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Abstract
Even with the growing interest in problems
at the intersection of Computer Vision and
Natural Language, grounding (i.e. identify-
ing) the components of a structured descrip-
tion in an image still remains a challenging
task. This contribution aims to propose a
model which learns grounding by reconstruct-
ing the visual features for the Multi-modal
translation task. Previous works have partially
investigated standard approaches such as re-
gression methods to approximate the recon-
struction of a visual input. In this paper, we
propose a different and novel approach which
learns grounding by adversarial feedback. To
do so, we modulate our network following the
recent promising adversarial architectures and
evaluate how the adversarial response from a
visual reconstruction as an auxiliary task helps
the model in its learning. We report the highest
scores in term of BLEU and METEOR metrics
on the different datasets.

1 Introduction

Problems combining vision and natural language
processing are viewed as a difficult task. It
requires to grasp and express low to high-level
aspects of local and global areas in an image as
well as their relationships. Visual attention-based
neural decoder models (Xu et al., 2015; Karpathy
and Li, 2015) have been widely adopted to solve
such tasks. The attention focuses only on part of
an image and integrates this spatial information
into the multi-modal model pipeline. The model,
that usually consists of a Recurrent Neural Net-
work (RNN), encodes the linguistic inputs and is
trained to modulate, merge and use both visual
and linguistic information in order to maximize
a task score. For instance, in Multi-modal Ma-
chine Translation (MMT), the model is required to
translate an image description to another language.

The integration of visual input in MMT has
always been the primary focus of the different re-
searches in the field. Regional and global features
have first been investigated (Huang et al., 2016),
then convolutional features of higher dimensions
(such as the res4f layer from ResNet) (Calixto
et al., 2017; Delbrouck and Dupont, 2017b) were
used because they carry more visual information.
Recently, Caglayan et al. (2017) found that light
architectures with fewer parameters are more suit-
able for the learning of the MMT task. Because
of the limited number of training parameters,
global features must be used. A trade-off arises
: models with bigger attention mechanism could
take advantage of richer visual input but the
addition of training parameters seems to impair
the translation quality.

To tackle this problem, we decide to take a state-
of-the-art MMT model and add a conditional gen-
erator whose aim is to reconstruct the global vi-
sual input used during the translating process us-
ing only the model terminal state. We also want
this reconstruction to be evaluated adversarially.
This approach has four purposes :

• We constrain the model to closely represent
the semantic meaning of the sentence by re-
constructing the visual input. We believe it
would ground the visual information into the
training process and enable better generaliza-
tion;

• We leave the whole translation model
pipeline unchanged, no learning parameters
are added for translation. The generator mod-
ule is trained end-to-end during training but is
unused during inference;

• Because we use light global features, the re-
construction process is very fast and require
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few learning parameters;

• By using an adversarial approach, we want
our generator to approximate the true data
distribution of images. We believe that the
propagation of generator’s gradient back into
the translation model would enable better
generalization for unseen images on the dif-
ferent test-sets.

This reconstruction problem has two parts.
First, we add the reconstruction module on top
of our primary MMT task and investigate the dif-
ferent architecture for the generator. Secondly,
we treat the reconstruction as an adversarial prob-
lem. We modulate our network following recent
promising adversarial architectures and evaluate
how the adversarial response helps the transla-
tion pipeline in its learning. We prove their effi-
ciency by showing strong generalization the dif-
ferent MMT test-sets.

2 Related work

In the modality reconstruction field, the closest
work related to ours is the one of (Rohrbach
et al., 2016) who proposes an approach which
can learn to visually localize phrases relying on
phrases associated with bounding boxes in an
image. Nevertheless, our works differ in two
ways. First, the reconstruction is linguistic. They
aim to reconstruct the sentence from a visual
attention. Secondly, their visual data are anno-
tated with bounding boxes representing linguistic
information while our approach doesnt require
any preprocessing.

When reconstructing its input, a model can be
seen as an auto-encoder (Hinton and Salakhut-
dinov, 2006) which aims to compress or encode
with model Q(z|v) a modality v into a represen-
tation z and then decode (or reconstruct) from z
an approximation v′ with decoder G(v|z). The
difference lies in that our latent variable z (or
compressed representation) is the final representa-
tion of a MMT model. Input v is modulated in by
the multi-modal model before being decoded (or
reconstructed). Because our latent variable z will
be adversarially evaluated, our model is also close
to an adversarial auto-encoders (AAE) (Makhzani
et al., 2016).

Adversarial approaches for multimodal-tasks
have been investigated in image-captioning (Feng
et al., 2018) or visual question answering (Ilievski
and Feng, 2017). In those works, the task goal is
fully adversarial which differs from our approach.
Our translation model is still a classification
task and uses the widely adopted negative log
likelihood loss. Only the reconstruction module is
treated as adversarial.

Finally, reconstruction (or imagination as called
in the author’s paper) has been investigated with
regression techniques Elliott and Kádár (2017).
A major difference, besides our adversarial ap-
proaches, is their choice to not use any visual in-
formation during inference. The image is only
used as training input for the reconstruction mod-
ule, not the translation module. We believe it
could penalize the model to do so if the infor-
mation for translation really is in the image. As
previously stated, using visual input for transla-
tion might impair overall translation quality but
we force our model to use a visual attention during
inference as it is the very foundation of the multi-
modal translation task.

3 Background

In this section, we describe the concepts involved
in our experiments. We start by describing how vi-
sual reconstruction as an auxiliary task is built on
top of our MMT model. We then explain the two
adversarial settings used to involved in our exper-
iments: a generative adversarial network and an
adversarial auto-encoder.

3.1 Visual reconstruction

We denote the MMT model Q and its inputs x and
v for the linguistic and visual data respectively.
The model learns to output the translation y of x
as formulated hereafter:

y, hT = Q(x, v) (1)

where hT is defined as the model’s Q final state
(or last hidden state). A generatorG takes as input
hT and approximates a visual reconstruction v′:

v′ = G(hT ) (2)



From equation 1 and 2, we compute the total loss
LMMT of model Q and generator G :

LMMT =

translation pipeline︷ ︸︸ ︷
LQ(y, x) + λr

reconstruction pipeline︷ ︸︸ ︷
LR(v′, v)

(3)
Factor λr indicates the weight of the reconstruc-
tion loss.

Notation used in this sub-section 3.1 are
matched in the following sub-sections 3.2 and 3.3
for clarity.

3.2 Generative adversarial network (GAN)

A generative adversarial network (Goodfellow
et al., 2014) is a model whose main focus is to
generate new data based on source data. It is made
of two networks: the generator G that constructs
synthetic data from noise samples z and the dis-
criminator D that distinguishes generated samples
from the generator or from the true data-set distri-
bution. Intuitively, one can say that the goal of the
generator is to fool the discriminator by synthesiz-
ing data close to the data distribution. This leads
to a competition between both networks called the
min-max objective:

min
G

max
D

Ev∼Ptrue [log(D(v))]+

Ev′∼Pgenerated
[log(1−D(v′))]

(4)
where v is an example from the true data and

v′ = G(z) a sample from the Generator and
variable z is Gaussian noise.

To stabilize training and tackle the vanishing
gradient problem, Gulrajani et al. (2017) introduce
a gradient penalty in the objective :

Ev∼Ptrue [D(v)] + Ev′∼Pgenerated
[1−D(G(z))]

+ λgp Ev̂∼Pv̂
[(‖∇v̂D(v̂)‖2 − 1)2]

(5)
with v̂ = εv + (1 − ε)v′ and where ε is a ran-

dom number sampled from the uniform distribu-
tion U [0, 1] and λgp is the penalty factor. This
method produces more stable gradient and the
critic can match more complex distribution.

This equation refers to the wasserstein GAN
(WGAN, Gulrajani et al. (2017)) with gradient
penalty that will be used in our experiments at sec-
tion 4.

3.3 Adversarial Auto-encoders (AAE)
Auto-encoders are made of two parts : an encoder
Q receives the input v and creates a latent or hid-
den representation h of it, and the generator G
takes this intermediate representation and tries to
reconstruct the input as v′. A common loss is to
use the mean square error between the input and
reconstructed inputs.

LR(, v
′) = ||v − v′||2 (6)

Variational autoencoders impose a constraint on
how to construct the hidden representation. The
encoder can not use the entire latent space freely
but has to restrict the hidden codes h produced to
be likely under the prior distribution p(v). This
can be seen as a type of regularization on the
amount of information that can be stored in the
latent code. The benefit of this relies on the fact
that now we can use the system as a generative
model. To create a new sample that comes from
the data distribution p(v), we sample from p(h)
and run this sample through the generator. In order
to enforce this property a second term is added to
the loss function in the form of a Kullback-Liebler
(KL) divergence between the two distributions :

L(v, v′) = LR(v, v
′) +KL(Q(h|v)||p(h)) (7)

where Q(h|v) is the encoder of our network
and p(h) is the prior distribution imposed on the
latent code.

Adversarial autoencoders (Makhzani et al.,
2016) avoid using the KL divergence by using
adversarial learning. In this architecture, a new
discriminative network D is trained to predict
whether a sample comes from the latent code of
the generatorQ(h|v) or from the prior distribution
imposed on the latent code p(h). The loss of the
encoder is now composed by the reconstruction
loss plus the loss given by the discriminator
network.

We can now use the loss incurred by the encoder
of the adversarial network instead of a KL diver-
gence for it to learn how to produce samples ac-
cording to the distribution p(h). The loss of the
discriminator D is :

LD = − log(D(h′)) + log(1−D(h)) (8)



where h is generated by the encoder and h′ is a
sample from the true prior (usually a gaussian dis-
tribution). Following the mix-max game, the loss
of the encoder Q is :

LQ = − log(D(z)) (9)

As seen in the previous sub-section, we can make
this AAE wasserstein (WAAE, Tolstikhin et al.
(2018)) by using the Wasserstein distance between
the two probability distributions and by introduc-
ing a regularizer penalizing discrepancy between
prior distribution and distribution induced by the
encoder.

4 MMT Experiments

In this section, we describe the two visual recon-
struction experiments on model Q evaluated in
section 6.

4.1 G-WGAN

In the original algorithm, G receive z as input and
is usually a sample from Gaussian noise. In the
case of MMT, noise z will be concatenated with
the model Q’s last hidden state hT so that the
generator reconstruct the features according to the
translated sentence. Generator G then becomes a
conditional generative network (Mirza and Osin-
dero, 2014) and outputs the reconstructed features
v′ = G([z, h]). This reconstruction will be eval-
uated by discriminator D. This settings is illus-
trated in figure 1. The goal of noise is to make the
generator non-deterministic so that it is harder the
for model D to discriminate between the real and
the fake sample. Stochasticity can be induced by
dropout as well (Isola et al., 2017) and will be used
in our model. The full procedure can be found in
Algorithm 1.

Figure 1: Training flow of G-WGAN. Model Q omit-
ted for clarity.

4.2 Q-WAAE

In this experiment, the encoder Q is actually the
multi-modal translation model Q. The latent vari-
able h is seen as the last hidden state hT of the
model Q. D has to discriminate between the la-
tent code hT or the ”real” latent code h′ sampled
from a Gaussian distribution. Along the adversar-
ial loss, a generator G reconstruct the features v′

with input hT . The figure 2 depicts the reconstruc-
tion. The full procedure can be found in Algorithm
2.

Figure 2: Training flow of Q-WAAE. The last hidden
state hT is the input for decoder P

5 Settings

In this section, we describe the model Q and the
data-set used.

5.1 Training

To be consistent with the state-of-the-art, we
follow the settings that are used in the previous
works we compare our model to in the result
section. The full description of the model Q can
be found in appendix A. RNN layer size, attention
size, dropout, model ensembling and training
settings are left unchanged for a fair comparison.

We train jointly Q and G with Adam optimizer
(Kingma and Ba, 2014) with the learning rate
4e-4 and gradient clipping is set to 1. The visual
input v used are the images features from the last
pooling layer (pool5) of the ResNet-50 (He et al.,
2016) and are of dimension 2048 × 1. We use a
batch-size of 32. For both task, we stop training
if the task score doesn’t improve for more than
5 epochs. Model reported are ensembling of 5
models.

Finally, the gradient penalty λgp is set to 10 for
all experiments. For Q-WAAE, the λcritic coeffi-



Algorithm 1 G-WGAN : Wasserstein GAN with
gradient penality
Require: Adversarial coefficient λa > 0, gradient
penalty coefficient λgp = 10, the number of D
iterations per G iteration λcritic = 5

Initialize the parameters θ of the MMT model
Q, generator G and features discriminator D.
while Q not converged do

Sample x, v from the training set
Output translations y from Q(x, v)

Get last states hT from Q

for t = 1, ..., λcritic do
Sample noise z from N (0, 1)

Sample random number ε from U [0, 1]

v′ ← G([z, hT ])

v̂ ← vε+ v′(1− ε)
Update Dθ by ascending:

D(v) + (1−D(v′))

+ λgp (‖∇v̂D(v̂)‖2 − 1)2

Update Gθ and Qθ by descending the ad-
versarial loss LR:

λa D(v′)

Update Qθ by descending translation loss
LQ(x, y)

cient is set to 5. The adversarial and reconstruc-
tion coefficients λa and λr are detailed in the re-
sults section 6. The discriminatorD is trained with
adam with learning rate of 2e-4, β1 = 0.5 and β2
= 0.9. The architecture of G and D is available
in Appendix B. We found out that the use spectral
normalization (Miyato et al., 2018) and batch nor-
malization didn’t improve the translation scores.

5.2 Dataset

We use the Multi30K dataset (Elliott et al., 2016).
For each image, one of the English descriptions
was selected and manually translated into Ger-
man by a professional translator. As training and
development data, 29,000 and 1,014 triples are
used respectively. We use the three available test
sets to score our models. The Flickr Test2016
and the Flickr Test2017 set contain 1000 image-
caption pairs and the ambiguous MSCOCO test
set 461 pairs. Recently, a fourth dataset, the Flickr

Algorithm 2 Q-WAAE : Wasserstein Auto-
Encoder with gradient penalty
Require: Adversarial coefficient λa > 0, recon-
struction coefficient λr > 0, gradient penalty co-
efficient λgp = 10

Initialize the parameters θ of the MMT model
Q, generator G and latent discriminator D.
Use mean square error as c.
while Q not converged do

Sample x, v from the training set
Output translations y from Q(x, v)

Get last states hT from Q

Sample ”true” state h′ from N (0, 1)

Sample random number ε from U [0, 1]

ĥ← hT ε+ h′(1− ε)
Update Dθ by ascending:

D(h′) + (1−D(hT ))

+ λgp (‖∇ĥD(ĥ)‖2 − 1)2

Update Gθ and Qθ by descending recon-
struction and adversarial loss LR:

λr c(v,G(hT ))− λa log(D(hT ))

Update Qθ by descending translation loss
LQ(x, y)

Test2018 set, is used for the online competition
on codalab 1. It consists of 1,071 sentences is re-
leased without the German and French gold trans-
lations.

6 Results

We now report the results for the different two
configurations introduced in section 4 on the
Multi-modal Machine Translation (MMT) task.
All experiments reported were run on a single
NVIDIA GTX 1080 GPU.

6.1 Quantity evaluation
First and foremost, we notice that the most
successful model is Q-WAAE as it marginally
surpasses the baseline and previous works in every
dataset. It is also the best official reported score
as constrained submission (only data provided
by the challenge) of the test 2018 data-set. The

1https://competitions.codalab.
org/competitions/19917#results



Test sets Test 2016 Flickr Test 2017 Flickr

BLEU METEOR BLEU METEOR

FAA(2018) - - 31.60 52.50
DeepGru(2018) 40.34 59.58 32.57 53.60
Baseline 40.00 59.20 32.20 53.10
G-WGAN 40.38 +0.38 60.03 +0.83 33.70 +1.50 54.50 +1.40

Q-WAAE 40.66 +0.66 60.06 +0.86 34.06 +1.86 54.94 +1.84

Test sets COCO-ambiguous Test 2018 Flickr

FAA(2018) - - 31.39 51.43
DeepGru(2018) 29.21 49.45 31.10 51.64
Baseline 28.50 48.80 - -
G-WGAN 31.08 +2.58 50.43 +1.63 31.80 52.15
Q-WAAE 31.41 +2.91 50.95 +2.15 31.91 52.37

Table 1: Results on the en−→de MMT task. Test 2018 results (anonymized) can be checked on the official leader-
board (https://competitions.codalab.org/competitions/19917#results) in the ”german”
tab. Score differences are computed against the baseline.

submission surpasses the previous best METEOR
score from DeepGru by 0.73 METEOR and
the previous best BLEU score from FAA by
0.52 points. More importantly, the Q-WAAE
model significantly improves the SOTA on the
COCO-ambiguous data-set, a test-set that has
been specifically designed to include 56 unique
ambiguous verbs in 461 descriptions (+2.91
BLEU and +1.63 METEOR).

λr

0.2 0.5 0.8

λ
a

0.2 50.95 50.08 49.33

0.5 49.79 49.62 49.16

0.8 49.70 49.16 48.02

Table 2: Q-WAAE : Impact on the METEOR metric
of the reconstruction and adversarial loss coefficient on
the ambiguous COCO data-set

To try and get the best results on the Q-WAAE,
we mixed different combinations of the coefficient
factors on the adversarial and reconstruction loss
as shown in table 2. The results show that if
the auxiliary loss (adversarial and/or recon-
struction) is made too important compared to the

translation loss, the translation quality is impaired.

The G-WGAN also shows improvements over
the baseline and obtains similar results to Q-
WAAE. Nonetheless, a small discrepancy is no-
ticeable on the COCO-ambiguous. We believe that
the main advantage of the Q-WAAE loss is the ac-
tual presence of a direct mean square error recon-
struction loss along the adversarial loss. We also
noticed that the G-WGAN model is really sen-
sitive to the dimension of noise concatenated to
the hidden state given as input to the generator as
stated in table 3.

|z|

64 128 256 512

METEOR 50.35 50.43 49.71 49.48

Table 3: G-GWAN : Impact of the noise concatenated
to the hidden state of size 512

One can argue that because the generator is con-
ditional on the hidden state hT which is of high
dimension, its very hard for the generator to be-
come deterministic. An important noise dimen-
sion could potentially harm the generator instead
of fooling the discriminator.

https://competitions.codalab.org/competitions/19917#results


6.2 Quality evaluation

To understand the success ofQ-WAAE on the am-
biguous COCO data-set, we perform an ablation
study of the model. We first discard the adversarial
discriminator so that we only train the reconstruc-
tion module with the MSE loss (+ G). We also
discard the use of the features v in the translation
model for both the ablated model and Q-WAAE
(no v). The results of the ablation study can be
found in table 4.

Test sets COCO-ambiguous

BLEU METEOR

Baseline 28.50 48.80
Baseline + G + no v 29.43 49.60
Baseline + G 29.91 49.24
Q-WAAE + no v 30.57 50.15
Q-WAAE 31.41 50.95

Table 4: Ablation study of Q-WAAE model

A first observation is that the reconstruction
module G does improve the baseline, but the the
Baseline + G + no v model (no the visual input
in the translation pipeline) has a better METEOR
metric than the Baseline + G model. It means that
use of a visual attention model in the translation
pipeline harms the overall translation quality, as
already found in previous work. In contrast, Q-
WAAE hopefully performs better than Q-WAAE
+ no v, which shows the successful integration
of the visual input, as it should be expect for the
MMT task. Using adversarial feedback does pro-
vide a stronger training and a better generalization
over the different data-sets.

6.3 Improvements examples

To further investigate the quality of the Q-WAAE
model, we pick two examples to illustrate the
improvements.

In figure 3, the baseline translates ”pointing a
camera” to ”zeigt auf ein camera” which could
translate to ”to point at a camera”. It is incorrect
since the image displays the camera-man point-
ing a camera at the speaker. Also, the german
verb ”zeigen” also means to show, to demonstrate,
which is not ideal in this example. Our model

Figure 3: An ambiguous COCO example where Q-
WAAE finds the right translation for the verb

translates ”pointing” to ”richtet” meaning ”point-
ing” with the idea of aiming which is more suit-
able. Also Q-WAAE does not use wrong preposi-
tions. The sentence of baseline scores a BLEU of
0 while the sentence score of our model is a BLEU
of 44.83.

Figure 4: An ambiguous COCO example where Q-
WAAE finds the right translation for the object

The second figure aims to show that not onlyQ-
WAAE manages to correctly translates ambiguous
verbs but more complex examples. In Figure 4, the
Q-WAAE model ends up getting the perfect trans-
lation (a BLEU score of 100) whereas the baseline
model outputs a translation closer to ”a woman
winding up for softball”, missing the second verb
(BLEU score of 22.60).

6.4 Other data-set

We decided to trainQ-WAAE on another language
pair of the Multi30K dataset, namely the en→ fr
pair. Again the model surpasses the baseline for
the COCO-ambiguous and test 2018 test sets.



BLEU METEOR
Test sets en→ fr COCO-ambiguous
DeepGru 46.16 65.79
Q-WAAE 47.00 66.50

Test 2017
DeepGru 55.13 71.52
FAA 52.80 69.60
Q-WAAE 56.54 72.32

Test 2018
FAA 39.48 59.85
Q-WAAE 40.09 60.54

Table 5: Results on the en→ fr Multi30K dataset, test
2018 results can found online in the aformentioned co-
dalab link in the ”french” tab

7 Conclusion

We demonstrated that recent advances in adversar-
ial generative modeling was able to successfully
ground visual information for multi-modal trans-
lation using visual and linguistic input. We show
that the use of visual information for the model
still remains a challenging task. The presented
work in this paper aimed to modulate the last hid-
den state at the end of the translation model, it
would be interesting to investigate adversarial ap-
proaches more upstream in the pipeline like in the
visual features extraction (as previously investi-
gated in (Delbrouck and Dupont, 2017a)).
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A Model Q

Given a source sentence x and visual features v,
an attention-based encoder-decoder model outputs
the translated sentence y. If we denote θ as the
model parameters, then θ is learned by maximiz-
ing the likelihood of the observed sequence y or in
other words by minimizing the cross entropy loss.
The objective function is given by:

LQ(θ) = −
n∑
t=1

log pθ(yt|y<t,v,x) (10)

Three main components are involved: an
encoder, a decoder and an attention model.

Encoder The encoder is a bidirectional-GRU
that create a set of annotation S:

S =

[
GRUforward(

−→x )
GRUbackward(

−→x )

]
A word xt has an embedding of 256, each GRU

is of size 512 thus annotation S are of size 1024.

Decoder The decoder is a conditional GRU
(cGRU). The following equations describes a
cGRU cell :

h′t = GRU1(yt,ht−1)

ct = ATT(h′t,v,S)

ht = GRU1(h
′
t, ct) (11)

where both GRU have 512 units and ATT is the
attention module defined hereafter :

a′t =W
a tanh(W hh′t +W

sS) (12)

at =softmax(a′t) (13)

c′t =
M−1∑
i=0

atisi (14)

it = tanh(W featv) (15)

ct =W
c(c′t � it) (16)

MatricesW s andW h map respective inputs to
size 1024 W h. W feat transform visual features
to size 1024 and W c transforms both attention
vector back to size 512 to be compatible with
GRU2 size.

Finally, a bottleneck function projects the
cGRU output into probabilities over the target vo-
cabulary. It is defined so:

bt = tanh(W botht) (17)

yt ∼ pt = softmax(W projbt) (18)

where W bot maps hidden state to size 256
and W proj maps the bottleneck result to the
vocabulary size.

Dropout of 0.3 is used on embeddings x and
annotations S and of 0.5 on bt.

To marginally reduce our vocabulary size, we
use the byte pair encoding (BPE) algorithm on
the train set to convert space-separated tokens into
sub-words (Sennrich et al., 2016). With 10K
merge operations, the resulting vocabulary sizes
of each language pair are: 5204 → 7067 tokens
for English→German and 5835→ 6577 tokens for
English→French.

B Generator G and discriminator D

Q-WAAE Generator G is defined as follows:

v′ = tanh(W rechT )

whereW rec is of size 512× 2048.

Discriminator D is defined as follows :

o =W advhT

whereW adv is of size 512× 1.

G-WGAN Generator G is defined as follows:

v′ = tanh(W rec[z, hT ])

whereW rec is of size 640× 2048.

Discriminator D is defined as follows (v is ei-
ther real v or generated v′):

o1 = relu(W adv1 [v, hT ]) (19)

o2 = relu(W adv2o1) (20)

o3 =W
adv3o2 (21)

where W adv1 is of size 2560 × 1024, W adv2 of
size is of size 1024× 512 and W adv3 of size is of
size 512× 1


