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HMM-based Speech Segmentation:
Improvements of Fully Automatic Approaches

Sandrine Brognaux* and Thomas Drugman

Abstract—Speech segmentation refers to the problem of deter-
mining the phoneme boundaries from an acoustic recording of an
utterance together with its orthographic transcription. This paper
focuses on a particular case of Hidden Markov Model (HMM)
based forced alignment in which the models are directly trained
on the corpus to align. The obvious advantage of this technique
is that it is applicable to any language or speaking style and does
not require manually-aligned data. Through a systematic step-
by-step study, the role played by various training parameters
(e.g. models configuration, number of training iterations) on
the alignment accuracy is assessed, with corpora varying in
speaking style and language. Based on a detailed analysis of
the errors commonly made by this technique, we also investigate
the use of additional fully automatic strategies to improve the
alignment. Beside the use of supplementary acoustic features,
we explore two novel approaches: an initialization of the silence
models based on a Voice Activity Detection (VAD) algorithm
and the consideration of the forced alignment of the time-
reversed sound. The evaluation is carried out on 12 corpora
of different sizes, languages (some being under-resourced) and
speaking styles. It aims at providing a comprehensive study of
the alignment accuracy achieved by the different versions of
the speech segmentation algorithm depending on corpus-related
specificities. While the baseline method is shown to reach good
alignment rates with corpora as small as 2 minutes, we also
emphasize the benefit of using a few seconds of bootstrapping
data. Regarding improvement methods, our results show that the
insertion of additional features outperforms both other strategies.
The performance of VAD, however, is shown to be notably
striking on very small corpora, correcting more than 60 % of the
errors superior to 40 ms. Finally, the combination of the three
improvement methods is also pointed out as providing the highest
alignment rates, with very low variability across the corpora,
regardless of their size. This combined technique is shown to
outperform available speaker-independent models, improving the
alignment rate by 8 to 10 % absolute.

Index Terms—Phonetic Alignment, Speech Segmentation, Cor-
pora Annotation, Hidden Markov Models.

EDICS Category: HLT-LRES

I. INTRODUCTION

LARGE speech corpora play a major role both in linguistic
research and speech technologies. A particularity of such

data is that the sound is rarely studied alone. Orthographic and
phonetic transcriptions are usually required. Phonemes, in par-
ticular, should be time-aligned with the sound. A precise cor-
respondence between the sound and specific speech segments
is essential to allow for prosodic or phonetic analyses. The

Mrs Brognaux is with the Cental laboratory, Catholic University of Louvain,
Belgium and the Circuit Theory and Signal Processing Lab, University of
Mons, Belgium. e-mail: sandrine.brognaux@uclouvain.be.
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alignment precision of corpora used to train speech synthesiz-
ers or recognizers also determines the quality of the resulting
systems [1]–[3]. Many alignment tools offer the possibility to
define various transcription levels (see e.g. WaveSurfer [4],
Praat [5], ELan [6]). These can then be manually aligned
with the sound. However, such a task exhibits two major
drawbacks. First it is time-consuming, requiring 130 [7] to
800 [8] times the sound duration. For corpora of several hours
as used in speech technologies, this is clearly prohibitive. A
second issue lies in the consistency of the alignment, especially
if several annotators work on a same corpus. Even with trained
phoneticians, high consistency is rarely achieved when several
annotators collaborate [9].

To alleviate these issues, automatic alignment tools have
been developed (e.g. EasyAlign [10], SPPAS [11]). They
offer a consistent and reproducible alignment at reduced cost.
The task they perform is known as ‘linguistically constrained
segmentation’ or ‘forced alignment’. The phonetization of
the text (possibly with phonetic variants) is supposed to
be known and only the time boundaries of the phonemes
have to be determined. For this purpose, acoustic modeling
based on Hidden Markov Models (HMMs), relying on speech
recognition techniques, has been shown to achieve the best
results [12], [13]. Most existing alignment tools provide the
user with pre-trained speaker-independent HMMs of several
languages, trained on large databases. The set of provided
models being limited, only a reduced set of languages can
be aligned. Furthermore, the models highly depend upon the
training corpus. When trained on neutral speech, these models
tend to produce low-quality alignment of expressive corpora
[14]. Some phonemes may also be improperly aligned if they
are under-represented in the training corpus (as in [15]).

A possible way to solve these issues is to train the models
directly on the corpus to align, thereby providing a better
agreement between the training and alignment stages. This
technique exhibits the advantage of applying to any language
or speaking style without the need for manually-aligned data.
It also addresses the widespread criticism stating that HMM-
based alignment tends to be language specific and requires
a high amount of training data [16], [17]. This work builds
upon our previous studies [14], [18] which indicated that such
methods achieved high alignment rates on corpora in French
and English, even for small-sized databases. They also showed
the significant improvement reached with few bootstrapping
data. The first aim of this paper is to investigate whether
these results can be generalized, applying the method to a wide
range of corpora, with a large diversity of languages, speaking
styles and sizes. It focusses on the evaluation of the alignment
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when modifying various training settings: context-dependent
models, number of training iterations, size of the corpus, etc.
It then further analyzes typical errors found in the automatic
alignment and proposes some refinements of the conventional
HMM-based alignment. The proposed improvement methods
were developed so that they do not require training on
manually-aligned data. Our study offers the advantage to be
based on a large database, made of 15 corpora in French,
English and rather under-resourced languages such as Faroe
or Gaelic. The evaluation is performed on clean, mostly read
speech, with manually-verified phonetic transcriptions, as used
for speech synthesis purposes. The results are compared to
alignment rates obtained with publicly available models of the
languages, as used by most existing tools.

The paper is structured as follows. Section II presents
existing alignment techniques and focusses on improvement
strategies of HMM-based alignment proposed in the literature.
Our development protocol is presented in Section III. The
baseline method and the typical errors it produces are studied
in Sections IV and V. Improvement methods proposed to
alleviate these issues are further described in Section VI. The
proposed method is then evaluated in Section VII and com-
pared with the use of available speaker-independent models.
Finally, Section VIII concludes the paper.

II. EXISTING TECHNIQUES

Several techniques have been proposed to automatically
provide the segmentation of speech files. Among these, we can
essentially distinguish between methods based on Dynamic
Time Warping (DTW) algorithms [19], [20] and those using
HMMs [21]–[23]. Additional methods also include the use of
acoustic rate of change or discontinuity of the signal [17],
[24]. These latter techniques are said to be unsupervised as
they rely on the sound only and do not require any phonetic
transcription. They automatically identify potential phoneme
boundaries based on acoustic features. Their main drawback
is that they usually either over or under-detect the number of
phonemes, which makes it hard, in a second stage, to map
the segments with linguistic units. While DTW algorithms
were shown to provide acceptable results [20], HMM-based
acoustic modeling has been pointed out as being the most
reliable technique for automatic phonetic alignment [12], [13],
[25]. It is currently the most widely-used technique for forced
alignment.

HMM-based forced alignment uses methods derived from
speech recognition. Its specificity is that it is ‘linguistically
constrained’, which means that the transcription of the sound
files is required as input. This transcription may contain
phonetic variants, the most likely being selected during the
alignment stage [11], [26]. The training stage allows for the
building of context-(in)dependent HMMs of each phoneme.
Two different initialization stages are proposed, depending
upon the provided phonetic transcription. If the latter is not
aligned with the speech signal, the phonetic transcription is
first uniformly aligned with the sound, with a so-called ‘flat-
start initialization’. On the other hand, if some part or the
whole transcription is time-aligned (referred to as bootstrap),

the models are directly trained on the corresponding segments
for the initialization. The Baum-Welch algorithm allows for
the training of the model parameters. In the alignment stage,
the models are used to align a corpus (possibly identical to the
training corpus) with the Viterbi algorithm, which provides the
best path among the network of possible transitions.

Most studies in the literature have investigated the alignment
obtained when training the models on a large database and
using these language-dependent models to align other corpora
[26], [27]. Depending upon the study, the training stage relies
on aligned or non-aligned data. While training directly on the
corpus to align allows alleviating the need for large transcribed
corpora of the language, the performance of this method has
been the topic of very few studies. In [13], its interest for
under-resourced languages was investigated. This method was
also shown to provide interesting results for English corpora
[9] but no evaluation was made of the obvious role played by
the size of the corpus. Moreover, the alignment rate was not
compared to results achieved when using available models of
the language trained on large amounts of data.

Several studies have tried to improve conventional HMM-
based forced alignment. Different post-processing methods
have been developed to refine the produced alignment, using
various statistical techniques. However, they usually depend
on the training of a second model (e.g. a regression tree [12],
Gaussian Mixture Models (GMMs) or HMMs [28] or support
vector machines (SVM) [29]) which requires a manually-
annotated corpus. Heuristic rules can also be used to modify
the boundaries as a post-process, making use of the average
deviation for each pair of phonemes [30]. In a similar way,
it is proposed in [31] to train, on a manually-aligned corpus,
boundary models depending on the right and left context of
each phoneme to improve the alignment. They also suggest to
make use of an automatic detection of discontinuities in the
signal, based on [24]. It was proposed in [21] to make use
of a Spectral Variation Function (SVF) as post-treatment to
move boundaries to the nearest junction. This, however, did
not yield alignment rate improvement.

The combination of various HMM-based alignments trained
with different parameters has also been investigated [32].
Here again, manually-aligned data is required for the training.
For approximate transcriptions, a slightly modified version of
HMM-based alignment was also proposed in [33], proceeding
in multiple iterations and combining recognition and alignment
methods.

Most of the aforementioned techniques are supervised and
therefore require manually-aligned data for training. The anno-
tation process can be tedious when aligning rare languages for
which few data are available. Furthermore, manual alignment
is known to be very time-consuming and consequently costly
[7], [8]. Contrary to the methods described above, the approach
considered in this work is unsupervised and does not require
any labelled data. A flat-start initialization is first considered
on the target corpus, and the alignments are expected to
converge across the training iterations. This technique is used
as a baseline in the remainder of this paper. In [14], [18],
however, this method was shown to achieve rather poor results
on some corpora, especially for highly expressive speech.
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An analysis of the typical errors made by a standard
HMM-based alignment is provided in Section V. Based on
this analysis, we propose in Section VI three improvement
techniques specifically designed to alleviate these alignment
flaws. Conversely to most existing improvements of HMM-
based forced alignments, these methods exhibit the advantage
of not requiring the use of manually-aligned data. A first
widely-known improvement lies in the augmentation of the
feature vector. The addition of new acoustic characteristics
to the feature vector has already been investigated in [21],
[34]–[36]. In [21], for instance, features related to the spectral
variation have been added and led to a slight increase in the
alignment rates. Besides, we also propose two novel strategies:
a better initialization of the silence model based on a VAD
algorithm and the use of the alignment of the time-reversed
sound to provide smoothed boundary estimations.

These refinement techniques are detailed in Section VI.

III. DEVELOPMENT PROTOCOL

A. Development database

The proposed techniques are developed on clean and read
speech, as used for speech synthesis purposes. Our develop-
ment set is made of 3 corpora, kindly provided by Acapela
Group SA, and sampled at 22050 Hz. Each corpus has a
total duration (silences included) ranging between 11 and 14
minutes, with 131 to 200 speech files. The aim is to try to cover
various features of speech: different types of expressivity and
speaking style (sad, happy and little creature, a monster-like
voice), two languages (English and French) and three different
speakers (of both genders). The phonetic transcriptions were
checked and manually aligned with the sound. The French
and English corpora are respectively annotated with 39 and
56 phonetic symbols.

B. Evaluation Metrics

The evaluation of the methods is based on the comparison
between the automatic and the manual segmentation. Two
metrics are used throughout our experiments. The first mea-
sure, known as the boundary-based measure [15], is used in
most studies. It computes the percentage of boundaries that
are correct, with a certain tolerance threshold ranging from
10 to 40 ms. This measure will be referred to as the correct
alignment rate in the remainder of the paper.

It should be noted that several studies have pointed out
the high degree of inter-rater disagreement, with sometimes
large discrepancies between human-made alignments [37].
Generally, results are provided within a certain tolerance
threshold on the timing error. Usually, 20 ms constitutes a
limit above which the inter-annotator agreement rate is fairly
high. Using this threshold, [10] reported inter-annotator rates
of about 81 % and 79 % for the alignment of a French and
of an English corpus respectively. Rates between 88 % and
90 % were obtained on an Italian corpus in [38]. Similarly,
93.5 % agreement were obtained on the TIMIT corpus [35].
In [39], the average distance between boundaries of human
annotators was shown to be 16 ms. A value of 20 ms is also
considered as an acceptable limit for speech synthesis purposes

[12]. Throughout our experiments, we provide the performance
measures using a threshold of 20 and 40 ms (errors exceeding
40 ms can be seen as gross errors).

The second metric used to assess the performance of the
proposed method is the relative improvement over our base-
line: the Train&Align algorithm described in Section IV. The
so-called relative improvement is here defined as the relative
reduction of the alignment error rate at a certain tolerance
threshold. Positive values therefore indicate an effective im-
provement, while negative values indicate a degradation of the
alignment performance.

IV. HMM-BASED FORCED ALIGNMENT BASELINE:
TRAIN&ALIGN

Our first experiments make use of the standard HMM-based
alignment as described in Section II. The only specificity
of our technique is that the models are directly trained on
the corpus to align. This method, called Train&Align (T&A),
was presented in [14], [18], and was further developed into a
tool [18] freely available online1. Its specific implementation,
along with the tuning of its parameters, is further described in
the next paragraphs. T&A will also serve as baseline for the
evaluation of the proposed improvement methods.

In a first stage, the entire (unaligned) corpus to align and its
phonetic transcription are used to train a new language model.
The correct phonetization of the sound is provided, with no
variant. Acoustic vectors are made of 39 features, i.e. 12 Mel-
Frequency Cesptral Coefficients (MFCCs) and the log-energy,
along with their delta and acceleration coefficients. The models
are left-to-right 5 state monophones with no skip and three
emitting states. They are initialized with a so-called ‘flat start’,
i.e. a uniform segmentation of the speech signal. For silences,
a standard widely-used configuration is applied. Two specific
models are added: a silence model (’sil’) represents silent
pauses and allows for a direct transition back and from second
to fourth state to better model duration variations. A short-
pause tee model (‘sp’) is also implemented and automatically
inserted between words. It allows for automatic detection of
non-annotated silences. It has one emitting state tied to the
center state of the silence model. T&A computes a commonly-
used two-pass training: three iterations of the Baum-Welch
algorithm are applied before the introduction of the ‘sp’ model
and five iterations after, as proposed in [34]. Training and
alignment are performed with the HTK toolkit [34].

Based on that standard alignment method, the tuning of
several training parameters was investigated. Specifically, the
size and overlap of the speech frames, the use of context-
dependent models, and the number of training iterations were
further analyzed.

Regarding the speech frames, six options were considered
with overlapping and non-overlapping frames varying from 10
to 30 ms. Our results show that frames of 10 ms with no over-
lap provide the best alignments, with an absolute improvement
of the boundary-based alignment rate of about 15 %, with a 20
ms threshold compared to frames of 30 ms with 10 ms overlap,
as commonly used in automatic speech recognition (ASR).

1http://cental.fltr.ucl.ac.be/train and align/
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TABLE I
ALIGNMENT RATES FOR MONOPHONE ALIGNMENT AND RELATIVE

IMPROVEMENT (IN %) WITH TRIPHONES AND TIED-STATE TRIPHONES

Tolerance 20 ms 40 ms

Mono Tri Tied Mono Tri Tied

Will (Creature) 63.13 -2.32 3.12 84.26 0.84 1.67
Antoine (Sad) 75.40 1.64 3.39 86.71 3.46 7.36

Margaux (Happy) 83.71 2.92 2.47 95.08 -0.37 -3.35

Average 0.75 2.99 1.31 1.89
Standard Deviation 2.73 0.47 1.96 5.36

While this may look contradictory to ASR standards, it can be
explained by the fact that narrower windows avoid mixing data
belonging to different phonemes. Conversely, ASR usually
makes use of highly context-dependent models, mixing data
helping in the recognition process as they are not concerned
with the precise location of the phoneme boundaries.

The use of context-dependent models was also investi-
gated, replacing monophones by triphones (sequences of three
phonemes) or tied-state triphones, in which the left and right
contexts are defined by phonetic classes. These classes are here
determined based on the following phonetic criteria: kind (e.g.
vowel, semi-vowel, etc.), voicing, location, articulation type
and lip rounding. Results in Table I show that the effect of
context-dependent models is highly dependent on the corpus.
While they improve the alignment of Antoine (Sad), triphones
tend to degrade the alignment of Will (Creature) and tied-state
triphones have a negative effect on the alignment Margaux
(Happy). Interestingly, Margaux is also the best-aligned corpus
with monophones. We may therefore wonder whether the use
of tied-state triphones would be more useful only when the
monophone initial alignment is relatively low, but this would
need to be confirmed on more data. Interestingly, there seems
to be a tradeoff, tied-state triphones carrying out, for all three
corpora, improvement for finer resolutions, while monophones
could be more suited at coarser resolution (here with the
exception of Antoine (Sad)).

Earlier studies have indicated that the use of context-
dependent models may not be suited for forced alignment
[7], [40], [41]. A possible justification was that the context-
dependent models are always trained within a specific context,
which implies that they may not learn to correctly discriminate
between the phoneme itself and its context. Our results partly
confirm this hypothesis. Besides, the use of such context-
dependent models slows down the training process. For these
reasons, the remainder of this paper will focus on the use of
monophone models only.

As previously mentioned, the standard alignment technique
typically includes 3 iterations for the first training stage and
5 for the second, i.e. after the insertion of the short-pause
tee models. However, it is encouraged in [34] to optimize
that number of training iterations. We investigate here, on
the development dataset, the role played by the number of
iterations on the alignment rates. A first round of experiments
showed that only the number of iterations of the second
training stage should be optimized. All three corpora were
then aligned with a varying number of iterations in that

stage, ranging from 2 to 40. This indicated high variability
across the corpora, the best alignment rates being reached
after 17 to 31 iterations. To account for this influence of
the corpus, we investigated the possibility of dynamically
optimizing the number of embedded training iterations based
on the log-likelihood per frame of the training data. This
technique relies on the fact that Pearson’s tests revealed strong
positive correlation scores (average Rho of 0.93) between the
log-likelihood of the model and the alignment rates at 40
ms, consistently across all three corpora: if the log-likelihood
stagnates or decreases, it can be interpreted as an indication
that the training should be stopped.

Based on experimental tests, the minimum increase in log-
likelihood was set to 0.001, as the alignment performance
curve seems to flatten past that level. The results also drove us
to set the maximum number of iterations to 35. This dynamic
optimization of the number of training iterations provides
consistent improvement across all development corpora and
for all tolerance thresholds. Average relative improvement
reaches 7.08 % at 20 ms and 11.50 % at 40 ms.

V. ANALYSIS OF ERRORS MADE BY T&A

In order to develop methods improving HMM-based pho-
netic alignment, an in-depth analysis of the errors most fre-
quently made by T&A was carried out (see Table II). We
focused on errors with a timing difference superior to 40
ms which correspond to high incongruencies unlikely to be
produced by human annotators. In this analysis, we distin-
guished between two measures. The global error rate regards
the percentage of all errors that this specific phoneme class
accounts for. The specific error rate relates to the percentage of
transitions of that class which are erroneous. This distinction
is important as it shows, for example, that transitions between
vowels are often prone to errors (in 38.31 % of the cases) but
that they account for a smaller global error rate (i.e. 25.13 %),
being less frequent than most other transitions in the corpora.

This study drove us to distinguish between 4 typically
problematic transitions. The first relates to transitions to and
from silences, which account for more than 60 % of the total
amount of errors higher than 40 ms. In fact, 49.79 % of the
silences are erroneously aligned with that threshold. This issue
has been pointed out by other studies [26], [31], which noticed
low alignment rates for silence boundaries in their corpus.
Interestingly, other segmentation algorithms like unsupervised
methods based on the acoustic rate of change were also shown
to produce similar errors [17]. This misalignment is even more
striking provided that our development set contains corpora
designed for speech synthesis, i.e. with no background noise.
This issue may then be even worse for corpora recorded in
noisier conditions.

Other error types that were found to be frequent are, in
decreasing order, vowel-vowel transitions, approximants and
plosives. For all three categories, pairs containing a silence
were excluded, silences inducing a high amount of errors.
Approximants include lateral approximants (like [l]), non-
lateral approximants (like [ô]), and semi-vowels (like [j], [w]
or [4]). Semi-vowels were shown to be problematic in [15],
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Fig. 1. Example of silence and liquid misalignment in the automatic
alignment (Pho (Auto)) on one speech file of the development set.

TABLE II
FOR SPECIFIC PHONEME CLASSES, PERCENTAGE GLOBAL AND SPECIFIC

ERRORS (> 40 MS)

Phoneme class Global errors (%) Specific errors (%)

Silences 61.61 % 49.79 %

Vowel-vowel 25.13 % 38.31 %

Approximants 13.89 % 7.61 %

Plosives 6.69 % 2.17 %

and also present issues for human annotators, probably due to
their high degree of co-articulation. Vowel-to-vowel transitions
were also pointed out as prone to errors in [9], [21], [37].
For approximants, especially the initial boundary tends to be
problematic. Conversely, final boundaries of plosives seem to
be more prone to errors, the explosion stage being harder to
model. Figure 1 shows an example of typical misalignment.

While the optimization of the number of training iterations
was shown to improve the alignment rate, it should be noted
that it does not impact a specific type of error. All classes of
errors tend to be reduced with better improvement for some
phoneme classes, depending on the corpus.

A possible way to reduce the amount of errors consists in
using some manually-aligned data as bootstraping data so as to
produce a better initialization of the models [21] . This solution
is further explored in Section VII, along with the role played
by the size of the bootstrapping corpus. It requires, however,
some manual intervention. In order to stick to a fully automatic
method, the next section presents three improvement strategies
driven from the aforementioned typical errors.

VI. IMPROVEMENT METHODS

A. Using Voice Activity Detection algorithm (VAD)

Seeing that silences are often prone to alignment errors, we
propose here to improve their initialization. As no manually-
aligned part of the corpus is provided, our standard HMM
alignment (T&A) relies on a ‘flat start’ uniform initialization.
This means that each phone model is first assigned average
values (for means and variances) and uniformly aligned with
the sound. The proposed refinement aims at modifying this
initialization stage. Sohn’s voice activity detection (VAD)
algorithm [42] is first applied to the sound files and allows
detecting non-speech segments. These segments are then used
to initialize silence models only. All other phonemes are
initialized with the ‘flat start’ strategy, exactly as it was used
in T&A. This particular use of the VAD exhibits the advantage
not to fix the silence boundaries, which would be problematic
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Fig. 2. Correct alignment rates with a varying VAD threshold with a 40 ms
tolerance threshold, for the three development corpora.

as VAD algorithms tend to over- or under-detect silences
notably in plosion stages or noisy pauses. For that reason, these
VAD-detected boundaries cannot be directly used to allow for
a better uniform segmentation of the other phonemes. It allows,
however, the silence models to be better initialized and helps to
iteratively converge to better silence boundaries. Besides, our
method provides an initialization of the silence model specific
to the corpus and its recording conditions, conversely to the
use of a generic silence model. This may also help for corpora
recorded in noisier conditions.

Sohn’s VAD algorithm generates trajectories of posterior
probabilities about the presence or not of speech activity. In
order to draw a binary decision, a threshold has to be applied
on these trajectories, below which the sound is assumed
not to contain speech. With a null threshold, all frames are
regarded as voice and no signal section is exploited to train
the silence models. The alignment is then that of the original
T&A. Experiments on our development database showed that
the performance of the alignment reaches a plateau from a
threshold of 0.3 (see Figure 2). For the remainder of our
experiments, we set the threshold to 0.8 which provides the
best alignment rates on average. This achieves an average
relative improvement of 23.29 % on the development set at
a 40 ms threshold.

Interestingly, the alignment rates achieved by VAD 0.8 are
very similar, regardless of the optimization of the number of
training iterations. When discarding this optimization from the
baseline, the relative improvement of VAD reaches 37 % on
average with a 40 ms threshold. This indicates that the VAD
also helps to compensate for a lack of training iterations: if
the initialization is better performed, less embedded training
iterations are required. Another interesting observation is that
VAD especially reduces the amount of gross errors (i.e. errors
superior to 30 ms) while it has less effect on finer errors.

B. Augmentation of the feature vector (AddFeat)

It is widely acknowledged that part of the errors made
by automatic phonetic alignment techniques comes from the
fact that humans make use of additional cues, which are not
represented in the MFCC coefficients, to decide the precise
location of the boundaries [30]. This may especially be the
case for vowel-vowel transitions or transitions to and from



JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 6

semi-vowels which are very hard to model. For that reason,
we considered the possibility to add up to 9 supplementary
acoustic features on top of the MFCC coefficients.

These additional features are: i) the total perceptual loudness
[43], ii) the frequencies of the first five formants estimated by
the Differential-Phase Peak Tracking (DPPT [44]) technique,
iii) the fundamental frequency F0 and a measure of periodicity
based on the Summation of the Residual Harmonic (SRH [45])
algorithm, and iv) a measure of turbulence using the Chirp
Group Delay (CGD) function which was shown in [46] to
highlight irregularities of phonation.

For each of the proposed additional features, we have
calculated its coefficient of correlation with the MFCCs (static
and dynamic values) using the canonical correlation method.
This analysis was based on the speech segments of the
development dataset. The results are as follows: perceptual
loudness (0.93), F1 (0.63), F2 (0.48), F3 (0.33), F4 (0.29),
F5 (0.17), F0 (0.57), periodicity (0.74), turbulence (0.47). For
some features, this correlation is quite high. That is the case of
the perceptual loudness (which was expected) and surprisingly
of the periodicity measurement. Note however that even if a
feature is redundant with an existing set, it might still convey
relevant complementary information. As further described, that
is the case of the loudness, which despite its high correlation
is shown to carry out an interesting improvement.

The contribution of each feature, individually, is shown
in Figure 3. High variability is observed across the corpora
and only the addition of loudness significantly improves the
alignment of all datasets. Various feature combinations have
also been investigated. While the addition of both loudness and
periodicity is shown to provide the best relative improvement
on average, their combination with turbulence leads to a
reduced variability across the corpora. With that configuration,
the initial alignment is improved by 10 to 35 % for all three
development corpora. This combination will be exploited in
the remainder of the paper and referred to as AddFeat. This
amounts to a total of 42 coefficients.

Here again, the interaction between the addition of new fea-
tures and the dynamic optimization of the number of training
iterations is worth discussing. With a standard fixed number of
iterations, all individual features are shown to provide relative
improvement over the baseline. The minor impact played by
features such as formants or F0 seems however to disappear
with an optimized number of training iterations.

Seeing that the initial set of parameters contains delta
and acceleration coefficients, the insertion of these derived
coefficients for the 9 additional features was also considered.
However, the analysis of the results on our corpora shows
that the consideration of these derivatives does not bring any
relevant complementary information when included in addition
to their static version. The 9 supplementary features are
therefore added to the feature vector without their derivatives.

C. Exploitation of the time-reversed sound (Reverse)

An in-depth analysis of the alignment errors with T&A
revealed systematic errors, some phonemes being often mis-
aligned with a too early or too late boundary. Examples of such
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Fig. 3. Average relative improvement over T&A with additional acoustic
features with 20 and 40 ms tolerance thresholds, on the development set,
along with their 95 % confidence interval.

TABLE III
EXAMPLE OF SYSTEMATIC ERRORS MADE BY T&A

Boundary Percentage of cases Average deviation

Late boundaries

Initial boundary of silences 74.6 % 47.80 ms
Final boundary of [j] 70.85 % 7.62 ms

Early boundaries

Final boundary of silences 82.60 % 28.90 ms
Initial boundary of [t] 69.19 % 3.84 ms

errors can be observed in Table III. It shows, for example,
that final [j] boundaries tend to be predicted too late while
final silence boundaries tend to be too early. As can be
observed, several aforementioned classes of errors are here
concerned (e.g. plosives, semivowels, silences). This type of
errors occurring in the same direction for specific transitions
has been pointed out by [12]. In [41], schwas tended to be
left-shifted in their corpus. On the whole, we notice that a
majority of boundaries are predicted too early.

To reduce such errors, we propose to time-reverse the sound
and its phonetic transcription. The initial feature vector of
39 MFCC-based features (and possibly additional features) is
extracted on this time-reversed copy of the sound. T&A is
then used to align the reversed and the original corpora. Both
alignments are then exploited to compute average boundary
locations. This sound reversal essentially modifies transition
probabilities of the HMM. The segmentation of the sound also
begins from the end of the file, which might modify the content
of the respective frames of signal. The assumption behind this
method is that, for highly probable boundaries, the alignment
of both corpora should provide similar results which will not
influence the resulting alignment. Conversely, for uncertain
boundaries, computing the average between both alignments
should provide smoothed estimations, thereby reducing errors
with a high tolerance threshold. To the best of our knowledge,
this technique has never been investigated in previous studies.

VII. EVALUATION

This section shows the results obtained by our alignment
methods on the evaluation database (presented in Subsection
VII-A). The baseline T&A alignment is evaluated in Subsec-
tion VII-B along with the role played by the size of the corpus
(Subsection VII-C) and the size of the bootstrapping corpus
when one is exploited (Subsection VII-D). Our improvement
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TABLE IV
EVALUATION DATA SET FEATURES

Corpus Language Speaking style Duration
(minutes)

Will (Bad guy)2

English
Read/Expressive 12

Will (Neutral)2 Read/Neutral 14
Woggle [47] Read/Expressive 51

Antoine (Happy)2

French
Read/Expressive 12

Margaux (Sad)2 Read/Expressive 12
Marie Read/Neutral 108

Sportic [48] Spontaneous/Expressive 15
(sports commentaries)

Faroe 2 Read/Neutral 21
Gaelic 3 Read/Neutral 8

Afrikaans [13] Read/Neutral 22
Setswana [13] Read/Neutral 47

Isizulu [13] Read/Neutral 20

methods are then evaluated in Subsection VII-E and the impact
of the size of the corpus is investigated in Subsection VII-F.
Finally, Subsection VII-G shows the comparison between our
best alignment method and alignment rates obtained by state-
of-the-art available models of the corresponding languages.

A. Speech Material

To assess the performance of the various techniques, 12
corpora are used (see Table IV). They vary in terms of
language, size, and speaking style. Most are read speech, with
high recording quality, used for speech synthesis. The use of
Sportic allows for an analysis of the results on spontaneous
speech. Each corpus contains one speaker, male or female,
except for Woggle which consists of recordings from 5 female
speakers. This corpus is characterized by a high level of
variability, containing also 5 different emotional states (e.g.
happy, sad, angry). All corpora are classified as neutral or
expressive. The expressive tag contains different kinds of
expressivity: emotions with different valences (happy, sad,
angry and afraid) and specific attitudes/speaking styles (bad
guy and sports commentaries). The advantage of our basic
T&A technique being to apply to any language, the methods
are also tested on under-resourced languages like Faroe and
Gaelic. All corpora were manually phone-aligned by experts.

B. Results with the baseline: Train&Align

Our baseline approach with training on the corpus to align
(T&A, as described in Section IV) is first applied to all corpora.
The resulting correct alignment rates are shown in Table V.
Rates around 80 % with a 20 ms threshold are reached for
all of our corpora in French and in some under-resourced
languages. This is comparable to observed inter-annotator
agreement rates in [10]. Low alignment rates for Woggle, can
be explained by its high degree of expressivity and diversity, as
it contains 5 speakers and 5 different emotions. Conversely to

2kindly provided by Acapela Group SA
3kindly provided by the Phonetics and Speech Laboratory, Trinity College,

Dublin

TABLE V
CORRECT ALIGNMENT RATES (IN %) OF T&A ON OUR EVALUATION
CORPORA IN ENGLISH (EN), FRENCH (FR) OR UNDER-RESOURCED

LANGUAGES (O)

Tolerance threshold 10 ms 20 ms 30 ms 40 ms

En Will (Bad guy) 47.04 72.14 83.08 88.19
Will (Neutral) 50.86 78.86 89.72 94.64

Woggle 44.95 65.23 80.07 88.82

Fr Antoine (Happy) 59.08 82.70 89.14 92.59
Margaux (Sad) 59.38 81.12 88.99 92.26

Marie 60.06 84.42 92.93 96.63
Sportic 65.01 82.53 90.31 94.22

O Faroe 48.45 75.18 87.95 93.74
Gaelic 77.34 89.98 94.25 96.05

Afrikaans 45.66 73.50 88.38 93.11
Isizulu 46.78 72.18 85.22 90.94

Setswana 47.29 70.51 84.71 90.31

the other models, the one trained on Woggle does not capture
a specific speaking style of a speaker, which might explain the
lower alignment rates.

The optimization of the number of training iterations was
shown in Section VII-B to improve the alignment and was
therefore included in the baseline. While its application allows
for an average relative improvement of 8 % (40 ms threshold)
of the alignment of the evaluation dataset, it performs much
better on highly expressive corpora like Woggle (+16 %)
and Sportic (+ 45 %), which was shown to contain highly
excited parts [48]. Conversely, it achieves lower performances
on Marie (-3 %), which contains read neutral speech.

The acoustic models being here directly trained on the
corpus to align, the size of the corpus plays an obvious role
in the model quality. It can therefore be wondered whether
the rather high alignment rates obtained for Marie can be
explained by the size of the corpus. More than 100 minutes
of speech are used to train the models. This provides a
fair amount of occurrences for each phoneme, which is not
possible for all databases. This question is now addressed in
Section VII-C.

C. Influence of the corpus size

The influence of the corpus size on the alignment per-
formance was analyzed by varying the size of the various
corpora. This evaluation was performed on the three largest
corpora of our evaluation dataset which have each a duration
superior to 30 minutes (initial and final silences excluded).
The resulting correct alignment rates are shown in Figure 4.
It shows that the alignment rate plateaus for corpora larger
than 5 minutes. A similar curve was observed with a 40 ms
tolerance threshold. For Setswana, 2 minutes are enough to
reach the correct alignment maximum. For corpora smaller
than 2 minutes, the alignment performance rapidly degrades.
It should be noted that the alignment of the 2-minute Woggle
corpus is, comparatively to the two other corpora, of rather
low quality. This may be explained by the fact that properly
learning the higher variability of the corpus (various emotions
and speakers) requires larger datasets. On the whole, a few



JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 8

30 60 120 300 600 1800
0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

Corpus size (sec)

C
o

rr
e

c
t 

a
lig

n
m

e
n

t 
ra

te

 

 

Setswana

Woggle

Marie

Fig. 4. Correct alignment rates with a 20 ms tolerance threshold on the
evaluation set, with varying corpus sizes.

minutes of neutral speech seem to be sufficient to train and
align a new corpus, which confirms findings in [13] but is
much lower than the limit of 256 sentences fixed by [21]. This
may be explained by the fact that [21] does not make use of
speaker-dependent models, the training being performed on a
corpus different from the corpus to align.

D. Effect of bootstrap

Section VII-B showed that some expressive corpora and
datasets from low-resourced languages are rather poorly
aligned with a standard HMM-based alignment when training
on the corpus to align. A possible way to alleviate this issue is
by improving the initialization of the models based on some
manually-aligned part of the corpus. This section investigates
which size of the bootstrapping corpus is required and which
improvement may be expected. For this experiment, we grad-
ually increased the size of the bootstrap (from 10 to 600
seconds, initial and final silences excluded) while evaluating
on a fixed portion of the corpus (2 minutes) to avoid biases due
to a varying evaluation corpus. The evaluation set was never
included in the bootstrap data. The monophones are initialized
on manually-aligned data only if at least three occurrences of
the phoneme are available. If not, average values (for means
and variances) are assigned to the model, similarly to a ‘flat
start’ initialization. Figure 5 interestingly points out that the
use of a bootstrap part of the corpus, as small as 10 seconds,
leads to a relative improvement of about 25 to 35 %. While
the use of a larger bootstrap slightly improves the quality,
the curve rapidly flattens, the use of a bootstrap corpus larger
than 30 seconds being essentially unnecessary. As expected,
the use of bootstrap data is especially effective on expressive
corpora like Woggle, which was poorly aligned with the initial
T&A technique. Improvement of about 53 % is here observed
with only 30 seconds of bootstrap data, for both 20 and
40 ms thresholds. High improvement is also found on some
corpora in under-resourced languages: the use of 30 seconds
of bootstrap improves the alignment of Setswana, in particular,
by 57 % with a 20 ms threshold, to reach alignment rates of
more than 87 %.

While bootstrap methods have been widely acknowledged
as playing a crucial role in the improvement of HMM-based
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Fig. 5. Average relative improvements over T&A with 20 and 40 ms tolerance
thresholds, using a bootstrapping corpus varying in size, along with their 95 %
confidence interval.

alignment, they still require some manual processing, be it
very small. The remaining sections of this paper investigate
whether the three automatic techniques described in Section
VI are also effective in improving the final alignment.

E. Improvement methods

This section compares the contribution of each refinement
method defined in Section VI independently. The relative
improvements over the baseline (T&A) computed on our
evaluation database are shown in Table VI.

Interestingly, all techniques are seen to carry out improve-
ment, especially at a 40 ms tolerance threshold. As expected,
they help correcting gross errors, unlikely to be produced
by human annotators. While both VAD and AddFeat achieve
an average improvement of more than 13 % with a 40 ms
threshold, AddFeat is shown to be much more consistent across
the corpora, positively impacting the alignment of all corpora
but one. Both VAD and Reverse display a quite high inter-
corpus variability. This variability for VAD is mostly due to its
low performance on under-resourced languages. When looking
at English and French corpora only, the average improvement
exceeds 20 % at a 40 ms tolerance threshold. Some under-
resourced languages seem to be less sensitive to the benefits
of this proposed method. In-depth linguistic analyses of these
languages may provide greater insight into their reaction to
the various improvement methods.

As previously mentioned, the optimization of the number of
training iterations in the baseline allows for an average relative
improvement of about 8 % at a 40 ms tolerance threshold.
Experiments on the evaluation set, without this dynamic
adaptation of training iterations confirmed the observations
made on the development corpora. Here again, VAD is shown
to compensate for a lack of number of training iterations
as it provides similar alignment rates without this training
optimization, the relative improvement exceeding then 20 %
at 40 ms threshold on average, and 30 % on French and
English corpora only. Conversely, AddFeat seems to be rather
complementary to the training optimization, their combination
providing higher alignment rates.



JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 9

We also investigated the improvement achieved by com-
bining the methods. It is worth noting that the combination
of all three improvement methods, i.e. T&A2, provides the
best results. The improvement over VAD or AddFeat alone
is statistically significant (respectively, p<0.001 and p<0.05
with paired t-tests). This method is also highly consistent,
carrying out improvement for all evaluation corpora at 40
ms, regardless of their style and language. At 20 ms, only
the alignment of Gaelic is degraded, due to the poor per-
formances of VAD on that corpus, which reduces the correct
alignment rate at 20 ms by about 7.5 %. This can be partly
explained by the fact that Gaelic is the best-aligned corpus
with T&A and that this baseline alignment contains very few
erroneous silence boundaries. On average, T&A2 reaches high
improvement rates, with a decrease of nearly 30 % of the
errors superior to 40 ms. Interestingly, T&A2 allows reaching
relative improvement at 40 ms threshold that is similar to that
obtained when using bootstrapping data, at least for some
corpora of our evaluation set. It should be noted that other
combinations have been tested, especially the combination
of VAD with AddFeat only, as Reverse was seen to achieve
few improvement alone. Interestingly, Reverse is shown to
contribute to the improvement of T&A2, increasing the relative
improvement by 3.9 % at 40 ms, on average.

A detailed analysis of the errors shows that, as expected,
VAD contributes to the reduction of the amount of errors
related to silences. While, on average, 29.7 % of the silence
boundaries of our evaluation set are erroneously aligned with
an error superior to 40 ms with T&A, this rate reduces to
21.1 % when applying the VAD refinement. AddFeat is shown
to reduce both the errors related to silences and to vowels (by
respectively 7 and 4 % on average).

F. Advantage of T&A2 in small corpora

To investigate the role played by the size of the corpus
on the performance of the various improvement methods, the
size of the corpora was modified to range between 30 and 300
seconds. Section VII-C showed that corpora shorter than 120
to 300 seconds tend to be poorly aligned. This experiment
sets out to investigate whether our improvement methods
allow alleviating that issue. The results for 40 ms tolerance
thresholds are shown in Figure 6. Similar patterns are found
with a 20 ms tolerance threshold.

Both Reverse and AddFeat are shown to be ineffective on
short corpora. Their positive impact, however, gradually im-
proves with the size of the corpus. Their use for corpora shorter
than 2 minutes is highly inadvisable. What should be high-
lighted, however, is that VAD, conversely to the other methods,
produces significantly higher alignment rates, especially on
very small corpora for which its improvement over the baseline
(T&A) becomes dramatic. This finding is of utmost importance
as it allows achieving fair alignment rates on corpora for which
a standard alignment performs very poorly. An example of
such improvement can be observed on the 30-second version
of the French expressive corpus Antoine (Happy), which shows
improvements in terms of alignment rates from 8.7 % and
14.1 % (for 20 and 40 ms thresholds respectively), to 71.5 %
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Fig. 6. Relative improvement over T&A, with a 40 ms tolerance threshold,
for the different improvement methods, with varying corpus sizes.

and 88.9 % with the use of VAD. Consistency is found across
all small corpora, with a minimum relative improvement of
32.2 % and 15.8 % for 40 ms errors, with corpora of 30 and
60 seconds respectively. Interestingly, the combined method
T&A2 achieves the best results, even on the smaller corpora.
This seems to indicate that, while AddFeat and Reverse are
ineffective when considered separately, their combination to
VAD still contributes to alignment improvement. It should
however be noted that T&A2 is only shown to significantly
outperform VAD with corpora of 120 and 300 seconds (p<0.05
with paired t-test).

G. Comparison with state-of-the-art models

As previously mentioned, most automatic alignment tools
provide the user with pre-trained speaker-independent acoustic
models of the language (e.g. EasyAlign [10], SPPAS [11],
P2FA [49]). In [14], we showed that, for medium-size corpora,
training the acoustic models directly on the corpus to align
achieves comparable alignment rates. We compare here the
performance of these speaker-independent models with our
proposed combined method: T&A2. This comparison is carried
out with two available French models (EasyAlign [10] and
SPPAS [11]) and two English models (VoxForge used by
SPPAS [11] and P2FA [49]). Results are shown in Table VII.
Compared to the best speaker-independent model, an absolute
increase in the correct alignment rate of more than 10 %
with a 20 ms threshold is observed for the French neutral
corpus. For the English expressive database [47], [14] pointed
out that P2FA achieved slightly better results than the T&A
alignment. A possible cause was that P2FA models were
trained on more than 25 hours of word-aligned speech, which
required a considerable annotation time. We show here that the
combination of the three improvement methods outperforms
P2FA by more than 8 % absolute with a 20 ms tolerance
threshold, while remaining fully automatic. It should also
be noted that T&A2 is also shown to be effective on some
rare languages, as shown for Faroe and Isizulu. The absolute
improvement over T&A reaches in fact more than 10 % at a
20 ms threshold for Isizulu.
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TABLE VI
RELATIVE IMPROVEMENT (IN %) OVER T&A WITH 20 AND 40 MS TOLERANCE THRESHOLDS FOR VAD, AddFeat, Reverse AND THE COMBINATION OF THE

THREE METHODS (T&A2), FOR ALL EVALUATION CORPORA, ALONG WITH THE AVERAGE AND STANDARD DEVIATION OF THE IMPROVEMENT.

Tolerance threshold 20 ms 40 ms

Improvement method VAD Reverse AddFeat T&A2 VAD Reverse AddFeat T&A2

Will (Bad guy) 0.09 2.59 20.03 19.69 34.62 4.28 43.99 40.73
Will (Neutral) 0.95 -0.19 5.15 5.15 6.77 -33.83 14.29 13.53

Woggle 30.26 24.60 18.66 37.83 30.60 20.72 21.23 36.94

Antoine (Happy) 0.48 0.16 5.94 20.22 12.36 -6.37 4.87 45.32
Margaux (Sad) 25.61 3.51 17.43 40.31 50.59 -2.38 25.42 63.18

Marie 15.95 13.61 19.68 26.25 17.53 31.25 18.93 23.92
Sportic 2.06 13.57 0.98 0.65 -11.15 9.51 11.15 9.51

Faroe -18.00 7.19 5.63 14.42 -10.00 12.57 10.27 22.70
Gaelic -73.62 -15.96 2.61 -85.02 5.79 1.65 10.74 12.40

Afrikaans 3.79 -7.79 9.10 22.04 -11.10 6.44 3.82 1.67
Isizulu 36.47 8.21 0.17 38.39 26.51 39.37 -2.89 46.33

Setswana 12.77 -6.91 14.36 11.54 11.50 1.53 10.81 22.75

Average 3.07 3.55 9.98 12.62 13.67 7.06 14.39 28.25

Standard deviation 28.55 10.97 7.60 33.28 19.48 18.74 12.13 18.28

TABLE VII
CORRECT ALIGNMENT RATES (IN %) ACHIEVED BY AVAILABLE

SPEAKER-INDEPENDENT MODELS (WHEN AVAILABLE) AND BY OUR
COMBINED METHOD (T&A2)

Tolerance threshold 10 ms 20 ms 30 ms 40 ms
A French neutral corpus: Marie [50]

SPPAS 45.76 71.28 83.06 89.84
EasyAlign 52.54 77.54 87.72 92.11

T&A 60.06 84.42 92.93 96.63
T&A2 (proposed) 65.76 88.51 94.84 97.44

An English expressive corpus: Woggle [47]
VoxForge 37.3 65.2 82.07 88.69

T&A 44.95 65.23 80.07 88.82
P2FA 46.68 69.74 81.2 87.46

T&A2 (proposed) 54.01 78.38 88.92 92.95
Rare languages: Faroe

T&A 48.45 75.18 87.95 93.74
T&A2 (proposed) 52.71 78.76 90.00 95.16

Rare languages: Isizulu
T&A 46.78 72.18 85.22 90.94

T&A2 (proposed) 58.46 82.86 91.82 95.14

VIII. CONCLUSION

This paper proposed a systematic, step-by-step study of
a particular case of HMM-based speech segmentation, i.e.
when training directly on the corpus to align. A development
database was first used to tune different parameters (e.g. use of
context-dependent models and number of training iterations)
to obtain our baseline model, Train&Align (T&A). An in-depth
analysis was then carried out to reveal typical and systematic
errors made by T&A. This pointed at the bad alignment of
silences, vowel to vowel transitions, semi-vowels and plosives.
Based on this analysis, we proposed the integration of three
types of refinement techniques: i) the use of a VAD to get a
better initialization of the silence model, ii) the exploitation of
the time-reversed sound to reduce systematic errors, and iii)
the addition of features complementary with the conventional
MFCCs. The contribution of each of these components was
studied separately on a large dataset of 12 speech corpora,
varying in speaking style, size and language. All three methods
were shown to improve the alignment and the VAD-based

technique turned out to be the most advantageous on small
databases. The resulting algorithm, integrating the three re-
finement methods and called T&A2, was shown to achieve
the highest results. This algorithm was finally compared
to state-of-the-art speaker-independent alignment techniques.
Across all our experiments, T&A2 was observed to achieve
an improvement, sometimes by a substantial margin. With a
tolerance threshold of 20 ms, the absolute improvement over
the best existing approach is 11 % on a neutral French corpus,
and 8 % on an expressive English corpus. The improvement
over T&A is also appreciable, with notably an absolute im-
provement ranging from 3.5 to 10.5 % on two corpora of
under-resourced languages.

Beside these improvements, a second aim of the paper was
to investigate the role played by the size of the database or
by the use of bootstrap data on the performance of HMM-
based phonetic alignment. The conclusions we drew in that
respect were that: i) the performance seems to plateau beyond
5 minutes of training data, which implies that fairly high
alignment capabilities are possible for small databases of only
a few minutes, ii) manually-annotated bootstrapping data can
be used to enhance the initialization of the models. Using only
10 seconds of such data generates a relative improvement of
28 % at a tolerance threshold of 20 ms and increasing the
amount of bootstrapping data does not seem to significantly
improve the alignment.
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