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Algorithms and Comparisons of Nonnegative
Matrix Factorizations with Volume Regularization

for Hyperspectral Unmixing
Andersen Man Shun Ang, Member, IEEE, and Nicolas Gillis, Member, IEEE

Abstract—In this work, we consider nonnegative matrix fac-
torization (NMF) with a regularization that promotes small
volume of the convex hull spanned by the basis matrix. We
present highly efficient algorithms for three different volume
regularizers, and compare them on endmember recovery in
hyperspectral unmixing. The NMF algorithms developed in this
work are shown to outperform the state-of-the-art volume-
regularized NMF methods, and produce meaningful decompo-
sitions on real-world hyperspectral images in situations where
endmembers are highly mixed (no pure pixels). Furthermore,
our extensive numerical experiments show that when the data
is highly separable, meaning that there are data points close
to the true endmembers, and there are a few endmembers, the
regularizer based on the determinant of the Gramian produces
the best results in most cases. For data that is less separable
and/or contains more endmembers, the regularizer based on the
logarithm of the determinant of the Gramian performs best in
general.

Index Terms—nonnegative matrix factorization, volume regu-
larization, hyperspectral unmixing, blind source separation

I. INTRODUCTION

NOn-negative Matrix Factorization (NMF) is the following
problem: given a matrix X ∈ IRm×n and an integer r,

find two matrices W ∈ IRm×r+ and H ∈ IRr×n+ such that

(NMF) : X ∼= WH. (1)

NMF has many applications; see, e.g., [4], [9], [6] and the
references therein. In this work, we focus on blind hyperspec-
tral unmixing (HU) [2] that aims at recovering the spectral
signatures of the pure materials (called endmembers, repre-
sented as the columns of W) and their abundances in each
pixel (represented as the columns of H) within a hyperspectral
image X where each column of X is the spectral signature
of a pixel; see Section II for more details. In order to tackle
HU, we will use volume-regularized NMF (VRNMF) which
can be formulated as follows

min
W,H

f(W,H; X) + λV (W)

subject to W ≥ 0, H ≥ 0, H>1r ≤ 1n, (2)

where 1n denotes the vector of ones of length n and W ≥ 0
indicates that W is component-wise non-negative. The reg-
ularization parameter λ ≥ 0 controls the trade off between
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the data fitting term f(W,H; X) and the volume regularizer
V (W). The constraint H>1r ≤ 1n is a relaxation of the
sum-to-one constraint H>1r = 1n which requires that the
abundances of the endmembers in each pixel sum to one.
Because VRNMF minimizes the volume of W, the constraint
H>1r ≤ 1n will tend to be active for most pixels. It has
been shown previously that this relaxation works better in
practice as it allows to take into account for example different
illumination conditions within the hyperspectral image; see
for example [8]. The reason to consider VRNMF has a long
history in blind HU and is motivated by geometric insights:
the columns of W (the endmembers) are the vertices of a
convex hull that contains the data points. In the absence of
pure pixels, that is, pixels containing a single endmember,
minimizing the volume of the columns of W allows to recover
these endmemebers under mild conditions; see Figure 1 for an
illustation, and Section II for more details.

In this paper, we will consider the most widely used data
fitting term, namely the least squares error f(W,H; X) =
1
2‖X − WH‖2F = 1

2

∑
i,j(X − WH)2

ij . For the volume
regularizer, we will consider the following three functions

Detminant: Vdet(W) =
1

2
det(W>W),

Log-det: Vlogdet(W) =
1

2
log det(W>W + δIr),

Nuclear: V∗(W) = ‖W‖∗,

where det(A) is the determinant of matrix A, Ir is identity
matrix of size r, δ > 0 is a constant to lower bound Vlogdet, and
‖A‖∗ is the nuclear norm of A, that is, the sum of the singular
values of A. VRNMF aims at fitting the data points within the
convex hull of the columns of W which should have a small
volume. The reason to consider the functions Vdet and Vlogdet is
that

√
det(W>W)/r! is the volume of the convex hull of the

columns of W and the origin. Hence, Vdet is, up to a constant
multiplicative factor, the square of that volume, while Vdet is
its logarithm. Let us write Vdet and Vlogdet as functions of the
singular values of W, denoted σi(W) for 1 ≤ i ≤ r:

Vdet(W) =
1

2

r∏
i=1

σ2
i (W),

and

Vlogdet(W) =

r∑
i=1

log(σ2
i (W) + δ).
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Both functions Vdet and Vlogdet are non-decreasing functions of
the singular values of W. This motivates us to consider

V∗(W) = ‖W‖∗ =

r∑
i=1

σi(W).

The reason is that this regularizer is also a non-decreasing
function of the singular values of W, and has been widely
used in machine learning for several tasks such as matrix
completion [20]. However, to the best of our knowledge, it
has never been used in the context of VRNMF and it would
be interesting to know how it compares to the standard choices
Vdet and Vlogdet. As we will see, this regularizer also performs
well in practice, although not as well as Vdet and Vlogdet.

The approach of using a volume regularization with NMF
has a long history and has been considered for example in [15],
[21], [24], [7], [1], [6], [13]. The key differences among these
works are in the choice of V . Almost all previous works have
focused on the two functions Vdet and Vlogdet. We believe it is
important to design efficient algorithms for these regularizes,
and to compare them on solving blind HU on highly mixed
hyperspectral images in order to know which one performs
better in which situations. These are the main goals of this
paper.

The contribution of this work is twofold: the first part of this
work is algorithm design, in which we implement and enhance
the algorithms to solve VRNMF by using block coordinate
descent and optimal first-order methods. Experimental results
will show that our algorithms perform better than the current
state-of-the-art volume-regularization based method from [7].
The second part of this work is focused on model comparisons.
We will answer the question “which volume function is better
suited for VRNMF to tackle HU?”. We do so by performing
extensive numerical comparisons of VRNMF with different
volume functions under various settings. The summary of the
findings are as follows:

• For data that is highly separable, meaning that there
exists data points close to the true endmembers, and in
the presence of a few endmemebers, VRNMF with Vdet
produces the best results in most cases.

• For data that is less separable or in the presence of a large
number of endmemebers, VRNMF with Vlogdet performs
best in general.

Finally, as a proof of concept, we showcase the ability of
VRNMF to produces a meaningful unmixing on hyperspectral
images using real-world data.

This work is the continuation of the conference paper [1].
The additional contributions of this extended version are the
following:

• We base our numerical experiments only on real end-
members, as opposed to randomly generated ones in [1].

• We use a fine grid search by bisection to tune the
regularization parameter λ.

• We implement VRNMF with the nuclear norm regular-
izer.

• We have improved our implementations; they are avail-
able from https://angms.science/research.html.

• We compare our implementation of VRNMF with
the state-of-the-art volume-regularization algorithm
RVolMin [7].

The remaining of this paper is organized as follows. In
Section II, we give a more complete introduction to HU,
followed by the discussion of the pure-pixel assumption also
known as the separability assumption. This motivates the use
of VRNMF when this assumption is violated. Section III gives
the details about the enhancement and implementation of the
algorithms for VRNMF. Section IV presents the experiments
on VRNMF and Section V concludes the paper.

II. BRIEF REVIEW ON HU

We now give a brief review on HU; see [2], [14] and the
references therein for more details. The goal of blind HU is
to study the composition and the distribution of materials in
a given scene being imaged. A scene usually consists of a
few fundamental types of materials called endmembers, and
the first goal of blind HU is to obtain the information of
these endmembers from the observed hyperspectral image
(HSI). HSI are images captured by sensors over different
wavelengths in the electromagnetic spectrum. These images
form a hyperspectral data cube of size m× col× row, where
m is the number of spectral bands, and “col” and “row”
are the dimensions of the images, with n = col × row.
The m-by-n data matrix X is obtained by stacking the m-
dimensional spectral signature of the pixels as the columns of
X. Given the observed data matrix X, the goal of blind HU
is to (i) identify the number of endmembers r, (ii) obtain the
spectral signature of these endmembers, (iii) identify which
pixel contains which endmember and in which proportion.
This work does not consider problem (i) by assuming r is
known. In fact, model order selection is a topic of research
on its own; see, e.g., [2] and the references therein. The focus
of this work is (ii): recover the (ground truth) endmember
spectral matrix, denoted by Wtrue, from the observed data X.
In fact, assuming (ii) is solved, (iii) can be tackled by solving a
(convex) nonnegative least squares problem [2], [14]. The most
widely used model for blind HU is the linear mixing model for
which a hidden low-rank linear mixing structure for the data,
namely X = WtrueHtrue + N. The data X is hence generated
by Wtrue (the basis, where each column of Wtrue is the spectral
signature of an endmember), weighted by the matrix Htrue

plus some noise N. The matrix H in the HU literature is
also called the abundance matrix and encodes how much each
endmember (columns of Wtrue) is present in each pixel of
the image: Hk,j is the abundance of the kth endmember in
the jth pixel. There are two physical constraints in HU: the
non-negativity constraints W ≥ 0 (spectral signatures are
nonnegative), and the nonnegativity H ≥ 0 and sum-to-one
constraint H>1r = 1n (the abundances in each pixel are
nonnegative and sum to one). In this paper, we consider a
more general model, namely using H>1r ≤ 1n, that allows
to take into account different intensities of illumination among
the pixels of the image. Finally, NMF is the right model to
perform blind HU under the linear mixing model, that is, to
learn the endmember matrix W and the abundance matrix H
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from the data matrix X. However, NMF is a difficult problem
in general [22].

A. Pure-pixel assumption

Separable NMF (SNMF) is able to solve blind HU when the
data satisfies the separability condition, which is also known as
the pure-pixel assumption in HU. It means the data X contains
at least r pure pixels where each pure pixel contains only one
endmember, and there is a one-to-one correspondence between
the r pure pixels and the r endmembers. Mathematically,
separability changes the NMF model (1) to

(SNMF) : X ∼= W [Ir H′]Πn︸ ︷︷ ︸
H

= [X(:,A) X(:,A)H′]Πn,

where Πn is a n-by-n permutation matrix, and H′ ∈
IRr×(n−r)

+ has its columns with l1 norm smaller than one. In
SNMF, we have that W = X(:,A), that is, the index set A
contains the indices of the pure pixels. Since all columns of
H′ have l1 norm smaller than one, X(:,A) and the origin are
the r extreme points of the data cloud X, that is, the convex
hull of X(:,A) and the origin encapsulates all the other points
in X. Hence, SNMF is geometrically a vertex identification
problem: given X, locate the extreme points W = X(:,A)
which will be exactly Wtrue if the separability condition holds
and no noise is present. Many algorithms exist to perform this
task (referred to as pure-pixel search algorithms), e.g., vertex
component analysis (VCA) [16] or the successive projection
algorithm (SPA) [11]; see [2], [14] and the references therein
for more algorithms and discussions. In this paper, we will
compare VRNMF to SPA, as SPA is a state-of-the-art provably
robust pure-pixel search algorithm.

However, when the separability condition does not hold,
pure-pixel search algorithms fail. In order to quantify
how much separability is violated, we introduce the non-
separability parameter p ∈ (0, 1]r. First, note that separability
holds if and only if each row of H contains at least one entry
equal to one, that is, ‖hj‖∞ = 1 for j ∈ [r], where hj denotes
the jth row of H and [r] = {1, 2, . . . , r}. Therefore, to break
the separability condition, we need ‖hj‖ ≤ pj < 1 for some
j. Figure 1 gives an example with r = 4. Hence, having
‖hj‖ ≤ pj means that the maximum abundance of the jth
endmember in all pixels is at most pj , which sets a minimal
amount of separation between the data points (the black dots
in Figure 1) to the vertex wj (the black stars). In other words,
pj controls the gap between {xi}i∈[n] and wj , where xi is the
ith data point (ith column of X). Note that the entries of p
can be different in general meaning that we have asymmetric
non-separability. For example, in Figure 1, data points are
closer to vertex 1 than vertex 4. In the absence of pure pixels,
that is, pj < 1 for some j, it has been proved that, under
mild conditions, minimizing the volume of the convex hull of
the columns of W allows to recover the endmembers. These
conditions require that the data points are well spread within
the convex hull spanned by the columns of W; see [6] for a
recent survey on the topic.

Note that in Figure 1, the reconstructions given by SPA [11]
(green vertices) and RVolMin [7] (deep blue vertices, a state-
of-the-art minimum-volume NMF algorithm) are far away
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Fig. 1. A toy example with (m,n, r) = (100, 3000, 4). The plot shows
the projection of data points (xi, the black dots) in two dimensions using
PCA. This data set was generated using p = [0.9, 0.8, 0.7, 0.6], meaning the
maximum abundance of each ground truth vertex (Wtrue, the black stars) in
any pixel is at most 90% for vertex 1, 80% for vertex 2, 70% for vertex 3,
and 60% for vertex 4.

from the ground truth. VRNMF with Vdet (cyan vertices) pro-
duces a perfect recovery of Wtrue. The next section describes
how we solve the VRNMF minimization problem to obtain
such results.

III. SOLVING VRNMF

In this section, we describe how to solve (2). We use the
framework of block coordinate descent (BCD) by solving
the subproblems on W and H separately in an alternating
scheme, as done in most NMF works [9]. Let us start with the
subproblem for H.

A. Subproblem for H

Splitting H into columns yields n independent problems:
for 1 ≤ j ≤ n, solve

min
hj∈∆

1

2
‖xj −Whj‖22, ∆ = {h ∈ IRr+|h>1r ≤ 1}, (3)

where hj is the jth column of H and ∆ is the r-dimensional
unit simplex that encodes the non-negativity and sum-to-one
constraints in (2). Assuming rank(W) = r which is a standard
assumption, this least squares problem over the unit simplex
is a convex problem with strongly convex objective function.
We use the accelerated projected gradient (APG) method from
Nesterov [17] which requires O

(√
κ log 1

ε

)
iterations to reach

an ε-accurate solution, where κ is the condition number of
W>W which is the Hessian of the objective function in (3).
The convergence rate of APG is optimal as no other first-order
method can have a faster convergence rate [17]. We defer the
explanation of the acceleration scheme to section III-C. To
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compute the projection onto ∆, we use the implementation
from [8] requiring O(r log r) operations, and which uses the
fact that the projection can be written as P∆(h) = [h− l1r]+
where l is a Lagrangian multiplier. Since r is small (usually
r ≤ 20), this implementation is numerically as good as the
optimal method [5] with complexity O(r).

In summary, we solve (3) using an optimal first-order
method. Note that (3) is parallelizable, we can solve the n
problems (3) in parallel.

B. Subproblem for W with Vdet

We follow the idea from [24] and perform a block coordi-
nate descent method on the columns wi of W (1 ≤ i ≤ r).
We have

‖X−WH‖2F = ‖hi‖22‖wi‖22 − 2〈Xih
i>,wi〉+ c, (4)

det(W>W) = γiw
>
i QiQ

>
i wi. (5)

In (4), Xi = X−
∑
j 6=i wjh

j and c is a constant independent
of wi. In (5), γi = det(W>

i Wi) and Qi is the orthonormal
basis of the null space of W>

i , where Wi is W without the
column wi; see [24, Appendix] for more details. Using (4)
and (5), we obtain the following problem for each column of
W:

min
wi≥0

1

2
w>i
(
‖hi‖22Im + γiQiQ

>
i

)
wi − 〈Xih

i>,wi〉.

Unlike the problem on h, here the objective function in wi

depends on the other columns of W. We solve this quadratic
program with nonnegativity constraints using APG, which is
faster than the standard quadratic programming algorithms
used in [24].

C. Subproblem for W with Vlogdet

To solve for Vlogdet, we use majorization minimization,
similarly as in [7]. First we have

(Lemma 2, [12]) log det(W>W + δIr) ≤ ‖W‖2D + c, (6)

where ‖W‖D = ‖D 1
2 W>‖F is a weighted norm with D =

(Y>Y + δIr)
−1 � 0 for any matrix Y. This expression (6)

comes from performing the first-order Taylor expansion of the
concave function log det(.). The inequality (6) holds when
Y = W. In other words, we minimize the tight convex upper
bound on the non-convex logdet function

min
Wt≥0

Φ(W) =
1

2
〈Wt>Wt,HH>〉−〈X,WtH〉+λ

2
‖Wt‖2Dt ,

(7)

where Dt =
(
Wt−1>Wt−1 + δIr

)−1

. To solve (7), we again
use APG. However, we embed the following two acceleration
strategies to APG:
• The adaptive restart heuristic from [18]. The APG update

of W at iteration t can be expressed as

Wt+1 = [Wt − αt∇Φ(Wt + βt∆t) + βt∆t]+,

where α is the step size, ∇Φ is the gradient of the
objective function and [ · ]+ is the projection onto the
nonnegative orthant. Here βt∆t is the momentum term

added in Nesterov’s acceleration that extrapolates Wt

along the direction ∆t = Wt −Wt−1 and βt ∈ [0, 1] is
a parameter with β0 = 0. The extrapolation may increase
the value of Φ, and when this happens, we “restart” the
APG scheme by reinitializing βt, which reduces the APG
back to a standard projected gradient step that decreases
the value of Φ.

• The general acceleration framework for NMF algroithms
from [10]. There are several terms independent of W,
in particular HH> and XH>, in the gradient term
and are the main computational cost. The idea has two
components: (i) pre-compute the terms independent of W
outside the update to avoid repeated computation of the
same terms, and (ii) perform the update on W multiple
times to reuse these precomputed terms (in most standard
NMF algorithms, W is only updated once before the
update of H).

Finally, due to space limit, we do not present another ma-
jorization for logdet which is based on eigenvalue inequality
proposed in the conference work [1]. In short, that approach
is another relaxation of (7) that unlocks the coupling between
columns of W so that column-wise update similar to the one
mentioned in section III-B can be used.

D. Subproblem for W with V∗
The nuclear norm regularized VRNMF problem on W is

min
W≥0

1

2
〈W>W,HH>〉 − 〈X,WH〉+ λ‖W‖∗. (8)

Ignoring for now the non-negativity constraints, we solve the
resulting problem by proximal gradient which updates W as
follows:

Wt+ 2
3 = proxθ‖ ‖∗

{
Wt+ 1

3

}
, Wt+ 1

3 := Wt − α∇f(Wt),

where α is step size and ∇f is the gradient of
1
2 〈W

>W,HH>〉 − 〈X,WH〉. For the step size, we use
α = 1/L where L = ‖HH>‖2 is the Lipschitz constant of
the gradient. The proximal operator of ‖ · ‖∗ with step size
θ has the closed-form expression given by the singular value
thresholding (SVT) operator [3], we have

Wt+ 2
3 = SVTθ

{
Wt+ 1

3

}
:= U[Σ− θI]+V>,

where UΣV> is the SVD of Wt+ 1
3 . Finally, to take the non-

negativity constraint into account, we simply put a nonnegative
projection after SVT and set Wt+1 = [Wt+ 2

3 ]+.

E. Summary of the algorithms

Algorithm 1 shows the general framework for solving
VRNMF. Our implementations are faster than previous works
because of the use of Nesterov’s acceleration [17], adaptive
restart [18] and the use of the acceleration strategy for NMF
from [10]. Moreover, our update of W in VRNMF using V∗
is new.

We refer to the algorithm using Vdet, Vlogdet and V∗ as Det,
logdet and Nuclear, respectively.
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Algorithm 1 VRNMF
Input: X ∈ IRm×n, an integer r, λ ≥ 0
Output: W ∈ IRm×r+ , H ∈ IRr×n+ for problem (2).

Initialize (W0,H0) by SPA [11]
for t = 1, 2, . . . do

Update of W
Compute and store HH> and XH>

if V = Vdet then
Update W as stated in section III-B.

else if V = Vlogdet then
Update W as stated in section III-C.
Update D = (W>W + δIr)

−1.
else if V = V∗ then

Update W as stated in section III-D.
end if
Update of H by APG [8].

end for

Iterations (t)
20 40 60 80 100

‖W
t
−
W

t−
1
‖/
‖W

t ‖

10−4

10−3

10−2

Det

logdet

Nuclear

Fig. 2. The typical convergence curve of the algorithms Det, logdet and
Nuclear.

We end this section by briefly mentioning the convergence
of these algorithms. VRNMF is a non-convex problem and
it can be shown that the sequence {Wt,Ht}t≥1 produced
by Algorithm 1 converges to a first-order stationary point:
For Det, the convergence comes from the standard result of
coordinate descent [23]. For logdet, which involves the use
of the upper bound Φ′, convergence comes from the theory of
[19]. For Nuclear, convergence result of proximal gradient
applies [3]. Figure 2 shows a typical convergence curve of the
algorithms.

IV. EXPERIMENTS

In this section we compare the VRNMF models on solving
HU. We first describe the general experimental setting in
section IV-A and then report the experimental results on
recovering the ground truth Wtrue under different asymmetric
non-separability and different noise levels in the subsequent
sub-sections. Finally we present results on two real-world data
sets. All the experiments are run with MATLAB (v.2015a) on a
laptop with 2.4GHz CPU and 16GB RAM. The codes available
from https://angms.science/research.html.

A. Settings

a) Data generation: For synthetic experiments, we gen-
erate the observed data matrix as X = [Xclean + N]+ with
white Gaussian noise N ∈ IRm×n with zero mean and variance
σ ≥ 0. We generate Xclean = WtrueHtrue, where Wtrue comes
from several datasets available from http://lesun.weebly.com/
hyperspectral-data-set.html [25] (unlike the conference version
[1] that generated Wtrue at random); see Figure 3. We generate
each column of H ∈ IRr×n+ using the Dirichlet distribution
of parameter 0.1. If p = 1r, that is, separability condition
holds, we take H as Htrue. Otherwise, we remove the columns
of H with at least one element in the jth coordinate that
exceeds the value pj , and resample again until H satisfies
the condition ‖hj‖∞ ≤ pj for all j. In this paper, we will use
pj ∈ (0.5, 0.99] for all j. In all the experiments, we set the
number of data points n = 1000 and the maximum number
of iterations to 300.

For experiments on real data, we take the real data as X,
without any preliminary dimension reduction, and without any
pre-processing to suppress noise or to remove outliers.

b) Parameters of the algorithms: We will compare our
three proposed algorithms Det, logdet and Nuclear with
SPA [11] and RVolMin which is a state-of-the-art volume-
regularized method [7]. For RVolMin, we use the same data
fitting term (namely, the Frobenius norm), the same number
of iterations, the same parameter search scheme and the same
initialization as for our algorithms.

Given an observed data matrix X, all VRNMF algorithms
have two main parameters: r and λ. They also require an
initialization (Wini,Hini). We assume r is known. We generate
Wini from X using SPA [11], and generate Hini using the
method described in Section III-A. The regularization param-
eter λ should usually be chosen small. In fact, a large λ forces
the vertices of the convex hull of W to be very close to
each other, making W ill-conditioned and/or rank-deficient. In
particular, for VRNMF with V∗, the SVT operator set singular
values smaller than λ to zero, so a large λ makes W rank-
deficient. The following describes how we tune λ. The goal
here is to tune λ so that each algorithm performs as best as
possible for the considered problems. To achieve this goal, we

use the ground truth Wtrue. We set λ = λ̃
f(Wini,Hini)

|V (Wini)|
, where

(Wini,Hini) are the initial solutions obtained by SPA, and λ̃ is
a tuning variable within the search interval I0 = [10−6, 0.5].
We perform grid search by bisection in a greedy way to tune
λ̃:

• (step-1) Take λ̃a = 10−6, λ̃b = 0.5 initially.
• (step 2) Run the algorithm with λ̃a, λ̃b and λ̃c where λ̃c =

0.5(λ̃a+ λ̃b). Denote the performance of the solution W
produced under a specific λ̃ as MRSA(λ̃), where MRSA
will be defined in the next paragraph.

• (step-3) Split the search interval I0 = [λ̃a,λ̃b] into two
intervals I1

0 = [λ̃a, λ̃c] and I2
0 = [λ̃c, λ̃b]. For each

interval there are two MRSA values, we let the MRSA
value of an interval be the sum of these values.

• (step-4) We repeat step-1 to step-3 on the interval with the
lowest MRSA value. That is, at iteration k, we shrink the
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(a) Samson (b) Jasper Ridge (Jasper) (c) Urban (d) Cuprite

Fig. 3. Top row The datasets from [25]. Bottom subplots The endmembers Wtrue of the datasets. Best viewed in color.

search interval by half by defining the new search interval
Ik+1 as

Ik+1 ← min
I

{
MRSA(I1

k),MRSA(I2
k)
}
.

• If a draw happens in step-4, we perform two bisections
on each of the interval I1

k and I2
k and set the next interval

to be the one with the smallest MRSA.
• We repeat this process (step-1 to step-4) at most 20 times,

or if the improvement from one iteration to the next is

negligible, namely if∣∣∣MRSA
(
λ̃k+1

)
−MRSA

(
λ̃k

)∣∣∣ ≤ 10−4.

Note that such greedy bisection search does not guarantee
that λ̃k will converge to the best value, that is, the value that
corresponds to the lowest MRSA. However, we have observed
in extensive numerical experiments the effectiveness of this
scheme, which will be illustrated in IV-B.

c) Performance metric: We measure the quality of a
solution W produced by VRNMF algorithms using the mean
removed spectral angle (MRSA) between W and Wtrue.
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TABLE I
COMPARISON OF MRSA VALUES OF THE BISECTION AND THE GRID

SEARCH TO OBTAIN λb AND λ∗ , RESPECTIVELY. THE SECOND COLUMN IS
THE NUMBER OF ITERATIONS NEEDED FOR THE BISECTION SEARCH TO

TERMINATE.

p
MRSA(λb)−MRSA(λ∗)∣∣MRSA(λ∗)

∣∣ # of iterations

0.93 -0.0016±0.0002 2±0.00
0.89 -0.0143±0.0023 6.4±0.52
0.86 -0.0235±0.0029 7.9±0.32
0.83 -0.0429±0.0032 9±0.00
0.79 -0.0815±0.0089 11.1±0.32
0.76 -0.0419±0.0032 10.5±0.53

MRSA between two vectors x,y ∈ IRm \ {0m} is defined
as

100

π
cos−1

(
〈x− x̄,y − ȳ〉
‖x− x̄‖2‖y − ȳ‖2

)
∈ [0, 100]. (9)

MRSA gives a better measurement than relative percentage
error as it purely depends on the shapes of x and y, where the
effects of shifts and scaling are removed. A low MRSA value
means a good matching between x and y. We measure the
performance of algorithms by calculating the MRSA between
{wi}i∈[r] and {wtrue

i }i∈[r], which is defined as the mean of
MRSA between each vector pair {wi,w

true
i }, such value is

within [0, 100].

B. Effectiveness of the bisection search on λ

In this section, we illustrate the effectiveness of our tuning
strategy for λ. We perform experiments on the synthetic
dataset where Wtrue comes from the Samson dataset with r =
3 as follows. We consider 6 different values of the symmetric
non-separability vector p = [p1, p2, p3] where p1 = p2 = p3

are selected from the set {0.93, 0.89, 0.86, 0.83, 0.79, 0.76}.
We run Det with two parameter tuning schemes: (1) the
bisection search mentioned in IV-A, and (2) a brute-force grid
search: we run Det with all 100 equally spaced steps values
of λ̃ in the interval I0 = [10−6, 0.5].

For each value of p, 10 data sets are generated randomly.
Let us denote λb the value of λ obtained by the bisection
search and λ∗ by the grid search. Table I shows the re-
sults between comparing the bisection search and the grid

search displayed as
MRSA(λb)−MRSA(λ∗)∣∣MRSA(λ∗)

∣∣ in the format

of (mean±std) and the average number of iterations performed
by the bisection search to reach λb. From Table I, we make
the following two interesting observations:

1) As the purity goes down, more bisections are need to
identify the best λ. This was expected since, for a high
purity, the initialization (SPA) provides a good initial
solution.

2) In all 50 cases, the value of λb lead to a slightly smaller
MRSA value than λ∗ while requiring less computations.
This illustrates the fact that the bisection is able to
identify the right value of λ and to refine the search
around that value with more precision than an expensive
exhaustive search.

p1

0.95 0.9 0.85 0.8 0.75
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Det logdet Nuclear RVolMin MVC NMF

Fig. 4. MRSA curves of Det, logdet, Nuclear, RVolMin and MVC
across different values of p1 (p2 = 0.79, p3 = 0.69) for synthetic Samson
data sets. Best viewed in color.

C. Comparison with MVC-NMF

Minimum volume constrained nonnegative matrix factor-
ization (MVC-NMF) is one of the first minimum-volume
NMF algorithm1 [15]. Let us run a small experiment to show
that MVC-NMF does not compete with Det, logdet and
Nuclear and RVolMin [7]. Similarly as in the previous
section, we use synthetic datasets where Wtrue comes from the
Samson dataset with r = 3. However, we use more difficult
scenarios using the non-separability vectors p = [p1, p2, p3]
where p1 is selected from {0.95, 0.9, 0.85, 0.8, 0.75}, p2 =
0.79, and p3 = 0.69. For each value of p, 10 data sets are
generated randomly. All algorithms take the same initialization
(SPA), the same number of iterations (100) and the regulariza-
tion parameter λ is tuned using the bisection search. Figure 4
shows that MVC-NMF produces significantly worse results than
the four other algorithms, hence will not be considered in the
extensive numerical experiments the subsequent comparisons.
It is difficult to pinpoint the reasons of the poor results of
MVC-NMF; we see at least two of them: (1) MVC-NM uses
another regularizer which is the squared volume of the convex
hull of the columns of W without the origin, and (2) it does
not use optimal optimization methods (for example, it uses a
fixed step size of 0.001).

D. Using the Samson dataset with r = 3

Now we run more comprehensive experiments on the
synthetic dataset where Wtrue comes from the Samson
data set with r = 3 as follows. We perform 10 ×
10 × 10 = 1000 experiments where the data in each
experiment is generated using the non-separability vector
p = [p1, p2, p3], where pi is selected from the set IP =
{0.99, 0.96, 0.93, 0.89, 0.86, 0.83, 0.79, 0.76, 0.73, 0.69}. Fig-
ure 5 shows the results in form of MRSA cubes for the
algorithms SPA, Det, logdet, Nuclear and RVolMin,
where each pixel in the cube is the result (in MRSA) over
one trial. We then construct the recovery curves by counting
the number of cases (pixels) in the cube that the MRSA value

1The code available from https://github.com/aicip/MVCNMF
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is less than a threshold; see Figure 6. In general, the results
in Figures 5 and 6 show that
• All VRNMF algorithms perform better than the state-of-

the-art SNMF algorithm SPA, as the MRSA cubes of
VRNMF have a wider blue region (lower MRSA) and
their recovery curves in Figure 6 dominates that of SPA.

• When the data is highly non-separable (low pis), VRNMF
algorithms perform worse than SPA. In fact, the region
of the cube corresponding to highly non-separable data
in SPA is not as red as for the VRNMF approaches.
The reason is that SPA always extract points from the
data could hence these points are never too far from
the vertices. However, when the data is highly non-
separable, VRNMF may generate points further away
than the vertices.

• Compared with RVolMin, logdet and Nuclear are
consistently better, while Det performs similarly.

• logdet performs better than Det and Nuclear for
highly non-separable data, as its red region is much more
concentrated around the highly non-separable corner of
the cube.

In terms of computational time, Det takes 2.1±0.2 seconds,
logdet takes 1.2±0.1 seconds, Nuclear takes 1.3±0.2
seconds, and RVolMin takes 2.1±0.0 seconds. As expected,
due to the inner loop and the computation of Qi, Det is slower
than the other algorithms.

E. Using the Jasper dataset with r = 4

In Figure 7, we perform the same experiment as in the
previous section on the dataset Jasper with r = 4, where
we fix p4 = 0.75. Furthermore, Table II shows the result in
MRSA on the dataset Jasper across three sets of predefined
p values (highly separable with phigh = [0.9, 0.8, 0.7, 0.6],
less separable with pmid = [0.8, 0.7, 0.6, 0.51], and even less
separable with plow = [0.7, 0.65, 0.55, 0.51]) and three noise
levels (σ = 0.001, 0.005 and 0.01). Each item in the table (in
mean±std) is the average over 20 trails.

We observe the following
• Figure 7 show that VRNMF algorithms are competitive

with the state-of-the-art minimum volume based method
RVolMin, where Det performs slightly better than
RVolMin while logdet is significantly better.

• Tables II shows that all the methods improve the fitting
accuracy of SPA, with Det has the best performance in
all cases and RVolMin has the worst performances in
all cases.

In terms of computational time, Det takes 6.62±0.5 sec-
onds, logdet takes 2.22±0.2 seconds, Nuclear takes
1.45±0.0 seconds, and RVolMin takes 2.7±0.0 seconds.
Hence, for the same reasons as in the previous experiment,
Det is slower.

F. Using the Urban dataset with r = 6

Table III shows the result of the same experiment
as in the previous section performed with the Urban
dataset. Here phigh = [0.9, 0.75, 0.7, 0.65, 0.8, 0.85],

Fig. 5. MRSA cubes for the different NMF algorithms viewed from two
different angles, for the synthetic Samson data sets with r = 3. All the cubes
share the same color scheme. In general, MRSA cubes for VRNMF have a
wider blue region than that of SPA. However, when the vector p has a low
value, VRNMF gives less accurate fitting than SPA (the red regions). VRNMF
with logdet provides the best results (widest dark blue region). Best viewed
in color.

pmid = [0.8, 0.7, 0.65, 0.6, 0.75, 0.8], and plow =
[0.7, 0.6, 0.55, 0.51, 0.65, 0.7]. The noise levels are
σ = 0.001, 0.005 and 0.01.

The results show that

• All the methods improve the fitting accuracy of SPA.
• Det has the best performance in most cases, with
logdet as the first-runner up.

• Det performs well for phigh and pmid. With plow, it is
not as good as logdet.

• Nuclear and RVolMin have the worst performances
in all cases.

• The computational times are: Det 7.5±0.2, logdet
1.8±0.1, Nuclear 1.5±0.0 and RVolMin 2.3±0.0,
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Fig. 6. Curves of recovery corresponding to Figure 5 for the synthetic Samson
data sets with r = 3.
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Fig. 7. Curves of recovery corresponds for the dataset Jasper with r = 4.
Same experimental set up as the one in Figure 6, but where p4 fixed at 0.75.

TABLE II
MRSA VALUES FOR THE JASPER DATASET WITH r = 4

Across different p (σ = 0.001)

Method phigh pmid plow

SPA 5.40±0.60 12.62±0.18 20.76±0.23
Det 0.41±0.08 0.40±0.06 10.99±1.68

logdet 0.48±0.54 3.03±0.28 12.57±1.49
Nuclear 0.64±0.07 2.12±0.13 19.90±1.40
RVolMin 1.04±0.38 4.99±0.22 13.67±2.99

Across different noise levels (p = phigh)

Method σ = 0.001 σ = 0.01 σ = 0.05

SPA 5.40±0.60 7.29±0.51 24.59±1.43
Det 0.41±0.08 0.74±0.06 4.90±3.27

Taylor 0.48±0.54 1.40±0.08 9.00±3.88
Nuclear 0.64±0.07 1.23±0.06 6.78±5.78
RVolMin 1.04±0.38 2.31±0.28 10.23±2.05

respectively.

G. On the Cuprite dataset with r = 12

Table IV shows the result on the same experiments con-
ducted with the Cuprite dataset. Here we concatenate the p
vector used in Urban two times to form the p vector with

TABLE III
MRSA VALUES FOR THE URBAN DATASET WITH r = 6

Across different p (σ = 0.001)

Method phigh pmid plow

SPA 7.83±0.93 10.32±1.53 16.22±2.00
Det 0.54±0.11 2.45±1.25 10.08±5.71

logdet 1.27±0.68 3.09±2.04 8.78±2.58
Nuclear 3.79±0.62 6.39±1.54 13.48±4.53
RVolMin 3.03±0.90 5.64±1.29 13.05±4.28

Across different noise levels (p = phigh)

Method σ = 0.001 σ = 0.005 σ = 0.01

SPA 7.83±0.93 8.56±0.86 15.95±3.57
Det 0.54±0.11 1.25±0.48 6.85±3.47

logdet 1.27±0.68 4.41±0.93 9.85±3.36
Nuclear 3.79±0.62 4.58±0.95 11.75±3.35
RVolMin 3.03±0.9 4.95±1.01 15.32±9.35

TABLE IV
MRSA VALUES FOR THE CUPRITE DATASET WITH r = 12

Across different p (σ = 0.001)

Method phigh pmid plow

SPA 6.59±0.98 8.87±1.42 11.53±1.39
Det 2.59±0.74 4.40±1.51 9.71±2.43

logdet 2.51±0.59 3.85±0.96 8.41±2.04
Nuclear 2.55±0.70 4.33±1.56 10.07±2.73
RVolMin 3.72±2.41 5.39±2.29 10.82±3.31

Across different noise levels (p = phigh)

Method σ = 0.001 σ = 0.005 σ = 0.01

SPA 6.59±0.98 7.24±1.07 11.53±1.39
Det 2.59±0.74 4.34±1.74 9.71±2.43

logdet 2.51±0.59 4.01±1.22 8.41±2.04
Nuclear 2.55±0.70 4.38±1.72 10.07±2.73
RVolMin 3.72±2.41 4.66±1.73 10.82±3.31

length 12 for the data Cuprite. For example, for pCuprite
high , we

use pCuprite
high = [pUrban

high pUrban
high ].

The result from the two tables show that
• All the methods improve the fitting accuracy of SPA.
• logdet has the best performance in all situations, with
Det and Nuclear as the first-runner ups.

• RVolMin has the worst performances in most cases.
In terms of computational time, Det takes 28.1±0.9

seconds, logdet takes 3.8±1.1 seconds, Nuclear takes
3.4±0.1 seconds, and RVolMin takes 3.2±0.0 seconds. As
expected, when r increase, Det takes much more time and it
is not recommended for large r.

In general, the results show that the VRNMF algorithms
with Det and logdet performs very well, better than
RVolMin and Nuclear in terms of fitting accuracy. As
RVolMin consistently produce inferior results, we do not
include it in the subsequent sections.

H. On image segmentation on real data

In this section we run the algorithms Det, logdet and
Nuclear on real HU data Samson and Jasper. As stated
in section IV-A, no pre-processing is performed on the raw
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TABLE V
NUMERICAL RESULTS ON SAMSON AND JASPER DATASETS.

Samson

Method Time (s.) MRSA
‖X−WH‖F
‖X‖F

Det 8.53 7.13 2.86%
logdet 6.22 2.58 2.69%

Nuclear 8.94 6.99 7.13%

Jasper

Det 15.13 5.51 4.14%
logdet 12.67 6.03 6.09%

Nuclear 12.43 8.96 4.51%

data and we use the raw data directly. The following states
the specifications of the datasets. For the dataset Samson,
(m,n, r) = (156, 952, 3). For the dataset Jasper, (m,n, r) =
(198, 1002, 4). We have tuned λ in the same way as for the
synthetic datasets using the endmembers WRef from [25].
Figure 8 shows the decompositions. In the same figure, we
also show the references provided by [25], and we list the
numerical results in Table V. In Table V, the MRSA is calcu-
lated with respect to the reference WRef of [25]. The results
show that all three VRNMF algorithms produce meaningful
decomposition.
Remark The reference [25] used a sparsity regularization on H
and hence the abundance map of [25] looks cleaner. It is out
of the scope of this paper to consider a sparsity regularization
on H as we are focusing on the volume regularization on W.
This is a direction for further research.

V. CONCLUSION

In this paper, NMF models with different volume regu-
larizations (VRNMF) were investigated. We have developed
highly efficient algorithms for these VRNMF models. The
VRNMF algorithms are shown to be able to outperform both
the state-of-the-art separable NMF algorithm SPA, and the
volume-based methods MVC-NMF [15] and RVolMin [7].
Furthermore, extensive experimental results using real hyper-
spectral data showed that, when the data has a small rank r
(r ≤ 4) and is highly separable, the volume regularizer based
on the determinant (Det) provides the best results, although
the the regularizer based on the logarithm of the determinant
(logdet) provides almost as good decompositions. When
the rank increases and/or the data becomes less separable,
logdet performs best in most cases, while being computa-
tionally faster than Det. Therefore, in practice, we recommend
the use of logdet.
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