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ABSTRACT 
 

Visual attention allows the human visual system to 

effectively deal with the huge flow of visual information 

acquired by the retina. Since the years 2000, the human 

visual system began to be modelled in computer vision to 

predict abnormal, rare and surprising data. Attention is a 

product of the continuous interaction between bottom-up 

(mainly feature-based) and top-down (mainly learning-

based) information. Deep-learning (DNN) is now well 

established in visual attention modelling with very effective 

models. The goal of this paper is to investigate the 

importance of bottom-up versus top-down attention. First, 

we enrich with top-down information classical bottom-up 

models of attention. Then, the results are compared with 

DNN-based models. Our provocative question is: “do deep-

learning saliency models really predict saliency or they 

simply detect interesting objects?”. We found that if DNN 

saliency models very accurately detect top-down features, 

they neglect a lot of bottom-up information which is 

surprising and rare, thus by definition difficult to learn.   

 

Index Terms— attention, saliency, DNN, bottom-up, 

top-down, object detection, face detection, text detection 

 

1. INTRODUCTION 

Computational visual attention tends to mimic human visual 

attention and focuses more deeply on the informative and 

important parts of images. In computer vision, the main 

approach to the implementation of visual attention includes 

bottom-up (mainly feature-based information which is 

known as reflex exogenous reaction) and top-down 

(learning-based information which refers to reflexive 

endogenous information). A lot of research was achieved on 

bottom-up attention models [1],[2],[3],[4],[5],[6],[18] but 

just only a few on top-down information [11]. It seemed that 

top-down detectors were not efficient enough to improve 

results of visual attention models yet.  

After an arrival DNN-based models, most researchers have 

switched their research direction to focus more on obtaining 

an end-to-end DNN saliency model which naturally 

integrates top-down information. Since 2014, DNNs have 

changed the saliency paradigm. The deep features were first 

used in eDN model [8]. Then, DeepGaze1 model [9] showed 

that the DNN features trained on object recognition were 

very useful for saliency detection. This finding seems logical 

as objects apparently represents the regions of interest in 

images. Since then, a variety of models used fine-tuned 

mixes of features from several deep learning models which 

naturally incorporated top-down information (i.e., faces and 

texts) during the learning process.   

However, in [10], the authors showed that the 

importance of bottom-up attention was underestimated by 

DNN-based models. In their experiments, a simple bottom-

up model could outperform a state-of-the-art DNN model 

when the images contained less top-down information. This 

demonstrated that DNNs too much neglected the bottom-up 

aspect of visual attention, and they were mostly trained to 

detect the attractive top-down objects rather than detect 

saliency itself. Moreover, they could not easily adapt to 

images in a different context from their training set and they 

had the structural issue to provide a result that could not 

really be explained in an explicit way. 

In [11], the authors showed that, compared to old 

detectors which were not accurate enough, current detectors 

(ie., face detectors), when mixed to bottom-up saliency maps 

provide significantly better visual attention results. It is 

therefore possible to integrate the top-down information into 

classical bottom-up attention models in a hand-crafted way.  

This paper aims to investigate the roles of both top-

down and bottom-up information in saliency. According to 

MIT saliency benchmark [14] DNN-based models have 

populated the top-results showing the importance of top-

down attention. However, this paper investigates if those 

models do not reduce too much the influence of bottom-up 

information as suggested in [10] turning saliency models 

into weighted object detectors.  

The remainder of this paper is organized as follows. In 

section 2, we describe a generic top-down framework. In 

section 3, we will use this framework to check the influence 

of top-down on bottom-up attention models. Then, a 

comparison among DNN-based and bottom-up models is 

described in section 4. Finally, the discussion and 

conclusion are presented in section 5. 



2. GENERIC TOP-DOWN FRAMEWORK 

 

2.1. Top-down information 

Classical bottom-up models use image features (ie. 

luminance, chrominance, texture) to detect locally contrasted 

or globally rare regions that will be used in the next sections. 

This section proposes a naïve yet generic top-down 

information framework that can be added to any bottom-up 

saliency model. In [11], the authors demonstrated that an 

object detector could bring remarkable improvement result 

to saliency maps on condition that such detector is 1) “good 

enough” (especially with few false positives) and it is 2) 

“specific enough” (general-purpose object detectors may 

include objects less likely to attract visual attention [12]). 

Here, we use a bunch of existing detectors for face, text, 

person, animal, and transportation detection. The current 

DNN-based object detectors have become very good and, 

based on [11], we hypothesize that the use of this set of good 

detectors bringing specific top-down information will 

improve the results of overall saliency maps. All those 

detectors are used on all the images to keep our method 

generic and the final results include issues due to false 

positives or false negatives. To get quantitative results, two 

different datasets are used. The first one is the Object and 

Semantic Images and Eye-tracking (OSIE) dataset [15] 

containing more than 700 images along with the eye-

tracking and object segmentation. This dataset is also used 

for our generic top-down framework parameters tuning.  The 

second dataset is the MIT300 dataset [14] containing 300 

images, which is used for comparing our proposed model 

with various state-of-the-art visual attention models.  

In the following sections, we present the different top-

down information and the way they are brought together in 

our generic top-down model.  

 

2.1.1. Face detection 

The face detection algorithms available in [13] were used in 

our study. The first algorithm uses the Histogram of 

Oriented Gradients (HOG) features combined with a linear 

classifier (SVM), while the second one uses a Convolutional 

Neural Network (CNN). The CNN-based face detector 

outperforms the HOG-based detector on the OSIE dataset 

especially on the badly exposed faces (Fig.1). 

 

Fig. 1. Comparison results between HOG and CNN-based face 

detectors. (a) Input image, (b) Result of HOG-based face detector, 

and (c) Result of CNN-based face detector. 

 

2.1.2. Text detection 

Connectionist Text Proposal Network (CTPN) [16] is used 

as text detector in our framework. The CTPN detects a text 

line in a sequence of fine-scale text proposals directly in 

convolutional feature maps. The sequential text proposals 

are connected by a recurrent neural network, outcoming in 

an end-to-end trainable model. Moreover, CTPN works 

reliably on multi-scale and multi-language texts without any 

additional post-processing step (Fig.2).  

 

Fig. 2. Result of text detection. (a) Input image, (b) Text detection 

(green bounding-boxes), and (c) Binary text masks. 

 

2.1.3. Object detection 

A state-of-the-art real-time object detection from [17] were 

used, which could detect over 9000 objects in a reliable way. 

Many different detection classes are available, but only three 

categories (i.e., person, animal and transportation) were 

selected and used in our experiments. As a result, these 

classifiers provide three different maps with binary masks 

for persons, animals and transportations (Fig.3).  

 

Fig. 3. Result of object detection. (a) Input image, (b) Person 

detection, (c) Animal detection, and (d) Transportation detection 

(here the small boats in the back are detected). 

 

2.1.4. Context-based top-down information 

Besides the three detection models mentioned above, a 

centered Gaussian function was also added into the image 

because it plays an important role for natural images.  

The image context (Gist) is immediately detected by the 

viewer [27]. In [26], the author showed the difference 

between natural image context (where the eye gaze focuses 

in the center), a website context (where it is attracted more 

towards the top-left corner and an advertising context (where 

the behavior is in between the previous two). The OSIE and 

MIT300 datasets contain mainly natural images, so a 

centered Gaussian function is the best choice.  

 

2.2. Mixing top-down & bottom-up information 

A straightforward combination of the bottom-up model, the 

centered Gaussian function and the different detectors for 

face, text, person, animal, and transportation were 

implemented. The binary masks which are the outputs of all 

the detectors are smoothed to better fit into the saliency map 

(SM). The combination begins with the centered Gaussian 

(Eq.1). Then, the object detectors are added (Eq. 2, Eq. 3, 

Eq. 4) and mixed together in Eq5. Finally, the faces and text, 

which have more impact are added only at the end (Eq. 6).  



              CSM  = (a*SM*CGb) + (1-a)*SM (1) 

 CTSM  = (Tra*CSM) + CSM (2) 

 CASM       = (Ani*CSM) + CSM (3) 

 CPSM       = (Per*CSM) + CSM (4) 

 COSM      = (CTSM + CASM + CPSM)/3 (5) 

 FAPTTX  = (COSM + F + w*T)/3 (6) 
 

where a, b are two parameters (found to be a=0.75 and b=4), 

SM is the bottom-up saliency map, CG is the centered 

Gaussian image, Tra, Ani, Per, F, T are the smoothed masks 

of transportation, animal, person, face, and text detection, 

respectively. w is a weight set to 0.6.  

The a, b and w parameters were found as to optimize 

the results on the OSIE dataset. At the end, the final saliency 

map is optimized by blurring as stated in [7].  

 

3. TOP-DOWN VS. BOTTOM-UP INFLUENCE  

To investigate on the role of different top-down information, 

RARE [18] is used as bottom-up model to generate saliency 

maps (SM). The same saliency metrics as in the MIT300 

dataset evaluation [19] were used. These metrics consist of 

the Correlation Coefficient (CC), Kullback-Leibler 

Divergence (KLD), Normalized Scanpath Saliency (NSS), 

Similarity (SIM), and Judd Area Under the ROC curve 

(AUCJ). The smallest values represent the best results in 

KLD metric. For the other metrics, higher values are best.  

Table 1 shows, on the OSIE dataset, the metric values 

between the eye-tracking fixation maps and the model 

output. This output is 1) bottom-up saliency maps (SM) 

alone on the first line, 2) SM with face detection (F) on the 

second line, 3) SM with text detection (TX) on the fourth 

line, 4) SM with animal detection (Ani) on the sixth line, 5) 

SM with person detection (Per) on the eights line, 6) SM 

with transportation detection (Tra) on the tenth line and 7) 

SM with centered Gaussian (CG) on the twelfth line. Results 

are computed on subsets of images: 279 images with faces, 

425 images with text, 138 images with animals, 484 images 

with persons, 98 images with transportation and 700 images 

with centered Gaussian. In Table 1, the results in terms of 

CC metric shows that the faces influence is definitely higher 

than SM with a 0.15 (0.5631 – 0.4179 ~ 0.15) improvement 

measured on the 279 images in each of which having at least 

one face. Besides, it is quite interesting to see the result 

given by text detection TX (with 0.5478 - 0.4637 ~ 0.08 

difference). The centered gaussian and the animals’ 

detection comes after with a 0.04 difference. Strangely, 

person detection is less useful than animal detection with 

only 0.01 of difference on the CC metric. This is probably 

because the eye gaze will only focus on small parts of the 

body while the face has already been taken by the face 

detector. Finally, the transportation detector has a negative 

effect on the result with 0.02 difference. This shows that the 

objects like cars, buses, bikes, and so on are not really 

attended or only on very specific parts of these objects. The 

results for the other metrics are similar to the CC metric.  

Table 1. Results using RARE model (OSIE dataset) on the number 

of images (on a total of 700) where at least an object is detected. 

The result with bold-fonts represents the best result in comparison. 

Maps 

(images) 

Metrics 

CC KLD NSS SIM AUCJ 

SM (279) 0,4179 1,1548 1.4118 0.4115 0.8291 

F (279) 0.5631 0.939 1.8914 0.5165 0.8525 

SM (425) 0,4637 1,0492 1,4626 0,439 0,8311 

TX (425) 0,5478 0,9011 1,787 0,4995 0,8544 

SM (138) 0,4754 1,1183 1,7178 0.4202 0,8516 

Ani (138) 0,5111 1,0425 1,8565 0.4716 0,8629 

SM (484) 0,4587 1,0971 1,57 0,4262 0,8412 

Per (484) 0,4699 1,0594 1,6185 0,4626 0,8433 

SM (98) 0,5152 0,9998 1,8336 0,4471 0,8636 

Tra (98) 0,4902 1,0135 1,7608 0,4748 0,8579 

SM (all) 0.4683 1.0597 1.5364 0.4364 0.8365 

CG (all) 0.5001 0.9738 1.6231 0.4679 0.8472 

 

To check how general our framework is, we tested it on four 

different bottom-up saliency models such as AIM [21], 

AWS [22], GBVS [23], and RARE [18]. Table 2 shows, for 

each model, the results of the bottom-up saliency map alone 

(SM) and the SM added with our framework (FAPTTX). 

RARE model has the best results but they are very close to 

AWS. GBVS and AIM are less good. One can see that the 

best improvement is achieved for AIM which for example 

gains about 0.22 in CC metric and seems to be the one 

capturing the less top-down attention. AWS and RARE both 

improve at 0.16 (CC metric). Finally, GBVS only improves 

about 0.13 (CC metric) probably because it already has the 

centered gaussian included in the bottom-up model.   

Table 2. Correlation result using several models (OSIE dataset) 

Model  
Metrics 

CC KLD NSS SIM AUCJ 

AIM 
SM 0.3251 1.5241 1.0717 0.3454 0.7733 

FAPTTX 0.5392 1.1186 1.7311 0.407 0.8496 

AWS 
SM 0.4583 1.1171 1.4855 0.4268 0.8219 

FAPTTX 0.6161 0.8313 2.029 0.4995 0.8708 

GBVS 
SM 0.438 1.088 1.3496 0.425 0.8159 

FAPTTX 0.5608 0.9379 1.8104 0.4828 0.8488 

RARE 
SM 0.4683 1.0597 1.5364 0.4364 0.8365 

FAPTTX 0.6235 0.8162 2.0868 0.5192 0.8719 

 
4. DNN-BASED VS. BOTTOM-UP MODELS 

The new DNN-based attention models occupy the first 

places on benchmarks such as the one of MIT300. In this 

section, we check what happens when we come up with a 

bottom-up model augmented with our top-down framework.   
 

4.1. Qualitative comparison  

To first make a qualitative comparison, for the DNN-based 

model we use SAM-ResNet [24] and Salicon [25] which are 

two state-of-the-art DNN-based models. We notice that they 

provide better results than our proposed approach especially 

if the scenes contains humans (Fig.4). However, they 



provide poorer results than RARE model if the scene is 

complex with unknown objects (Fig.5).  

 

Fig. 4. Result where DNN-based models are better than bottom-up 

models. (a) Input image, (b) Result of SAM-ResNet, (c) Result of 

Salicon, (d) Result of our model and (e) Eye tracking map. 

 

Fig. 5. Result where DNN-base models is less good than bottom-

up models. (a) Input image, (b) Result of SAM-ResNet, (c) Result 

of Salicon, (d) Result of our model and (e) Eye tracking map. 

 
4.2 Quantitative comparison  
 

4.2.1. OSIE dataset 

While the DNN-based models are overall better that the 

proposed model, we looked more in details on the images. 

Our experiment shows that on the OSIE dataset RARE 

bottom-up model alone is better than SAM-ResNet for 5.7% 

of the images and RARE augmented with our generic 

framework is better than SAM-ResNet on 14.3% of the 

images. If we only take the images where our model has a 

CC metric higher than 0.05 compared to SAM-ResNet 

(which will boost the model of about 10 places on a 

benchmark such as MIT300), our approach is still much 

better than SAM-ResNet on 9% of the images. We used here 

the CC metric as it is one which is not favorable to our 

approach (see Table 5 showing that KLD is the best metric 

four our model). It appears that DNN-based models might 

be inferior in learning bottom-up data while they are better 

in detecting objects usually salient (top-down information). 
 

4.2.2. MIT300 dataset 

According to MIT300 benchmark [20], our model has the 

best results compared to all bottom-up models (Table 4). It 

is still surpassed by some DNN-based models (Table 5), but 

a lot of those models are now less good than ours. This 

shows that a bottom-up model, simply augmented with some  

Table 3. Comparing result between SAM-ResNet and ours 

Model 
Metrics 

CC KLD NSS SIM AUCJ 

SAM alone 0.7713 1.3726 3.1023 0.651 0.9026 

SAM+FAPTTX 0.7546 1.6081 2.8205 0.6226 0.8943 

Ours (FAPTTX) 0.6235 0.8162 2.0868 0.5192 0.8719 

Table 4. Comparing result between bottom-up models and ours 

Model 
Metrics 

CC KLD NSS SIM AUCJ 

Ours 0.6166 0.7179 1.6762 0.5472 0.8388 

BMS 0.55 0.81 1.41 0.51 0.83 

OS 0.54 0.84 1.41 0.51 0.82 

GBVS 0.48 0.87 1.24 0.48 0.81 

Table 5. Comparing result between DNN-based models and ours 

Model 
Metrics 

CC KLD NSS SIM AUCJ 

DSCLRCN 0.8 0.95 2.35 0.68 0.87 

SALICON 0.74 0.54 2.12 0.6 0.87 

SAM-Rest 0.78 1.27 2.34 0.68 0.87 

Ours 0.6166 0.7179 1.6762 0.5472 0.8388 

SalNet 0.58 0.81 1.51 0.52 0.83 

eDN 0.45 1.14 1.14 0.41 0.82 

GoogLeNet 0.49 0.99 1.26 0.45 0.81 

JuntingNet 0.54 0.96 1.43 0.46 0.80 
 

top-down information can be better than all the other 

bottom-up models and even better than number of other 

DNN-based models depending on the metrics. For example, 

for the KLD metric by this date, our model is better (lower 

KLD value) than about 18 DNN-based models while less 

good than only 7 DNN-based models. 

 

5. DISCUSSION AND CONCLUSION 

The purpose of this paper is to understand the difference in 

visual attention computation between classical bottom-up 

saliency models and DNN-based saliency models and the 

relative importance of bottom-up and top-down information.  

Our results show that the influence of the main objects in 

images is the following: 1) face detection is the most 

important, 2) text detection (with about half of the 

importance of face detection), 3) animal detection (about 

half less important than text detection). The influence of 

person and transportation detection is marginal or even 

negative, because the viewer gaze probably focus on small 

parts of persons or cars but not everywhere on their 

bounding boxes. Concerning bottom-up information, we 

show that for almost 6% of the images in the OSIE dataset, a 

bottom-up model alone can better predict the gaze than 

DNN-based models. This means that the bottom-up 

information still remains important and should not be 

neglected in visual attention, especially in the complex and 

crowded images where it is hard to identify faces.  

Finally, we show that mixing a bottom-up model with 

our naïve top-down information framework leads on the 

MIT300 saliency benchmark to the best results among all 

bottom-up models and overtakes number of DNN-based 

models especially on KLD which measures the probability 

distribution resemblance with eye-tracking. Considering the 

fact that DNN-based models results cannot be explained and 

that they seem to neglect bottom-up information, future work 

is to see how a DNN model can be mixed with bottom-up 

models to consider both the good top-down detection of 

DNN-based models and the necessary bottom-up attention 

from classical models.  

 

6. ACKNOLEDGEMENTS 

Supported by ARES-CCD (program AI 2014-2019) under 

the funding of Belgian university cooperation. 



7. REFERENCES 

 
[1] L. Itti and C. Koch, “A Saliency-based Search Mechanism for 

Overt and Covert Shifts of Visual Attention,” in Vision Research, 

40:1489–1506, 2000. 

[2] R. Rosenholtz, “A Simple Saliency Model Predicts a Number of 

Motion Popout Phenomena,” in Vision Research 39, 19:3157–

3163, 1999. 

[3] X. Hou and L. Zhang, “Saliency Detection: A Spectral 

Residual Approach,” in Computer Vision and Pattern Recognition, 

IEEE Computer Society Conference on, 0:1–8, 2007. 

[4] N. D. B. Bruce and J. K. Tsotsos, “Saliency, Attention, and 

Visual Search: An Information Theoretic Approach,” in Journal of 

Vision, 9(3):1–24, 3 2009. 

[5] T. Avraham and M. Lindenbaum, “Esaliency: Meaningful 

Attention using Stochastic Image Modeling,” in IEEE Transactions 

on Pattern Analysis and Machine Intelligence, 99(1), 2009. 

[6] W. Kienzle, F. A.Wichmann, B. Schölkopf, and M. O. Franz, 

“A Nonparametric Approach to Bottom-up Visual Saliency,” in B. 

Schölkopf, J. C. Platt, and T. Hoffman, editors, NIPS, pages 689–

696. MIT Press, 2006. 

[7] N. Riche, “Study of Parameters Affecting Visual Saliency 

Assessment,” in: Mancas M., Ferrera V., Riche N., Taylor J. (eds) 

From Human Attention to Computational Attention. Springer 

Series in Cognitive and Neural Systems, vol 10. Springer, New 

York, NY, 2016 

[8] E. Vig, M. Dorr, and D. Cox, “Large-scale Optimization of 

Hierarchical Features for Saliency Prediction in Natural Images,” 

in Computer Vision and Pattern Recognition, 2014. CVPR’14. 

IEEE Conference on. IEEE, 2014. 

[9] M. Kümmerer, L. Theis, and M. Bethge, “Deep Gaze i: 

Boosting Saliency Prediction with Feature Maps Trained on 

Imagenet,” in International Conference on Learning 

Representations - Workshop Track (ICLR), 2015. 

[10] M. Kümmerer, T. S. Wallis, L. A. Gatys, and M. Bethge, 

“Understanding Low- and High-level Contributions to Fixation 

Prediction,” in Proceedings of the IEEE International Conference 

on Computer Vision (ICCV), Oct 2017. 

[11] K. Phutphalla, M. Matei, K. Seng, and G. Bernard, “Generic 

and Effective Visual Attention,” in Proceeding on ICPRAI, May 

2018. 

[12] K.-Y. Chang, T.-L. Liu, H.-T. Chen, and S.-H. Lai, “Fusing 

Generic Objectness and Visual Saliency for Salient Object 

Detection,” in ICCV, 2011. 

[13] Dlib C++ Library. (2017, June 10). Retrieved from 

http://dlib.net/. 

[14] Z. Bylinskii, T. Judd, A. Borji, L. Itti, F. Durand, A. Oliva, 

and A. Torralba. MIT Saliency Benchmark. 

[15] J. Xu, M. Jiang, S. Wang, M. S. Kankanhalli, and Q. Zhao, 

“Predicting Human Gaze Beyond Pixels,” in Journal of Vision, 

14(1):28, pp. 1-20, 2014. 

[16] Z. Tian, W. Huang, T. He, P. He, and Y. Qiao, “Detecting 

Text in Natural Image with Connectionist Text Proposal Network,” 

in ECCV, 2016. 

[17] J. Redmon and A. Farhadi, “Yolo9000: Better, faster, 

stronger,” arXiv preprint arXiv:1612.08242, 2016. 

[18] Riche, N., Mancas, M., Duvinage, M., Mibulumukini, M., 

Gosselin, B., and Dutoit, T. (2013), “Rare2012: A Multi-scale 

Rarity-based Saliency Detection with Its Comparative Statistical 

Analysis,” Signal Processing: Image Communication, 28(6), 642-

658. 

[19] Z. Bylinskii, T. Judd, A. Oliva, A. Torralba, F. Durand, “What 

do different evaluation metrics tell us about saliency models?” 

arXiv:1604.03605, 2016. 

[20] T. Judd, F. Durand, and A. Torralba, “A Benchmark of 

Computational Models of Saliency to Predict Human Fixations,” 

MIT technical report, 2012 

[21] N. Bruce and J. Tsotsos, “Attention based on Information 

Maximization,” Journal of Vision, 7(9):950–950, 2007. 

[22] A. Garcia-Diaz, V. Leboran, X. R. Fdez-Vidal, and X. M. 

Pardo, “On the Relationship between Optical Variability, Visual 

Saliency, and Eye Fixations: A Computational Approach,” Journal 

of Vision, 12(6), 2012. 

[23] J. Harel, C. Koch, and P. Perona, “Graph-based Visual 

Saliency,” in NIPS, 2006. 

[24] M. Cornia, L. Baraldi, G. Serra, R. Cucchiara, “Predicting 

Human Eye Fixations via an LSTM-based Saliency Attentive 

Model,” arXiv preprint, arXiv:1611.09571v3, 2017. 

[25] X. Huang, C. Shen, X. Boix, and Q. Zhao, “Salicon: 

Reducing the Semantic Gap in Saliency Prediction by Adapting 

Deep Neural Networks,” In Proceedings of the IEEE International 

Conference on Computer Vision, pages 262–270, 2015. 

[26] M. Mancas, “Relative influence of bottom-up and top-down 

attention,” Attention in Cognitive Systems, Vol. 5395 of Lecture 

Notes in Computer Science, Springer Berlin / Heidelberg, 2009. 

[27] A. Oliva, A. Torralba, “Building the gist of a scene: the role 

of global image features in recognition,” Progress in Brain 

Research, Elsevier, Volume 155, Part B, 2006. 


