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Abstract

This work focuses on laughter intensity
level, the way it is perceived and suggests
ways to estimate it automatically. In the
first part of this paper, we present a laugh-
ter intensity database which is collected
through online perception tests. Partici-
pants are asked to rate the overall inten-
sity of laughs. Presented laughs are either
audio only or visual only or audiovisual.
Statistical analysis show that the perceived
intensity is significantly higher when the
modality is visual only and suggests that
the audio cue might have the biggest influ-
ence on laughter intensity perception.We
also show that the order by which the
modalities are presented to the raters may
influence the perception of laughter inten-
sity. In the second part, different estima-
tion/classification techniques were tested
including GMM-based mapping and com-
mon classification techniques. A set of
features were defined, extracted and tested
for classification. Results show that the es-
timation of the global audio laughter in-
tensity is possible with good classification
performances.

1 Introduction

Laughter is everywhere. So much that we often
do not even notice it. It is in common believes that
laughter has a strong connection with humor (G.
and W., 2015). Most of us seek out laughter
and people who make us laugh, and use it in our
gatherings and social interactions. Laughter also
plays an important role in making sure we interact
with each other smoothly. It provides social
bonding signals that allow our conversations to
flow seamlessly between topics; to help us repair

conversations that are breaking down; and to end
our conversations on a positive note. In the last
decades, with the development of human-machine
interactions and various progress in speech pro-
cessing, laughter became a signal which machines
should be able to detect, analyze and produce.
This work focuses on the estimation of laughter
intensity from acoustic features.

In 2001, Ruch and Ekman (Ruch and Ekman,
2001) published an extensive report on the pro-
duction of laughter. They investigated various
aspects like phonation, respiration, muscular and
facial activities. Laughter is described as an
inarticulate utterance. Its cycle is around 200 ms
and it is usually operated on the expiratory reserve
volume. The same year, Bachorowski et al. (Ba-
chorowski et al., 2001) focused on the acoustic
properties of human laughter and its differences
with speech. They found that laughter yields
higher fundamental frequencies than speech,
formant frequencies in laughter correspond to
central vowels and unvoiced laughter accounts for
40 to 50% of laughter occurrences. Chafe (Chafe,
2007) also describes the mechanical production
of laughter and presents various acoustic laughter
patterns. A common conclusion of these studies is
the high variability of the laughter phenomenon,
in terms of voicing, fundamental frequency,
intensity and, more generally, types of sounds
(grunts, cackles, pants, snort-like sounds, etc.).

Intensity is an important dimension of laughter.
The notion of intensity seems so natural that
most researchers do not define it (e.g., (Glenn,
2003; Chafe, 2007; Edmonson, 1987)). In (Ruch,
1993), Ruch defines the emotion of exhilaration,
which is one of the emotions leading to laughter.
He discusses different levels of intensity of this
emotion and the corresponding behaviors, from



smile at low intensity to laughter accompanied by
posture changes (throwing back the head, vibra-
tions of the trunk and shoulders) at high intensity.
Furthermore, intensity is encoded differently by
individuals, with reference to their own laughing
style (Edmonson, 1987).

Since intensity is a fundamental dimension,
frequently and naturally used to describe laughs,
it appears as an important feature to be able to
estimate for further use in laughter synthesis (Ur-
bain et al., 2014) or recognition. Indeed, it can
give valuable information about the state of a par-
ticipant in a human-machine interaction system.
It is also a convenient layer in interactive systems
to separate the processes of deciding to laugh
(with a target intensity), which is independent
from the laughter synthesis voice and style, and
synthesizing the corresponding laugh, which
obviously depends on the modeled individual
traits. In this paper we will use the term intensity
to refer to the intensity level of the laughter
perceived by a listener.

This paper revolves around laughter intensity,
how it is perceived and proposes a machine learn-
ing based method to detect it.

This paper is organized as follows : Section 2
gives details on the intensity data collection pro-
cess, Section 3 provides an analysis of the col-
lected data, Section 4 presents a method for laugh-
ter intensity level estimation and the experiments
leading to it. Finally, Section 5 concludes the pa-
per and give future work perspectives.

2 Online perception tests

To collect the intensity data, online tests were
conducted. Participants were asked to rate the
intensity of laughs on a 5-point scale ranging
from 0 to 4. Laughs from 3 subjects were eval-
uated in this test. Two subjects (1 male, 1 fe-
male) from the AVLC Database (Urbain et al.,
2010) and one subject (male) from the AVLASYN
Database (Çakmak et al., 2014). A total of 334
laughs were used. The number of laughs from
each of the subjects is given in Table 1.

Due to relevant data availability, the laughs
from the AVLC Database were evaluated only
on the audio while laughs from the AVLASYN
database were evaluated along 3 different modali-
ties; audio only, video only (video without sound)

Table 1: Number of laughs for each subject in the
experiment

AVLC DB (Subject 6) 67
AVLC DB (Subject 14) 65
AVLASYN DB (D4) 202
TOTAL 334

and both together.

In the case of the AVLASYN Database, 7331
ratings were collected from 226 participants (135
males and 91 females from 18 to 77 years old with
an average age of 31.46 and a standard deviation
of 10.23).

Table 2 gives the average number of time each
file has been evaluated in each of the 3 parts.

Table 2: Average number of time each file has
been evaluated in each part of the test

Modality
Average

(std)
Audio only 11.78 (3.47)
Video only 12.03 (3.30)
Audiovisual 11.95 (3.48)

In the case of the AVLC Database, 1505 eval-
uations were collected from 40 participants (32
males and 8 females from 20 to 61 years old with
an average age of 35.38 and a standard deviation
of 10.43). The pipeline followed for the test is the
same as above but it contains only one part which
is the audio only and each participant was asked to
evaluate 40 laughs. Each file has been evaluated
11.40 times on average with a standard deviation
of 2.96.

3 Data Analysis

3.1 Analysis of the perceived intensity in each
specific modality

Our first experiment focuses on the possible
difference between the perceived intensity with
respect to the different modalities in the case of
the AVLASYN Database. If we calculate the
Pearson’s correlation coefficients on the mean
intensity values obtained for each single laugh in
the different modalities that have been tested, we
obtain the following matrix :




Audio V ideo AV

Audio 1.0000 0.9002 0.9654
V ideo 0.9002 1.0000 0.9185
AV 0.9654 0.9185 1.0000



As expected, there is a strong correlation be-
tween the cases. However, we see that the correla-
tion is even stronger between Audio only and Au-
divisual than between Audio only and Video only.
The mean and standard errors of intensity scores
of each part are given in Table 3.

Table 3: Mean and standard errors of intensity
scores for each part

Part Mean (std. err.)
Audio only 1.80 (0.0049)
Video only 2.00 (0.0044)
Audiovisual 1.80 (0.0048)

This suggests that there might be a difference in
the perception of laughter intensity when audio is
not present.

3.1.1 Analysis of variance on modalities
To verify this hypothesis, we have conducted an
ANOVA test with a post-hoc TUKEY Honest
Significant Difference analysis with a confidence
level of 99% between the results to the different
parts (modalities) of the online test. The pairwise
p-values are given below with significant differ-
ences in bold :


Audio V ideo AV

Audio − 0.00 0.18
V ideo 0.00 − 0.00
AV 0.18 0.00 −



The p-values comparison shows that there is
a significant difference between the visual only
modality and the two others. This confirms
our thoughts that the visual modality alone is
perceived differently than the case with audio.
The mean scores suggest that the visual modality
alone tends to be perceived with a higher intensity.
Of course, these conclusions are valid only for
the studied subject and it might be interesting to

investigate the possible generalization of these
findings to any laughs or to specific categories of
laugh.

3.1.2 Analysis of variance on tests order
One other analysis which may also be interesting
is the possible influence of the order in which the
modalities are presented to a given participant. As
explained above, the perception test is such that 3
different types (audio only, visual only and audio-
visual) of files were presented in 3 different suc-
cessive parts of the test and the order was ran-
domly determined when the test begins. To as-
sess whether or not the order in which the differ-
ent parts are presented has an influence on the per-
ceived intensity, we perform a One-way ANOVA
and the TUKEY HSD post-hoc analysis. P-values
are given in Table 4. In this table, for the ease of
read, the sequence are defined by 3 numbers. Each
number referring to a specific modality ; 1 is for
the audio only test, 2 is for the visual only test and
3 is for the audiovisual test. A sequence referred
as 123 therefore means that the underlying order
of the test was audio only then visual only and fi-
nally audiovisual. The main conclusion from this
table is that there is a statistically significant in-
fluence of the order of the tests on the perceived
intensity. It is however hard to find clear patterns
from specific test sequences. It is reasonable to
think that the position of the video only modality
in the test order may have an influence. Indeed, in
that modality, the intensity is perceived differently
as shown in the previous section.

3.2 Analysis of the intensity of each studied
subject

Figure 1 gives the boxplots of the intensity values
for each subject. We can see that the Subject
14 (female) has the median, 25th percentile and
75th percentile clearly lower than the two other
male subjects. The two male subject has similar
medians (2.0 and 1.9) and 25th percentiles (both
1.0). However, the 75th percentile is higher for
Subject 6 (3.06 against 2.64). Maximum and
minimum values are similar for all subject with
Subject 6 slightly higher though.

4 Audio laughter intensity estimation

Among the possible applications of the intensity
information presented in this paper, there is the



Table 4: Pairwise comparison p-values for the dif-
ferent orders in which the test were presented. Sig-
nificant differences with a confidence level of 95%
are given in bold.

Compared Test
Order Pairs

p-values

132-123 0.37
213-123 0.20
231-123 0.77
312-123 1.00
321-123 0.17
213-132 0.00
231-132 0.01
312-132 0.63
321-132 0.00
231-213 0.91
312-213 0.04
321-213 1.00
312-231 0.38
321-231 0.89
321-312 0.03

estimation of the intensity of a given audio laugh-
ter file. It is also important to note that, as shown
in this paper, there is not a statistically significant
difference between the perceived intensity of an
audio only laughter and the same audiovisual
laughter. Therefore, we can estimate the intensity
of a given audiovisual laugh based on the acoustic
information only.

To do this, we propose here to use a Gaussian
Mixture Model (GMM) based approach. First, si-

Figure 1: Boxplots for each studied subject. The
median is given in red inside the boxes, 25th and
75th percentiles are the limits of the main boxes
and the upper and lower tails give the minimum
and maximum values of the distribution.

lences are removed from the input audio laughter
files. Then, a set of features are extracted from
these files and the features that are the most corre-
lated with the output intensity levels are kept. The
selected features are then used to train GMMs with
full covariance matrices. Doing so, we can model
the relationship between the input acoustic fea-
tures and the corresponding intensity levels. The
GMM mapping framework used in this work was
first introduced in 1996 by Stylianou (Stylianou,
1996) for voice conversion. The implementation
used here is the one of Kain (Kain, 2001) also used
in recent work such as (Hueber et al., 2011).

4.1 Feature selection
A set of features are extracted from the audio
files. Some features are scalar values related to the
whole file in the first place while others are contin-
uous features extracted using 10ms windows and
25ms frame shift. The list of extracted features are
as follows :

• Spectrogram

• Acoustic Features listed in Table 5 from (Gi-
annakopoulos and Pikrakis, 2014)

• Fundamental Frenquency (F0) extracted us-
ing Straight (Kawahara, 2006)

Table 5: List of the 36 features from (Gian-
nakopoulos and Pikrakis, 2014)

- Zero Crossing Rate 1 dim
- Energy 1 dim
- Energy Entropy 1 dim
- Spectral Centroid 2 dim
- Spectral Entropy 1 dim
- Spectral flux 1 dim
- Spectral Rolloff 1 dim
- MFCCs 13 dim
- Harmonic Features 2 dim
- Chroma Vector 12 dim
- Spectral Zone 1 dim

Since all these features are continuous features,
we derived the following descriptors related to
the whole file : mean, standard deviation, range,
root mean square and histogram values of each
feature ; the mentioned histogram values are
the number of elements in each of the bins of a
histogram calculated on each continuous feature
by imposing the number of bins to 3. Among



the most correlated features, we mainly find F0
related features, Chroma vector related features,
the mean of the zero-crossing rate and energy
entropy standard deviation.

4.2 Results
We define 4 different cases of training and test-
ing sets as detailed in Table 6. Case 1 is a training
on all the data following a leave-one-out approach.
Cases 2 and 3 are used to assess the performances
when testing on a subject that was not seen at all
in the training. Case 4 is to try if performances are
improved when a few examples of the testing sub-
ject are shown in training. In this table, the avail-
able 3 subjects are named S6 and S14 for subjects
6 and 14 from the AVLC Database and D4 for the
subject from AVLASYN Database. Table 7 gives
the accuracy results for each case. The accuracy
is defined as the number of files for which the in-
tensity estimation error is less than 0.5 (on a scale
going from 0 to 4). The table gives all the accu-
racy values for the cases and sub-cases enumerated
in Table 6. We can see that all the accuracy re-
sults are over 90% except when the testing is done
on the subject S14 (female) for the cases 2 and 3
which correspond to a training on male subjects.
We also see that the accuracy increases when we
add a few examples of the test subject, even more
fore the female subject (see case 4 results).

Table 6: List of train/test sets
TRAIN SET TEST SET

1 - D4+S6+S14 - leave-one-out

2 - D4
- S6
- S14

3
- D4+S6
- D4+S14

- S14
- S6

4

- D4+S6+10 files from
S14
- D4+S14+10 files
from S6

- Remaining of
S14
- Remaining of
S6

Table 7: Estimation results for each case
CASE 1 2 3 4
ACC.
(S6)

96.40%
94.03% 91.04% 92.98%

ACC.
(S14) 81.54% 86.15% 90.91%

Table 8: CASE 1 : Best classification results with
ε = 0.5 (first row) and ε = 0 (second row)

GMM TREE DIS KNN NN SVM

96.4%
(46)

86.3%
(12)

91.6%
(44)

77.2%
(51)

88.6%
(81)

92.9%
(43)

83.8%
(41)

39.5%
(10)

48.5%
(32)

39.8%
(51)

54.5%
(90)

48.0%
(51)

4.3 GMM vs other machine learning methods

In this section we show the reason why the GMM
method was chosen by presenting the results of
our comparison with other methods. The same
training and testing settings as in the previous sec-
tions were used here to the binary classification
decision tree (TREE), discriminant analysis (DIS),
K-Nearest Neighbor (KNN), single layer neural
network with 9 neurons (with softmax activation
functions and trained with gradient descent) and
Support Vector Machine (SVM). To evaluate the
classification, we consider that a file is correctly
classified with a tolerance (ε) of 0.5. This means
that if the classification error is at most 0.5 (e.g.
2.5 instead of 2) it is considered as a correct clas-
sification. Test were also made with no tolerance
in CASE 1 for the sake of comparison. Table 8
shows that GMM has a clear advantage in this re-
spect.

The results for CASE 1 are given in Figure 2
and Table 8. We can see that the best method is
clearly the GMM mapping followed by SVM and
Discriminant Analysis.

Figure 2: Results for CASE 1 when using the first
n most correlated features for training (n ∈ [1 :
100]) and tolerance 0.5

5 CONCLUSION AND FUTURE
WORKS

In this paper, we studied the intensity level
estimation of an audio laughter file from acoustic
features. Results show that the estimation is possi-
ble. Among the compared methods, GMM-based
mapping appears to be the best in all the tested
cases. This method also offers good perspectives
on the estimation of intensity values not limited to
a finite number of classes. Indeed, GMMs can be



used for mapping on decimal values.

In future work we intend to collect to bigger
a database of annotated data in order to lever-
age the power of deep learning. We also intend
to link this laughter intensity estimation system
with other task such as laughter detection, laugh-
ter type classification. This latter will contribute to
improve context understanding in intelligent sys-
tems.

6 Conclusion

This work was focused on laughter intensity. We
tried to understand more about its perception
by mainly studying the effect of the modality in
the perception process. For this we collected a
database of laughs, annotated the intensity level
of each laugh via online perception tests and
analysed them. The results suggested that the
audio cue might have the biggest influence on the
perception. But further studies are required to
confirm it. We compared several machine learning
based systems to estimate laughter intensity and
showed that the GMMs outperformed the other
methods considered. In the future, we intend to
increase our database which would allow the use
of more advanced techniques such as recurrent
and convolutional neural networks.
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