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Consider a discrete-time linear time-invariant descriptor system Ex(k + 1) = Ax(k) for k ∈
Z+. In this paper, we tackle for the first time the problem of stabilizing such systems by 
computing a nearby regular index one stable system Êx(k + 1) = Âx(k) with rank(Ê) = r. 
We reformulate this highly nonconvex problem into an equivalent optimization problem 
with a relatively simple feasible set onto which it is easy to project. This allows us to 
employ a block coordinate descent method to obtain a nearby regular index one stable 
system. We illustrate the effectiveness of the algorithm on several examples.

© 2019 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

In [17,10], authors have tackled the problem of computing the nearest stable matrix in the discrete case, that is, given 
an unstable matrix A, find the smallest perturbation �A with respect to Frobenius norm such that Â = A + �A has all its 
eigenvalues inside the unit ball centred at the origin. In this paper, we aim to generalize the results in [10] for matrix pairs 
(E, A), where E, A ∈Rn,n .

The matrix pair (E, A) is called regular if det(λE − A) �= 0 for some λ ∈C, which we denote det(λE − A) �≡ 0, otherwise 
it is called singular. For a regular matrix pair (E, A), the roots of the polynomial det(zE − A) are called finite eigenvalues of 
the pencil zE − A or of the pair (E, A). A regular pair (E, A) has ∞ as an eigenvalue if E is singular. A regular real matrix 
pair (E, A) can be transformed to Weierstraß canonical form [6], that is, there exist nonsingular matrices W , T ∈ Cn,n such 
that

E = W

[
Iq 0
0 N

]
T and A = W

[
J 0
0 In−q

]
T ,

where J ∈ Cq,q is a matrix in Jordan canonical form associated with the q finite eigenvalues of the pencil zE − A and 
N ∈Cn−q,n−q is a nilpotent matrix in Jordan canonical form corresponding to n − q times the eigenvalue ∞. If q < n and N
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has degree of nilpotency ν ∈ {1, 2, . . .}, that is, Nν = 0 and Ni �= 0 for i = 1, . . . , ν − 1, then ν is called the index of the pair
(E, A). If E is nonsingular, then by convention the index is ν = 0; see for example [15,19]. The matrix pair (E, A) ∈ (Rn,n)2

is said to be stable (resp. asymptotically stable) if all the finite eigenvalues of zE − A are in the closed (resp. open) unit ball 
and those on the unit circle are semisimple. The matrix pair (E, A) is said to be admissible if it is regular, of index at most 
one, and stable.

The various distance problems for linear control systems is an important research topic in the numerical linear algebra 
community; for example, the distance to bounded realness [1], the robust stability problem [20], the stability radius prob-
lem for standard systems [2,13] and for descriptor systems [3,5], the nearest stable matrix problem for continuous-time 
systems [17,7,14,11] and for discrete-time systems [17,16,12,10], the nearest continuous-time admissible descriptor system 
problem [9], and the nearest positive real system problem [8].

For a given unstable matrix pair (E, A), the discrete-time nearest stable matrix pair problem is to solve the following 
optimization problem

inf
(Ê, Â)∈Sn,n

‖E − Ê‖2
F + ‖A − Â‖2

F , (P)

where Sn,n is the set of admissible pairs of size n × n. This problem is the converse of the stability radius problem for 
descriptor systems [3,5] and the discrete-time counter part of continuous-time nearest stable matrix pair problem [9]. Such 
problems arise in systems identification where one needs to identify a stable matrix pair depending on observations [17,
7]. This is a highly nonconvex optimization problem because the set Sn,n is unbounded, nonconvex and neither open nor 
closed. In fact, consider the matrix pair

(E, A) =
(⎡

⎣ 1 0 0
0 0 0
0 0 0

⎤
⎦ ,

⎡
⎣ 1/2 0 2

0 1 0
0 0 1

⎤
⎦)

. (1)

The pair (E, A) is regular since det(λE − A) = det(λ − 1/2) �≡ 0, of index one, and stable with the only finite eigenvalue 
λ1 = 1/2. Thus (E, A) ∈ S3,3. Let

(�E ,�A) =
(⎡

⎣ 0 0 0
0 ε1 ε2
0 0 0

⎤
⎦ ,

⎡
⎣ 0 0 0

0 0 0
0 0 −δ

⎤
⎦)

, (2)

and consider the perturbed pair (E +�E , A +�A). If we let δ = ε1 = 0 and ε2 > 0, then the perturbed pair is still regular and 
stable as the only finite eigenvalue λ1 = 1/2 belongs to the unit ball, but it is of index two. For ε2 = δ = 0 and 0 < ε1 < 1, 
the perturbed pair is regular, of index one but has two finite eigenvalues λ1 = 1/2 and λ2 = 1/ε1 > 1. This implies that the 
perturbed pair is unstable. This shows that S3,3 is not open. Similarly, if we let ε1 = ε2 = 0 and δ > 0, then as δ → 1 the 
perturbed pair becomes non-regular. This shows that S3,3 is not closed. The nonconvexity of Sn,n follows by considering 
for example

�1 =
(

I2,

[
0.5 2
0 1

]
︸ ︷︷ ︸

A

)
, �2 =

(
I2,

[
0.5 0
−2 1

]
︸ ︷︷ ︸

B

)
, (3)

where �1, �2 ∈ S2,2, while γ�1 + (1 − γ )�2 /∈ S2,2 for γ = 1
2 , since 1

2 �1 + 1
2 �2 has two eigenvalues 0.75±0.96i outside 

the unit ball. Therefore it is in general difficult to work directly with the set Sn,n . We explain in Section 2 the difficulty in 
generalizing the results in [10] for problem (P).

In this paper, we consider instead a rank-constrained nearest stable matrix pair problem. For this, let r(< n) ∈Z+ and let us 
define a subset Sn,n

r of Sn,n by

Sn,n
r :=

{
(Ê, X̂) ∈ Sn,n : rank(Ê) = r

}
.

For a given unstable matrix pair (E, A), the rank-constrained nearest stable matrix pair problem requires to compute the 
smallest perturbation (�E , �A) with respect to Frobenius norm such that (E + �E , A + �A) is admissible with rank(E +
�E) = r, or equivalently, we aim to solve the following optimization problem

inf
(Ê, Â)∈Sn,n

r

‖E − Ê‖2
F + ‖A − Â‖2

F . (Pr)

The main reason for considering the rank-constrained problem (Pr) over (P) is of not being able to reformulate the set Sn,n . 
A necessary and sufficient condition for a descriptor system (E, A) to be admissible is the existence of a matrix X = X T

such that LMI’s
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E X E T 	 0 and A X AT 
 E X E T (4)

hold true [18]. In contrast to the matrix case [10] where a parametrization of the set of stable matrices was possible because 
of a positive definite solution P of the Schur’s equation AT P A − P ≺ 0, for a genuine descriptor system (rank(E) < n) a 
solution X to (4) always is indefinite. The indefiniteness of the matrix X governed by (4) turns out to be a major obstacle 
for the reformulation of the problem (P). This obstacle can be avoided by imposing a rank constraint on E . Some of the 
applications of the rank-constraint admissible pair (E, A) could be seen as follows.

• It enables us to parameterize the set Sn,n
r in terms of the matrix quadruple (T , W , U , B), where T , W ∈ Rn,n are 

invertible, U ∈Rr,r is orthogonal, and B ∈Rr,r is a positive semidefinite contraction, see Section 2.
• The set Sn,n of admissible pairs can be written as

Sn,n =
n⋃

r=1

Sn,n
r .

This implies that

(P) = min
r=1,2,...,n

(Pr).

Therefore, to compute a solution of (P), a possible way is therefore to solve n rank-constrained problems (Pr), see 
Remark 1.

• Such situations may be useful when descriptor systems are directly generated from data where the constraints are 
added as a second step. One practical example is of a circuit or power net, where one discretizes the flow and adds the 
Kirchhoff laws afterward.

The problem (Pr) is also nonconvex as the set Sn,n
r is nonconvex. To solve (Pr), we provide a simple parametrization of 

Sn,n
r in Section 2. This parametrization results in an equivalent optimization problem with a feasible set onto which it is 

easy to project, and we derive a block coordinate descent method to tackle it; see Section 3. We illustrate the effectiveness 
of our algorithm over several numerical examples in Section 4.

Notation Throughout the paper, X T and ‖X‖ stand for the transpose and the spectral norm of a real square matrix X , 
respectively. We write X � 0 and X 	 0 (X 
 0) if X is symmetric and positive definite or positive semidefinite (symmetric 
negative semidefinite), respectively. By Im we denote the identity matrix of size m × m.

2. Reformulation of problem (Pr)

As mentioned earlier the set Sn,n
r is nonconvex. It is also an unbounded set which is neither open nor closed. Consider

�̃1 =
([

Ir 0
0 0

]
,

[
A1 0
0 In−r

])
, �̃2 =

([
Ir 0
0 0

]
,

[
B1 0
0 In−r

])
,

where A1 =
[

A 0
0 Ir−2

]
, B1 =

[
B 0
0 Ir−2

]
, and A and B are defined as in (3). We have that �̃1, �̃2 ∈ Sn,n

r because (Ir, A1)

and (Ir, B1) are stable. Moreover 1
2 �̃1 + 1

2 �̃2 /∈ Sn,n
r as it has two eigenvalues 0.75±0.96i outside the unit ball hence Sn,n

r is 
non-convex. To show that Sn,n

r is neither open nor closed, let (E, A) and (�E , �A) be as defined in (1) and (2), and consider

(Ẽ, Ã) =
([

Ir−1 0
0 E

]
,

[
Ir−1 0

0 A

])
and the perturbation

(�Ẽ ,� Ã) =
([

Ir−1 0
0 �E

]
,

[
Ir−1 0

0 �A

])
.

By using similar arguments as in the case of Sn,n one can show that Sn,n
r is neither open nor closed. Therefore it is difficult 

to compute a global solution to problem (Pr) and to work directly with the set Sn,n
r . For this reason, we reformulate the 

rank-constrained nearest stable matrix pair problem into an equivalent problem with a relatively simple feasible set. In 
order to do this, we derive a parametrization of admissible pairs into invertible, symmetric and orthogonal matrices. We 
first recall a result from [10] that gives a characterization for stable matrices.

Theorem 1. [10, Theorem 1] Let A ∈ Rn,n. Then A is stable if and only if A = S−1U B S for some S, U , B ∈ Rn,n such that S � 0, 
U T U = In, B 	 0, and ‖B‖ ≤ 1.
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We note that, in the proof of Theorem 1, only the invertibility of matrix S is needed and the condition of symmetry on 
S can be relaxed. We found that this relaxation on matrix S does not make any difference on the numerical results in [10]. 
The only gain is that the projection of S on the set of positive definite matrices takes some time and that can be avoided. 
Therefore, we rephrase the definition of a SUB matrix in [10] and the corresponding characterization of stable matrices as 
follows.

Theorem 2. Let A ∈Rn,n. Then A is stable if and only if A admits a SUB form, that is, A = S−1U B S for some S, U , B ∈Rn,n such that 
S is invertible, U T U = In, B 	 0, and ‖B‖ ≤ 1.

Theorem 3. Let E, A ∈ Rn,n be such that rank(E) = r. Then (E, A) is admissible if and only if there exist matrices T , W ∈ Rn,n, 
S, U , B ∈Rr,r such that the matrices T , W , S are invertible, U T U = Ir , B 	 0, ‖B‖ ≤ 1 such that

E = W

[
Ir 0
0 0

]
T , and A = W

[
S−1U B S 0

0 In−r

]
T . (5)

Proof. For a regular index one pair (E, A), there exist invertible matrices W , T ∈Rn,n such that

E = W

[
Ir 0
0 0

]
T and A = W

[
Ã 0
0 In−r

]
T , (6)

see [4]. Further, the finite eigenvalues of (E, A) and Ã are the same because det(λE − A) = 0 if and only if det(λIr − Ã) = 0. 
Thus, by stability of (E, A) and Theorem 2, it follows that Ã admits a SUB form, that is, there exist S, U , B ∈Rr,r such that 
S is invertible, U T U = Ir , B 	 0, ‖B‖ ≤ 1, and Ã = S−1U B S .

Conversely, it is easy to see that any matrix pair (E, A) in the form (5) is regular and of index one. The stability of (E, A)

follows from Theorem 2 as the matrix S−1U B S is stable. �
If the matrix E is nonsingular, then Theorem 3 can be further simplified as follows.

Theorem 4. Let E, A ∈Rn,n, and let E be nonsingular. Then (E, A) is admissible if and only if there exist matrices S, U , B ∈Rn,n such 
that A = S−1U B S E, where S is invertible, U T U = In, B 	 0, and ‖B‖ ≤ 1.

Proof. Since E is nonsingular, the matrix pair (E, A) can be equivalently written as a standard pair (In, AE−1), and then 
stability of (E, A) can be determined by the eigenvalues of AE−1. That means, (E, A) is stable if and only if AE−1 is 
stable. Thus from Theorem 2, AE−1 is stable if and only if AE−1 admits a SUB form, that is, AE−1 = S−1U B S for some 
S, U , B ∈Rn,n such that S is invertible, U T U = In , B 	 0 and ‖B‖ ≤ 1. �

We note that, for a standard pair (In, A) (with E = In), Theorem 3 coincides with Theorem 2 as in this case W and T can 
be chosen to be the identity matrix which yields A = S−1U B S . A similar result also holds for asymptotically stable matrix 
pairs which can be seen as a generalization of [10, Theorem 2].

Theorem 5. Let E, A ∈Rn,n be such that rank(E) = r. Then (E, A) is regular, of index one and asymptotically stable if and only if there 
exist matrices T , W ∈Rn,n, S, U , B ∈Rr,r such that the matrices T , W , S are invertible, U T U = Ir , B 	 0, ‖B‖ < 1 such that

E = W

[
Ir 0
0 0

]
T , and A = W

[
S−1U B S 0

0 In−r

]
T . (7)

Proof. The proof is similar to that of Theorem 3 by using [10, Theorem 2] instead of Theorem 2. �
Note that the matrix S is invertible in Theorem 3 and therefore it can be absorbed in W and T . The advantage is that 

this reduces the number of variables in the corresponding optimization problem.

Corollary 1. Let E, A ∈Rn,n be such that rank(E) = r. Then (E, A) is admissible if and only if there exist invertible matrices T , W ∈
Rn,n, and U , B ∈Rr,r with U T U = Ir , B 	 0 and ‖B‖ ≤ 1 such that

E = W

[
Ir 0
0 0

]
T , and A = W

[
U B 0
0 In−r

]
T . (8)

In view of Corollary 1, the set Sn,n
r of restricted rank admissible pairs can be characterized in terms of matrix pairs (8), 

that is,
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Sn,n
r =

{(
W

[
Ir 0
0 0

]
T , W

[
U B 0
0 In−r

]
T

)
: invertible T , W ∈Rn,n,

U , B ∈ Rr,r, U T U = Ir, B 	 0,‖B‖ ≤ 1

}
.

This parametrization changes the feasible set and the objective function in problem (Pr) as

(Pr) = inf
W ,T ∈Rn,n, U B∈Rr,r , U T U=Ir , ‖B‖≤1

f (W , T , U , B), (9)

where

f (W , T , U , B) =
∥∥∥∥E − W

[
Ir 0
0 0

]
T

∥∥∥∥2

F
+

∥∥∥∥A − W

[
U B 0
0 In−r

]
T

∥∥∥∥2

F
.

An advantage of this reformulation over (Pr) is that it is relatively easy to project onto the feasible set of (9). This enables 
us to use standard optimization schemes to solve it, see Section 3.

As mentioned in [9], for the standard pair (In, A) making A stable without perturbing the identity matrix gives an upper 
bound to the solution of (Pn), because

inf
(M,X)∈Sn,n

n

‖In − M‖2
F + ‖A − X‖2

F ≤ inf
(In,X)∈Sn,n

n

‖A − X‖2
F = inf

(In,S−1U B S)∈Sn,n
n

‖A − S−1U B S‖2
F . (10)

Note that the right hand side infimum in (10) is the distance of A from the set of stable matrices [10]. It is demonstrated 
in our numerical experiments that (as expected) the inequality in (10) is strict. We also note that similar arguments do not 
extend to the solution of problem (Pr), when r < n. In this case, the distance of A from the set of stable matrices is not an 
upper bound for the solution of (Pr), see Section 4. We close the section with a remark that emphasizes the difficulty in 
solving (P) over (Pr).

Remark 1. As mentioned in the introduction, we have that

(P) = min
r=1,2,...,n

(Pr).

To compute a solution of (P), a possible way is therefore to solve n rank-constrained problems (Pr). For n large, this would 
be rather costly as it makes the corresponding algorithm for (P) n times more expensive than for (Pr). However, in practice, 
the rank r has to be chosen close to the (numerical) rank of E so that it can be estimated from the input data. Also, as we 
will see in Section 4, the error tends to change monotonically with r (first it decreases as r increases –unless r = 1 is the 
best value– and then increases after having achieved the best value for r) which could also be used to avoid computing the 
solutions for all r.

3. Algorithmic solutions for (Pr)

To solve (9), we propose two different methods. The first method is a projected fast gradient method and uses exactly 
the same steps as the method proposed in [10]. In a few words, it performs a standard projected gradient scheme with line 
search and uses extracted points to accelerate it. We will refer to this first method as FGM. The second method is a block 
coordinate descent method and optimizes alternatively over W , T and (U , B). For T , U and B fixed, the optimal W can 
be computed using least squares, and similarly for the optimal T . Note that the least squares problem in W (resp. T ) can 
be solved independently for each row (resp. each column). To update (U , B) for W and T fixed, we use the fast gradient 
method from [10] (it can be easily adapted by fixing S to the identity and modifying the gradients). We will refer to this 
second method as BCD (see Algorithm 1).

Convergence FGM and BCD are both guaranteed to decrease the objective function at each step because we use a line-search 
step within the fast gradient method; see [10]. Hence, for every iterate (W , T , U , B), we have

‖Ê(W , T ) − E‖2
F + ‖ Â(W , T , U , B) − A‖2

F ≤ f0 (11)

where Â(W , T , U , B) and Ê(W , T ) are the approximations of A and E , respectively, as done in (9), and f0 is the initial 
objective function value. Since the objective function is bounded from below by zero, this implies that the objective function 
values converge to some value f ∗ . Moreover, the approximations (Ê, Â) generated at each step of the algorithm are in a 
compact set because of (11). Therefore, there exists a subsequence of approximations (Ê, Â) generated by FGM and BCD that 
converge to some limit point (Ê∗, Â∗) with objective function value f ∗ . However, it is more difficult to prove convergence 
of the iterates (T , W , U , B) as T and W are not bounded. It is possible to add an upper bound on the norm of T and W
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Algorithm 1 Block Coordinate Descent (BCD) Method for (9).
Require: An initialization W ∈Rn×n, T ∈Rn×n, U ∈Rr×r , B ∈Rr×r .
Ensure: An approximate solution (W , T , U , B) to (9).

1: for k = 1, 2, . . . do
2: W ← argminY f (Y , T , U , B); % Least squares problem
3: T ← argminX f (W , X, U , B); % Least squares problem

4: Apply a few steps of the fast gradient method from [10] on

min
(U ,B) s.t. U T U=Ir ,‖B‖≤1

f (W , T , U , B)

to update (U , B).
5: end for

to guarantee a subsequence of iterates to converge, but we have not observed in practice that this was an issue. Providing 
a rigorous proof of convergence of the iterates of FGM and BCD to a stationary point of (9) is a difficult problem which we 
leave as a question for further research. Another challenging direction of research is to characterize the speed of convergence 
of such algorithms in the basin of attraction of local minima.

3.1. Initialization

For simplicity, we only consider one initialization scheme in this paper which is similar to the one that performed best 
in [10]. However, it is important to keep in mind that FGM and BCD are sensitive to initialization and that coming up with 
good initialization schemes is a topic of further research.

We take W = T = In and (U , B) as the optimal solution of

min
(U ,B) s.t. U T U=Ir ,‖B‖≤1

‖A1:r,1:r − U B‖2
F .

In this particular case, it can be computed explicitly using the polar decomposition of A1:r,1:r [10].

4. Numerical experiments

In this section, we apply FGM and BCD on several examples. As far as we know, there does not exist any other algorithm 
to stabilize matrix pairs (in the discrete case) hence we cannot compare it to another technique. However, when E = In , 
we will compare to the fast gradient method of [10] which provides a nearby stable matrix (but does not allow to modify 
E). Our code is available from https://sites .google .com /site /nicolasgillis/ and the numerical examples presented below can 
be directly run from this online code. All tests are preformed using Matlab R2015a on a laptop Intel CORE i7-7500U CPU 
@2.7GHz 24Go RAM. BCD and FGM run in O (n3) operations per iteration, including projections onto the set of orthogonal 
matrices, the resolution of the least squares problem (for BCD) and all necessary matrix-matrix products. Hence BCD and 
FGM can be applied on a standard laptop with n up to a thousand (for n = 1000, each iteration on the specified laptop takes 
about 10 seconds for r = n).

4.1. Grcar matrix

Let us first consider the pair (In, A) where A is the Grcar matrix of dimension n and order k [7]. For n = 10 and k = 3, 
the nearest stable matrix found in [10] has relative error ‖A − Â‖2

F = 3.88. Applying BCD with r = n, we obtain a matrix 
pair (Ê, Â) such that ‖A − Â‖2

F + ‖E − Ê‖2
F = 1.88. FGM converges towards a different solution (although initialized with 

the same point) with larger error 1.91. Fig. 1 displays the evolution of the error (left) and the eigenvalues of the solutions 
(right). We observe that allowing Ê to be different than the identify matrix allows the matrix pair (Ê, Â) to be much closer 
to (In, A) and have rather different eigenvalues.

Effect of the dimension n Let us perform the same experiment as above except that we increase the value of n. Table 1
compares the error of the nearest stable matrix and of the nearest stable matrix pair. As n increases, the nearest stable 
matrix pair allows to decrease the error of approximation. Note that, as in the previous example, BCD generates better 
solutions than FGM; especially as n increases.

Effect of r = rank(Ê) and rank(E) Let us now perform more extensive numerical experiments on the Grcar matrix of dimen-
sion n = 10 of order 3. Let us fix 0 ≤ p ≤ n − 1 and define E(i, i) = 1 for i > p otherwise E(i, j) = 0 (that is, E is the identity 
matrix where p diagonal entries have been set to zero) with rank(E) = n − p. We use the following stopping criterion:

https://sites.google.com/site/nicolasgillis/
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Fig. 1. (Left) Evolution of the error ‖E − Ê‖2
F + ‖A − Â‖2

F for the Grcar matrix of dimension 10 and order 3 in the matrix and matrix pair cases (in the 
matrix case, Ê = In). (Right) Location of the eigenvalues of A, and of the solutions in the matrix case and in the matrix pair case.

Table 1
Comparison of the error for Grcar matrices A of order k = 3 and E = In for 
different values of n.

n = 5
(30 s.)

n = 10
(60 s.)

n = 20
(120 s.)

n = 50
(300 s.)

n = 100
(600 s.)

Stable matrix 1.76 3.88 15.89 68.18 160.08
Stable pair - BCD 1.16 1.88 3.02 8.69 20.41
Stable pair - FGM 1.16 1.91 4.70 10.60 24.14

Table 2
Comparison of the error for Grcar matrices A with k = 3, and E(i, i) = 1 for i > p otherwise E(i, j) = 0. 
For each value of rank(E), the first row is the error obtained by BCD, the second by FGM. The lowest 
error for each value of rank(E) is highlighted in bold.

rank(E) r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9 r = 10

10 9.02 8.05 7.09 6.20 5.44 4.63 3.94 3.16 2.16 1.88
9.02 8.62 7.74 6.20 5.44 4.63 3.94 3.37 2.17 1.91

9 8.04 7.08 6.13 5.33 4.61 3.83 3.16 2.16 1.57 1.36
8.04 7.08 7.16 5.92 5.16 3.86 3.16 2.16 1.63 1.52

8 7.05 6.10 5.17 5.16 4.16 3.16 2.16 1.46 1.37 1.42
8.16 6.10 6.16 5.16 4.16 3.16 2.16 1.59 1.66 1.88

7 6.05 5.13 4.22 4.16 2.83 2.17 1.57 1.52 1.44 1.44
6.05 5.13 4.22 4.16 3.14 2.17 1.47 1.35 1.59 1.88

6 5.07 4.17 3.27 3.16 2.04 1.32 1.34 1.69 1.69 1.91
5.07 4.17 3.27 3.16 2.14 1.32 1.33 1.47 1.86 2.12

5 4.09 3.24 2.34 1.76 1.20 1.52 1.30 1.56 1.74 3.13
4.09 3.24 2.34 1.76 1.25 1.40 1.44 1.39 1.66 3.07

4 3.12 2.26 1.49 1.25 1.19 1.24 1.30 1.68 2.96 2.95
3.12 2.26 1.49 1.00 1.27 1.22 1.35 1.51 2.97 3.03

3 2.13 1.31 0.69 1.19 1.23 1.29 1.69 2.83 2.83 2.83
2.13 1.31 0.69 1.19 1.26 1.30 1.45 2.84 2.86 3.01

2 1.15 0.41 1.06 1.22 1.27 1.27 1.91 2.79 2.79 2.79
1.15 0.41 1.18 1.22 1.29 1.44 1.80 2.83 3.00 4.42

1 0.17 0.81 1.21 1.21 1.36 1.22 2.71 2.72 2.72 4.33
0.17 1.18 1.21 1.22 1.28 2.70 2.73 2.74 3.24 4.34

e(i) − e(i + 10) < 10−8e(i),

where e(i) is the error obtained at the ith iteration, and a time limit of 60 seconds.
Table 2 gives the error of the solution obtained by BCD and FGM for r = 1, 2, . . . , n. We observe that
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Table 3
Time in seconds to compute the solution obtained in Table 2. The time limit is 60 seconds. For each value 
of rank(E), the first row is the error obtained by BCD, the second by FGM.

rank(E) r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9 r = 10

10 0.36 1.27 0.86 0.69 3.36 3.63 3.03 60 39.52 60
0.08 0.19 0.14 0.06 0.09 0.13 0.42 1.27 60 60

9 0.31 0.80 0.61 2.64 4.23 19.27 60 29.67 60 50.59
0.05 0.05 0.06 0.44 0.52 0.88 13.67 60 60 60

8 0.28 1.13 0.48 0.45 60 5.89 23.36 60 60 12.84
0.03 0.06 0.08 0.19 1.92 6.53 21.06 60 60 60

7 0.23 1.05 0.89 0.75 13.98 60 60 60 60 60
0.05 0.06 0.09 0.19 3.61 60 60 60 60 60

6 0.25 0.75 0.88 15.53 30.97 60 60 60 60 60
0.05 0.06 0.33 0.39 26.77 15.58 48.08 60 60 60

5 0.23 1.14 0.77 4.56 60 60 60 60 60 60
0.05 0.09 0.11 0.72 1.08 60 60 60 60 60

4 0.31 1.30 0.48 60 60 39.31 60 60 60 60
0.05 0.09 0.11 0.50 1.44 60 60 60 60 60

3 0.20 0.33 0.19 60 60 60 60 60 60 60
0.05 0.06 0.06 0.56 60 60 60 60 60 60

2 0.11 0.25 60 60 60 60 60 60 60 60
0.02 0.08 0.38 3.67 60 60 37.48 60 60 60

1 0.03 60 60 60 60 23.41 60 60 60 60
0.02 0.23 1.67 60 60 8.80 60 60 15.94 60

• In 7 out of the 10 cases, using r = rank(E) provides the best solution. In the other 3 cases, using r = rank(E) + 1
provides the best solution. This illustrates the fact that the best value for r should be close to the (numerical) rank of E . 
(Of course, since we use a single initialization, there is no guarantee that the error in Table 2 is the smallest possible.)

• In all cases, the error behaves monotonically, that is, it increases as the value of r goes away from the best value.
• BCD performs in average better than FGM, obtaining in 82 out of the 100 cases the lowest error.

The first two observations above could be used in practice to tune effectively the value of r: start from a value close to 
the numerical rank of E , then try nearby values until the error increases.

Table 3 gives the computational time for the different cases. We observe that the algorithms converge much faster when 
r is small. This can be partly explained by the smaller number of variables, being 2n2 + 2r2. Although FGM generated in 
general worse solutions (see Table 2), it seems that it converges faster in most cases (in 65 out of the 100 cases).

4.2. Scaled all-one matrix

In this section, we perform an experiment similar to the previous one with (E, A) = (In, αeeT ) where e is the vector of 
all ones, which is an example from [12]. For α > 1/n, the matrix A = αeeT is unstable. For 1/n ≤ α ≤ 2/n, the nearest stable 
matrix is eeT /n.

Let us take n = 10 and α = 2/n = 0.2 for which the nearest stable matrix is Â = 0.1eeT with error 1. The nearest stable 
matrix pair computed by both BCD and FGM is given by Â = 0.15eeT and E = In + 0.05eeT with error 1

2 . As for the Grcar 
matrix, allowing E to be different from the identity matrix allows to reduce the error in approximating (In, A) significantly 
(by a factor of two).
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