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Near-Convex Archetypal Analysis
Pierre De Handschutter Nicolas Gillis Arnaud Vandaele Xavier Siebert

Abstract—Nonnegative matrix factorization (NMF) is a widely
used linear dimensionality reduction technique for nonnegative
data. NMF requires that each data point is approximated by
a convex combination of basis elements. Archetypal analysis
(AA), also referred to as convex NMF, is a well-known NMF
variant imposing that the basis elements are themselves convex
combinations of the data points. AA has the advantage to be
more interpretable than NMF because the basis elements are
directly constructed from the data points. However, it usually
suffers from a high data fitting error because the basis elements
are constrained to be contained in the convex cone of the data
points. In this letter, we introduce near-convex archetypal analysis
(NCAA) which combines the advantages of both AA and NMF. As
for AA, the basis vectors are required to be linear combinations
of the data points and hence are easily interpretable. As for
NMF, the additional flexibility in choosing the basis elements
allows NCAA to have a low data fitting error. We show that
NCAA compares favorably with a state-of-the-art minimum-
volume NMF method on synthetic datasets and on a real-world
hyperspectral image.

I. INTRODUCTION

Nonnegative Matrix Factorization (NMF) is a well-known
technique in unsupervised data analysis; see for example [1],
[2] and the references therein. Given an m-by-n nonnegative
input matrix X ∈ Rm×n+ and a factorization rank r, the goal of
NMF is to find two nonnegative matrices W ∈ Rm×r+ and H ∈
Rr×n+ such that X ≈ WH . The standard NMF optimization
problem is formulated as follows

min
W∈Rm×r,H∈Rr×n

‖X −WH‖2F such that W ≥ 0 and H ≥ 0,

where ||A||2F =
∑
i,j A(i, j)2 is the squared Frobenius norm

of matrix A. The matrix W is referred to as the matrix of
basis elements while the matrix H indicates the proportions in
which each basis vector is present in any data point. Due to its
physical interpretation, for example in hyperspectral unmixing
(see Section IV-B), the matrix H is often required to have the
sum of the entries of each column less or equal to 1. With this

constraint and denoting ∆r =
{
x ∈ Rr|x ≥ 0,

r∑
i=1

xi ≤ 1
}

,

we consider in this paper the following problem

min
W∈Rm×r

+

H∈Rr×n+

‖X −WH‖2F such that H(:, j) ∈ ∆r for all j.

A notable variant of NMF is archetypal analysis (AA) [3]. In
AA, an additional constraint imposes that the basis vectors,
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referred to as archetypes, are themselves convex combinations
of the data points, that is W (:, k) = XA(:, k) with A(:, k) ∈
∆n, k = 1, ..., r. The problem becomes

min
A(:,k)∈∆n for k=1,...,r
H(:,j)∈∆r for j=1,...,n

‖X −XAH‖2F . (1)

AA has also been introduced under the name convex NMF [4].
While AA offers higher guarantees of interpretability since the
archetypes have to belong to the convex hull of the data points,
the reconstruction error is likely to be higher than in NMF.
Hence the membership of the archetypes to the convex hull of
the columns of X was relaxed in some previous works. In [5],
the sum of the entries of each column of A is allowed to be
between 1−δ and 1+δ for some δ ≥ 0 fixed a priori. In [6], the
authors combine AA and NMF through a trade-off between the
reconstruction error and the distance between the archetypes
and the convex hull of X . However, the variables involved are
the NMF ones, namely W and H . Minimum-volume NMF [7]
is an NMF variant that minimizes the volume of the convex
hull of the columns of W ; see [2] and the references therein
for details. The latter two approaches, though close in spirit
to AA, do not allow to interpret how the archetypes are built
from the data through a coefficient matrix A.

In this work, we propose a new model, dubbed near-
convex archetypal analysis (NCAA), which benefits from the
advantages of both NMF via low reconstruction error and
AA via interpretability. This letter is organized as follows.
In Section II, we state the model and explain its geometric
interpretation. We detail the optimization framework in Sec-
tion III. We present the performances of our algorithm on
both synthetic and real datasets in Section IV and draw some
possible perspectives of future research in Section V.

II. NEAR-CONVEX ARCHETYPAL ANALYSIS

Given a data matrix X ∈ Rm×n, a matrix Y ∈ Rm×d with
d columns, the rank r of the factorization and a positive scalar
ε, we define the NCAA problem as follows

min
A∈Rd×r

H(:,j)∈∆r for j=1,...,n

‖X − Y AH‖2F

such that A(k, l) ≥ −ε for all k, l, ε > 0,
d∑
k=1

A(k, l) = 1 for all l = 1, . . . , r,

(2)

For Y = X and ε = 0, NCAA (2) coincides with AA (1). Let
us point out the two differences between NCAA and AA:
- For ε > 0, the archetypes are allowed to lie outside the

convex hull of the data points and are said to be near-convex
combinations (NCCs) of the data points.

- In order to reduce the computational cost compared to AA,
the basis vectors Y A are combinations of a matrix Y , made
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Fig. 1: Geometric interpretation of NCAA for r = 3, d = 2r =
6, m = 2: as ε grows, the estimated basis vectors are further
away from the convex hull of X . In this example, p = 0.8
and ε = 1

14 .
of d points such that d� n. In practice (see below), we will
choose these d columns as a subset of the columns of X .
Note that, in [8], Y is chosen as the vertices of the convex
hull of X . However, in noisy scenarios, most data points
will be vertices hence this approach usually does not allow
to have d significantly smaller than n.
NCCs have an interesting geometric interpretation, as stated

in the following lemma.

Lemma 1. Let Y ∈ Rm×d, and let us define the columns of
the matrix Z as

Z(:, j) = Y (:, j) + dε(Y (:, j)− y) for j = 1, . . . , d,

where y is the average of the columns of Y , that is, y = Y e/d
where e is the vector of all ones. Then, the NCC of the columns
of Y , that is, the set Y =

{
x | x = Y a,

∑
i ai = 1, ai ≥ −ε

}
,

is equal to the convex combinations of the columns of Z, that
is, to the set Z =

{
x | x = Za,

∑
i ai = 1, ai ≥ 0

}
.

Fig. 1 illustrates the geometric interpretation given in
Lemma 1 for d = 2r = 6: each Z(:, j) is aligned with the
corresponding Y (:, j) and y, and lies outside the convex hull
of the columns of Y . This interpretation is rather interest-
ing: as ε increases, the archetypes W = Y A are allowed
to lie further away from the convex hull of the columns
of Y . Let us define the purity level p of X = WH as
p = min1≤i≤r max1≤j≤nH(i, j). In Fig. 1, p = 0.8. If p = 1,
the data is said to be separable (see for example [2]), as the
basis vectors W correspond to some of the points in X so that
ε can be chosen equal to 0.

There are two key aspects in the NCAA model: the choice
of Y and the choice of ε. The value of ε will be tuned
automatically within the algorithm; see Section III for more
details. For the choice of Y , we use two simple schemes but
others could be considered:
- Successive nonnegative projection algorithm (SNPA) [9],

designed to solve separable NMF, extracts extreme points of
the dataset but is sensitive to outliers (although appropriate
pre- and post-processing could resolve this issue).

- Hierarchical clustering (HC) [10], designed to cluster data
points in a hierarchical way, identifies points that are not
necessarily extreme points of the data cloud but is less
sensitive to outliers hence appropriate for real data sets.
The number of points d in Y is chosen a priori depending

on the application (so is the rank r as in most NMF models).
It can be chosen as a small multiple of r: typically, a value

between 2r and 10r works well in practice; see the numerical
experiments for some examples.

III. OPTIMIZATION FRAMEWORK

We propose a standard optimization framework to solve (2),
namely a two-block coordinate descent (BCD) [11]. It consists
in alternatively optimizing A and H keeping the other fixed;
this is the standard framework for most NMF algorithms [1].
The optimization of A and H is performed through a fast
projected gradient descent method (FPGM) with Nesterov
acceleration [12]. The step size is tuned with a backtracking
line search. The matrix H is projected onto the unit simplex
through the algorithm described in Appendix of [9]. The
projection of A can be performed in a similar way but requires
the implementation of an efficient column-wise algorithm,
valid for any ε. We have implemented such an approach; see
the Matlab code available from https://bit.ly/2mssF5Q.

The value of the parameter ε is tuned automatically as
it highly depends on the data distribution. We believe this
is a strong advantage of our method. For example, in the
separable case, that is, when the basis vectors belong to
the data points [13], ε should be set to 0. However, when
this is not the case, ε should be chosen more carefully; see
for example Fig. 1 for a non-separable case. We proceed as
follows. The value of ε is initially set to a very small value
(we have used εmin = 10−3 in all numerical experiments)
which imposes that the archetypes are close to the convex
hull of X . Then, ε is doubled at each iteration as long as
the relative error decreases by a given tolerance between two
consecutive iterations (in our implementation we have used
δ = 10−4). Intuitively, the idea is to slowly allow the basis
vectors to lie further away from the convex hull of X . This
tuning process is described in Algorithm 1. We will denote

∆r
ε =

{
x ∈ Rr|x ≥ −ε1,

r∑
i=1

xi ≤ 1
}

.

Algorithm 1 NCAA

Input: Nonnegative matrices X ∈ Rm×n+ and Y ∈ Rm×d+ , rank
r, bounds 0 < εmin < εmax, tolerance δ

Output: Matrices A ∈ Rd×r and H ∈ Rr×n that solve (2)
1: Compute initial matrices A(0) and H(0), i = 0, ε(1) = εmin.
2: err(0) = ||X − Y A(0)H(0)||2F
3: for t = 1, 2, . . . do
4: for k = 1, 2, . . . , 50 do
5: i = i+ 1

6: A(i) = arg min
A(:,l)∈∆d

ε(t)
∀ l
‖X − Y AH(i−1)‖2F (?)

7: H(i) = arg min
H(:,j)∈∆r∀ j

‖X − Y A(i)H‖2F (?)

8: err(i) = ||X − Y A(i)H(i)||2F
9: end for

10: if err(i)−err(i− 1) < δ err(0) then
11: εmax = ε(t); ε(t+1) = εmin+εmax

2

12: else
13: εmin = ε(t); ε(t+1) = min(2ε(t), εmax)

14: end if
15: end for

? The problem is solved via FPGM.

https://bit.ly/2mssF5Q
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In the model (2) and in Algorithm 1, the value of ε is the
same for all entries of A. However, in practice, it may be
crucial to allow the columns of W to be closer or further
away from the data points. For example, it may happen that a
subset of the archetypes belong to the data points (that is, some
columns of W appear as columns of Y ) for which the value of
ε should be equal to zero. Therefore, rather than considering
a unique ε in the model, we impose instead that

A(:, l) ≥ −εl for l = 1, . . . , r,

where εl ≥ 0 (1 ≤ l ≤ r) are parameters. To deal with
this non-symmetric case, we propose a fine-tuning stage, after
Algorithm 1 has terminated. Starting from the value of ε
computed by Algorithm 1, εl is fine-tuned for each basis
vector Y A(:, l), one at a time and independently of each other
(keeping the others fixed at the value returned by Algorithm 1).
It works as follows. The value of εl (l = 1, . . . , r) is decreased
by a factor α (set to 0.8 in the implementation) until the
reconstruction error becomes 1% larger than the error at the
end of the global tuning; see Algorithm 2. Intuitively, we move
back each column of W = Y A towards the convex hull of the
columns of Y as long as the error does not increase too much.
Algorithm 2 Fine tuning of NCAA

Input: Nonnegative matrices X ∈ Rm×n+ , Y ∈ Rm×d+ , A ∈ Rd×r,
H ∈ Rr×n, rank r, tolerance δ∗

Output: Matrices A(∗) ∈ Rd×r, H(∗) ∈ Rr×n that solve (2)
1: err0 = ||X − Y AH||2F
2: for l = 1, . . . , r do
3: B = A

4: ε
(0)
l = −min(A(:, l))

5: for t = 1, 2, . . . do
6: ε

(t)
l = αε

(t−1)
l

7: for k = 1, 2, . . . , 50 do
8: i = i+ 1

9: B(i)(:, l) = arg min
B(:,l)∈∆d

ε
(t)
l

‖X − Y BH(i−1)‖2F (?)

10: H(i) = arg min
H(:,j)∈∆r∀ j

‖X − Y B(i)H‖2F (?)

11: err(i) = ||X − Y B(i)H(i)||2F
12: end for
13: if err(i) > δ∗err0 then
14: A(∗)(:, l) = B(i)(:, l)

15: break
16: end if
17: end for
18: end for
19: H(∗) = arg min

H(:,j)∈∆r∀ j
‖X − Y A(∗)H‖2F (?)

? The problem is solved via FPGM.

Computational cost The main computational cost of Al-
gorithms 1 and 2 lies in the computation of the gradient and the
projection, which both require matrix-matrix multiplications.
One can check that the computational cost per iteration is
O(mnr) operations. As long as d is chosen small enough (we
recommend a multiplicative factor of r), the computational
cost of the algorithm remains linear in the dimensions of the
input matrix as for classical NMF, hence can be applied to
large-scale data sets. Note that the number of variables of

NCAA is r(d+ n) which is less than the 2nr of the classical
AA but of the same order as the number of variables in NMF
r(m+ n), as d is usually smaller than m.

IV. NUMERICAL EXPERIMENTS

In this section, the performances of NCAA are evaluated on
synthetic data sets, and on a real-world hyperspectral image.
We compare NCAA with a state-of-the-art minimum-volume
NMF algorithm that uses a logdet penalty to penalize the
volume of the columns of X [14]:

min
W≥0

H(:,j)∈∆r for all j

‖X −WH‖2F + λ̃ log det(WTW + δIr) (3)

where Ir is the identity matrix of size r, λ̃ a regularization
parameter and δ a small scalar constant. This model was shown
to be the most efficient compared to other minimum-volume
algorithms in [15]. We use the implementation from [16]
where it is recommended to use λ̃ = λ

||X−WH||2F
log det(WTW+δIr)

with λ = 0.01, 0.1 to balance the two terms in the objective
function, and where the initial matrices (W,H) are computed
by SNPA. The performance metric considered is the average
mean removed spectral angle (MRSA) over all couples of cor-
responding estimated and expected basis vectors, after a proper
assignment with the Hungarian algorithm [17]. The MRSA
between two vectors x and y is given by MRSA(x, y) =
100
π arcos

(
〈x−x,y−y〉
‖x−x‖2‖y−y‖2

)
∈ [0, 100] where 〈 · , · 〉 indicates

the scalar product of two vectors and · is the mean of a vector.

A. Synthetic data sets

We first compare the methods on synthetic data sets to
investigate the influence of different data distributions. For
NCAA, we use SNPA to generate Y with d = 10r. Moreover,
only Algorithm 1 is used, as the purity level will be identical
over all the basis vectors and the improvement brought by the
fine tuning stage was negligible.

We generate the data matrices X ∈ Rm×n+ as follows. We
fix n = 1000 and m = 10. Given the factorization rank r,
the purity level p ∈ (0, 1] and the noise level υ, we generate
25 random matrices X = WtHt + N as follows. Each entry
of Wt ∈ Rm×r+ is drawn from a uniform distribution over
the interval [0, 1]. Then, each column is normalized so that its
entries sum to one such that all the basis vectors belong to
∆m. The matrix Ht ∈ Rr×n+ is generated through a Dirichlet
distribution of parameter α ∈ Rr, αi = 0.05 for all i. Each
column is resampled until every entry is smaller than the given
purity level p. Finally, noise is added to the data such that

X = max

(
0, X̃ + υ||X̃||F

N

||N ||F

)
,

where X̃ = WtHt and each entry of N follows a Gaussian
distribution of mean 0 and standard deviation 1.

The following values of the variable parameters are con-
sidered: r = 3, 7, 12, 20, p = 0.8, 0.9, 1 and υ = 0,
0.01, 0.05, 0.1, 0.2. Table I displays the average MRSA and
the corresponding standard deviations obtained with the 25
different generated true factors, computed for both NCAA and
MinVolNMF (Eq. (3)) with two values of λ (0.01 and 0.1) as
well as SNPA. Table I also provides the number of times each
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(p, r, υ) NCAA MinVolNMF (λ = 0.01) MinVolNMF (λ = 0.1) SNPA
(0.7, 7, 0) 1.13± 2.61 (24) 7.42± 5.22 (0) 6.09± 5.30 (1) 15.04± 2.40 (0)
(0.8, 7, 0) 0.37± 0.61 (24) 1.99± 2.27 (0) 1.70± 2.25 (1) 7.40± 1.20 (0)
(0.9, 7, 0) 0.21± 0.07 (20) 0.45± 0.23 (0) 0.41± 0.23 (5) 3.13± 0.28 (0)
(1, 7, 0) 2.12 · 10−3 ± 4.27 · 10−3 (8) 3.18 · 10−3 ± 6.56 · 10−3 (0) 3.17 · 10−3 ± 6.53 · 10−3 (0) 1.22 · 10−5 ± 1.40 · 10−5 (17)

(0.8, 3, 0) 1.88± 1.05 (10) 1.73± 0.90 (1) 1.47± 0.95 (14) 7.16± 0.80 (0)
(0.8, 7, 0) 0.37± 0.61 (24) 1.99± 2.27 (0) 1.70± 2.25 (1) 7.40± 1.20 (0)
(0.8, 12, 0) 3.81± 3.97 (23) 5.70± 3.80 (0) 5.44± 3.80 (2) 10.08± 2.53 (0)
(0.8, 20, 0) 6.39± 2.41 (22) 7.20± 2.48 (0) 7.09± 2.47 (3) 10.45± 1.79 (0)
(0.8, 7, 0) 0.37± 0.61 (24) 1.99± 2.27 (0) 1.70± 2.25 (1) 7.40± 1.20 (0)

(0.8, 7, 0.01) 2.31± 3.11 (7) 2.44± 3.07 (0) 2.16± 3.03 (18) 7.85± 1.98 (0)
(0.8, 7, 0.05) 6.32± 2.20 (6) 6.48± 2.50 (0) 5.59± 2.39 (19) 10.35± 2.94 (0)
(0.8, 7, 0.1) 8.44± 1.73 (14) 11.02± 3.78 (0) 9.43± 3.56 (11) 12.18± 2.16 (0)
(0.8, 7, 0.2) 13.87± 3.30 (22) 23.23± 3.90 (0) 21.19± 4.12 (1) 18.79± 2.29 (2)

Table I: Comparison of the performances of NCAA, MinVolNMF and SNPA on synthetic data, with n = 1000, m = 10,
d = 10r in function of the purity level, rank and noise level respectively in terms of average MRSA over 25 randomly
generated true factors. For each configuration, the best average MRSA is highlighted in bold and the number of times each
algorithm performs the best is written in parentheses.

algorithm returned the best solution (that is, smallest MRSA
among the four algorithms). We only present the results for
some important configurations: we fix r = 7, p = 0.8 and
υ = 0 and, for these values, we vary r, p and υ independently.

We observe the following:
- The variability of the settings generates in general high

standard deviations. However, the ranking trend given by
the average MRSA is confirmed by the distribution of the
best instances.

- The MRSA of NCAA is in most cases lower than the
one of MinVolNMF. Note that MinVolNMF with the two
values of λ give similar results. The baseline SNPA is only
competitive in separable cases (that is, when p = 1). NCAA
performs particularly well in the difficult scenario when
r > m, in presence of heavy noise and in highly mixed
situations (p� 1). As opposed to MinVolNMF, NCAA uses
the data points to construct the basis vectors hence is more
robust in these difficult scenarios.

B. Blind hyperspectral unmixing

Hyperspectral unmixing consists in identifying r materials,
or endmembers, inside a hyperspectral image made of n pixels
in m spectral bands. The HYDICE Urban image is made of
n = 307 × 307 pixels in m = 162 denoised spectral bands.
Four important materials are asphalt road, grass, tree and roof,
and we fix r = 4 (see for example [18] for more details).
The matrix Y is set up with HC, and we use d = 20. On
Fig. 2, a comparison of the normalized spectral signatures
of the endmembers obtained with both NCAA (including the
fine-tuning step) and MinVolNMF, and the ground truth is
presented. We observe that NCAA produces spectral signa-
tures very close to the ground truth. Besides, the MRSA of
our model is 5.56 while the one of MinVolNMF is 5.73.
Moreover, the abundance maps on Fig. 3b show that NCAA
is able to retrieve meaningful proportions of each endmember
in the initial image. For comparison, the abundance maps of
MinVolNMF are presented on Fig. 3a.

V. CONCLUSION

In this letter, we have proposed a new NMF model called
near-convex archetypal analysis (NCAA) which on the one
hand guarantees a low approximation error and on the other
hand is interpretable like archetypal analysis from which it
is inspired. The value of the parameter ε in NCAA (2) plays

Fig. 2: Endmembers comparison between NCAA, MinVol-
NMF and the ground truth for Urban image with r = 4.

(a) MinVolNMF (b) NCAA

Fig. 3: Material abundances for Urban image with r = 4.
From left to right, on top: road, grass; on bottom: tree, roof.

the role of a cursor regulating the maximum distance between
the basis vectors and the convex hull of the data points X .
Although it is possible to estimate the value of the parameter
ε that retrieves the true basis vectors in simple settings, we
would be interested in analysing the uniqueness of the solution
of NCAA. As the intuition of NCAA is close to the one of
minimum-volume NMF, it would be particularly interesting to
extend the identifiability results obtained in [19], [20], [21]. It
would also be interesting to explore other models inspired by
NCAA. For example, using Y = X and imposing row sparsity
of A would make the model learn Y and the number of points
d automatically; see [22] for a similar idea. Other models using
regularization terms in the objective function rather than fixing
hard constraints on A could also be interesting to explore.
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