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Abstract. During the last few years, spoken language technologies have
known a big improvement thanks to Deep Learning. However Deep Learning-
based algorithms require amounts of data that are often difficult and
costly to gather. Particularly, modeling the variability in speech of differ-
ent speakers, different styles or different emotions with few data remains
challenging. In this paper, we investigate how to leverage fine-tuning on
a pre-trained Deep Learning-based TTS model to synthesize speech with
a small dataset of another speaker. Then we investigate the possibility
to adapt this model to have emotional TTS by fine-tuning the neutral
TTS model with a small emotional dataset.
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1 INTRODUCTION

The current state of the art of Text-to-Speech (TTS) synthesis is based on deep
learning algorithms. These systems are now capable of producing natural human-
like speech.

There are more and more deep learning-based TTS systems developed. The
Merlin toolkit [1] has played an important part in this development, first with
simple architectures based on stacks of Fully Connected layers and then with
more complex ones such as Recurrent Neural Networks (RNNs).

Most recent TTS systems, such as Wavenet [2], Tacotron [3], WaveRNN [4],
Char2Wav [5] and Deep Voice [6], achieve excellent results in terms of natural-
ness. However they require tens of hours of speech data and a lot of computa-
tional power. A first system that aims to synthesize speech with few computa-
tional power is Deep Convolutional TTS [7] (DCTTS). This system is only based
on Convolutional Neural Networks (CNNs) and avoids using RNNs known to be
difficult to train due to the vanishing gradient issue during gradient descent [8].
In their experiments, the authors of DCTTS were able to train their model in
15 hours using a standard PC with two GPUs, resulting in nearly acceptable
speech synthesis.
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Moreover it is difficult to have a fine control on speech quality and emotional
content with such systems, while this has become an important challenge in
speech synthesis. Here again, data availability is an issue. Indeed, high quality
speech datasets with emotional content needed for speech synthesis are quite
difficult to collect. The amount of data available is therefore relatively limited
compared to what deep learning algorithms require to converge.

Promising methods to tackle the problem of quantity of data are those related
to knowledge transfer such as transfer learning [9], fine-tuning and multi-task
learning. These techniques have prooved useful in various applications of deep
learning.

In the field of Motion Capture and Analysis, [10] mapped a motion sequence
to an RGB image to be able to use a CNN pre-trained for image classification in
their motion classification task. They showed that fine-tuning the CNN on their
motion data improved classification results.

In a previous work of ours [11], we used an neural Automatic Speech Recog-
nition (ASR) as a feature extractor for emotion recognition. We showed that the
mapping between speech and text learned by the ASR system contains informa-
tion useful for emotion recognition.

In the TTS field as well, transfer learning is being investigated. In [12], they
successfully transfered knowledge from a model trained to discriminate between
speakers to a multi-speaker TTS model.

These examples motivates our interest to investigate the use of knowledge
transferability between models. Our goal is to use this to tackle the inherent
problem of the amount of data needed in deep learning in the case of emotional
TTS which is a topic of growing interest. We can cite [13] that experimented an
unsupervised learning technique to change prosody of synthesized sentences with
style tokens or [14] that modified Tacotron’s architecture to synthesize speech
given emotional labels. In this paper we explain how to leverage fine-tuning on
deep learning-based TTS systems to synthesize emotional speech with a small
emotional speech dataset.

2 SYSTEM

Our goal is to study the feasibility of fine-tuning a TTS system pre-trained on a
big dataset on few new data and analyze how much the model is able to fit them.
This Section describes the whole system. Figure 1 represents its overall idea.
First, in Section 2.1, we present the TTS system used as a basis for fine-tuning.
We then briefly present the dataset we are using in Section 2.2. In Section 2.3,
we explain the pre-processing of our dataset. Finally, in Section 2.4, we detail
the fine-tuning procedure applied to obtain emotional TTS models.

2.1 TTS System

The number of deep learning-based TTS system of the state of the art are grow-
ing. To carry out our experiments, we chose, DCTTS [7], a system that seems to
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Fig. 1. Block diagram of the system

combine advantages of several systems. DCTTS models a sequence-to-sequence
problem with a encoder-decoder structure along with an Attention Mechanism
like Tacotron [3]. However, unlike Tacotron, the modules of the architecture are
all CNN-based and there is no RNN component. In [7], they compared an open
source implementation of Tacotron to DCTTS and have higher Mean Opinion
Score (MOS).

In this work, we use the Tensorflow implementation provided in [15].
There are two modules trained separately: Text2Mel and SSRN (for Spectro-

gram Super-resolution Network). Text2Mel takes care of the mapping between
character embeddings and the output of Mel Filter Banks (MFBs) applied on
the audio signal, that is, a mel-spectrogram. Then the second module SSRN
maps the mel-spectrogram to full resolution spectrogram. Finally, Griffin-Lim is
used as a vocoder.

Text2Mel module models the sequence-to-sequence task. It is composed of
a Text Encoder, an Audio Encoder, an Attention Mechanism, and an Audio
Decoder.

2.2 Dataset Used

The dataset used in this work is EmoV-DB: The Database of Emotional Voices [16]
that is available online 1.

EmoV-DB contains sentences uttered by male and female actors in English
and a male actor in French. The English actors were recorded in 2 different
anechoic chambers of the Northeastern University campus while the French actor
was recorded in an anechoic chamber of the University of Mons.

Each actor was asked to utter a subset of the sentences from the CMU-
Arctic [17] database for English speakers and from the SIWIS [18] database for
the French speaker. The actors uttered these sentences with 5 emotion classes
making it possible to build synthesis and voice transformation systems. For every
speaker, the different emotions were recorded in different sessions.

In this work we used one of the English actress to perform emotion adaptation
of the TTS system.

1 https://github.com/numediart/EmoV-DB
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The experiments performed on this dataset also assess its usability with deep
learning algorithms for voice generation systems.

2.3 Pre-processing

Important aspects of the pre-processing to use this model are

– the sample frequency
– the trimming of silences at the beginning and end of audio files
– removal of non-verbal expressions (laughters, yawns, etc.)

As the model was trained with LJ-speech database with a sample frequency
of 22050Hz, we should use the same with our database.

The trimming of silences is important because the model use guided atten-
tion [7]. It helps the attention mechanism by assuming that the ordering of
characters is almost linearly related to the time in the audio file. This is true
only if the speech begins from the start of the file without a silence.

We experimented that without this trimming, the synthesized sentences of-
ten omitted the first words of the text to pronounce. The implementation of [15]
already use trimming with librosa library. However we noticed that default pa-
rameters were not suited for our database and changed top db to 20dB.

The same problem occurs due to the nonverbal vocalizations [19] (NVV)
present in the audio files such as laughs, yawns or sighs. Indeed in these cases,
the hypothesis to use guided attention is not verified either. To overcome this
problem, we first manually selected utterances without such NVV for the amused
dataset (156 utterances) and the sleepy dataset (361 utterances). To increase
the amount of amused sentences, we manually trimmed the laughs of 82 of the
remaining amused sentences to have a total of 238 utterances.

2.4 Fine-tuning

In this Section, we explain how we leveraged knowledge transfer on TTS by
fine-tuning a part of a pre-trained model on our small dataset.

The pre-training of the model was done using the LJ-Speech dataset. This
dataset is available online2 and contains 23.9h of speech uttered by a single
female speaker.

The fine-tuning was done with the dataset described in Section 2.2.
There are several possibilities of how we could fine-tune the model. First, we

can choose which parts of the pre-trained model we want to fine-tune with the
new dataset and which part we want to keep fixed.

The second part of the model, SSRN, does the mapping between MFBs
and full spectrogram. Therefore, it should not depend on the speaker identity
on speaking style as it is just trained to do the mapping between two audio
features. However, as the model has been pre-trained on one speaker, there is a

2 https://keithito.com/LJ-Speech-Dataset
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possibility of over-fitting on the characteristics of that specific speaker. The first
question we want to answer is whether the SSRN can generalize the mapping to
other speaking styles.

As for Text2Mel module, it is composed of a Text Encoder, Audio Encoder,
Attention, and Audio Decoder. As the text does not depend on characteristics of
the speaker or his speaking style, we tried to train only the Audio part. However
we found that there are some problems of rhythm in synthesized speech. We
believe this is because Attention module is not adapted to the new speaking
style. As a consequence, we chose to fine-tune on the entire Text2Mel module.

3 EXPERIMENT

In this Section, we detail the experiments performed on the system.
In the first experiment, we evaluate the usefulness of the fine-tuning tech-

nique compared to a random initialization of the parameters of the model. The
evaluation is based on a measure of intelligibility of the synthesized speech in
terms of word accuracy proposed in [20].

In the second experiment, we evaluate the quality of the emotional speech
synthesized through a MOS test for each emotion according to the confidence in
the perception of the emotion specified.

The amount of speech data used for the experiments are showed in Table
1. Durations are rounded to the minute. The values between parentheses corre-
spond to the amount of data before selection and NVV removal.

Table 1. Amount of data available for each emotion in terms of total duration and
number of utterances

Total duration [min] Number of utterances

Amused 15 (20) 238 (296)
Angry 19 304

Disgusted 29 303
Neutral 23 357
Sleepy 36 (51) 361 (496)

3.1 Objective measures

In this experiment, we synthesized 100 sentences of the Harvard sentences [21]
with several models. Then an objective measure of the intelligibility of every
sentence was computed in terms of word accuracy [20]. The measure consists of
using an ASR to recognize speech and compute a word accuracy by comparing
the result to the text label. The mean word accuracy with 95% confidence interval
for all models are summarized in Table 2. The first line show the word accuracy
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Table 2. Intelligibility in terms of Word Accuracy.

Word Accuracy

LJ-speech 0.630± 0.042

Neutral (random initialization) 0.004± 0.004

Neutral (fine-tuning) 0.517± 0.048

of the pre-trained model (using LJ-speech). The second line corresponds to the
model trained only on the neutral subset. Finally, the third line corresponds to
the pre-trained model fine-tuned on the neutral subset.

These measures allow us to compare the fine-tuning of the parameters of a
pre-trained model with the random initialization of the parameters of the model.

The experiments clearly shows that model trained with the neutral subset of
20 min is unable to generate intelligible speech if the parameters are randomly
initialized. However, if the initialization of the parameters

3.2 Perception tests

After fine-tuning from the neutral model to emotional models, we synthesized 5
sentences not seen during training with each of these models. These sentences
were used in a Mean Opinion Score (MOS) test.

During this test, the participants were asked to complete a form.
This survey contained 5 sections. Each section was dedicated to one emotion.

In every section, the participants were asked to rate utterances between 0 and 5
for the confidence in the perception of the emotion specified (0=we can not hear
the emotion specified, 5=we perfectly hear the emotion specified).

This test was performed on both original files from the dataset and synthe-
sized files. Table 3 gives MOS with 95% confidence interval for the original files
and Table 4 gives them for the synthesized files.

Table 3. MOS test results of original files

Confidence

Amused 4.60± 0.20
Angry 4.22± 0.25

Disgusted 3.28± 0.27
Neutral 4.37± 0.23
Sleepy 3.80± 0.27

Results of Table 3 should be considered as higher bounds as they represent
the opinion about original files of the dataset. Results from Table 4 should be
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Table 4. MOS test results of synthesized files

Confidence

Amused 2.00± 0.27
Angry 2.10± 0.28

Disgusted 2.27± 0.30
Neutral 3.59± 0.24
Sleepy 3.29± 0.26

compared to these higher bounds. One can see that these higher bounds do not
meet the maximum value of 5.

The confidence of the perception of an emotion is altered by the record-
ing quality, the playing quality and the emotion expressed. Moreover, the test
was done on non-native English speakers. In [22], they conducted an experi-
ment showing a disproportionate disadvantage for the non-native English speaker
when listening to synthesized speech compared to their native English speaker.

In Table 4, for the confidence of the perception of an emotion, the Neutral
category has the higher value. A possible explanation of this is that the pre-
trained model used has been trained with a neutral corpus and is therefore closer
to the Neutral subset used for fine-tuning. For the other emotional categories,
the values are a little degraded but still significantly higher than 0 which shows
that the emotion is perceptible in the synthesized speech.

4 CONCLUSIONS AND FUTURE WORK

In this paper, we present a technique allowing to synthesize emotional speech
using a small emotional speech dataset. This technique is based on the fine-
tuning of a deep learning-based TTS model with the neutral subset of the small
dataset and then fine-tuning the resulting model with each emotional subset to
obtain one model per emotional category.

In the first experiment, we show that training the model with random ini-
tialization of the parameters gives completely unintelligible speech synthesis.
However using a pre-trained model as initialization and fine-tuning it allows to
have intelligible speech.

In the second experiment, we show through perception tests that the speech
synthesized is correctly perceived as emotional.

To improve these results, we plan to try a multi-speaker and multi-emotional
system to be able to share the knowledge of emotional content of several speakers
and several emotions of EmoV-DB. The approach in [12] seems really interesting
for this.



8 Noé Tits et al.

Acknowledgments
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16. Adaeze Adigwe, Noé Tits, Kevin El Haddad, Sarah Ostadabbas, and Thierry Du-
toit, “The emotional voices database: Towards controlling the emotion dimension
in voice generation systems,” arXiv preprint arXiv:1806.09514, 2018.
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