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Abstract
The field of Text-to-Speech has experienced huge improve-

ments last years benefiting from deep learning techniques. Pro-
ducing realistic speech becomes possible now. As a conse-
quence, the research on the control of the expressiveness, al-
lowing to generate speech in different styles or manners, has at-
tracted increasing attention lately. Systems able to control style
have been developed and show impressive results. However the
control parameters often consist of latent variables and remain
complex to interpret.

In this paper, we analyze and compare different latent
spaces and obtain an interpretation of their influence on expres-
sive speech. This will enable the possibility to build controllable
speech synthesis systems with an understandable behaviour.
Index Terms: expressive speech synthesis, affective comput-
ing, deep learning, latent space, style embeddings, supervised,
unsupervised

1. Introduction
During the last few years, many Text-to-Speech systems based
on Deep Learning were developed and showed remarkable per-
formance in terms of reliability and quality of speech. Lately,
researchers in this area have been focusing on controlling the
speech variability of this kind of systems [1, 2, 3].

An issue for such a control is the lack of data labeled with
information such as emotion or style. Emotion modeling is thus
one of the main challenges in developing more natural human-
machine interfaces. Two main approaches exist to modeling
emotions.

A first representation is the categorical representation, such
as Ekman’s six basic emotion model [4] which identify anger,
disgust, fear, happiness, sadness and surprise as six basic emo-
tions from which the other emotions may be derived. Some
speech datasets [5, 6, 7, 8] are annotated in emotional cate-
gories. This kind of datasets allow the development of category
based emotional TTS [9, 10]. The disadvantage of such simple
annotation is that they do not offer a continuous representation
of emotion.

Emotions can also be represented in a multidimensional
continuous space like in the Russels circumplex model [11].
This modeling allows to better reflect the complexity and the
variations in the expressions, unlike the category system. The
two most commonly used dimensions in the literature are the
arousal corresponding to the level of excitation and the valence
corresponding to the pleasure level or positiveness of the emo-
tion. In datasets [12, 13] annotated in emotional dimensions,
for each utterance, the final emotion value were obtained by av-
eraging over all annotated results from raters. However they are

not suitable for synthesis purpose because they contain overlap-
ping speech due to the data recording setup (dyadic conversa-
tion) and some external noise. Moreover, humans are not reli-
able for giving absolute values to estimate subjective emotional
variables [14].

Some researchers tackled the problem of how to capture
emotional representation by training systems on other tasks,
leading to different approaches employing transfer learning
techniques [15].

Recent researches have proposed unsupervised techniques
to achieve controllable speech synthesis, avoiding the problem
of labels.

In [16], the authors present an extension to the Tacotron
speech synthesis architecture that learns a latent embedding
space by encoding audio into a vector that conditions Tacotron
along with the text representation. These latent embeddings
model the remaining variation in speech signals after account-
ing for variation due to phonetics, speaker identity, and channel
effects.

In [17], the Variational Auto-encoder (VAE) is used in a
speech synthesis system, in combination with VoiceLoop.

Some other researches have used the concept of VAE [1, 2,
3]. In [1], they combine VAE with Gaussion Mixture Model
(GMM) and call it GMVAE. In [2], they use Vector Quantiza-
tion with a VAE (VQ-VAE).

These works show that is is possible to build a latent space
leading to variables that can be used to control style in speech
synthesis. In [1], they show that their system can generate spec-
trograms with different rythm, speaking rate and F0 from a sin-
gle text.

However these works do not provide insights about the rela-
tionships between the resulting latent space and the audio char-
acteristics that are possible to control.

In this paper, we aim to build latent spaces from an audio
dataset containing different speech styles. We want the latent
spaces to be useful to control a speech synthesis system. We
use classical feature selection techniques as a way to compare
various embedding types to evaluate their ability to discriminate
between styles. We then study relationships between each latent
space and audio features to inspect the remaining variability that
could be used to control in speech generation.

For this purpose, we compare three latent spaces computed
by training deep learning-based systems on three different tasks:

• Style classification

• Speaker classification

• Text-to-Speech with a VAE

Copyright © 2019 ISCA

INTERSPEECH 2019

September 15–19, 2019, Graz, Austria

http://dx.doi.org/10.21437/Interspeech.2019-14264475



2. Dataset Used
The dataset used in this work is a proprietary dataset of Acapela
Group SA. The goal of these recordings was to build a story-
telling system to build audiobooks from transcripts.

It contains phonetically rich sentences uttered by a male
actor in US English. The actor was asked to utter a set of the
sentences in 8 style classes. For the sake of clarity, we will refer
to Will in the following sections to designate the actor.

The instructions/examples given to Will to speak with dif-
ferent styles are the following:

• neutral: classical narration
• happy: smile and positive
• sad: depressed
• bad guy: mean
• from afar: ”open the gate!” said the knight
• proxy: ”don’t make too much noise or the monster will

hear you”, whispering
• old man: mimic an old man’s voice
• little creature: little monster
For each sentence, there is a wave file sampled at 22.05 kHz

and coded in 16 bit linear and a corresponding transcription.
The duration of audio files are given in Table 1 in minutes. The
durations after trimming silences are also indicated.

Table 1: Durations (min), duration after trimming silences
(min) an number of utterances for each style

Duration Trimmed duration n utts
NEUTRAL 240.68 150.50 3299

HAPPY 152.00 97.08 2130
SAD 199.02 142.20 2130

BADGUY 179.74 113.57 1867
FROMAFAR 190.02 119.14 2130

PROXY 179.37 123.86 2232
OLDMAN 239.51 134.38 2130

LITTLECREATURE 214.41 124.14 2156

3. Embedding Computation Systems
In this section, we describe the workflow of embedding compu-
tation. The three tasks used to generate embeddings are: Style
Classification, Speaker Classification and VAE-TTS. Figure 1
illustrates the use of data to train the different systems. The col-
ored point clouds illustrate the result of a dimension reduction
performed on embeddings of Will dataset utterances. The col-
ors correspond to styles of speech. Only the first system uses
style labels during training. One can observed that points corre-
sponding to styles are grouped together even for the two other
systems in which style labels are not used during training.

To make a fair comparison among the three tasks, we re-
strict for each task the resulting embedding consisting of a 8-
dimensional vector. Better performance could be obtained with
higher dimensional embeddings, like 128 dimensions in [16]
and 256 dimensions in [18], but it will add difficulties to ana-
lyze the relationship between embeddings and the audio charac-
teristics that are possible to control in a controllable expressive
speech synthesis system.

3.1. Style Classification System

The classification system is a LSTM based DNN trained to pre-
dict the style category from audio features. The DNN consists

Figure 1: Illustration of data flow for the three embeddings com-
putations systems. From top to bottom: Style classification sys-
tem, speaker classification system and VAE-TTS.

of three LSTM layers (512/128/64 cells in each layer) and a
fully connected 8-dim embedding layer. The input is 80-bin
mel-spectrogram of utterances.

The generated embeddings capture discriminative informa-
tion specific to the class it belongs to, in our case, the classes
refer to the 8 styles of Will voice.

Similar to [18], training utterances are firstly segmented
into fixed length chunks without silence and the embedding
from the last frame is taken as the style embedding of the con-
sidered chunk.

In experiments, we tried different length chunks and found
out that 800 ms gave the best classification performance. In the
evaluation stage, we feed the whole utterance to the DNN to get
the corresponding style embedding. Different from the speaker
verification model in [19], our style classifier uses style labels
directly to compute loss without calculating the cosine similar-
ity matrix. As our interest is to investigate latent embeddings
that help to design an expressive speech synthesis system, the
top priority is to having embeddings that contain useful emo-
tional or style information.

We obtained an accuracy of 94.38% on style classification
in our evaluation stage on the 800 unseen utterances (100 utter-
ance per style).

3.2. Speaker Classification System

As in Section 3.1, the speaker classification system is also
a LSTM based DNN, but with four stacking LSTM with
512/512/512/64 cells in each layer, the 8-dim embedding layer
is unchanged.

In this case, the system is trained to predict the speaker
identity from audio features. The speaker classifier is trained
with 276 speakers’ voices including the neutral subset of Will
voice, the other styles of Will are not used during training.

The 276 speakers are composed of speakers of varying ages
(from child to the elder), female/male, and varying personali-
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ties. Most speakers speak in a neutral way, but some of them
speak in a quite unique manner. Moreover, the 276 speakers
cover 35 languages, with half of them speaking English with
various accents, like American English, UK English, Australian
English, etc. We would expect the embeddings generated from
such a speaker classifier to reflect information not only about
language, age, or gender , but also on prosody. As for the
speaker classification system, utterances are firstly segmented
into 800 ms chunks without silences in the training stage, and
the entire utterance is fed to the classifier to get its embedding
vector from the last non-silent frame. To train the classifier,
we used as the training set 300 utterances per speaker and 100
utterances per speaker as the test set. Eventually we obtained
91.19% classification accuracy on the unseen test utterances.

3.3. VAE-TTS System

The TTS system is a deep learning algorithm trained to predict
a spectrogram from the associated text input.

The TTS system used in this work is DCTTS [20].
DCTTS models a sequence-to-sequence task with a encoder-
decoder structure coupled with an Attention Mechanism like
Tacotron [21]. Contrary to Tacotron, the modules of the ar-
chitecture do not contain any recurrent unit. It is only based
on convolutional modules. This particularity makes it easier
to train. In [20], they compared an open source implementa-
tion of Tacotron 1 to DCTTS and report higher Mean Opinion
Score (MOS).

In this work, we use the Tensorflow implementation avail-
able online 2.

There are two modules trained separately: Text2Mel and
SSRN (for Spectrogram Super-resolution Network). Text2Mel
does the mapping between character embeddings and the output
of Mel Filter Banks (MFBs) applied on the audio signal, that
is, a mel-spectrogram. Then the second module SSRN does
the mapping between the mel-spectrogram and full resolution
spectrogram. Finally, Griffin-Lim [22] is used as a vocoder.

Text2Mel module models the sequence-to-sequence task. It
is composed of a Text Encoder, an Audio Encoder, an Attention
Mechanism, and an Audio Decoder.

In this paper we built a extension of DCTTS similar to the
extension of Tacotron described in [16].

We encode the mel-spectrogram into a vector and concate-
nate this vector to each character of the transcript embedding
and train the system for TTS. We chose a size of 8 to be rela-
tively small compared to mel-spectrogram size (80 bins). The
goal is to have a bottleneck sufficiently narrow to avoid the net-
work to learn to copy the input at output.

The embeddings are therefore trained to represent the re-
maining variance in audio that does not depend on text. There
is no need for labels. This enables the use of audiobooks not
annotated in ”style” or ”emotion” for training expressive speech
synthesis systems.

4. Audio Analysis and Interpretation of
Latent Spaces

Latent spaces computed in Section 3 should be useful to control
a speech synthesis system. The goal is thus to have a latent
space that has interpretable relationships with audio features
that we could use to control in speech generation.

1https://github.com/keithito/tacotron
2https://github.com/Kyubyong/dc tts

To that end, in Section 4.1 we evaluated the suitability of
three embeddings for style classification. A good embedding
must perform well in the classification task. Then we looked
into the latent spaces in a closer detail.

This is investigated in Section 4.2 through an analysis of
correlations between audio features and a linear approximation
of these using embeddings.

In Section 4.3, we present a technique of 2D visualization
of these relationships.

4.1. Style Classification score

Obviously, embeddings computed from the style classification
system were trained to have a high classification score. Here
we investigate the suitability of the two other embedding types
for a style classification task. We measure their classification
capacity in terms of mutual information, as shown in Table 2.It
measures the dependency between each of the 8 embedding di-
mensions and style categories. Mutual information was com-
puted with scikit-learn library [23].

Table 2: Mutual information (in bit) between embedding dimen-
sions and style

VAE-TTS Style Speaker
0 0.44 1.55 0.41
1 0.81 1.36 0.33
2 1.08 1.49 0.50
3 0.71 1.41 0.39
4 0.97 1.47 0.33
5 0.79 1.80 0.42
6 0.97 1.74 0.25
7 1.06 1.86 0.33

4.2. Relationship between the Embedding Spaces and Au-
dio Features

In this analysis, we study the relationship between the embed-
ding spaces and the eGeMAPS feature set [24]. This feature
set was designed based on their potential to represent affective
physiological changes in speech.

This analysis allows to investigate what features describe
best the remaining variability in the data.

The procedure is the following:

• We approximate a linear function (i.e. hyperplane) be-
tween each latent space and the audio feature space with
ordinary least squares linear regression.

• We compute the linear function approximations of audio
features based on latent embeddings

• The goal is then to evaluate how the approximations cor-
relate with ground truth values.

• To that aim, we compute the Absolute Pearson Correla-
tion Coefficient (APCC) between predictions and ground
truth

In other words, we compute the APCC between each au-
dio feature and the best possible hyperplane, in terms of least
squares, of each latent space.

To summarize these results, we present in Table 3 only fea-
tures that have an APCC > 0.5 in every latent space.

The feature set is based on Low-level descriptors (F0, for-
mants, mfcc, etc.) to which are applied statistics for the utter-
ance (mean, normalized standard deviation, percentiles). All
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Table 3: APCC values between the best possible hyper-plan of
each latent space and audio features of the eGeMAPS feature
set

APCC VAE-TTS Style Speaker
F0 mean 0.76 0.82 0.63

F0 percentile20.0 0.75 0.81 0.62
F0 percentile50.0 0.79 0.86 0.67
F0 percentile80.0 0.69 0.73 0.52

mfcc2 mean 0.73 0.77 0.65
mfcc4 mean 0.73 0.77 0.61
F1 freq mean 0.61 0.71 0.52
F2 freq mean 0.58 0.68 0.52
F3 freq mean 0.64 0.71 0.57

Alpha Ratio V mean 0.60 0.65 0.55
Hammarberg Index V mean 0.58 0.63 0.52

Slope V 0-500 mean 0.89 0.91 0.72
mfcc2 V mean 0.78 0.82 0.68
mfcc4 V mean 0.77 0.80 0.63

functionals are applied to voiced regions only (non-zero F0).
For MFCCs, there is also a version applied to all regions (voiced
and unvoiced).

These features are defined in [24] as follows:

• F0: logarithmic F0 on a semitone frequency scale, start-
ing at 27.5 Hz (semitone 0)

• F1-3: Formants 1 to 3 centre frequencies

• Alpha Ratio: ratio of the summed energy from 50-1000
Hz and 1-5 kHz

• Hammarberg Index: ratio of the strongest energy peak in
the 0-2 kHz region to the strongest peak in the 2-5 kHz
region.

• Spectral Slope 0-500 Hz and 500-1500 Hz: linear regres-
sion slope of the logarithmic power spectrum within the
two given bands.

• mfcc1-4: Mel-Frequency Cepstral Coefficients 1 to 4

4.3. Dimensionality reduction of latent spaces

In this Section, we investigate the use of dimensionality reduc-
tion of latent spaces previously computed. Reducing the latent
spaces to two dimensions will enable the possibility to design
an interface that allows its visualization and its relationship with
audio features.

To that aim, we use three different algorithms of dimen-
sionality reduction: PCA, t-SNE and UMAP. We then perform
the same procedure of regression as in Section 4.2 to obtain
APCCs between each audio feature of Table 3 and the best pos-
sible hyper-plan, in terms of least squares, of each dimension-
ally reduced latent space.

Table 4 shows the average of APCCs for each pair (task,
dimension reduction algorithm). For this pair, the gradients of
hyper-plans approximating audio features were computed. The
direction of these gradients correspond to the direction of the
highest variation of a feature in the space. Figure 2 shows the
reduced embeddings of all utterances of the dataset and the di-
rections of the gradients.

This representation is useful for a perspective of interface
for controllable speech synthesis system on which are repre-
sented the trends of audio features in the space.

Table 4: APCC average for each pair (task, dimensionality re-
duction algorithm)

APCC PCA t-SNE UMAP
VAE-TTS 0.564 0.422 0.614

Style 0.480 0.366 0.607
Speaker 0.512 0.480 0.549

Figure 2: Latent space with directions of gradients of features
listed in

5. Conclusions
This paper presents a methodology to build latent spaces re-
lated to style/emotion in speech and visualize it along with its
relationships with important audio feature for a purpose of con-
trollable speech synthesis.

To that aim, we compare three latent spaces computed by
training deep learning-based systems on three different tasks.
We then examined the potential of these latent spaces for style
classification to confirm that they contain useful information for
representing style.

We then studied the relationships between each latent space
and audio features to obtain a sense of the impact of audio fea-
tures on the expressed styles. This analysis consisted in an ap-
proximation of audio features from embeddings by linear re-
gression. The accuracy of approximations was then evaluated
in terms of correlations with ground truth.

The gradient of these linear approximations were computed
to extract the information of variations of audio features in
speech. By visualizing these gradients along with the embed-
dings, we observe the trends of audio features in the latent
space.

In the future, this representation will be used to control an
expressive speech synthesis system.

6. Acknowledgments
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