S1):273–286

Andriamandroso ALH, Lebeau F, Beckers Y, Froidmond E, Dufrasne I, 
Heinesch B, Dumortier P, Blanchy G, Blaise Y, Bindelle J (2017) 
Development of an open-source algorithm based on inertial meas-
urement units (IMU) of a smartphone to detect cattle grass intake 
and ruminating behaviors. Comput Electron Agric 139:126–137. 
https​://doi.org/10.1016/j.compa​g.2017.05.020

Andriamasinoro ALH, Lebeau F, Bindelle J (2015) Changes in bit-
ing characteristics recorded using the inertial measurement unit 
of a smartphone reflect differences in sward attributes. Precision 
Livestock Farming 15:283–289

Apache Foundation (2017a) Apache Hama. https​://hama.apach​e.org. 
Accessed 7 June 2017

Apache Foundation (2017b) Aurora is a Mesos framework for long-
running services and cron jobs. http://auror​a.apach​e.org. Accessed 
7 June 2017

Chikhaoui B, Ye B, Mihailidis A (2017) Aggressive and agitated 
behavior recognition from accelerometer data using non-negative 
matrix factorization. J Ambient Intell Human Comput. https​://doi.
org/10.1007/s1265​2-017-0537-x

Debauche O, Mahmoudi S, Adriamandroso ALH, Manneback P, 
Bindelle J, Lebeau F (2017) Web-based cattle behavior service 
for researches based on the smartphone inertial central. Proc Com-
put Sci 110:110–116. https​://doi.org/10.1016/j.procs​.2017.06.127

Debauche O, El Moulat M, Mahmoudi S, Manneback P, Lebeau F 
(2018a) Irrigation pivot-center connected at low cost for the 
reduction of crop water requirements. In: International Confer-
ence on Advanced Communication Technologies and Networking 
(CommNet 2018). IEEE. ISBN: 978-1-5386-4609 (in press)

Debauche O, El Moulat M, Mahmoudi S, Boukraa S, Manneback P, 
Lebeau F (2018b) Web monitoring of bee health for researchers 
and beekeepers based on the internet of things. Proc Comput Sci 
(in press)

Debauche O, Mahmoudi S, Manneback P, Massinon M, Tadrist N, 
Lebeau F, Mahmoudi SA (2018c) Cloud architecture for digital 
phenotyping and automation. In: The 3rd International Conference 
on Cloud Computing Technologies and Applications—Cloud-
Tech’17. https​://doi.org/10.1109/Cloud​Tech.2017.82847​18

https://doi.org/10.1109/SSDM.2004.1311241
https://doi.org/10.1016/j.compag.2017.05.020
https://hama.apache.org
http://aurora.apache.org
https://doi.org/10.1007/s12652-017-0537-x
https://doi.org/10.1007/s12652-017-0537-x
https://doi.org/10.1016/j.procs.2017.06.127
https://doi.org/10.1109/CloudTech.2017.8284718


	 O. Debauche et al.

1 3

Diáz M, Martin C, Rubio B (2016) State-of-the art, challenges, and 
open issues in the integration of Internet of things and cloud com-
puting. J Netw Comput Appl 67:99–117. https​://doi.org/10.1016/j.
jnca.2016.01.010

Doel T, Shakir DI, Pratt R, Aertsen M, Moggridge J, Bellon E, David 
AL, Deprest J, Vercauteren T, Ourselin S (2017) GIF-Cloud: 
a data sharing and collaboration platform for medical imaging 
research. Comput Methods Programs Biomed 139:181–190. https​
://doi.org/10.1016/j.cmpb.2016.11.004

Frost AG, Schofield CP, Beaulah SA, Mottram TT, Lines JA, Wathes 
CM (1997) A review of livestock monitoring and the need for 
integration systems. Comput Electron Agric 7(2):139–159. https​
://doi.org/10.1016/S0168​-1699(96)01301​-4

González LA, Bishop-Hurley GJ, Handcock RN, Crossman C (2015) 
Behavioral classification of data from collars containing motion 
sensors in grazing cattle. Comput Electron Agric 110:91–102. 
https​://doi.org/10.1016/j.compa​g.2014.10.018

Gropp W, Lusk E, Doss N, Skjellum A (1996) A high-performance, 
portable implementation of the MPI message passing inter-
face standard. Parellel Comput 22(6):789–828. https​://doi.
org/10.1016/0167-8191(96)00024​-5

Hindman B, Konwinski A, Zaharia M, Ghodsi A, Joseph AD, Katz 
R, Shenker S, Stoica I (2011) Mesos: a platform for fine-grained 
resource sharing in the data center. NSDI’11, pp 1–14. https​://
www.useni​x.org/legac​y/event​s/nsdi1​1/tech/full_paper​s/Hindm​
an_new.pdf

Hull D, Wolstencroft K, Stevens R, Goble C, Pocock MR, Li P, Oinn 
T (2006) Taverna: a tool for building and runing workflows of 
services. Nucleic Acids Res 34(2):W729-W732. https​://doi.
org/10.1093/nar/gkl32​0

Kipf A, Brunette W, Kellerstrass J, Podolsky M, Rosa J, Sundt M, 
Wilson D, Borriello G, Brewer E, Thomas E (2016) A proposed 
integrated data collection, analysis and sharing platform for 
impact evalution. Dev Eng 1:36–44. https​://doi.org/10.1016/j.
deven​g.2015.12.002

Kozhirbayev Z, Sinnott RO (2017) A performance comparison of con-
tainer-based technologies for the Cloud. Future Gen Comput Syst 
68:175–182. https​://doi.org/10.1016/j.futur​e.2016.08.025

Lee D, Choi J, Kim J-H, Noh SH, Min SL, Cho Y, Kim CS (2001) 
LRFU: a spectrum of policies that subsumes the least recently 
used and least frequently used policies. IEEE Trans Comput 
50(12):1352–1361

Linke B, Giegerich R, Goesmann A (2011) Conveyor: a workflow 
engine for bioinformatic analyses. Bioinformatics 27(1):903–911. 
https​://doi.org/10.1093/bioin​forma​tics/btr04​0

Manya A, Braa J, Øverland L, Titlestad O, Mumo J, Nzioka C 
(2012) National roll out of district health information software 
(DHIS2) in kenya, 2011—central server and cloud based infra-
structure. In: IST-Africa 2012 Conference Proceedings. ISBN: 
978-1-905824-34-2

Mariotti M, Gervasi O, Vella F, Cuzzocrea A, Costantini (2017) 
Strategies and systems towards grid and clouds integration: a 

DBMS-based solution. Future Gen Comput Syst. https​://doi.
org/10.1016/j.futur​e.2017.02.047

McNab T, James DA, Rowlands D (2011) Iphone sensor plaforms: 
applications to sports monitoring. 5th Asia-Pacific Congress on 
Sport Technology (APCST). Proc Eng 13:507–512. https​://doi.
org/10.1016/j.proen​g.2011.05.122

Miceli G, Pekkarinen A, Leppanen M (2011) Open foris initiative—
tools for forest monitoring and reporting. Concept Note

Micucci D, Mobilio M, Napoletano P, Tisato F (2017) Falls as anoma-
lies? An experimental evaluation using smartphone accelerom-
eter data. J Ambient Intell Human Comput 8:87–99. https​://doi.
org/10.1007/s1265​2-015-0337-0

Milani P, Coccetta CA, Rabini A, Sciarra T, Massazza G, Ferriero G 
(2014) Mobile smartphone application for body position measure-
ment in reabilitation: a review of goniometric tools. PM R 2014 
6:1038–1043. https​://doi.org/10.1016/j.pmrj.2014.05.003

Néron B, Ménager H, Maufrais C, Joly N, Maupetit J, Letort S, Carrere 
S, Tuffery P, Letondal C (2009) Mobyle: a new full web bioinfor-
matics framework. Bioinformatics 25(22):3005–3011. https​://doi.
org/10.1093/bioin​forma​tics/btp49​3

Rowlands D, James D (2011) Real time data streaming from smart 
phones. Procedia. 5th Asia–Pacific Congress on Sports Technol-
ogy. (APCST) Eng 13:464–469. https​://doi.org/10.1016/j.proen​
g.2011.05.115

Shvachko K, Kuang H, Radia S, Chansler R (2010) The hadoop dis-
tributed file system. In Mass Storage Systems and Tdchnologies. 
IEEE 26th Symposium on pp 1–10

Veith AS, Anjos JCS, de Freitas EP, Lampoltshammer TJ, Geyer CF 
(2016) Strategies for big data analytics through lambda architec-
tures in volatile environments. IFAC-PapersOnLine 49–50:114–
119. https​://doi.org/10.1016/j.ifaco​l.2016.11.138

Yang F, Tschetter E, Léauté X, Ray N, Merlino G, Ganguli D (2014) A 
real-time analytical data store. SIGMOD’14, June 22–27, 2014, 
Snowbird, UT, USA. ACM 978-1-4503-2376-5$414/06. https​://
doi.org/10.1145/25885​55.25956​31

Yang F, Merlino G, Ray N, Léauté X, Gupta H, Tschetter E (2017a) 
The RADStack: open source lambda architecture for interactive 
analytics. In: Proceedings of the 50th Hawaii International Confer-
ence on System Sciences, pp 1703–1712

Yang L, Grooten WJA, Forsman M (2017b) An iPhone application 
for upper arm posture and movement measurements. Appl Ergon 
65:492–500. https​://doi.org/10.1016/j.aperg​o.2017.02.012

Zawodny J (2009) Redis: lightweight key/value store that goes the extra 
mile. Linux Magazin 31 August, 2009

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.jnca.2016.01.010
https://doi.org/10.1016/j.jnca.2016.01.010
https://doi.org/10.1016/j.cmpb.2016.11.004
https://doi.org/10.1016/j.cmpb.2016.11.004
https://doi.org/10.1016/S0168-1699(96)01301-4
https://doi.org/10.1016/S0168-1699(96)01301-4
https://doi.org/10.1016/j.compag.2014.10.018
https://doi.org/10.1016/0167-8191(96)00024-5
https://doi.org/10.1016/0167-8191(96)00024-5
https://www.usenix.org/legacy/events/nsdi11/tech/full_papers/Hindman_new.pdf
https://www.usenix.org/legacy/events/nsdi11/tech/full_papers/Hindman_new.pdf
https://www.usenix.org/legacy/events/nsdi11/tech/full_papers/Hindman_new.pdf
https://doi.org/10.1093/nar/gkl320
https://doi.org/10.1093/nar/gkl320
https://doi.org/10.1016/j.deveng.2015.12.002
https://doi.org/10.1016/j.deveng.2015.12.002
https://doi.org/10.1016/j.future.2016.08.025
https://doi.org/10.1093/bioinformatics/btr040
https://doi.org/10.1016/j.future.2017.02.047
https://doi.org/10.1016/j.future.2017.02.047
https://doi.org/10.1016/j.proeng.2011.05.122
https://doi.org/10.1016/j.proeng.2011.05.122
https://doi.org/10.1007/s12652-015-0337-0
https://doi.org/10.1007/s12652-015-0337-0
https://doi.org/10.1016/j.pmrj.2014.05.003
https://doi.org/10.1093/bioinformatics/btp493
https://doi.org/10.1093/bioinformatics/btp493
https://doi.org/10.1016/j.proeng.2011.05.115
https://doi.org/10.1016/j.proeng.2011.05.115
https://doi.org/10.1016/j.ifacol.2016.11.138
https://doi.org/10.1145/2588555.2595631
https://doi.org/10.1145/2588555.2595631
https://doi.org/10.1016/j.apergo.2017.02.012

	Cloud services integration for farm animals’ behavior studies based on smartphones as activity sensors
	Abstract
	1 Introduction
	2 Optimizing smartphones as behavior sensors
	2.1 iPhone and amounts of data
	2.2 Testing replicability
	2.3 Testing battery life
	2.4 Testing data compression
	2.5 Results

	3 Novel architectures options for cloud storage platforms
	4 Platform architecture
	5 Conclusion
	Acknowledgements 
	References


