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Abstract— Visual attention allows the human visual system to 

effectively deal with the huge flow of visual information acquired 

by the retina. Since the years 2000, the human visual system 

began to be modelled in computer vision and it became part of 

artificial intelligence: while learning focuses on repetitive data 

which can easily be modeled, computational attention focuses on 

abnormal, rare and surprising data which can hardly be learnt.  

Attention is a product of the continuous interaction between 

bottom-up and top-down information. While the bottom-up 

information has been extensively investigated through saliency 

models, top-down influence on visual attention has been less 

investigated. This paper intends to study the influence of object-

based (faces and text) top-down information on bottom-up 

saliency maps.  It proposes a simple yet effective fusion scheme 

that can be applied on any bottom-up saliency model depending 

on the object detector effectiveness and the object size. The 

evaluation results show that it is possible to highly improve 

classical bottom-up saliency models with the arrival of better 

object detectors. In the future, such attention models can become 

as effective as deep-learning based attention models while 

keeping them more generic and avoiding underestimating 

bottom-up features. 

Keywords— saliency, top-down attention, bottom-up attention, 

visual attention, data fusion, eye-tracking, eye fixations. 

I. INTRODUCTION 

Computational visual attention tends to mimic human 
visual attention and focuses on the more informative and 
important parts of images. It has been the subject of various 
studies in a wide range of research fields such as psychology, 
neuroscience or computer vision. In computer vision, the main 
approach to the implementation of visual attention includes 
bottom-up and top-down information1, however, while bottom-
up attention was investigated a lot [4][5][6][7][8][9][11], there 
were only a few experiments using top-down information in 
the literature. This is probably because before the arrival of 
deep learning in attention in 2014, the top-down detectors were 
not good enough, and afterwards most researchers focused on 
obtaining an end-to-end deep learning saliency model which 
naturally integrates top-down information. 

There are various kinds of top-down information which can 
be used in addition with bottom-up saliency [1] such as 
location-based, contextual-based or object-based models. In 
this paper, we focused specifically on object-based top-down 
attention and especially faces and text.  

The combination of face detection and low-level saliency 
provides already results improvements in [2]. The linear 
combination was weighted to give to faces the same weight 
that each one of the three bottom-up conspicuity maps 
(orientation, colour, intensity) which means that the face map 
global weight was quite low. This helped the authors to deal 
with false positives from the face detector used at that time 
which was not optimal. In [10], the author showed that the 
high-level features such as faces and people can enhance the 
model performance, but there was no any precise information 
related to the relative importance of those features. The author 
also stated that using a bad object detector could clearly 
decrease the model performance if it produces too many false 
positives. In [3], the authors dealt with the importance of 
people and cars for saliency detection. In [16], the authors 
introduced the idea of the use of object symmetry as top-down 
attention in images. In [12], target object features from the 
Pascal VOC object database are learned using a CRF-
modulated dictionary. The saliency maps were really focused 
on the objects with a very high weight. 

In computer vision, Deep Neural Networks (DNNs) have 
changed the saliency paradigm since 2014. The deep features 
were first used in eDN model [17]. DeepGaze1 model [18] 
then showed that DNN features trained on object recognition 
are very useful for saliency detection. This finding seems 
logical as objects are most of the time regions of interest. Since 
then a variety of models used fine-tuned mixes of features from 
several deep learning models. These DNN-based models 
naturally incorporate top-down information during learning 
(such as faces and text for example). It seemed that DNNs 
were the perfect solution to improve the performance of 
classical bottom-up models.   

However, in [19], the authors showed that the importance 
of bottom-up attention was underestimated by DNN-based 
models. Indeed, a simple bottom-up model can outperform a 
state-of-the-art DNN model on images containing less top-
down information. This demonstrated that DNNs too much 
neglect the bottom-up aspect of visual attention and are mostly 
trained to detect the very attractive top-down objects than to 
really detect saliency. Moreover, they cannot easily adapt to 
images which are very different from the ones they were 
trained on and finally DNNs have the structural issue to 
provide a result that cannot really be explained in an explicit 
way. 

1 Bottom-up information is also known as reflex exogenous reaction, 

while top-down information is known as reflexive endogenous information. 



The authors of [13] provide cues about relative importance 
of features based on a manual segmentation of the image 
dataset and is the basis of the work on this paper. In [13], the 
authors build a saliency model mixing their own bottom-up 
approach and several higher-level features. While in [13] 
weights of different features are computed within a specific 
model and cannot be used in other contexts, the purpose of this 
paper is to quantify the relative importance of two features 
proven in [13] to be very influential (faces and text) so that 
they can be used and integrated very easily to any general 
bottom-up saliency model, not necessarily in ours. In addition, 
we also study the size of faces and text assuming that the size 
is not an independent variable. The question we address here 
is: how to add in a simple yet effective way an object detector 
result to any bottom-up saliency model?  

The remainder of this paper is organized as follows. In 
Section II, we describe the high-level features and detectors 
that are used. In Section III, we deal with the methods and 
experiments used mix bottom-up and top-down information 
based on several kinds of detectors. The results and discussion 
are finally presented in Section IV. 

II. HIGH-LEVEL FEATURES AND DETECTORS 

Low- and high-level information are both important to 
predict human gaze accurately [19][13]. In [13], the relative 
importance of different features was used to evaluate the model 
performance, which was computed by a linear SVM classifier. 
In terms of importance, it shows that face, text, and gaze 
direction are the three main features. In addition, colour, 
orientation, or intensity still have an interesting influence 
especially when human faces and text were absent [19]. 
However, in [13], the result cannot be easily applied to any 
bottom-up attention model, while here we intend to be able to 
use them in a generic way with any model. In sections II.A and 
II.B text and faces features are further described.  

For the object detectors, we focus on 1) faces and 2) text. 
Inside those two important features, we try to understand the 
importance of the size (big faces and text versus small faces 
and text). The OSIE dataset (Object and Semantic Images and 
Eye-tracking) [13] provides us with a set of images and the 
manually segmented masks for text (Fig. 1b) or faces (Fig. 1c) 
along with the eye tracking fixation map (Fig. 1d). The 
different detectors that we used are detailed in Section II.C.  

 
Fig. 1. Extracting text and face features and eye-tracking fixation map from 
OSIE dataset. (a) Input image, (b) Text features, (c) Face features, and (d) Eye-
tracking fixation map. 

A. Text features 

Based on the OSIE dataset, we only select the images 
containing text (Fig. 2). When checking the corresponding eye-
tracking maps, big text seems much more interesting than 
small text (around twice more interesting). This consideration 
pushed us to check the difference between big (Fig. 2b) and 

small (Fig. 2c) text. We used the OSIE masks to separate text 
regions between big text (more than 29 pixels in height) and 
small text (less than 29 pixels in height). This threshold 
depends of course on the image size, but all the images in the 
database are of the same size here.  

 
Fig. 2. Defining big and small text features and eye-tracking fixation map 
from the OSIE dataset. (a) Input image, (b) Big text features, (c) Small text 
features, and (d) Eye-tracking fixation map. 

B. Face features 

In the same way, we use the manually segmented masks 
for the images containing faces (Fig. 3). Even if the difference 
in terms of eye-tracking maximum is less obvious between big 
faces and small faces than between big text and small text, we 
separate big faces (we used a threshold of 76 pixels in height) 
from small faces (less than 76 pixels in height) the same way 
as text. Again, the size of the images is always the same here, 
but for other datasets this threshold should be computed 
relatively to the mage size to be used on other datasets. Here 
we only take into account the frontal faces as heads viewed 
from rear or from the side have less chances to be correctly 
detected by an automatic face detector. 

 
Fig. 3. Defining big and small face features and eye-tracking fixation map 
from OSIE dataset. Big and small face features are defined by us as the text 
features. (a) Input image, (b) Big face features, (c) Small face features, and (d) 
Eye-tracking fixation map. 

C. Object detectors 

We first define a perfect detector which is simply the 
human-based masks already segmented in [13].  

For faces, we use a state-of-the-art face detector based on 
the DLIB library [22]. We used the classical Histograms of 
Oriented Gradients (HOG) feature followed by a SVM 
classifier which has a good face detection rate [21]. On this 
detection, we added the face template approach based on a 
cascade of classifiers from [15] which exhibited good results 
for frontal faces, with few false positives.  

 
Fig. 4. Applying face detection method from [15]. (a) Input images, (b) Result 
of face detection. The results contain either big faces (brighter), either small 
faces, and either both big and small faces. 



For text detection, we used an older approach which is 
integrated into the OpenCV library [14]. This detector used 
Extremal Regions (ERs) which are robust to several image 
transformations. A second step is used in the algorithm: OCR 
helps to improve overall results. However, in this paper we did 
not use any OCR results. For real-life images, this detector 
results are poor with both misdetections and false detections. 

 
Fig. 5. Applying text detection method from [14]. (a) Input images, (b) Result 
of text detection inside white bounding boxes, and (c) Converting text detection 
areas into white to indicate text features. The results contain both big (brighter) 
and small texts. 

Thus, we can compare the results between a perfect 
detector (for text and face features), a good detector (face 
detection), and a poor detector (text detection). 

III. EXPERIMENT 

The experiment intends to provide us with a clear view on 
how top-down information effects bottom-up information by 
adding text and face detection. It can be divided into two 
questions: 1) how to extract weights for different kind of top-
down information and 2) how to mix the top-down information 
to bottom-up in a simple way.  

 
Fig. 6. Components of bottom-up and top-down attention used in our 
experiment. 

 To do so, we choose the top-down information as described 
in the previous section (Fig. 6, bottom-right), while the bottom-
up saliency comes from the RARE model [11] (Fig. 6, bottom-
left). This approach was purely bottom-up (no additional 
centred gaussian or learning-based information), and it 
considered both local information and global information 
through a rarity approach. By considering the MIT saliency 
benchmark [23], this model is bellow most of the DNN-based 
models.  

A. Top-down features weight 

While in [13], the features weight is computed by the 
means of a classifier, we choose here to use the experimental 
data that we have in the OSIE dataset to extract a meaningful 
individual weight for each feature of interest. For that purpose, 
we decided to measure the average maximum eye gaze 
attractivity on all the OSIE images for big and small text and 
face masks. As it can be seen in the schema in Fig. 7, the eye-
tracking map is multiplied by the binary mask which will 
provide the eye-tracking intensity on the object of interest. 
Then the maximum of these values is averaged over all the 
images in the dataset providing a weight for the given feature. 
For weight of big text, after 75 images we are stabilized 
between 0.75 and 0.78, and for weight of small text, after 75 
images we are stabilized between 0.31 and 0.34. For weight of 
big face and small face, after 75 image we stabilized between 
0.81 and 0.84 and between 0.64 and 0.67, respectively. As a 
result, between 75 images and 100 images are enough to get 
stable weights which do not depend a lot on the images we add. 

 

Fig. 7. Object binary mask is used along with the eye-tracking map to extract 
the maximum eye-tracking value for the object. This value, averaged on all 

the images will provide a weight for a given object.  

B. Top-down and bottom-up fusion 

 Once the weight was computed for one of the objects 
among small text (ST), big text (BT), small faces (SF), and big 
faces (BF), the question is how to make a fusion between this 
information and the bottom-up saliency map.  

First, as described in Fig. 8, for each feature, we split the 
small and big masks and then smooth them in order to obtain 
and image close to the fuzzy bottom-up saliency map. 

 

Fig. 8. For face and text, the binary masks are split between big and small 

masks and then low-pass filtered to provide a smoothed result before being 

fused with the bottom-up saliency map. 

 We made linear combinations between bottom-up 

information (saliency maps) and top-down information (text 

and face detection). We generated results of saliency maps 

using RARE [11] and 1) text detection using both [14] and the 

masks as described in section II.A and 2) face detection using 

both [15] and the masks as described in section II.B. 

To make a simple fusion between bottom-up saliency maps 
(SM) and top-down information (faces alone, text alone or 
both), we used linear combinations which are easy to 
implement. The weights were either the same for text (big and 



small) and faces (big and small), either different by using the 
results that we obtained in section III.A which are given the 
following formulas:  

 (SMATF) / 2 

 (SMBTF) / 2  

 (SMSTF) / 2 

 SMwSTF / wBTF) * STF + BTF  

where SM is bottom-up saliency maps computed from RARE 

[11], ATF is either all text (big and small), either all face (big 

and small), either all text and face depending on the 

experiment, BTF is either big text, either big faces, either all 

big text and big faces depending on the experiment, STF is 

either small text, either small faces, either all small text and 

small faces depending on the experiment. wSTF and wBTF use 

the weights found in section III.A for either small text or small 

faces (wSTF) and for either big text or big faces (wBTF). 

 To also test the impact of the detector accuracy, we divided 

our experiment into three different parts: perfect detector, 

good detector, and bad detector. For good and bad detector, 

we use the state-of-the-art detector [15] and [14], respectively 

while for the perfect detectors we used the masks from [13] as 

shown in Fig. 8 for both face and text. 

IV. RESULTS AND DISCUSSION 

A. Weights for face and text 

To get ideal weights for big and small text and face, we 
used the method described in Fig. 7. As a result, we obtained a 
weight of big text (wBT) = 0.7871, of small text (wST) = 
0.3221, of big face (wBF) = 0.8159, and of small face (wSF) = 
0.6457. We can see that the difference between big text and 
small text is more important than big face and small face. Big 
face is a little more important than big text, but the difference 
is not very significant. 

B. Perfect detector 

For the perfect detector, we did three experiments. In the 
first one, we combined the bottom-up saliency map (SM) with 
text alone, then with face alone, and finally with both text and 
face. 

We used several metrics to evaluate the bottom-up 
attention model object-based top-down attention by making 
correlation between some different results (from fusion 
algorithms) and the eye-tracking Fixation Maps (FM). For 
those metrics, we used Correlation Coefficient (CC), 
Kullback-Leibler Divergence (KLDiv), Normalized Scanpath 
Saliency (NSS), Similarity, and Area Under the ROC curve 
from Judd (AUC_J). Those metrics provide some 

complementarity and are well described in [20]. For CC, NSS, 
Similarity, and AUC_J, the higher value is the best, for 
KLDiv, the lower value is the best.  

The results are summarized given the three different 
experiments in Tables I (SM with text alone), II (SM with face 
alone), and III (SM with both text and face). The first line 
corresponds to the comparison between the bottom-up 
saliency map (SM) and the eye tracking fixations map (FM). 
The second line corresponds with the comparison of all 
features (all text (AT) in Table I, all faces (AF) in Table II and 
all text and face (ATF) in Table III). The third line is a 
comparison between FM and big text (BT) in Table I, FM and 
big face (BF) in Table II, and between FM and big text and 
face (BTF) in Table III. The fourth line in Tables I and II 
represent the comparison between FM and small text (ST) and 
FM and small faces (SF), respectively. The final line is the 
comparison of the weighted fusion for big and small text 
(wBST) in Table 1, for big and small face (wBSF) in Table II 
and all big and small text and face (wTF) in Table III.   

A first global remark is that all metrics are very coherent, 
and they provide almost the same relative rank for all 
measures. 

TABLE I.  RESULT BETWEEN BOTTOM-UP AND TEXT DETECTION 

Correlation Metris 

CC KLDiv NSS Similarity AUC_J 

SM, FM 0.4683 1.0591 1.5364 0.4364 0.8365 

AT, FM 0.5042 1.0140 1.7013 0.4514 0.8452 

BT, FM 0.5058 1.0151 1.7008 0.4504 0.8444 

ST, FM 0.4666 1.0587 1.5420 0.4378 0.8372 

wBST, FM 0.5061 1.0127 1.7081 0.4517 0.8454 

 

 In Table I, it indicates that adding information about small 

text brings nothing to the result because result of small text is 

a little less good than the bottom-up saliency map alone in 

some metrics. On the other hand, adding big text provides an 

important and improvement result in the CC metric compared 

to result when adding both small and big text (AT). For all 

metrics, the use of the weights provides the best results of all. 

TABLE II.  RESULT BETWEEN BOTTOM-UP AND FACE DETECTION 

Correlation Metrics 

CC KLDiv NSS Similarity AUC_J 

SM, FM 0.4683 1.0591 1.5364 0.4364 0.8365 

AF, FM 0.5352 0.9790 1.8334 0.4581 0.8494 

BF, FM 0.5277 0.9876 1.7890 0.4553 0.8478 

SF, FM 0.4762 1.0514 1.5851 0.4396 0.8379 

wBSF, FM 0.5354 0.9786 1.8348 0.4582 0.8494 

 

 In Table II, it indicates that adding information about small 

face brings this time a small improvement to the bottom-up 

saliency map alone and is never negative. However, adding 

big face provides an important result improvement. Moreover, 

adding both big and small face also brings improvement. The 

best case, for all metrics, the use of the weights provides the 

better results of all. 

In Table III, we did not compute the result for small text 

and face since it was always smaller than big text and face. 

We just kept here the best combinations: ATF for all text and 



face, BTF for only big face and text, and the weighted text and 

face (wTF). While ATF is always a little better than BTF, the 

weighted version is even better. 

TABLE III.  RESULT BETWEEN BOTTOM-UP, TEXT, AND FACE DETECTION 

Correlation            Metrics 

CC KLDiv NSS Similarity AUC_J 

SM, FM          0.4683 1.0591 1.5364 0.4364 0.8364 

ATF, FM 0.5687 0.9284 1.9787 0.4719 0.8595 

BTF, FM 0.5632 0.9395 1.9382 0.4684 0.8567 

wTF, FM 0.5691 0.9273 1.9824 0.4723 0.8597 

C. Imperfect detectors 

Here we decide to use two state-of-the-art detectors which 
imply some misdetections or false detections (especially for 
the text detector). We don’t combine result for both text and 
face detection since the text-related results are very bad (see 
Table IV). However, the results from face detection are good 
because facial landmarks approach [15] can detect the frontal 
face well although it misses some faces in a scene. 

Table IV shows that the misdetections and even more the 
false detections of the text detector seriously decrease the 
results compared to the bottom-up saliency map alone. This 
text detector is not good enough to be used to add top-down 
information. For all metrics, results of the saliency map alone 
are better than all text, big text, and weighted. 

Table V shows that the face detector, which has a better 
quality, can provide good improvement of the bottom-up 
saliency map. However, the difference between a simple 
average fusion (AF) and the weighted version (wBSF) is not 
significative. For some metrics such as CC and KLDiv it is 
even better to just make the global average instead of using 
the face weights.  

TABLE IV.  RESULT BETWEEN BOTTOM-UP AND TEXT DETECTION     

(BAD TEXT DETECTOR) 

Correlation Metrics 

CC KLDiv NSS Similarity AUC_J 

SM, FM 0.4683 1.0591 1.5364 0.4364 0.8365 

AT, FM 0.4092 1.1523 1.3416 0.4193 0.8132 

BT, FM 0.4071 1.1555 1.3306 0.4184 0.8130 

ST, FM 0.4620 1.0641 1.5226 0.4364 0.8347 

wBST, FM 0.4101 1.1513 1.3445 0.4196 0.8134 

TABLE V.  RESULT BETWEEN BOTTOM-UP AND FACE DETECTION  

(GOOD FACES DETECTOR) 

Correlation Metrics 

CC KLDiv NSS Similarity AUC_J 

SM, FM 0.4683 1.0591 1.5364 0.4364 0.8364 

AF, FM 0.5264 0.9968 1.8122 0.4523 0.8471 

BF, FM 0.5180 1.0047 1.7508 0.4504 0.8455 

SF, FM 0.4763 1.0518 1.6003 0.4381 0.8381 

wBSF, FM 0.5258 0.9975 1.8126 0.4520 0.8471 

 

D. Discussion and conclusion 

In this paper, we show how to simply add top-down 
information to any bottom-up saliency models in a generic 
way. Our work focused on both text and face features.  

We tested several object detectors (bad, good, and perfect), 
and we demonstrated that if the detector is not good enough, it 
is better not to use it at all and only use the bottom-up 
information (Table IV). If the detector is good, a simple 
average can be almost as good as a more complex weighted 
average (Table V). When the detector becomes very good, then 
the weighted average really makes sense (Tables I to III). This 
is even more the case when several top-down features are 
mixed to bottom-up and some might be more important than 
others.  

The size of the top-down object is very important. This was 
more the case with text where the difference in terms of eye 
fixations between big text (titles) and small text (description) is 
very important. Indeed, people provide attention to text 
because of its cognitive content. While for titles, the cognitive 
load needed is very small, for blocks of smaller text, they will 
less attract attention, especially if the beginning of the text (the 
most attended) has no important information. There is still a 
difference between big face and small face, but this difference 
is smaller. If we just consider big text and big face, the weights 
values of them are almost the same. It is an interesting result as 
previous results do not consider the difference between big and 
small text or big and small face [13]. The result was polluted 
by small text which really decrease a lot the overall text 
importance.  

An important result improvement can be obtained by using 
classical bottom-up attention models to which we can add 
easily the higher level detected objects. Resulting models will 
approach novel DNN-based attention approaches while they 
keep generality. They are also well responding to bottom-up 
features which are underestimated by DNNs [19]. In addition 
to that, classical models can have a behaviour which can be 
explained while DNNs provide results without letting any 
chance to the programmers to explain why exactly their model 
works well or not. Being able to explain the reaction of an 
algorithm might be critical especially for security applications. 
That is why, for our future work, we will go deeper in the 
object-based top-down features which can be extracted and the 
optimal mix with bottom-up saliency maps. 

ACKNOWLEDGMENT 

This research study is supported by ARES-CCD (program 
AI 2014-2019) under the funding of Belgian university 
cooperation. 

REFERENCES 

[1] M. Matei, “From Human Attention to Computational Attention,” pp. 
105-121, Springer New York, 2016. 

[2] M. Cerf, J. Harel, W. Einhauser, and C. Koch, “Predicting human gaze 
using low-level saliency combinded with face detection,” in J. C. Platt, 
D. Koller, Y. Singer, and S. T. Roweis, editors, NIPS. MIT Press, 2007. 

[3] T. Judd, K. Ehinger, F. Durand, and A. Torralba, “Learning to predict 
where humans look,” in IEEE 12th International Conference on 
Computer Vision, 2009 (pp. 2106–2113). Washington, DC: IEEE 
Computer Society. 

[4] L. Itti and C. Koch, “A saliency-based search mechanism for overt and 
covert shifts of visual attention,” in Vision Research, 40:1489–1506, 
2000. 

[5] R. Rosenholtz, “A simple saliency model predicts a number of motion 
popout phenomena,” in Vision Research 39, 19:3157–3163, 1999. 



[6] X. Hou and L. Zhang, “Saliency detection: A spectral residual 
approach,” in Computer Vision and Pattern Recognition, IEEE 
Computer Society Conference on, 0:1–8, 2007. 

[7] N. D. B. Bruce and J. K. Tsotsos, “Saliency, attention, and visual search: 
An information theoretic approach,” in Journal of Vision, 9(3):1–24, 3 
2009. 

[8] T. Avraham and M. Lindenbaum, “Esaliency: Meaningful attention 
using stochastic image modeling,” in IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 99(1), 2009. 

[9] W. Kienzle, F. A.Wichmann, B. Schölkopf, and M. O. Franz, “A 
nonparametric approach to bottom-up visual saliency,” in B. Schölkopf, 
J. C. Platt, and T. Hoffman, editors, NIPS, pages 689–696. MIT Press, 
2006. 

[10] A. Borji, “Boosting bottom-up and top-down visual features for saliency 
estimation,” in Proceedings of the 2012 IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR), p.438-445, June 16-21, 2012. 

[11] Riche, N., Mancas, M., Duvinage, M., Mibulumukini, M., Gosselin, B., 
& Dutoit, T. (2013), “Rare2012: A multi-scale rarity-based saliency 
detection with its comparative statistical analysis,” Signal Processing: 
Image Communication, 28(6), 642-658. 

[12] Y. Jimei, “Top-down visual saliency via joint CRF and dictionary 
learning,” in Proceedings of the 2012 IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR), p.2296-2303, June 16-21, 
2012. 

[13] J. Xu, M. Jiang, S. Wang, M. S. Kankanhalli, and Q. Zhao, “Predicting 
human gaze beyond pixels,” in Journal of Vision, 14(1):28, pp. 1-20, 
2014. 

[14] L. Neumann, and J. Matas, “Real-time scene text localization and 
recognition,” in Computer Vision and Pattern Recognition (CVPR) 2012 
IEEE Conference on, vol. 2, pp. 3538-3545, 2012. 

[15] V. Kazemi, J. Sullivan, “One millisecond face alignment with an 
ensemble of regression trees,” in Proceedings of the IEEE Conference 
on Computer Vision and Pattern Recognition, pp. 1867-1874, 2014. 

[16] G. Kootstra, A. Nederveen and B. de Boer, “Paying Attention to 
Symmetry,” in M. Everingham and C. Needham, editors, Proceedings of 
the British Machine Conference, pages 111.1-111.10. BMVA Press, 
September 2008. 

[17] E. Vig, M. Dorr, and D. Cox, “Large-scale optimization of hierarchical 
features for saliency prediction in natural images,” in Computer Vision 
and Pattern Recognition, 2014. CVPR’14. IEEE Conference on. IEEE, 
2014. 

[18] M. Kümmerer, L. Theis, and M. Bethge, “Deep gaze i: Boosting 
saliency prediction with feature maps trained on imagenet,” in 
International Conference on Learning Representations - Workshop 
Track (ICLR), 2015. 

[19] M. Kümmerer, T. S. Wallis, L. A. Gatys, and M. Bethge, 
“Understanding low- and high-level contributions to fixation 
prediction,” in Proceedings of the IEEE International Conference on 
Computer Vision (ICCV), Oct 2017. 

[20] N. Riche, M. Duvinage, M. Mancas, B. Gosselin, T. Dutoit, “Saliency 
and human fixations: State-of-the-art and study of comparison metrics,” 
in International Conference on Computer Vision (ICCV), pp. 1153-
1160, 2013. 

[21] Dalal, N., & Triggs, B., “Histograms of oriented gradients for human 
detection,” in Computer Vision and Pattern Recognition, IEEE 
Computer Society Conference on Vol. 1, pp. 886-893, June 2005. 

[22] Dlib C++ Library. (2017, June 10). Retrieved from http://dlib.net/. 

[23] Z. Bylinskii, T. Judd, A. Borji, L. Itti, F. Durand, A. Oliva, and A. 
Torralba. MIT Saliency Benchmark. 

 


