
Leveraging Pre-trained CNN Models
for Skeleton-Based Action Recognition
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Abstract. Skeleton-based human action recognition has recently drawn
increasing attention thanks to the availability of low-cost motion capture
devices, and accessibility of large-scale 3D skeleton datasets. One of the
key challenges in action recognition lies in the high dimensionality of
the captured data. In recent works, researchers draw inspiration from
the success of deep learning in computer vision in order to improve the
performances of action recognition systems. Unfortunately, most of these
studies do not leverage different available deep architectures but develop
new architectures. Most of the available architecture achieve very high
accuracy in different image classification problems. In this paper, we use
these architectures that are already pre-trained on other image classifica-
tion tasks. Skeleton sequences are first transformed into image-like data
representation. The resulting images are used to train different state-of-
the-art CNN architectures following different training procedures. The
experimental results obtained on the popular NTU RGB+D dataset, are
very promising and outperform most of the state-of-the-art results.

Keywords: Motion capture · Action recognition · Convolutional
Neural Networks · Finetuning

1 Introduction

Human action recognition is an important and challenging research area in com-
puter vision that has received much attention in the research community. It
has numerous applications such as video surveillance, human-computer inter-
action, gaming, robotics, health, etc. Skeleton-based human action recognition
has attracted increasing attention in the last decade due to wide accessibility of
motion capture devices and large-scale datasets. Skeleton-based human repre-
sentation considers a human body as articulated system of rigid segments con-
nected by joints in 2D or 3D space depending on the motion capture device.
Several studies have been proposed to classify 3D skeleton-based sequences
[9,33,37]. Early approaches tend to build classifiers based on hand-crafted fea-
tures designed manually to extract relevant information from these 3D sequences,
such as relative distance between joints [10], joints orientations [29], geometric
features [28], etc. These classifiers suffer from a lack of automation because of
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the dependency on hand-crafted features. These features are time consuming to
design and extract and depend on the type of actions and data. Deep Learning
(DL) has been adopted recently by the computer vision community thanks to
its results that outperformed the state-of-the-art in several domains and to the
availability of high-performance processing units able to train the DL models.
The main advantage of deep learning, particularly in computer vision, is its abil-
ity to directly exploit raw data without any hand-crafted features. Deep learning
classifiers are end-to-end systems that extract features in a fully automated way.
Two deep learning methods are used in the field of action recognition: Recurrent
Neural Networks (RNN) and Convolutional Neural Networks (CNN). RNNs are
adopted to capture temporal information from extracted spatial skeleton fea-
tures. RNNs have shown their strength in language modeling [41], image cap-
tioning [38], video analysis [34] and RGB-based activity recognition [25]. CNNs
in the other hand were successfully introduced for image and video classification.
They learn to recognize patterns across space. A CNN will learn to recognize
components of an image (lines, curves, etc.) and then learn to combine these
components to recognize larger structures (objects, faces, etc.). Inspired by this
success, particularly for RGB image-based action recognition, there is a grow-
ing trend of using CNNs for skeleton-based action recognition [24,39,40]. This
new trend produces more accurate classifiers compared to traditional machine
learning approaches. Deep learning techniques learn by creating a more abstract
representation of data as the network grows deeper. As a result, the model
automatically extracts features and yields higher accuracy results. Despite these
good results, deep learning research in action recognition remains immature and
requires more attention to produce practical systems. For example, most of the
researchers explore new architectures developed specifically for this task while
many new successful deep architectures are not tested in the context of action
recognition. In this work, we use a spatio-temporal representation of skeleton
sequences presented under the form of a form of 2D images to train CNN clas-
sifiers. We use the process of fine-tuning to leverage models already trained for
classical image classification for our specific skeleton-based action recognition
task. We evaluate these architectures on the public benchmark dataset NTU
RGB+D [31].

2 Related Works

Several research works, addressing human action recognition from skeletal data,
have been published in the last decades. In recent years, deep learning methods
have been widely addressed in many fields including human action recognition.
Deep learning has enabled the replacement of hand-crafted features by learned
features, and the learning of whole tasks in end-to-end way. Several approaches of
deep learning have been proposed for skeleton-based human action recognition
and can be categorized into two main categories: Recurrent Neural Networks
(RNNs) methods and Convolutional Neural Networks (CNNs) methods.
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RNNs are adopted to capture temporal information from spatial sequences.
Basic RNN architectures are notoriously difficult to train [4,30], and more elab-
orate architectures are commonly used instead, such as the LSTM (Long Short-
Term Memory) [15] and the GRU (Gated Recurrent Unit) [6]. Applications of
these networks have shown promising results in skeleton-based action recogni-
tion. Du et al. [8,9] designed an end-to-end hierarchical RNN architectures for
skeleton-based action recognition. They divided the human skeleton into five
main parts in terms of body physical structure and fed them into five indepen-
dent bidirectional RNNs for local feature extraction in the first layer. In the
following layers, the outputs of the RNNs were concatenated to represent the
upper body and lower body, then each was further fed into another set of RNNs.
The global body representation was obtained and fed to the next RNN layer.
These features are fed into a fully connected layer followed by a softmax layer for
classification. Veeriah et al. [36] present a differential RNN that extends LSTM
structure by modeling the dynamics of states evolving over time. They proposed
to add a new gating mechanism for LSTM to model the derivatives of the mem-
ory states and explore the salient action patterns. In this method, all of the input
features were concatenated at each frame and were fed to the differential LSTM
at each step. Shahroudy et al. [31] propose a part-aware extension of LSTM to
utilize the physical structure of the human body. They split the LSTM memory
cell to sub-cells to push the network towards learning the context representations
for each body part separately. These methods only model the motion dynam-
ics in the temporal domain and neglect the spatial configurations of articulated
skeletons.

RNN architectures are generally used for modeling sequential data. However,
one of their major drawbacks is the exploding and vanishing gradient problem
and the difficulty to parallelize their training. Bai et al. [2] show that convolu-
tional networks can perform as well as or even better that recurrent networks
in many tasks such as speech recognition [42], some tasks of NLP like neural
machine translation [12], classification of long sentences [1], etc.

The challenge for CNN-based methods is to effectively capture the spatio-
temporal information of a skeleton sequence using image-based representation.
In fact, it is inevitable to lose temporal information during the conversion of
3D information into 2D information. For example, Wang et al. [40] encode joint
trajectories into texture images and utilized HSV (Hue, Saturation, Value) space
to represent the temporal information. However, this method cannot distinguish
some actions such as “knock” and “catch” due to the trajectory overlapping
and the loss of past temporal information. Li et al. [24] propose to encode the
pairwise distances of skeleton joints into texture images and encoded the pairwise
distances between joints over skeleton motion sequences into color variations to
capture temporal information. But this method cannot distinguish some actions
of similar distance variations such as “draw-circle-clockwise” and “draw-circle-
counterclockwise” due to the loss of local temporal information.

Most of these approaches transform motion capture sequences into the 2D
space and develop CNN architectures for classification. However, CNNs are very
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successful in image classification and a lot of pre-trained models exist and can be
adapted for other tasks using fine-tuning and transfer learning techniques. These
methods are very successful in many tasks such as, and in addition to image
classification [13], object detection [19], person re-identification [11], biomedical
image analysis [5], etc. Our proposed approach consists of transforming motion
capture sequences into a simple spatio-temporal image-like representation. Then,
fine-tuning of different successful state-of-the-art image classification models is
applied for our task of skeleton-based action recognition.

3 Background

In this section, we cover the necessary materials for the rest of the paper. We
first review Convolutional Neural Networks (CNN) and different techniques used
for fine-tuning these models. Then, we propose a method to transform motion
capture sequences into images. These images are fed into classical CNN models,
and by the process of fine-tuning we adapt these models to our data.

3.1 Review of Convolutional Neural Networks (CNNs)

CNNs are biologically inspired models for computer vision. They have been
applied for several image classification tasks such as face identification, object
recognition, tumors detection and classification, etc. The architecture of a Con-
volutional Neural Network consists of various layers between the input and the
output. Convolutional layers are the core building block of a convolutional net-
work. They comprise of a list of n∗n filters. They are generally followed by
Pooling layers that progressively reduce the spatial size of the representation
and reduce the number of parameters. At the end of a CNN, there is generally a
“Fully-connected” layer, similar to a multi-layer perceptron (MLP), followed by
a classification layer. The classification layer can be implemented as a general-
purpose classifier (for example SVM), but generally a SoftMax function is used
which transforms the final vector values into probability scores between zero and
one.

CNN models are trained using backpropagation algorithm. This algorithm
aims to minimize a cost function that measures the total error of the model on the
training dataset. Backpropagation is used to compute the gradients of the error
with respect to all the weights in the network and gradient descent algorithm
updates all parameters to minimize the output error. [3] gives technical details
about backpropagation and gradient descent algorithms. In many situations, the
amount of training data is not sufficient to adjust all parameters which causes
an overfitting. In this case, transfer learning and fine-tuning are used. In these
two processes, an initial step of model pre-training is used. It consists of training
the CNN model on a large dataset, like ImageNet, before training on the desired
dataset, and initial weights are obtained. These weights are used instead of
random once and a transfer learning or fine-tuning is then applied.
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– Transfer-learning (or shallow retraining) consists in freezing the pre-trained
weights and only the parameters of the last classification layers need to be
inferred from scratch using the new training set. This is very useful if the
pre-training dataset and the final dataset are similar.

– Fine-tuning (or deep retraining) consists in freezing only few first layers or
no layer, depending on the similarity of the original and final datasets, and
updating all the other parameters.

In this work, six architectures (AlexNet [21], InceptionV3 [35], VGGNet [32],
ResNet [14], DenseNet [16] and SqueezeNet [18]) are used with their other vari-
eties. In total, 12 pre-trained models are used and modified to fit our classifica-
tion problem (i.e. changing the last fully connected layer and the classification
layer to fit the number of action classes. We compare both strategies (shallow
and deep retaining) in addition to training the models from scratch (i.e. with
random values).

3.2 Data Representation

In this work, we transform motion sequences, consisting of 3D joint coordinates,
into RGB images to be able to use CNN models pre-trained for image classi-
fication, following the approach proposed by [22]. This approach is based on a
simple transformation in which joints coordinates are normalized between 0 and
255. The normalization is done using the formula 1.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ri(f) = 255 ∗ (xi(f) − min(X)
(max(X) − min(X)

gi(f) = 255 ∗ (yi(f) − min(Y )
(max(Y ) − min(Y )

bi(f) = 255 ∗ (zi(f) − min(Z)
(max(Z) − min(Z)

(1)

where:
(xi(f), yi(f), zi(f)) are the 3D coordinates of joint i at frame f .
min(X),min(Y ),min(Z) are the minimum values for all joints on the 3 axes.
max(X),max(Y ),max(Z) are the maximum values for all joints on the 3 axes.
(ri(f), gi(f), bi(f)) are hence the normalized values of every joint i at the frame
f , where each value corresponds to the format of one channel of the RGB space.

By stacking the normalized values of all joints on all frames we obtain a
long image-like representation of the motion sequence where rows correspond
to joints and columns correspond to frames. The image is resized to a square
representation to be easily used by different CNN architectures. Figure 1 shows
some results from the NTU RGB+D dataset. The colored triangle on the bottom
right of the figure can be considered as a dictionary to interpret these images. The
red color represents the X coordinate, the green color represents the Y coordinate
and the blue color represents the Z coordinate. For example, the greener the part
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of an image from left to right means that the Y value is getting higher. We can
see for example at the images corresponding to the action “Throw” the lines
on the top and in the middle (corresponding to right and left arms joints) are
getting in particular more of the green color at a certain part of the image then
it comes back to the original color. This is the translation of the arms moving
up to throw the object before going down again.

Fig. 1. Examples of motion capture sequences represented into RGB images. (Color
figure online)

In the images corresponding to “Falling”, we can see, starting from the mid-
dle, that the images are getting redder to purple. This can be explained by the
fact that, when the person falls, all the joints Y values are getting smaller (hence
less green). In order to be invariant to global position, all 3D joint coordinates
are normalized with respect to the “SpineBase” joint (the most stable joint from

Fig. 2. Examples of the motion capture sequences transformed into images after
pre-processing.
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the Kinect 2). 3D joint coordinates are hence relative coordinates. The order of
the joints is also modified in order to have more present visual patterns, and
4 very noisy joints have been discarded (thumbs and hand tips joints). The final
order of joints is the following: 3, 2, 20, 1, 0, 8, 9, 10, 11, 4, 5, 6, 7, 16, 17, 18,
19, 12, 13, 14, 15 (the joints’ numbers are shown in Fig. 4.). Figure 2 shows some
examples of the final representation. These images will be fed to multiple CNN
models to select the best one in terms of accuracy.

4 Experimental Results

In this section, the proposed method is evaluated on the NTU RGB+D dataset.
We evaluate different state-of-the-art CNN architectures using different training
strategies An overview of the end-to-end CNN system used in this work is illus-
trated in Fig. 3. After the skeletons are pre-processed, motion capture sequences
are transformed into image data representations. These images are fed into dif-
ferent CNN architectures to be trained using different strategies. The CNN part
of our models generate automatically features (feature maps) that are fed into
a fully connected network for classification.

Fig. 3. Illustration of the proposed End-to-end system for skeleton-based action recog-
nition.

4.1 Data Structure

In order to compare our results with existing works, we evaluate our method
on the NTU RGB+D dataset. This dataset was collected using three Kinect
V2 sensors at the same time covering three views (45◦, 0◦, 45◦) and contains
more than 56,000 action sequences. A total of 60 different action classes are
performed by 40 subjects aged from 10 to 35 years. Among these action classes,
49 are performed by single persons and 11 are interactions between two people.
Only the 49 single person actions were used in our tests. In addition to depth
maps, RGB frames, and infrared (IR) sequences, information of 25 3D joints
are available. This dataset is challenging because of the large intraclass and
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viewpoint variations; however, due to its large scale, it is highly suitable for
deep learning. The captured Kinect V2 skeletons have 25 joints in total. The
configuration and the given order of joints is shown in Fig. 4.

Fig. 4. Configuration of the skeleton given by the Kinect V2.

4.2 Training the Deep Network

In this experiment, 12 state-of-the-art architectures (AlexNet, Inception V3,
VGG11, VGG16, VGG19, ResNet34, ResNet50, ResNet152, DenseNet121,
DenseNet169, DenseNet201 and SqueezeNet) are trained on the dataset
described in the previous section. The numbers after the architectures’ names
represent the number of layers. This will allow us also to analyze the effect of the
depth of the models as well. We trained these architectures using three different
strategies. The first strategy consists in training the CNN from scratch starting
from random weights. The other two strategies are based on transfer learning
using pre-trained networks. The first transfer learning approach, called shallow
retraining approach, consists in fine-tuning only the last added fully connected
layer, while the rest of the network is used as feature extractor. The second
approach, called deep retraining approach, fine-tunes all the network layers. All
the 36 training configurations use the same hyperparameters (momentum 0.9,
weight decay 0.0005, learning rate 0.001, batch size 30 and a number of epochs
of 15). The dataset is divided following two evaluation protocols:

– Cross-subject evaluation: the 40 subjects are split into training and testing
groups. Each group consists of 20 subjects.

– Cross-view evaluation: the samples of one camera (corresponding to one view-
point) are used for testing and samples of the two other cameras are used for
training.

All experiments are performed on a machine having the specifications summa-
rized in Table 1.
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Table 1. Training and testing machine specifications.

Characteristics

Memory (RAM) 32 GB

Processor (CPU) Intel R© CoreTM i7-7800X CPU @ 3.50 GHz 12

Graphics (GPU) 2 * GeForce GTX 1080 Ti/PCIe/SSE2 (11 GB)

Operating system Linux Ubuntu 16.04 64 bits

4.3 Models Evaluation: Results and Discussion

In this section, we discuss the results obtained for different experiments. The
accuracy and the training time for all the 12 models are shown in Tables 2 and
3 for cross-subject and cross-view evaluation protocols respectively.

Cross-Subject Evaluation Protocol. From Table 2, we get the highest scores
of accuracy with the models ResNet50 and DenseNet201, around 82%. This
accuracy is obtained using the deep retraining approach. Analyzing this table, we
notice that the lowest scores are obtained using the shallow retraining approach.
Such low scores are linked to the fact that we retrain only the last added layer
and we keep the rest of the model untouched. The convolutional layers in this
situation are used as feature extractors. This can work and give good results
in cases where we have images that are similar to the original dataset that was
used to pre-train the model (ImageNet). However, our images are more abstract
and completely different from the original dataset. The features extracted are
hence meaningless in regard to our data.

Table 2. Comparison of different proposed models for cross-subject evaluation.

Model From scratch Retrain shallow Retrain deep

Time (h) Acc Time (h) Acc Time (h) Acc

AlexNet 1.17 0.6544 1.09 0.2371 1.76 0.7319

InceptionV3 1.78 0.6607 0.61 0.2524 1.68 0.7953

VGG11 2.33 0.6841 1.95 0.2627 3.29 0.7691

VGG16 2.82 0.6674 2.15 0.2696 3.87 0.7760

VGG19 3.07 0.6490 2.27 0.2200 3.70 0.7514

ResNet34 1.05 0.7202 0.85 0.3768 1.05 0.8020

ResNet50 1.31 0.6809 0.97 0.3835 1.30 0.8207

ResNet152 2.45 0.6756 2.09 0.3910 2.43 0.8118

DensNet121 1.29 0.7468 1.53 0.4228 1.28 0.8096

DensNet169 1.56 0.7610 1.49 0.4380 1.53 0.8172

DeseNet201 1.86 0.7622 1.84 0.4422 1.82 0.8200

SqueezeNet 0.61 0.6573 0.55 0.3145 0.62 0.7209
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We can notice relatively higher scores, compared to the shallow retraining,
in the case of the retraining from scratch (from random weights). Retraining the
whole model allowed it to develop features that are adapted to our data. Nev-
ertheless, the scores are not as high as the deep retraining approached because
retraining from scratch may need more data and more time to converge. Trans-
fer learning using deep retraining allowed a quicker convergence. We can also
conclude that more layers do not automatically mean higher accuracy. It can
be the opposite in many cases like VGG and ResNet. VGG architecture with
19 layers for example gives lower accuracy than the one with 11 and 16 layers
in a deep retraining approach. This can be explained by the fact that the more
layers we have, the more risk we have of overfitting. We can finally notice that
SqueezeNet gives relatively high scores, particularly in a deep retraining app-
roach. SqueezeNet is a very small network with few parameters. It has a total
size of less than 0.5 MB. Compared to AlexNet for example that has a total
size of 240 Mb, it makes it easy and practical to fit into embedded systems and
smartphones. Evaluation of the models’ performances comparing training time
and accuracy is displayed in Fig. 5.

Fig. 5. Cross-subject evaluation: accuracy vs. training time (h).

Cross-View Evaluation Protocol. From Table 3, we get the highest scores in
the “Cross-View” evaluation protocol with the models ResNet34, ResNet152 and
DenseNet201 of about 86%. The exact same conclusions as in “Cross-Subject”
evaluation can be drawn.
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Table 3. Comparison of different proposed models for cross-view evaluation.

Model From scratch Retrain shallow Retrain deep

Time (h) Acc Time (h) Acc Time (h) Acc

AlexNet 0.92 0.6400 1.18 0.2267 1.15 0.7486

InceptionV3 1.73 0.6482 0.61 0.2573 1.54 0.8046

VGG11 1.75 0.7573 2.13 0.2693 2.27 0.8144

VGG16 2.23 0.7635 2.18 0.2530 2.75 0.8269

VGG19 2.50 0.7643 2.25 0.2160 2.99 0.8001

ResNet34 1.01 0.6997 0.83 0.3672 1.03 0.8600

ResNet50 1.27 0.6457 0.96 0.3774 1.29 0.8592

ResNet152 2.67 0.7375 1.61 0.3906 2.38 0.8611

DensNet121 1.30 0.7877 0.94 0.4104 1.27 0.8550

DensNet169 1.64 0.7767 1.10 0.4302 1.51 0.8489

DeseNet201 1.95 0.7924 1.27 0.4422 1.80 0.8654

SqueezeNet 0.4 0.7021 0.57 0.3065 0.62 0.7760

Fig. 6. Cross-view evaluation: accuracy vs. training time (h).

Evaluation of the models’ performances by comparing training time and accu-
racy is also displayed in Fig. 6, which is similar to the previous evaluation sce-
nario (cross-subject). The obtained results can be compared to several works
in the state of the art that used the same dataset (Table 4). The highest score
we obtained is 82,07% using ResNet50 in the cross-subject evaluation proto-
col and 86,54% using DenseNet201 in the cross-view evaluation protocol. Our
results outperform most of state-of-the-art methods in both cross-subject and
cross-view protocols. Our results are obtained by transforming motion sequences
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Table 4. Comparison of different proposed models for cross-view evaluation.

Method Cross-subject Cross-view

Using CNNs

two streams 3DCNN [26] 66,85% 72,58%

conversion into image + CNN [20] 79,57% 84,83%

trajectories maps + CNN [40] 76,32% 81,08%

conversion into image + CNN [23] 75,20% 82,10%

conversion into image + CNN [22] 74,27% 75,74%

conversion into image + CNN [7] 83.2% 89.3%

Using other DL methods

HBRNN [9] 59,07% 63,97%

Deep RNN [31] 56.29% 64.09%

Deep LSTM [31] 60.69% 67.29%

PA-LSTM [31] 62.93% 70.27%

LieNet [17] 61.37% 66.95%

ST-LSTM [27] 69.20% 77.70%

Our method 82.07% 86.54%

into images and using pre-trained models without developing new architectures.
Specifically, we improve accuracy by 3 to 8% compared to other techniques
using CNNs with image-like transformation of motion sequences. This proves
that adapting the weights from pre-trained models for a new task improves the
performance of deep learning networks and gives high scores even if the original
task is very different.

The work done by Li et al. [7] have significantly higher results. Authors have
developed a new architecture dedicated for this task, using two-stream CNNs and
achieved 83.2% of accuracy for cross-subject evaluation and 89.3% for cross-view
evaluation.

5 Conclusion

In this work, we studied the use of pre-trained convolutional neural networks
for skeleton-based action recognition. In order to handle the high dimensional-
ity of skeleton sequences, we transformed them into RGB images so they can
be fed directly to different CNN models that are designed for image classifica-
tion. We exploited different state-of-the-art pre-trained architectures and used
a process called “fine-tuning” to adapt the weights to our task. Even though
the obtained images are abstract and completely different from original dataset
(ImageNet) used to pre-train different models, we achieved high classification
scores and outperformed most of action classification state-of-the-art results on
the NTU RGB+D dataset. This proves that, firstly, the image-like representation
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of motion capture skeleton sequences can be well interpreted by different CNN
architectures. This also proves that using already trained classification mod-
els helps in other classification tasks and accelerates the model’s convergence.
Nonetheless, that are still quite a few open issues. For example, studying the
use of rotation in addition to 3D joint locations and exploiting other pre-trained
architectures that use both CNNs and RNNs for our task. Besides, building a
CNN architecture for our specific task, pre-training it on different motion cap-
ture datasets, then apply fine-tuning for the desired dataset, could be more
effective. Last but not least, studying the behavior of different CNN models
using visualization techniques to set the most optimized parameters would also
be an interesting direction.
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