
ENTERFACE’19, JULY 8TH - AUGUST 2ND, ANKARA, TURKEY 1

Cozmo4Resto: A Practical AI Application for
Human-Robot Interaction

Kevin El Haddad (1), Noé Tits(1), Ella Velner (2), Hugo Bohy(1)
(1) Numediart Institute, University of Mons, Mons, Belgium

(2) commercom, Amsterdam, The Netherlands
kevin.elhaddad@umons.ac.be, ellavelner@gmail.com, noe.tits@umons.ac.be,

hugo.bohy@student.umons.ac.be

Abstract—In this paper we report our first attempt on building
a Human-Agent Interaction (HAI) open-source toolkit to build
HAI applications. We present a human-robot interaction appli-
cation using the Cozmo robot built using different modules.
The scenario of this application involves getting the agent’s
attention by calling its name (Cozmo), then interacting with it by
asking it for information concerning restaurant (e.g: ”give me the
nearest vegetarian restaurant”). We detail the implementation
and evaluation of each module and indicate the future steps
towards building the full open-source toolkit.

Index Terms—Human-Agent Interaction (HAI), Human-Robot
Interaction, deep learning, Text-to-Speech Synthesis (TTS), Key-
word Spotting, Automatic Speech Recognition (ASR), Dialog
Management, Sound Localization, Signal Processing, Cozmo.

I. INTRODUCTION

THE past decades witnessed the rise of Human-Agent
Interaction (HAI) systems such as conversational agents

and intelligent assistants. This work aims at contributing to the
improvement of HAI applications and their incorporation to
our daily lives. HAI systems are generally formed of different
modules with different task(s) each, communicating with each
other.

We aim at building a toolkit containing such modules, as
well as a framework with two main purposes:

1) controlling the agent’s behavior in a user-defined way;
2) connecting these modules together in a single applica-

tion so that they could be able to communicate with each
other in a user defined logic;

The goal is to have a toolkit allowing the users the most
freedom possible in the way they utilize it to build their HAI
applications. The above mentioned modules would thus be us-
able either in an ”off-the-shelf” mode (outside the framework)
or in the framework defined here.

In the same perspective, in the future, modules will be
incrementally added to this toolkit allowing a wider range
of HAI applications implementations. Also, the framework
is designed in a way to easily add and connect modules
needed (toolkit’s ones or user defined ones) in order to build
customized HAI applications. This gives users more freedom
on how to utilize the toolkit.

In order to evaluate the performance of the developed toolkit
in building HAI systems, an application will be developed
using it: Cozmo4Resto. This HAI application is an interaction

with the Cozmo robot 1 during which Cozmo will give the user
informations about restaurants based on the user’s queries as
described in further detail in Section III. This robot was chosen
mainly because of the simplicity of integration in a python-
based application (see also Section III).

Towards building this application, in this paper, we present
the modules developed to be used for Cozmo4Resto and
added to the toolkit, as well as the framework mentioned
above. We will therefore first present the HAI-toolkit in
general in Section II. Then detail the Cozmo4Resto application
is explained further and the modules developed detailed in
Section III. Finally the implementation of the platform for
Cozmo4Resto is detailed in Section IV.

II. HAI OPEN-SOURCE TOOLKIT

We present here the first version of this toolkit 2 that will
be used to implement HAI application like Cozmo4Resto. It
is implemented in a modular way and, as mentioned earlier,
can be viewed either as a framework upon which modules
are connected and the agent’s behavior is controlled to build
an HAI application or as a library of HAI-oriented modules
usable outside the framework.

A. Modules

A module’s task is to perform an action or a sequence of
actions which is/are part of the agent’s behavior and which
is/are needed in the application implemented. The input-output
of each module is implemented in an object oriented way
and will have a specific and fixed format. This way, each
module can be modified/replaced/improved without affecting
the implementation of the others. This will help making the
toolkit more generic.

B. Behavior Framework

The framework’s main purpose is to allow the integration
of all the different modules in a single HAI system. It can be
summarized as a finite state machine [1] (FSM)-based system
combined with a communication system.

The FSM is used to describe the agent’s behavior. Each
state corresponds to a specific behavior of the agent. In the

1https://anki.com/en-us/cozmo.html
2https://github.com/kelhad00/hai-toolkit



ENTERFACE’19, JULY 8TH - AUGUST 2ND, ANKARA, TURKEY 2

S0

Snnext S

A1

Module 1 Behavior Framework

T0n

next S

Ak

Module k

T00

Tnn

Fig. 1. Behavior framework workflow. S being the state, T the transition
between states, A the action performed while in the state corresponding to
the Module containing the action.

FSM, each state is linked to a module. Each module contains
a sequence of actions the agent must perform while in the
corresponding state.

The communication system allows the exchange of mes-
sages/data between the different modules. The main benefit of
this is modularity and the ability to run each module on the
same machine or different ones.

In what follows, we will refer to this framework as the
”Behavior” framework, because it is used to describe the
behavior of the agent through the states and the transitions
between them. A visualization of the platform’s workflow can
be seen in Fig. 1.

Let S = {s0, s1, ..., sn} be the set of states describing the
agent’s behavior (s0 being the initial state), Tij the transition
from state i to j and Ak is the action performed by a module
to which the state can be connected.

During run time, the Behavior framework acts as a client
to each of the modules, which therefore act as servers. When
in state si, Behavior queries the module to which si is linked
with the input required. After the action is executed, a ”next
state” value is returned triggering the transition to another state
or to the same current state.

The link between states and modules is defined by the user.

III. COZMO4RESTO APPLICATION

As mentioned above, to validate our toolkit, we use it to
build an HAI application involving the Cozmo Robot.

Cozmo 3 is a small physical relatively cheap robot which
is designed to interact with users in games and other kinds
of user-defined modalities. Cozmo can be very expressive
through the eyes, audio and movements (body and head). A
python SDK 4 is provided with Cozmo for free, which makes
it easy to intergrate on several platforms and with different
applications. The SDK python commands are sent to Cozmo

3Please note that at the time of writting this report, Anki, the company
producing Cozmo, went bankrupted. But the SDK is still maintained at the
time of redaction.

4https://developer.anki.com/

via and android-based app that was developed for Cozmo. It
contains a camera of which the stream is accessible via the
SDK as well as other sensors. All this makes Cozmo an ideal
platform to test our toolkit.

The interaction scenario of this application can be described
as follows:

1) Cozmo would be wandering in a ”non-interactive”
mode;

2) when the keyword ”Cozmo” is detected, Cozmo will
turn around toward the caller and engage the interaction,
thus going into ”interactive” mode;

3) the user will query Cozmo concerning different informa-
tion about restaurants (opening hours, menus, proximity,
etc.);

4) after the interaction ends, Cozmo goes back to the ”non-
interactive” mode.

For this, three modules are needed: sound acquisition, key-
word spotting (KWS) and sound localization (LOCAL). The
sound acquisition module stores audio data in an efficient way
for it to be used later on. The KWS detects a specific sound
among others and LOCAL detects the directionality of the
sound’s source allowing to make Cozmo turn towards it. These
will trigger the ”interactive” mode. During the interaction an
Automatic Speech Recognition (ASR) system will be used to
convert the user’s speech signal to text, which will be sent to
a Dialog Management (DM) module. The DM module will
take care of understanding the utterance and generating a text
response based on an implemented logic (see Section III-Efor
a more detailed description of the dialog interaction). The
response will be sent to a Text-To-Speech (TTS) synthesis
system which will take care of converting the text response
into an audio speech signal.

In what follows we will explain our approach to building
and/or testing each module (some modules were already im-
plemented open-source systems). The main constraints being
the quality of the system and the computation time. Indeed a
trade-off needs to be found so that the entire system generates
high quality responses in a reasonable delay of time. We
will also present the framework mentioned in SectionII. The
modules described in the following will be incorporated in
the HAI-toolkit in general and are not meant only for the
Cozmo4Resto application.

A. Sound Acquisition

The python pyaudio library 5 is used to acquire the audio.
A ring buffer is used to store and stream the input sound. The
recording starts when the signal reaches a certain threshold
The recording stops when the signal goes below the threshold
The buffer is created by using the deque function from
the collections python library. Each shift of audio signals
recorded by the stream is added to the buffer, until it reached
its maximum length. This maximum length is passed as a
parameter at the creation of the buffer. Once the buffer is full,
every new shift overwrites oldest one in the buffer. A number
of channel (one per mic input) can be specified.

5https://pypi.org/project/PyAudio/



ENTERFACE’19, JULY 8TH - AUGUST 2ND, ANKARA, TURKEY 3

B. Sound Localization

Theory: The goal is to find the direction of arrival of a
sound to a microphone or a set of microphones. For this we use
the time delay of sound reception between the microphones.
Three microphone positioned as shown in Fig. 2 and 3 are
used here. The exact time of the sound emission from the
source is unknown, so the time delays between reception
time at each microphone are used instead. In Fig. 2, ’Source’
is the sound’s source and ’Tmici ’ is the absolute time of
reception of the microphone i. The source’s coordinates (x,

Fig. 2. Direction of arrival principle

y) are determined by minimizing the both following equations
using the root() function from scipy.optimize python library :

v · τ1 =
√

(x2 − x)2 + (y2 − y)2 −
√
(x1 − x)2 + (y1 − y)2

v · τ2 =
√
(x3 − x)2 + (y3 − y)2 −

√
(x2 − x)2 + (y2 − y)2

Where (xi, yi) are the microphone i coordinates and τi is the
delay between Tmici+1 and Tmici

Technical setup: Two different hardware setups are
considered for this module. The first one is composed of 3
AmazonBasics Microphones disposed in an equilateral trian-
gular shape of side one meter (see Fig. 3). The second setup
is composed of one Raspberry Pi 3 Model B and a 6-Mic
Circular Array Kit from Seeed’s Respeaker (see Fig. 4). Only
3 of the 6 microphones are used in the later. The red circles in
Fig, 4 shows an example of the relative positions of the mics
used among the 6 available for this setup.

Fig. 3. Table Microphones setup

Database collection: In order to evaluate the above
mentioned algorithm, we collected a dataset of different
sounds with the different setups mentioned above. The sounds
are either hand clapping or the word ’Cozmo’, at different
distances and angles with respect to the microphones: the
angles vary by 30 degrees from 0 to 330 degrees and the
distances are approximately 2m and 1m. The sounds were
recorded in 2 different conditions:

Fig. 4. Seeed’s 6-Mic Array

• UMONS: recordings made in a relatively
echo/reverberation-free room at 2m of the center
of the microphones at the numediart institute of the
University of Mons6.

• ENT: recordings made in a room generating
echo/reverberation at distances >= 2m and < 2m
at Bilkent University7.

The algorithm described above was evaluated on the ENT
condition only (data with reverberation) by calculating the
cosine similarity between the angle estimated and the corre-
sponding real value. The mean cosine similarity of all angles
are shown in Table I in degrees, per sound and distance. This
table shows the error between the actual position of the sound
source and the estimated one.

TABLE I
MEAN COSINE SIMILARITY. COZ = COZMO, FAR=2M, CLOSE=1M,

SAME=AT TABLE HEIGHT, HIGH= 80CM HIGHER THAN TABLE HEIGHT

clap-far clap-close coz-far-high coz-far-same coz-close-same
26.19 10.89 6.77 6.04 2.82

The results indicate that the closer the source is from the
microphones, the better is the estimation of the angle. These
errors suggest that the type of sound might affect the efficiency
of the sound localization algorithm used here. This is probably
due to the difference in sound parameters like the sound
amplitude and also the reverberation/echo generated by each
sound.

Also, the effect this error might have on the user experience
and user perception during an HAI application is an interesting
and important aspect to consider.

Both of points will be investigated in future work.

C. Keyword Spotting (KWS)

As mentioned previously, the role of the KWS in this project
is to trigger the ”interactive” mode. In our case we use the
keyword ”Cozmo”. A small dataset of ”Cozmo” utterances
from different speakers and in different tones was collected
for the purpose of this work.

A benchmark of KWS systems is available comparing 3
systems online 8: Picovoice, Snowboy and PocketSphinx. This
benchmark uses crowd-sourced words to train and evaluate

6https://numediart.org/
7https://w3.bilkent.edu.tr/bilkent/
8https://github.com/Picovoice/wakeword-benchmark



ENTERFACE’19, JULY 8TH - AUGUST 2ND, ANKARA, TURKEY 4

TABLE II
AVERAGE WORD ERROR RATE (WER) AND DURATION OF COMPUTATION

OF SENTENCES OF IEMOCAP DATASET

Google Speech Recognition DeepSpeech Sphinx

WER 0.30 0.38 0.55
duration 1.69 0.8 9.5

these systems. The data used, therefore comes from different
recording environments.

The customisation of Picovoice is done with text data.
It relies on a dictionary of words with their corresponding
phonetics. This dictionary is not accessible, and the word
”Cozmo” needed for our application is not included in it. It is
therefore not adequate for our application.

PocketSphinx is a mobile device version of Sphinx that
runs locally, a group of speech recognition systems developed
by Carnegie Mellon University. It uses HMMs for statistical
modeling and includes a keyword spotting module. Similarly
to Picovoice, it relies on a dictionary of words with phonetics.

Snowboy uses an API to send trigger words samples to train
a system which is then downloaded and run locally. No more
than three samples can be used to train the models.

Snowboy seems therefore like the best option for our
application. We will therefore use ”Cozmo” as training sample.

It is important to note that neither Snowboy or Picovoice
systems are fully open source. Indeed the model training
of Snowboy is performed through their web interface and
Picovoice is optimized with a binary files provided online.

D. Automatic Speech Recognition (ASR)

Several ASR APIs are available for use under certain condi-
tions. Some of these APIs are free but come with limitations of
use in terms of API calls. Using APIs means we are dependent
on a tier service that may not be free or not supported in the
future.

A benchmark of APIs was proposed in [2]. Their code is
open source9.

Research projects with open-source codes include Sphinx,
DeepSpeech, Kaldi toolkit and gentle (based on Kaldi toolkit).

In this section, we compare APIs and State-of-the-art open
source systems for our use-case. For this, we estimate their
performance in terms of the Word Error Rate based on the
Levenshtein distance. We use the IEMOCAP database to ap-
proach a setup closer to our use-case of interaction compared
to a database based on Audiobooks recordings used in [2].

DeepSpeech may be accelerated with GPU. This was used
on Google Colab with a Tesla K80 GPU.

Table II reports the average WER and duration for obtaining
the prediction of the sentences of IEMOCAP dataset.

E. Dialog Management (DM)

To manage the dialogue between the agent and the user,
a module needed to be implemented to extract the goal of
the user’s utterance and to give the right response back. This

9https://github.com/Franck-Dernoncourt/ASR benchmark

Fig. 5. Chat example with Rasa system.

is called a dialog management system. There are several
options to create a working dialog management system, like
using DialogFlow (Google) or Luis (Microsoft). However, we
wanted an open-source library that worked with Python and
JSON. Therefore, we chose the Rasa Library 10.

RASA: This library is made up of two parts: Rasa NLU
and Rasa Core. Rasa NLU extracts so-called ’intents’ from
the user’s utterance. These intents are what the user wants or
needs. These can be narrowed down by specifying ’entities’.
For example, when the user says: ”I would like Italian food”,
the intent is the type of cuisine and the entity is Italian. These
intents and entities are then specified in a domain file, together
with the template sentences that the agent can use to respond.
This is where Rasa Core comes in. Rasa Core takes care of
what the agent should do next, which most of the time is
saying something back. But besides just responding, the agent
can also perform actions, which are specified in a separate
python file. For example, when the user asks for a restaurant
nearby, the action search restaurant is called, and it uses an
API to extract restaurant details, to then give these to the user.
An example of the start of a conversation is shown in Fig. 5.

The conversation altogether is a ’story’. Stories are pre-
defined storylines the developer can create. These stories are
the training data for Rasa Core. The training data for Rasa
NLU are the intents. They are both trained using a neural
network in Keras, based on an LSTM. This can be adjusted
if necessary. The training data was created manually and is
made available with the toolkit.

Cozmo4Resto & Rasa: Since the goal of Cozmo4Resto
is to suggest restaurants nearby the user, the main action of
Cozmo was to get the coordinates of the user (via their profile),
find restaurants nearby of the type the user wants, and, if
required, also give the address of the restaurant of choice. For
the sake of simplicity, and for this application, we set the user
location to a fix value and we propose only a single suggestion.
Therefore we had two actions: action search restaurant and
action give address. However, in a conversation people don’t
immediately ask what they want. The conversation usually has
an introduction first (most often some sort of greeting). After

10https://rasa.com/docs/rasa/



ENTERFACE’19, JULY 8TH - AUGUST 2ND, ANKARA, TURKEY 5

TABLE III
THE CHANGES MADE DURING TESTING.

round change
1 added stories
2 if cuisine not recognised: ask another
3 added action other suggestion
4 if cuisine is ’anything’: give random restaurant
5 adjusted fallback method
6 added entities

this, the robot can ask the user a question leading to the goal of
the conversation. When the goal is reached, the conversation
comes to an end, with some kind of goodbye-utterance. This
results in six intents: greet, goodbye, wantdinner, cuisine,
affirm, deny. Wantdinner let’s the agent know that the user
wants a suggestion to eat somewhere. If there is no cuisine
suggested already, the agent will ask for the type of restaurant.
This will then lead to a ’cuisine’-response from the user. After
receiving the type of cuisine, it is put in a Slot, so the actions
can ’grab’ this when needed. Cozmo will then look for a
restaurant, with the help of the Zomato API, an API to extract
information of restaurants 11. Since we work with Python, the
zomathon library was used 12. When a restaurant with the right
cuisine was found, Cozmo gave it back to the user, by saying
’What do you think of Abc, a restaurant that serves xyz?’.
The user could then either ’affirm’ or ’deny’ this restaurant.
If denied, the agent should give another suggestion, however,
this is not implemented yet. When affirmed, the agent asks
if the user needs the address, and if they affirm, the agent
gives it, using the action give address. After this, the goal is
reached, and the conversation will close with a goodbye (and
a ’bon appetit!’ from Cozmo).

Evaluation: To test if the dialog management system was
working properly, nine eNTERFACE participants were asked
to chat with the system in a simple command line interface.
They were instructed to get information on a restaurant in the
neighbourhood but were not informed about how to do this, to
make the user’s utterances as free and unguided as possible.
When they felt the conversation was complete, or were stuck
and could not go any further, they informed the researcher.
The average conversation was about 4,5 minutes. Afterwards,
they filled out an evaluative questionnaire, with five questions
on conversational fluency from Mirnig et al. [3], put on a 7-
point Likert scale, and an open question about what problems
occurred. We iteratively improved our dialog strategy based on
the results of the questionnaires and the conversation which
was recorded in the system’s logs. Therefore, after the first
three conversations and then after each one, the system was
improved and tested again. An example of an improvement
is an adjustment to the fallback method (”Sorry, I did not
understand that.”). This went on until the participants did not
seem to run into any problems. The utterances of the users also
became new training examples for the system. The changes
made after each round are shown in table III.

Implementing it in the toolkit: To have the DM working
within the toolkit, it needed to be able to run outside the

11https://developers.zomato.com/api
12https://github.com/abhishtagatya/zomathon

TABLE IV
MEAN OPINION SCORE OF THREE PARTICIPANTS OF SENTENCES

SYNTHESIZED WITH DIFFERENT TTS SYSTEMS

MOS IBM API gTTS SOTA batched SOTA unbatched

P1 2.80 ± 0.10 3.24 ± 0.16 3.70 ± 0.16 3.88 ± 0.13
P2 3.43 ± 0.23 3.28 ± 0.25 3.10 ± 0.36 3.63 ± 0.26
P3 2.25 ± 0.40 2.30 ± 0.31 2.10 ± 0.37 2.90 ± 0.43

All 2.83 ± 0.19 2.94 ± 0.18 2.97 ± 0.24 3.47 ± 0.19

command line, and to be able to handle a JSON input file (from
ASR), run the DM, and output a JSON file (to TTS). This
was done by creating what is called a ’connector’-file. This
contains the specifications on the input channel and a blueprint
(from sanic 13) on how to handle the input, namely how to send
it to Rasa Core and retrieving Cozmo’s responses. Since the
toolkit was not entirely done by the end of eNTERFACE’19,
the DM was made operable by connecting it to a Google
Assistant.

F. Text-to-Speech (TTS)

As for ASR, some companies provide APIs for synthesizing
speech from a text. Among them, gTTS is a python library
allowing to use Google Translate built-in synthesizer. IBM
provides the Watson TTS API14.

One of the best state-of-the-art (SOTA) Open Source imple-
mentations in terms of naturalness so far for TTS is the joint
implementation of Tacotron [4] and WaveRNN [5] systems
in PyTorch15. Tacotron generates a mel-spectrogram from text
and WaveRNN generates the corresponding waveform sample
by sample from the predicted mel-spectrogram. WaveRNN
is able to produce a very natural sounding audio wave but
generating the signal sample by sample with a recurrent
relationship is still slow. This implementation proposes a way
to accelerate generation of a sentence, called batched, by
generating segments of the signal output of a sentence in
parallel. The segments have the to be concatenated together via
a windowing process. This technique allows faster generation
but leads to a chopped signal which is not the case of the
unbatched generation.

For subjective evaluation, the 20 first sentences of harvard
sentences16 were synthesized. Then three people evaluated
them subjectively in terms of naturalness by assigning a score
between 1 and 5. The Mean Opinion Score was then computed
for each system.

Table IV shows the results of the MOS test for each
participant and each system.

The synthesis duration is also an important aspect to
consider since this module will be integrated in a HAI
application where the agent has to respond in real-time.
Concerning the SOTA systems, the durations of generation of
mel-spectrograms and waveforms using a GPU GeForce GTX
1080 Ti are summarized in Table V. The order of magnitude

13https://sanic.readthedocs.io/en/latest/sanic/blueprints.html
14https://www.ibm.com/watson/services/text-to-speech/
15https://github.com/fatchord/WaveRNN
16http://www.cs.columbia.edu/ hgs/audio/harvard.html



ENTERFACE’19, JULY 8TH - AUGUST 2ND, ANKARA, TURKEY 6

TABLE V
DURATION (IN SECONDS) OF GENERATION OF MEL-SPECTROGRAM

(ABBREVIATED MEL) WITH TACOTRON AND WAVEFORM (ABBREVIATED
WAV) WITH WAVERNN.

mel wav batched wav unbatched

Mean 0.147419 12.771765 55.560221
Std 0.015291 0.173554 6.270252

for mel-spectrogram generation is 0.1 seconds. While for the
waveform synthesis, it is one to several tens of seconds. In
the unbatched mode, the standard deviation is much bigger
because it depends more on the length of the sentence.

Therefore for a real-time interaction application one of the
APIs is best suited since they both obtained reasonable and
similar results on the MOS test and run relatively fast.

IV. COZMO4RESTO FRAMEWORK IMPLEMENTATION

For this application, the Behavior framework (client) will be
connected with each module corresponding to the current state
using the messaging library ZeroMQ 17 (for other application,
the toolkit allows the use of other messaging systems). The
input and output of each module are in the JSON format
containing three values: the data needed by the module as
input or returned by it as output, the current state and the next
state.

The state machine describing Cozmo’s behavior in the case
of the Cozmo4Resto application is detailed Fig. 6. But, due
to the eNTERFACE workshop’s time constraints, the platform
was evaluated using a simpler application which is described
as follows:

• state listening: A user’s speech is converted into text using
an ASR

• state thinking: keywords are mapped to other words in
a dictionary playing the role of a very simplified dialog
management system.

• state speaking: the words from the dialog management are
sent to a TTS system to be synthesized state listening: the
system goes back to the ASR

The aforementioned is provided to the reader for testing 18.

V. CONCLUSION

In this paper, we report on the advancement in our project,
presenting our goal for an open-source HAI toolkit and its
application in our Cozmo4Resto project. In the future we will
focus on integrating all the modules in a real-time application
and test it in subjective experiments. Finally a generic library
will be released as a first version of our open-source toolkit.

In future works, we will focus on implementing the behavior
described in Fig. 6 by implementing the modules described
previously into the platform. The whole system will then be
tested in subjective evaluations by asking participants to first
interact with Cozmo and then grading different aspects of
the interaction like how well did the agent ”understand” the

17https://zeromq.org/
18https://github.com/kelhad00/hai-toolkit

ATT

Dialog 
management

API calls

TTS

Face Expr.

Movement

ASR

Face rec.

Facial expr.
detection

Keyword
spotting

Sound
localization

PERC

DM RESP

Initial
State

Fig. 6. State machine describing Cozmo’s behavior for the Cozmo4Resto
application. ATT: attention state which is linked to modules performing
keyword spotting and sound localization-it is the initial state of the behavior,
PERC: perception state which is linked to modules such as speech recognition
(ASR) and face recognition, DM: the dialog management module which can
also interact with API to harvest data from the web or control Cozmo directly,
RESP: the response state generates a reaction to the user such as synthesized
speech or a generated movement.

requests made by the user, the accuracy of the responses, the
delay between the questions and reactions.

We will use the toolkit to create other HAI applications with
platforms other than Cozmo serving us as agents such as 3D
avatars [6].

REFERENCES

[1] D. R. Wright, “Finite state machines,” Carolina State University, p. 203,
2005.

[2] F. Dernoncourt, T. Bui, and W. Chang, “A framework for speech recog-
nition benchmarking.” in Interspeech, 2018, pp. 169–170.

[3] N. Mirnig, A. Weiss, G. Skantze, S. Al Moubayed, J. Gustafson,
J. Beskow, B. Granström, and M. Tscheligi, “Face-to-face with a robot:
What do we actually talk about?” International Journal of Humanoid
Robotics, vol. 10, no. 01, p. 1350011, 2013.

[4] Y. Wang, R. J. Skerry-Ryan, D. Stanton, Y. Wu, R. J. Weiss, N. Jaitly,
Z. Yang, Y. Xiao, Z. Chen, S. Bengio, Q. V. Le, Y. Agiomyrgiannakis,
R. Clark, and R. A. Saurous, “Tacotron: Towards end-to-end speech
synthesis,” in INTERSPEECH, 2017.

[5] N. Kalchbrenner, E. Elsen, K. Simonyan, S. Noury, N. Casagrande,
E. Lockhart, F. Stimberg, A. v. d. Oord, S. Dieleman, and
K. Kavukcuoglu, “Efficient neural audio synthesis,” arXiv preprint
arXiv:1802.08435, 2018.

[6] K. El Haddad, F. Zajega, and T. Dutoit, “An open-source avatar for real-
time human-agent interaction applications,” in Proceedings of 8th Inter-
national Conference on Affective Computing and Intelligent Interaction,
2019.


