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Abstract

Smart agriculture is one of the most diverse research. In addition, the quantity of data to be stored and the choice of the most
efficient algorithms to process are significant elements in this field. The storage of collecting data from Internet of Things (IoT),
existing on distributed, local databases and open data need a particular infrastructure to federate all these data to make complex
treatments. The storage of this wide range of data that comes at high frequency and variable throughput is particularly difficult. In
this paper, we propose the use of distributed databases and high-performance computing architecture in order to exploit multiple
re-configurable computing and application specific processing such as CPUs, GPUs, TPUs and FPGAs efficiently. This exploitation
allows an accurate training for an application to machine learning, deep learning and unsupervised modeling algorithms. The last
ones are used for training supervised algorithms on images when it labels a set of images and unsupervised algorithms on IoT
data which are unlabeled with variable qualities. The processing of data is based on Hadoop 3.1 MapReduce to achieve parallel
processing and use containerization technologies to distribute treatments on Multi GPU, MIC and FPGA. This architecture allows
efficient treatments of data coming from several sources with a cloud high-performance heterogeneous architecture. The proposed 4
layers infrastructure can also implement FPGA and MIC which are now natively supported by recent version of Hadoop. Moreover,
with the advent of new technologies like IntelR© MovidiusTM; it is now possible to deploy CNN at the Fog level in the IoT network
and to make inference with the cloud and therefore limit significantly the network traffic that result in reducing the move of large
amounts of data to the cloud.
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1. Introduction

Agriculture provides vital resources such as food, fiber and energy [6]. With the global population growth, the
need for crop production and raw fiber also increases. Indeed, the Food and Agricultural Organization of the United
Nation (FAO) predicts that the global population will reach 8 billion people by 2025 and 9.6 billion people by 2050.
This means in particular, that an increase of 70% in food production must be achieved by 2050 worldwide. The great
increase in global population and the rising demand for high-quality products create the need for the modernization
and intensification of agricultural practices. At the same time, there is a need for high efficiency use of water and
other resources. To meet this challenge, the agricultural industry uses technologies such as the Internet of Things that
produce huge amounts of raw data that need to be processed with high performance computing architectures.

According to Superuser [13], 75% of High Performance Computing (HPC) centers worldwide are used to perform
deep learning and artificial intelligence. Nowadays thanks to the high-performance networks and the use of Single
Root I/O virtualization (SR-IOV), HPC is now available in a cloud environment [5]. The actual trend is the shifting to
hyperscale [13]. Data on the Internet of Things are dynamic: very diverse in term of origin, amount, quality and speed.
The throughput and the quality of data depend on the use case which are unlabeled [1]. Indeed, data transmission mode
can be continuous, at certain frequencies or by burst that applies large and fast throughput.

For example, in phenotyping and 3D images are particularly consuming in processing and storage [6]; in smart
farming, data can arrive at very high speeds close to real time (100 Hz) [7] [10]; or arrive massively from connected
objects that transmit them at a fixed frequency [8] [9]. In the case of monitoring landslides, the data burst as soon
as anomalies are detected [11]. Moreover, users of cloud infrastructures are increasingly asking for response time to
request made on data close to real time. Scientists need to process data such as images arriving with velocity (tens of
MHz) which must be treated at real time [2].

Data is not available under the form of data feeds but also in local and distributed databases, open data, firehose,
and structured files in which are stored raw data and results of treatments from external processes, and applications,
etc. These information are under construction; because, they are not in relation to other data to achieve more relevant
analysis. Crossing this data is necessary to handle complex events and make better decisions. For this reason, the data
must be previously processed and stored in a form that ensures their crossing, aggregation and exploitation. Moreover,
deep learning models are traditionally trained in the cloud with a supervised method which requires a tremendous
amount of training data labeled by humans. However, in the case of IoT, raw data are coming from a large number
of nodes. All these IoT big data are difficult to label; hence, the traditional supervised training is not suitable, which
require an unsupervised method to really exploit the potential of IoT raw data with reduced data movement [1].

This result leads to think about a new way to design cloud computing architectures for the Internet of Things. It
becomes crucial to reconsider how data is stored and how it is processed to maintain performance regardless of the
increase of data volume to ensure response timing of less than one second. The use of high-performance computing
(HPC) architectures for the distribution of treatments coupled with the use of Many Integrated Core (MIC), Field-
Programmable Gate Array (FPGA) and multi Graphics Processing Unit (GPU) allow today to process a tremendous
amount of raw data quickly. In addition to the data from the connected objects the processing infrastructures are also
brought from other data sources, private distributed database and open database.

Our goal is to develop a solution that composed mainly of two main parts: (1) An heterogeneous high-performance
cloud architecture able in combination with fog computing to process rapidly large amount of data in quasi real time
and store data in a distributed database. This approach allows to exploit the benefits of a heterogenous cloud archi-
tecture and the combination with the fog [20]. (2) A platform managed by mean of REST APIs hosts the researchers’
model and external applications which exploit data stored in the distributed database and allow to visualize statistical
data calculated on basis of raw data.

In this paper, we propose a cloud architecture which combines the use high-performance computing, FPGA, MIC,
TPU, and Multi GPU to enhance the speed of treatment of distributed big data coming from multitenancy and multi-
sources. With this approach, treatments are distributed between GPU / FPGA and parallelized in each GPU / FPGA
to ensure a high efficiency.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2018.10.156&domain=pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
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2. Related Works

Currently, three trends emerge: (1) the increase of the power and complexity of modern HPC systems in order to
build exascale class machines, (2) the increase use and sophistication of commercial and open cloud infrastructure,
(3) the increase functionality and the use of Big Data in conjunction of HPC [3]. Several authors have already used
heterogeneous architecture based on GPU and/or FPGA to accelerate the processing of large amount of data. Among
these authors, we cite the most important contributions.

Fox et al., 2017 [3] suggested the integration of HPC and Apache Big Data Stack (ADBS) to offer usability, func-
tionality, and sustainability that is not available in the HPC ecosystem. They mention also that an implementation of
HPC-ABDS is provided in the SPIDAL project [12].

Napoli et al., 2014 [2] have developed a GPU Architecture using parallel and distributed treatments to process and
interpret tremendous amount of data in real-time of tens of millions of raw images. They use dynamic adjusting of
number of hosts, because the performance of data processing that cannot be predicted and the throughput of data can
overheat while time goes. The use of solutions such as MPI cannot adapt dynamically the number of processes once
the execution has begun.

Song et al. 2018 [1] proposed a novel framework and an architecture based on the principle of Fog computing to
train the Deep Learning locally with the aim of reduce data movement, speedup model update, and by consequently
contribute to the energy saving. This approach addresses the problem of the transfer of all data on the cloud needed
to train Deep Learning statically models. However, they cannot handle with high accuracy raw IoT data which are
dynamic and unlabeled.

Lu et al. 2016 [5] studied the impact of choosing network technologies on the HPC Cloud. They proposed an
architecture based on Hadoop multi-protocol aware to take advantage of Reliable Connection (RC), Unreliable Data-
gram (UD), hybrid protocols for InfiniBand (IB) and RDMA over Converged Ethernet (RoCE) that leads to Remote
Direct Memory Access (RDMA) to provide high bandwidth, latency and the throughput for Hadoop RPC and HBase
communication.

Salaria et al, 2017 [4] have compared performance between the latest generation of HPC-like cloud and a HPC
for Graph5001 which is a well-known Big Data benchmark and show that Cloud HPC can provide good compute
performance with low variability.

Sood et al., 2017 [14] proposed an architecture in 4 layers from bottom to the top: (1) The IoT layer (IL), (2)
The Fog Computing Layer (FCL), (3) The Data Analysis Layer (DAL) and (4) The Presentation Layer (PL). The IL
organizes the social collaboration and energy saving of IoT devices. The FCL achieves on one hand the routing of
data from IoT devices to cloud computing using multiple network devices and on the other hand the pre-processing
or the prediction of data on nodes or gateways. The aim of this layer is the reduction of the latency of the system by
sending calculated values on the cloud computing. The DAL contain any big data based on smart system. It is also
responsible for collecting, storing, mining and data analyzing to obtain results. Finally, the PL is the user views of the
system in which results can be attained after processing of all the information.

Bojan et al., 2015 [17] have described a solution for large scale time series visualization and showed that approach
based on statistical data has better performances in terms of consuming time up to 10 times and data traffic up to 271
times.

Mocanu et al., 2015 [16] proposed a SOA architecture based on two controllers isolated and interconnected: one
local and the second in the cloud. The local Farm Controller (LFC) provides access to more recent and historical data
and execute preconfigured farm workflows. While the Cloud Farm Controller (CFC) provides data aggregation from
farms, farm control and external sources.

Musat et al., 2018 [15] propose an integrated platform coupling a smart platform and a social network. This plat-
form is based on two independent application (frontend and backend) using REST services or web sockets to com-
municate together. The backend architecture is developed in Java with Spring Framework, MySQL and Liquidbase.
While, the fronted architecture is built with AngularJS framework, HTML 5 and CSS 3. This software architecture
offers a wide range of services and gathering large amount of data produced by connected things to notify farmers in
case of problem. The platform also offers forum, groups, store, tendencies and correlations services.

1 http://www.graph500.org/
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Ruy et al., 2015 [18] proposed a connected farm system composed of sensing and actuating connected IoT devices,
IoT gateway and IoT service platform where all interfaces are REST APIs.

Ramirez et al., 2017 [20] has showed the benefits of combined and continuous Fog and cloud computing (F2C)
architectures with over 50% reduction in terms of power consumption.

3. Proposed Architecture

Our architecture is composed of 4 layers as proposed by Sood et al. [14] from the bottom to the top: (1) The sensing
layer (SL) is constituted by sensors and micro-controllers which acquire physical measurements of their environment.
A primal treatment of data (Edge computing) is also processed on capable sensors to send only valuable data. (2) The
Fog Computing Layer (FCL) is composed of nodes, gateways able to achieved more important treatments than the SL,
and mobile GPU and FPGA used for the incremental deep learning training [1], (3) the Data Analysis Layer (DAL)
aim to collect data from IoT sensor on one hand and from external sources such as local and distributed databases,
and open data on the other hand. Finally, (4) the Presentation layer allows to users to view results of treatments (Fig.
1).

Fig. 1. Proposed Architecture

3.1. Data collection

The collect of data is operated at the sensing layer by means of sensors connected to a node. A node generally
controls several sensors which make the physical measure of their environment. The Edge computing is used to
preprocess data and to send only relevant data to limit the data sending that is energy consuming and thus improve
the life of the nodes that control sensors. However, the use of edge computing cannot be done on the older nodes that
are more limited in memory, processing capacity, and storage than the most recent nodes. The data are then sent to
gateways and hubs that are capable of performing the heavier processing (Fog Computing) and therefore limiting data
sending and processing in the cloud. This process limits the use of bandwidth and brings the management of privacy
issues back to the data producers. The Edge and the Fog computing are respectively implemented in the first two
layers.

3.2. Data management

Data coming from IoT sensors via the second layer (data stream) and other external sources such as local, dis-
tributed database, CSV and TSV files, open data, and messaging services, etc., are collected and treated before to be
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Musat et al., 2018 [15] propose an integrated platform coupling a smart platform and a social network. This plat-
form is based on two independent application (frontend and backend) using REST services or web sockets to com-
municate together. The backend architecture is developed in Java with Spring Framework, MySQL and Liquidbase.
While, the fronted architecture is built with AngularJS framework, HTML 5 and CSS 3. This software architecture
offers a wide range of services and gathering large amount of data produced by connected things to notify farmers in
case of problem. The platform also offers forum, groups, store, tendencies and correlations services.

1 http://www.graph500.org/
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Ruy et al., 2015 [18] proposed a connected farm system composed of sensing and actuating connected IoT devices,
IoT gateway and IoT service platform where all interfaces are REST APIs.

Ramirez et al., 2017 [20] has showed the benefits of combined and continuous Fog and cloud computing (F2C)
architectures with over 50% reduction in terms of power consumption.

3. Proposed Architecture

Our architecture is composed of 4 layers as proposed by Sood et al. [14] from the bottom to the top: (1) The sensing
layer (SL) is constituted by sensors and micro-controllers which acquire physical measurements of their environment.
A primal treatment of data (Edge computing) is also processed on capable sensors to send only valuable data. (2) The
Fog Computing Layer (FCL) is composed of nodes, gateways able to achieved more important treatments than the SL,
and mobile GPU and FPGA used for the incremental deep learning training [1], (3) the Data Analysis Layer (DAL)
aim to collect data from IoT sensor on one hand and from external sources such as local and distributed databases,
and open data on the other hand. Finally, (4) the Presentation layer allows to users to view results of treatments (Fig.
1).

Fig. 1. Proposed Architecture

3.1. Data collection

The collect of data is operated at the sensing layer by means of sensors connected to a node. A node generally
controls several sensors which make the physical measure of their environment. The Edge computing is used to
preprocess data and to send only relevant data to limit the data sending that is energy consuming and thus improve
the life of the nodes that control sensors. However, the use of edge computing cannot be done on the older nodes that
are more limited in memory, processing capacity, and storage than the most recent nodes. The data are then sent to
gateways and hubs that are capable of performing the heavier processing (Fog Computing) and therefore limiting data
sending and processing in the cloud. This process limits the use of bandwidth and brings the management of privacy
issues back to the data producers. The Edge and the Fog computing are respectively implemented in the first two
layers.

3.2. Data management

Data coming from IoT sensors via the second layer (data stream) and other external sources such as local, dis-
tributed database, CSV and TSV files, open data, and messaging services, etc., are collected and treated before to be
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stored in the distributed database (HBase). A specific framework has been developed to retrieve open data in XML,
RDF and CSV file format and store them in HBase. The centralization of all these data is needed to enrich analytic
and make better decisions.

3.3. Data quality

The data quality (DQ) is important for the data mining process. Indeed, a low DQ impact directly the validity of the
results and their interpretation. The quality of a sensor data stream can be evaluated with five dimensions: accuracy,
confidence, completeness, data volume, and timeliness. In addition, easiness of retrieving data, access, security, and
interpretability are also describing the DQ for IoT. Numerous factors influence the DQ: (1) The huge number of
devices and resources constrained increase the error occurrence, the ratio packet loss and tradeoffs between quality
and cleanliness with battery life; (2) Sensor precision and loss of calibration, the lack of maintenance, the vandalism
both from humans and animals or a defective node which send erroneous data that affect the DQ; (3) DQ can also be
altered by privacy processing, security attacks or applying of certain operators of data stream processing [19].

Raw data are the base of the context-awareness which is composed of four phases: acquisition, modeling, reasoning
and dissemination of the context and are achieved at application or middleware level. Major DQ enhancement are
outlier detection, interpolation, data integration, data deduplication, and data cleaning.

Outlier detection is the enhancement of the consistence by elimination of discovered outliers or highlighting of
rare events or patterns underlying in a dataset.

According to Karkouch et al [19], outlier are events with extremely small probabilities of occurrence and are
classified as below: (1) error due to node failure; (2) event caused by a sudden or extreme change; (3) point anomaly
that differs greatly from other values of the dataset; (4) contextual anomaly is a value considered abnormal in a
determine context; (5) collective anomaly is a collection of data that differs greatly of the rest of the dataset.

Interpolation infers missing data due especially to sensor dysfunctions or loss of connections, on the base of
available data using methods such as linear or polynomial interpolation. The choose of an interpolation method must
be done accordingly to the accuracy of the interpolation.

Data integration is ensured on one hand by a suite of components and services specifying standardized and ef-
ficient interoperability of sensor data and on the other hand by the Resources Description Framework (RDF), Web
Ontology Language (WOL) which provides mechanism to describe data. Moreover, the Linked Data is also an ap-
proach to ease data integration and retrieval.

Data deduplication is a compression mechanism to reduce the amount of data by removing of duplicate data and
replacing with a pointer to the unique remaining copy.

Data cleaning begin by the determination of error types followed by the identification of potential errors and finally
the correction of identified errors. The interested reader can find more details on the techniques of data cleaning in
Karkouch et al. [19].

3.4. High Performance computing

The Stored data on Apache HBase are processed with Apache Hadoop 3.1, which support natively GPU and FPGA.
We have modified the support of GPU for the use of Multi GPU by using Map Reduce to ensure the distribution
between GPU where data are processed in parallel using tools like CUDA2, OpenCL3, etc. In this new release of
Hadoop, Erasure Coding which provides significant improvement in data access speed on HDFS. The exploitation
of GPU allows also to train Neural Networks in order to use Machine Learning and Deep Learning using tools like
TensorFlow4, Keras5, OpenAi6, etc. on stored data.

2 https://developer.nvidia.com/cuda-downloads
3 https://www.khronos.org/opencl
4 https://www.tensorflow.org
5 https://keras.io
6 https://openai.com
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3.5. Exploitation of data

Finally, applications and models developed by researchers exploit the results analysis achieved by the heteroge-
neous cloud HPC on base of data stored in the big data. A web interface using REST APIs allows on one hand to
host and monetize models and applications developed by researchers on the platform. Users of the platform can use
the visualization of statistical data or treat data with the application hosted on the market place of the platform which
reaches the high performance of the cloud architecture to treat raw data.

4. Conclusion and future work

In this paper, we propose a versatile architecture in 4 layers for Smart Farming which is able to collect, store, and
treat data coming from IoT nodes and integrate external data from other sources such as local and distributed data,
messaging services, and open data, etc. Our architecture aims to improve the quality of data by means of outliers
detection, data cleaning and interpolation of missing data. In addition, our architecture offers at the same time the pos-
sibilities to achieve using different kinds of Deep Learning supervised and unsupervised algorithms using a combined
heterogeneous cloud architecture with the fog computing. The main novelty of our approach is to combine at same
time heterogeneous high performance cloud computing, distributed databases and fog computing.

In future work, we will collect real data and test this architecture on real data in a future research project that will
be start in January 2019. Other format of open data will be implemented in order to increase the amount of data which
can be matching with IoT data.
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RDF and CSV file format and store them in HBase. The centralization of all these data is needed to enrich analytic
and make better decisions.
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The data quality (DQ) is important for the data mining process. Indeed, a low DQ impact directly the validity of the
results and their interpretation. The quality of a sensor data stream can be evaluated with five dimensions: accuracy,
confidence, completeness, data volume, and timeliness. In addition, easiness of retrieving data, access, security, and
interpretability are also describing the DQ for IoT. Numerous factors influence the DQ: (1) The huge number of
devices and resources constrained increase the error occurrence, the ratio packet loss and tradeoffs between quality
and cleanliness with battery life; (2) Sensor precision and loss of calibration, the lack of maintenance, the vandalism
both from humans and animals or a defective node which send erroneous data that affect the DQ; (3) DQ can also be
altered by privacy processing, security attacks or applying of certain operators of data stream processing [19].

Raw data are the base of the context-awareness which is composed of four phases: acquisition, modeling, reasoning
and dissemination of the context and are achieved at application or middleware level. Major DQ enhancement are
outlier detection, interpolation, data integration, data deduplication, and data cleaning.

Outlier detection is the enhancement of the consistence by elimination of discovered outliers or highlighting of
rare events or patterns underlying in a dataset.

According to Karkouch et al [19], outlier are events with extremely small probabilities of occurrence and are
classified as below: (1) error due to node failure; (2) event caused by a sudden or extreme change; (3) point anomaly
that differs greatly from other values of the dataset; (4) contextual anomaly is a value considered abnormal in a
determine context; (5) collective anomaly is a collection of data that differs greatly of the rest of the dataset.

Interpolation infers missing data due especially to sensor dysfunctions or loss of connections, on the base of
available data using methods such as linear or polynomial interpolation. The choose of an interpolation method must
be done accordingly to the accuracy of the interpolation.

Data integration is ensured on one hand by a suite of components and services specifying standardized and ef-
ficient interoperability of sensor data and on the other hand by the Resources Description Framework (RDF), Web
Ontology Language (WOL) which provides mechanism to describe data. Moreover, the Linked Data is also an ap-
proach to ease data integration and retrieval.

Data deduplication is a compression mechanism to reduce the amount of data by removing of duplicate data and
replacing with a pointer to the unique remaining copy.

Data cleaning begin by the determination of error types followed by the identification of potential errors and finally
the correction of identified errors. The interested reader can find more details on the techniques of data cleaning in
Karkouch et al. [19].

3.4. High Performance computing

The Stored data on Apache HBase are processed with Apache Hadoop 3.1, which support natively GPU and FPGA.
We have modified the support of GPU for the use of Multi GPU by using Map Reduce to ensure the distribution
between GPU where data are processed in parallel using tools like CUDA2, OpenCL3, etc. In this new release of
Hadoop, Erasure Coding which provides significant improvement in data access speed on HDFS. The exploitation
of GPU allows also to train Neural Networks in order to use Machine Learning and Deep Learning using tools like
TensorFlow4, Keras5, OpenAi6, etc. on stored data.
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3.5. Exploitation of data

Finally, applications and models developed by researchers exploit the results analysis achieved by the heteroge-
neous cloud HPC on base of data stored in the big data. A web interface using REST APIs allows on one hand to
host and monetize models and applications developed by researchers on the platform. Users of the platform can use
the visualization of statistical data or treat data with the application hosted on the market place of the platform which
reaches the high performance of the cloud architecture to treat raw data.

4. Conclusion and future work

In this paper, we propose a versatile architecture in 4 layers for Smart Farming which is able to collect, store, and
treat data coming from IoT nodes and integrate external data from other sources such as local and distributed data,
messaging services, and open data, etc. Our architecture aims to improve the quality of data by means of outliers
detection, data cleaning and interpolation of missing data. In addition, our architecture offers at the same time the pos-
sibilities to achieve using different kinds of Deep Learning supervised and unsupervised algorithms using a combined
heterogeneous cloud architecture with the fog computing. The main novelty of our approach is to combine at same
time heterogeneous high performance cloud computing, distributed databases and fog computing.

In future work, we will collect real data and test this architecture on real data in a future research project that will
be start in January 2019. Other format of open data will be implemented in order to increase the amount of data which
can be matching with IoT data.
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