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A B S T R A C T

Every spring, European forest soundscapes fill up with the drums and calls of woodpeckers as they draw ter-
ritories and pair up. Each drum or call is species-specific and easily picked up by a trained ear. In this study, we
worked toward automating this process and thus toward making the continuous acoustic monitoring of wood-
peckers practical. We recorded from March to May successively in Belgium, Luxemburg and France, collecting
hundreds of gigabytes of data. We shed 50–80% of these recordings using the Acoustic Complexity Index (ACI).
Then, for both the detection of the target signals in the audio stream and the identification of the different
species, we implemented transfer learning from computer vision to audio analysis. This meant transforming
sounds into images via spectrograms and retraining legacy deep image networks that have been made public
(e.g. Inception) to work with such data. The visual patterns produced by drums (vertical lines) and call syllables
(hats, straight lines, waves, etc.) in spectrograms are characteristic and allow an identification of the signals. We
retrained using data from Xeno-Canto, Tierstimmen and a private collection. In the subsequent analysis of the
field recordings, the repurposed networks gave outstanding results for the detection of drums (either 0.2–9.9% of
false positives, or for the toughest dataset, a reduction from 28,601 images to 1000 images left for manual
review) and for the detection and identification of calls (73.5–100.0% accuracy; in the toughest case, dataset
reduction from 643,901 images to 14,667 images). However, they performed less well for the identification of
drums than a simpler method using handcrafted features and the k-Nearest Neighbor (k-NN) classifier. The
species character in drums does not lie in shapes but in temporal patterns: speed, acceleration, number of strikes
and duration of the drums. These features are secondary information in spectrograms, and the image networks
that have learned invariance toward object size tend to disregard them. At locations where they drummed
abundantly, the accuracy was 83.0% for Picus canus (93.1% for k-NN) and 36.1% for Dryocopus martius (81.5%
for k-NN). For the three field locations we produced time lines of the encountered woodpecker activity (6
species, 11 signals).

1. Introduction

Acoustic monitoring is now a front-row tool to study bird popula-
tions (Blumstein et al., 2011; Sueur and Farina, 2015). Audio scene
recordings accumulate to terabytes and call for efficient algorithms to
fulfill two critical functions: 1) detecting bird sounds in audio streams
and 2) identifying the species emitting these sounds. Recently, major
performance gains were obtained in these two tasks by using deep
convolutional neural networks. In the 2017 Bird Audio Detection
challenge (BAD) (Stowell et al., 2019), most participants used Deep
Convolutional Neural Networks (DCNN) to separate bird calls from
other noises. Adavanne et al. (2017) obtained 16% of false positives,
8% of false negatives, and estimated that 42% of all false identifications

had incorrect labels. Pellegrini (2017) obtained 13–22% of false posi-
tives and 4–8% of false negatives (accuracy 88.3–90.7%). DCNNs also
dominated the 2018 BirdCLEF competition (Joly et al., 2018).

By design, neural networks work from a raw signal, build up their
own features in their lower layers and then classify in their upper
layers. An early network such as the one used by Fox et al. (2008),
which used 12–15 Mel-Frequency Cepstral Coefficients (MFCC) as in-
puts and had 4 layers, only deployed the classification capacity. Grill
and Schlüter (2017) upgraded to using full spectrograms as inputs and a
seven layer network (4 convolutional layers, 3 dense layers) to deliver
the strongest performance in the BAD challenge. Salamon et al. (2017)
used a similar solution (spectrograms as inputs, 3 convolutional layers,
2 dense layers) to classify flight calls. In effect, these works replaced
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traditional acoustic features (e.g. the MFCC) by a visual representation
of sound (spectrograms), which then allowed the use of image analysis
tools (convolutional networks). Spectrograms are compact and com-
prehensive representations of sounds, unlike the MFCC that strongly
synthesize the acoustic signal and furthermore require that the time
dimension is averaged or represented through various statistics. Most
importantly, in the spectrograms, bird vocalizations produce visual
patterns from which species are often readily identifiable. This is the
basis for the switch to image analysis. Convolutional layers extend the
concept of spectrogram cross-correlation by convoluting the input
image with a large number of small template patterns (“filters”). The
training of a convolutional network consists in optimizing these filters,
as well as the weights in the dense upper layers where the classification
is done. The depth of a network, i.e. the number of layers, embodies its
analytical power. The first convolutional layers detect visual patterns,
the next ones study how they are arranged with respect to each other.

Work on the ImageNet database of 1.28 million images has led to
deeper networks: AlexNet has 8 layers (Krizhevsky et al., 2012), VGG
has 19 (Simonyan and Zisserman, 2014), Inception has 22 (Szegedy
et al., 2015), ResNet up to 152 (He et al., 2016) and DenseNet up to 264
(Huang et al., 2017). Most of the layers are convolutional layers, e.g.
DenseNet has only one classification layer. Because of their depth and
of the wealth of data on which they were trained, these legacy networks
are powerful image analysis tools. They are also all publicly available as
Pytorch implementations.1 For a multitude of problems, instead of
training a model from scratch to analyze specific images, video, spec-
trograms, etc., it is now more efficient to restart from the legacy
models, who know how to decipher images, and to further their
training to have them learn the current problem specifically. This
means replacing the final 1000 classes of the ImageNet problem by the
current targets in the last dense layer. The retraining mostly addresses
these final connections; the construction of features in the convolu-
tional layers is unchanged, whereas the classification using these fea-
tures is revised. This approach is particularly convenient for ecoa-
cousticians, as that they do not have training sets available that could
compare in size to ImageNet. In the past few years, such transfer
learning has become widespread in machine learning works (Laraba
et al., 2017) and as Joly et al. (2018) report, in ecoacoustics as well.
Sevilla and Glotin (2017) used Inception v4. Lasseck (2018) obtained
his best results with Inception v3 but tried others including ResNet 152
and DenseNet.

Because DCNNs demand vast amounts of labeled data, data aug-
mentation is their key companion. This technique consists in artificially
increasing the size of the training set by modifying the original images
in a way that does not compromise their meaning. For example, an
image of a cat flipped left-right still represents a cat. Inception in its
original training used 144 transformations per image, which combined
the use of subparts of images (“crops”) with rotations, flips, enlarge-
ments, etc. Working on bird calls, Lasseck (2018) appended segments of
background noise to the images, appended segments from other re-
cordings of the same class, skewed or stretched the images in time and
in frequency, applied a cyclic time shift, randomly dropped time in-
tervals, etc. The addition of segments of background noise was the most
successful action, followed by deformed spectrograms and incomplete
spectrograms with time intervals missing. We note that some image
transformations such as rotations and flips are not permissible for
sounds; they alter the meaning of the image.

In the BirdClef competition, the soundscape analysis task ultimately
yielded 80–85% of false identifications on average (Joly et al., 2018;
Lasseck, 2018). This shows that despite their formidable potential,
further investigations are required to better understand the limitations
of deep networks in addressing bird vocalizations. The contribution of
the present work comes in the form of an in-depth look at species

detection and identification for a manageable subset of species, the
European woodpeckers. Particular attention is devoted to the design
choices and to the mechanisms that condition the performance of
DCNNs. By restricting the number of species, we are able to connect the
shortcomings of DCNNs with the peculiarities of woodpecker sounds,
and gain insight that resonates beyond the woodpecker case. This being
said, woodpecker monitoring is an end in itself (Mikusiński and
Angelstam, 1998) and the phylogenetics and sounds of woodpeckers
remain popular research topics (Florentin et al., 2017; Fuchs and Pons,
2015; Miles et al., 2018). In that regard, the second contribution of our
work is that it treats the European woodpecker problem from end to
end, i.e. from the recording campaigns in the wild to the identification
of species in the audio archives.

Woodpeckers have simple, innate calls, but their most famous
acoustic signal is their drumming on trees. Few works have specifically
targeted the identification of woodpecker sounds in the past. Swiston
and Mennill (2009) searched for the double-knocks of two species of
woodpeckers (Campephilus guatemalensis and Campephilus principalis)
using spectrogram cross-correlation. Respectively 24% and 8% of
double-knocks were detected, with respectively 97.0% and 98.5% of
false positives. Because knocks are a simple and nondescript acoustic
signal, they were confused with rain, wind, microphone static and with
the calls ofMomotus coeruliceps, which bear little resemblance but share
the same frequency range. The proportion of false positives was a strong
inconvenience: the results had to be reviewed by a human in a time-
consuming process. Florentin et al. (2016) classified the drums of the
European species. The accuracy for the classes with sufficient data
available was in the range 64.4–90.0% (full validation set: 87.2%). This
was achieved using handcrafted acoustic features and the simple k-
Nearest Neighbor (k-NN) classifier. Indeed, the design space for
drumming is so restricted that its analysis does not warrant using
complex algorithms. Drumming is foremost a time signal and as it will
turn out, some of its characteristics are not necessarily well rendered on
spectrograms. The calls are better candidates for DCNNs.

In the present paper, we will discuss three problems: the detection
of drums, the identification of drums, and the combined detection and
identification of calls. Finally, we will apply the developed techniques
to fully analyze 3 years of field recordings. The paper is organized as
follows: in Section 2 (Materials), we introduce the sounds of European
woodpeckers that we intend to classify and our audio collections; in
Section 3 (Methods), we describe our various processing steps (audio
selection and segmentation), a few reference methods used in com-
parisons, and our implementation of DCNNs; Section 3.3 in particular
details how the three different problems were addressed with different
images; in Section 4 (Results), we present the outcome of our calcula-
tions and finally in Section 5 (Discussion), we comment on the per-
formance of DCNNs and on the qualities of woodpecker sounds that
complicate their identification.

2. Materials

2.1. Woodpecker sounds

European woodpeckers use a variety of acoustical signals, some
rare, some frequent, used alone or in combinations (Blume, 1996;
Blume and Tiefenbach, 1997; Gorman, 2014; Winkler and Short, 1978).
The loud ones that travel long distances to claim a territory or to attract
a mate are the easiest to detect. Depending on the species, these func-
tions are filled by drums, calls or both. For this reason, monitoring
woodpeckers is a two-sided problem: on the one hand the calls, on the
other hand the drums. In both contexts of territorial declaration and
reproduction, the species information has to be conveyed to the other
party; a corollary is that it should be possible to decode the species from
these signals.

In the present work, we considered the drums of 10 species and nine
calls from seven species (Table 1). In Table 1, the 11 European1 https://pytorch.org/
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woodpecker species are listed under three groups: the species that
primarily use drumming for long-distance advertising, the versatile
species that both drum and possess an advertising call, and finally the
vocal species, which do not produce loud territorial drums. These last
four species, Jynx torquilla, Dendrocoptes medius, Picus viridis and Picus
sharpei, only drum in rare occasions. Their drums are soft drums, which
have a function pertaining to pair communication at close range
(Florentin et al., 2017).

Spectrogram bandwidth 0–3 kHz. Spectrogram frame 43ms, except
D. major, D. syriacus, D. minor: 21ms. The species-specific time struc-
tures are visible on the ‘time interval between strikes' versus ‘elapsed
time’ plots. Recordings by Kyle Turner.

Recordings from Xeno-Canto. Bandwidth 0–12 kHz. The full
D. martius rattle call in XC110355 has 64 syllables, which is un-
conventionally high. A common number would be 10–20 syllables
(Gorman, 2014).

Drumming produces a distinctive succession of vertical lines on
spectrograms. Each strike of the bill excites a range of frequencies and
thus draws a line. Fig. 1 shows examples for the most frequent drum-
mers. After propagation through the forest, the vertical lines are re-
duced to smaller batons. The time structure of the drums (acceleration,
speed), the number of strikes and the drum duration are species-specific
(Florentin et al., 2016; Zabka, 1980). Some species accelerate through
the drum, others maintain a constant speed or slightly decelerate
(Fig. 1). Acceleration and speed are constrained by morphology, while
the number of strikes and thus the drum duration can be adapted to an
extent for differentiation (Miles et al., 2018). The number of design
parameters in drumming is too low for the different species to fully
singularize (Stark et al., 1998) and without further context information,
it can be problematic to distinguish the drums of Dendrocopos major and
Dendrocopos syriacus, or Dryobates minor and Picus canus (Florentin
et al., 2016). The soft drums of rare drummers are signals that did not
develop to the point of decisively encoding species identity, the desired
functions being picked up by advertising calls instead. In a narrow
design space, soft drums introduce further confusion when found in
recordings (Florentin et al., 2017).

The common woodpecker advertising call is a rattle call (Winkler
and Short, 1978), which consists in a series of near-identical syllables.
The kweek call of D. medius has a similar form but with longer syllables,
and is more characteristic of the species than its rattle call in the

reproduction season. Because Dryocopus martius has a large territory, all
its calls are far-carrying (Blume, 1996); in addition to its rattle, we
included its iconic flight call (kru-kru-kru), which has a structure si-
milar to the rattle, and the kleee, a long one-syllable wail. For Gorman
(2014), the kleee is a territorial and contact call; for Blume (1996), it is
an excitation, territorial and disturbance call. The species that primarily
drum employ call notes (brief and high-pitched kik, chik, kyuk or kip)
that are not as distinctive and as far-carrying as the rattles discussed
above, and were thus not considered in this work. There are more calls
that could have been included (the scolding keyak of D. martius, the
rattle of D. medius) but data availability constrained our scope. Drums
and rattle calls (or the kweek for D. medius) are the closest comparison
in abundance and function to the songs of passerine birds. In every call
listed in Table 1, the unit syllable is characteristic and therefore reveals
the species. Each produces a given shape on spectrograms (Fig. 2). The
call structure is also species-specific in some aspects, e.g. the variation
in pitch or the number of syllables.

Drums all have spectral content below 1500Hz (Florentin et al.,
2016), and the fundamental note of calls typically lies within
1500–2500 Hz. For both types of signal the limiting taxon is D. minor.
The main spectral peak for its drums can reach 2000Hz (third quartile
of the distribution in Florentin et al. (2016)) and for the calls, 2700 Hz.

Table 1
Woodpecker signals considered in the present work.

Species Drums Calls

Drummers
Picoides tridactylus ✓ –
Dendrocopos syriacus ✓ –
Dendrocopos major ✓ –
Dendrocopos leucotos ✓ –

Versatile
Dryobates minora ✓ Rattle
Dryocopus martius ✓ Rattle

Flight
Contact

Picus canus ✓ Rattle

Vocal
Jynx torquilla ✓ Rattle
Dendrocoptes mediusa – Kweek
Picus viridis ✓ Rattle
Picus sharpeib ✓ Rattle

✓ or text: considered; −: not considered
a Formerly Dendrocopos, renamed following Fuchs and Pons (2015).
b Formerly a subspecies of P. viridis, renamed following Perktas et al. (2011).

Fig. 1. Most frequent European woodpecker drums.
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2.2. Recordings

We assembled training sets from Xeno-Canto (XC),2 Tierstimmen
(TS)3 and from the private collection of ornithologist Kyle Turner (KT).
Table 2 describes the content of these datasets. The recordings are most

often of a high quality and acquired at close range. The files last up to a
few minutes, with a sampling frequency of either 44.1 kHz or 48 kHz.
Being a collaborative archive, Xeno-Canto is not devoid of the odd la-
beling error, but the datasets compiled from this source are the most
diverse in that they were gathered from multiple recordists. Kyle
Turner, on the other hand, might have had access to fewer birds. His
collection was recorded in Hungary, Slovakia, France, Spain and in the
United Kingdom. The numbers in Table 2 reflect the abundance of the
various signals in the wild, to an extent. D. syriacus is only present in
Eastern Europe where fewer recordings are available. Recordings of the
P. sharpei call are scarce. The high number of J. torquilla calls is due to
XC177894 yielding 276 calls from a single pair.

We also acquired 44.1 kHz continuous recordings in woodpecker
habitats using an autonomous station (Florentin and Verlinden, 2017).
The first campaign (2016) took place in Tenneville (TN), Belgium,
where a single P. canus had been spotted. In 2017, the station was de-
ployed in the nature reserve at Remerschen (RM), Luxembourg, which
is known to host 3–4 P. canus territories, including breeding pairs. The
Remerschen wetlands are an important stop for migratory birds. In
2018, we installed the station in La Petite Raon (LPR), France, which is
located in the Vosges mountains, i.e. the northernmost stronghold of
P. canus in France (Sordello, 2012). Belgium is on the distribution edge
of P. canus, which makes this species a local rarity (Schmitz and
Dumoulin, 2004) of particular interest to us. The collected datasets are
presented in Table 3. A schematic map with the positions of the station
and the P. canus distribution area is shown in Fig. 3. J. torquilla,
D. minor, D. medius, D. major, D. martius, P. viridis and P. canus are pre-
sent in the region.

2.3. Soft- and hardware for calculations

The image generation from audio was performed using MATLAB.
Downloading models from the Pytorch libraries, retraining them and
making new predictions was managed through a set of Python/Pytorch

Fig. 2. Target vocalizations of European woodpeckers.

Table 2
Datasets from Xeno-Canto (XC)/Tierstimmen (TS)/K. Turner (KT).

Data type→
Source→
Species↓

Drums Calls

XC/TS KT XC/KT

D. leucotos 248 288
D. major 818 589
D. martius Drums 84 388

Rattle 120
Flight 89
Contact 154

D. medius 8a 168
D. minor 832 528 171
D. syriacus 8 308
J. torquilla 4 628
P. canus 104 130 208
P. sharpei 16 35
P. tridactylus 547 418
P. viridis 16 100 263
Total 2665 2769 1836

a Dubious D. medius labels (Turner, 2011). These drums were eventually
discarded.

Table 3
Field datasets.

Location Code Months Size Mean SNRa Habitat

Tenneville (BE) TN Mar./Apr. 8 GB 32.1 dB Deciduous forest
96 h

Remerschen (Lux.) RM Apr./May 128 GB 17.7 dB Wetlands
435 h

La Petite Raon (FR) LPR 118 GB Coniferous forest
397 h

LPR1 March 24.2 dB
LPR2 April 22.1 dB
LPR3 May 26.1 dB

a Evaluated on the detected calls.

Fig. 3. Area map with station positions.

2 The Xeno-Canto Foundation, https://www.xeno-canto.org/. The identifica-
tion number for XC files in our figures is the one used by the website. A file with
an additional trailing index is a segment from the original recording.

3 Museum für Naturkunde Berlin, http://www.animalsoundarchive.org/.
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scripts, documented as supplementary material. We used Python 3.6.8,
Pytorch 0.3.1 and CUDA 10.0. Calculations involving deep networks
were performed using a Graphical Processing Unit (GPU), the NVIDIA
GEFORCE GTX 1080 Ti (GP102 processor, 11 GB in RAM) and a
SAMSUNG 850 EVO solid-state drive (SSD).

3. Methods

For the selection of candidate sounds (see Paragraph 3.1 below), we
used frames of 46.4ms (2048 bins, 44.1 kHz) with 50% overlap to
generate spectrograms. For all subsequent analyses, we resampled the
recordings to 12 kHz and used frames of 21.3 ms (256 bins, 12 kHz).

3.1. Selection of candidate sounds

The recording station continuously collected 30-s WAV files, that
were examined on board using the Acoustic Complexity Index (ACI).
The ACI, first developed by Pieretti et al. (2011), reacts to acoustic
content with significant time variations, such as birdsong. Tests per-
formed on the XC/TS/KT datasets revealed that almost all woodpecker
drums and calls clear an ACI threshold of 1.2 (Fig. 4). The ACI is cal-
culated from a spectrogram and per frequency band; what is shown in
Fig. 4 is the maximum value of the ACI spectrum in the 500–1500 Hz
bandwidth for drums and in the 500–2100 Hz bandwidth for calls. The
2100 Hz upper bound for calls is a restriction to minimize the inter-
ference from passerine songs. The 500 Hz lower bound removes most of
the background noise. The 1.2 threshold value is dependent on the
duration of the complete segment being processed (in our case, 30 s4)
and on the frame duration used in the spectrogram calculation. Here,
wide frames of 46.4 ms were used, in the spirit of a quick assessment in
the field. Our setup is not always favorable to D. minor; the taxon has
fast drums, 40ms intervals between strikes being common, and high-
pitched calls. The problem remains modest: 2 D. minor drums and 3
D. minor calls miss the cut in Fig. 4. For all species, the ACI does not
offer much separation from some of the other sounds in the same
bandwidth: other bird calls, rain drops, any sort of shock. It sets aside
silence and sustained sound events (cars, planes) but the resulting da-
tasets are far from specific. Still, 50–80% of the field audio was dis-
carded in this manner.

The ACI is calculated in the interval 0.5–1.5 kHz (drums) and
0.5–2.1 kHz (calls) with 46.4ms frames. The dashed line indicates the

1.2 ACI threshold. The distribution outliers are indicated with dots.
In a second step, the 30-s files selected above, along with all XC/TS/

KT files, were segmented into unique sound events using median-based
thresholding, a common method in ecoacoustics (Lasseck, 2015;
Potamitis, 2014; Stowell and Plumbley, 2014). We imposed a minimum
length on the output segments (0.4 s for drums, 1 s for calls), allowed
gaps of up to 0.3 s to connect smaller segments together (interruptions
and longer inter-syllable intervals occur) and included 0.15 s of sound
before and after the target signal (early and late strikes or syllables
might be significantly quieter). We used the 300–1500 Hz bandwidth
for drums and the 1000–2700 Hz bandwidth for calls. Such targeted
segmentation is not strictly necessary, but provides a considerable re-
duction of the datasets. For example, in the TN dataset, segmenting
reduced 47 h of audio to 4.3 h (6760 extracts; mean duration 2.3 s;
maximum duration 80.7 s, long files being caused by increased back-
ground noise from cars, planes, chain saws, etc.). Alternatively, one
may chop up the audio in successive files of a given duration and post-
process all, at a greater computational cost. However, smart segmen-
tation reduces the number of false detections in that it limits the ana-
lysis to segments where there are potential target signals. Less noise
passes the barriers.

3.2. Methods used in comparisons

We benchmarked DCNNs against competing methods for the de-
tection and the identification of drums, not for the calls. The char-
acteristics of woodpecker calls, namely the peculiar syllable sounds, are
best captured by the visual description provided by spectrograms. In
this case an image-based technique such as a convolutional neural
network is the natural approach.

For the detection of drums we tested out two other methods: spec-
trogram cross-correlation and an analysis of repetitions in the signal.
For cross-correlation, we used a single template image of a P. canus
drum. This was experimented with on the TN dataset for which the
station was located next to a P. canus drumming tree. The TN dataset is
the most modest of the three (8 GB); we bypassed the segmentation step
and we used the fast Matlab normxcorr2 function. We focused on
content in the 300–1500 Hz bandwidth and initially detected instants at
which the correlation exceeded a threshold. However correlation values
do not offer much contrast; the method yields as many false positives as
false negatives in this primitive form. We improved the performance by
noticing that drums also generate a dip in correlation before and after
the drum peak; we reoriented our code to search for such a pattern in
the correlation time series.

The repetitions analysis is inspired by music-retrieval techniques
and uses a similarity matrix and a beat curve (Foote et al., 2002;
Lartillot and Toiviainen, 2007). Without getting into too many details,
considering that this approach gives satisfaction only for the clearest
signals, the method exploits the fact that the different strikes in a drum
have a nearly-identical spectral content and are repeated at intervals in
the range 40–90ms in average over a drum. First, identical frames of
signal are searched for (one strike is contained in one frame and ap-
pears in 1–3 frames with the overlap), then the method controls whe-
ther the succession of similar frames follows the desirable rhythm.

As mentioned earlier, the time parameters are critical in identifying
drumming species. On all drums, the acceleration, speed, number of
strikes and drum duration were evaluated. The acceleration and speed
were derived from respectively the slope and the y-intercept of a line fit
through the series of time intervals between strikes versus time (such
series are presented in Fig. 1). With these simple parameters, the drums
from the field campaigns were confronted to the reference datasets XC/
TS/KT using the k-NN classifier. We used k=5, which matches a
sample to the most frequent class among the five nearest neighbors.
This straightforward approach is well suited to the simplicity and to the
temporal nature of drums (Florentin et al., 2016). The footnotes below
Fig. 1 prefigure how spectrograms might not render the subtleties of

Fig. 4. Maximum ACI in XC/TS/KT drums and calls.

4 Shorter files from the XC/TS/KT datasets were padded with silence.
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drums faithfully. The time resolution in spectrograms is constrained by
the frame size and overlap (i.e. 10.5ms for 21ms frames with 50%
overlap). As the differentiation between some species hangs on a few
milliseconds (Florentin et al., 2016; Zabka, 1980), we expect image-
based methods to be challenged by the task of identifying drums. On the
contrary, the detection of drums is more naturally suited to an image
treatment, because drums produce a characteristic pattern in spectro-
grams (a series of vertical lines) that few other sounds mimic.

3.3. Deep convolutional neural networks

3.3.1. Deep networks retraining and use
We considered the following six network architectures for our

analyses: AlexNet (8 layers), VGG (19 layers), Inception v3 (22 layers),
ResNet (34 and 152 layers) and DenseNet (169 layers). All are mile-
stone architectures that won the ImageNet competition in the last
decade and are available from the Pytorch libraries. Having observed
that the deeper networks identified the calls more accurately, we did
not use AlexNet and VGG again for the drums. As all these networks
already have a great command of image analysis, they only have the
specific patterns of woodpecker sounds left to learn. For this, our
modest datasets in Table 4 could possibly suffice.

The retraining targeted all layers, but mostly affected the last, di-
agnostic layer. We performed stochastic gradient descent with an
adaptive learning rate, i.e. we started with 0.001 and divided it by 10
when the training loss had stalled for two epochs (i.e. we used a pa-
tience5 of 2). We also used a momentum of 0.9 (Hinton et al., 2012) and
stopped training if 60 epochs were reached. A percentage of the
training images was set aside for validation (Table 4). When a single
root recording had yielded several sounds through the segmentation
step, all were included on the same side, training or test.

To classify the sounds from the recording station, we pooled the
predictions of the different network architectures. The class with the
most votes was retained (majority-voting). For the drums, the ensemble
comprised all available models. For the calls, we tried a number of
variations on the training parameters: learning rate, number of epochs,

fixed versus adaptive learning rate and patience. We then picked the
nine models for which the average class accuracy exceeded 91% and
the overall accuracy exceeded 94% on the test set to populate the en-
semble. In case of ties in the votes, we went with the diagnosis of
ResNet 152 (drums) or DenseNet (calls), which had performed well in
pre-trials. We observed on the drums detection case that the different
networks were in perfect agreement for 98.7% of the images. For long
sound files from which several images were derived (see below), a
positive identification was granted if one of the images was positive.

The deep networks cited above all accept 224×224 images as in-
puts, except for Inception v3 which takes 299×299 images. Thus both
dimensions of our images were rescaled, independently from each
other, to fit this frame. For the color scale, we retained the top 30 dB in
the images. This range was then normalized to [0,1] (max-min nor-
malization) to issue JPEG images. The same spectrogram was tripli-
cated to fill the red, green and blue (RGB) channels, except for the
identification of drums, for reasons explained below. Computing mel-
spectrograms was not considered.

3.3.2. Images for the detection of drums
For the drums detection, the “a drum” class in Table 4 comprises

4669 XC/TS/KT drums, and 529 drums extracted from the LPR dataset
(LPR1/LPR2) using the repetitions analysis method, which we experi-
mented with first. The “not a drum” class was populated with the false
positives from repetitions analysis trials (KT/TN/LPR1/LPR2). It
seemed on point to include the signals that had previously been mis-
taken for drums (rain, wind, cell-phone interference, fast series of
chirps, wing flaps).

Spectrograms were generated in the 300–1500 Hz bandwidth and
for the duration of the sounds, unless they exceeded 5 s. Then the
sounds were split into successive images, with an overlap of 25%. The
mean image width was 143 pixels (1.5 s) and the maximum width 469
pixels (5 s). Along the frequency dimension, there were 26 pixels.
Approximately 10% of the images underwent a compression in width at
the entrance of the networks. For the 5-s sounds, the compression factor
was 2.1. Hence the resulting images do not have a common time scale,
and the networks cannot sense whether a drum is fast or slow. Another
issue with the time scale compression is the potential loss of fine details:
drum strikes span 1–3 spectrogram frames, hence 1–3 pixels, and inter-
strike intervals span 2–5 frames in the fastest drums.

3.3.3. Images for the identification of drums
For the identification of drums, the precision of the images along the

time dimension is key. The longest drum in the XC/TS dataset has a
duration of 3.3 s; using 224 pixels, a time step of 15ms is possible. With
such an error on the intervals between strikes, the different species
cannot be distinguished. For comparison, in the calculation of the
simple temporal parameters described earlier (acceleration, speed,
etc.), we used a time step of 0.7ms. Eventually, we opted to create
images using 224 pixels per 1 s of data (a time step of 4.5ms). With the
three RGB channels, we were thus able to store 3 s of spectrogram at
best. Beyond 3 s, the exact duration of the drum does not matter any-
more: only D. martius produces such long drums. Fig. 5 shows a few
examples (before rescaling); the short D. major drum uses only the blue
channel, the long D. martius drum uses the three colors. With this ap-
proach, all drums were represented with the same time and frequency
scales (300–3000 Hz). For this task the networks must unlearn that the
same objects can come in different sizes in images; the size, notably of
the time intervals between strikes, is a criterion for differentiation.

We included soft drums in the training set as they remain probable
in the recordings, but did not consider J. torquilla, P. sharpei and
D. medius, as we did not possess enough data to properly train the
networks to recognize these species.

3.3.4. Images of calls
For the calls, we were only able to collect 1836 samples. For

Table 4
DCNN re-training: networks, classes, test set.

Problem Networks Classes Samples Test set

Drums detection Inception v3 Not a Drum 5435 10%
ResNet 34 A Drum 5198
ResNet 152 (Total) (10633)
DenseNet 169

Drums identification Inception v3 D. leucotos 536 12%
ResNet 34 D. major 1407
ResNet 152 D. martius 472
DenseNet 169 D. minor 1360

D. syriacus 316
P. canus 234
P. tridactylus 965
P. viridis 116
(Total) (5406)

Calls detection and identification AlexNet D. martius 6%
VGG Ad 543
Inception v3 Flight 307
ResNet 34 Contact 207
ResNet 152 D. medius 625
DenseNet 169 D. minor 451

J. torquilla 2429
P. canus 595
P. sharpei 117
P. viridis 799
Noise/other 6081
(Total) (12154)

5 See the Pytorch documentation at https://pytorch.org/docs/stable/optim.
html.
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shallower networks, Salamon et al. (2017) had 5428 audio clips and
Grill and Schlüter (2017) 16,000. Lasseck (2018) trained Inception v3
with 36,496 samples. We thus augmented our dataset by producing, for
each call, several partial images focused on a few syllables. We settled
for 54×63-pixel images (1000–3500 Hz × 1 s, using 21.3ms frames
with 25% overlap). This time and frequency resolution compares to the
setup in Lasseck (2018), although he used larger images. In our solu-
tion, at the entrance of the deep networks, the images were enlarged by
a factor 3.6–5.5. The calls were segmented with a 15% overlap between
consecutive sub-images. Up to 10 images were retained per call, if
needed selected among the ones where the signal was the loudest. More
often, the calls were spread over 2–5 images. For the largest dataset,
Remerschen, we generated 643,901 images (Table 5). Fig. 6 shows a
few examples. The first one on the top left is P. canus.

The full training set comprised 12,154 images, half of which were
“noise” (Table 4). Fig. 7 shows the images extracted from a D. minor and
from a J. torquilla call. We see in the J. torquilla example that some of
the call structure is captured in the images. The first and second images
show the ascent in frequency before the syllable stabilizes in the last
two images. Similarly, the decaying notes of P. canus were at times
captured. In the D. minor example, the bird followed its call by drum-
ming; the last image does not contain its voice at all and was labeled as
noise. The noise class was entirely populated with similar rejects: pas-
serine calls, other woodpecker calls not in our study, anthropogenic
sounds or various instances of background noise. We did not have in-
formation to help us include more relevant examples. Gorman (2014)
and Del Hoyo et al. (2002) mention a few similarities of woodpecker
calls with raptors, but nothing exhaustive.

In essence, with the sub-images, we substituted the recognition of
the syllables for the recognition of the calls. This was done by other
authors as well. Potamitis (2014) classified syllables or elements of
songs extracted from spectrograms. Lasseck (2018) tested extracting
random audio chunks with some success. Brandes (2008) is an example
of a carefully constructed classification in successive steps: a first
Hidden Markov Model identified the syllables, then the song structure
was modeled using a second one.

4. Results

4.1. Drums detection

The four networks that were trained to detect drums exhibit out-
standing accuracy on the validation set (Table 6). Inception accepted
bouts of demonstrative tapping and very short drums, when other
networks did not. Short drums are strongly distorted when the small
image is scaled up to 299×299 pixels. In comparison, half of our
drumming samples are in a 0.7–1.5 s duration range and are scaled by
comparable factors. Tapping is slower than drumming; the vertical lines
are more spaced out. Hence Inception seems to have the greatest ca-
pacity to recognize a drum at a different scale. As we recall, during its
original training by Szegedy et al. (2015), 144 crops were generated for
each image. The images were first rescaled to different sizes, then
transformed and cropped at a number of positions. In comparison,
DenseNet used 10 crops and ResNet only one, taken from a randomly
resized image. These other networks rejected demonstrative tapping
and included fast-paced series of chirps: they seem to understand that
there is an acceptable time interval between the vertical lines, and this
despite the loss of a shared time scale between the images. Again, this
might be favored by the fact that the durations of most drumming
samples form a narrow distribution. The time interval between drum
strikes is rescaled similarly for all.

The retrained networks were then used to detect drums in the three
field datasets TN, RM and LPR. The comparison with the repetitions
analysis and spectrogram cross-correlation is presented in Table 7 for
2 days of the TN dataset. The repetitions analysis missed a large number
of drums. The deep networks extracted a similar number of drums as
spectrogram cross-correlation, but the deep networks produced far
fewer false positives (FP). Considering that the deep networks analyzed
audio fragments that had been generated by our segmentation step and
that cross-correlation worked on the full 30-s recordings, the compar-
able results between the two methods indicate that the segmentation
does not produce false negatives in significant numbers.

In Table 8 (all datasets), the number of false positives for TN and
LPR2 is marginal, helped of course by the inclusion of samples from
these datasets in the retraining set. The effect is not as strong for LPR3
(still 10% of FP), recorded later in the season when new birds, that the
networks did not know, had started to sing. In the RM dataset, the FP
stand at 74.7%, yet the analysis still allowed discarding 94.7% of the
initial dataset. The deep networks successfully detected drums although
they are only marginally present in the datasets (in 4.0% of the

Fig. 5. Images of drums submitted to DCNN.

Table 5
Audio segments and images in field datasets.

Dataset Audio segments Images

TN 3732 13,051
LPR1 21,831 73,883
LPR2 30,072 98,450
LPR3 52,061 172,992
RM 150,894 643,901

Fig. 6. Images of bird calls from audio recordings in the nature reserve of
Remerschen, Luxemburg.
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analyzed sounds for LPR, 1.3% for RM). Examples of false positives in
Remerschen are shown in Fig. 8. They comprise a variety of bird calls.
Among the negatives, only the sounds that were predicted positive by at
least one of the networks but turned down by the model ensemble were
reviewed. We found a few faint or distant drums that had been missed.

In Table 9, Inception and ResNet 152 missed the fewest drums, but
Inception produced 50% more false positives. ResNet 34, the network
with the simplest architecture, was the one that yielded the fewest false

Fig. 7. Images extracted from a D. minor and from a J. torquilla call.

Table 6
Accuracy (%) of predictions on test datasets after retraining.

Deep network Drums detection Drums Id Calls Det./Id.

AlexNet 94.4
VGG 92.9
Inception 98.59 94.8 94.8
ResNet 34 98.21 92.9 94.0
ResNet 152 98.50 90.8 94.2
DenseNet 169 98.40 93.7 95.4

Table 7
Comparison between drums detection methods.

Cohort Repetitions analysis Cross-correlation Deep networks

TPa FPb TP FP TP FP

TN 06/04 28 3.0% 103 55.0% 107c 0.0%
TN 13/04 175 4.0% 218 65.0% 210d 0.0%

a True positives.
b False positives.
c Add 4 drums in sound files with multiple drums.
d Add 6 drums in sound files with multiple drums.

Table 8
Drumming rolls detected in TN/RM/LPR.

Cohort Sounds Images TP FP

TN 6760 7875 2570 4 (0.2%)
LPR2 (Part 2)a 5619 5619 347 4 (1.1%)
LPR3 8933 10,862 237 26 (9.9%)
RM 20,866 28,601 278 822 (74.7%)

a LPR1 and LPR2 (Part 1) were processed through repetitions analysis.

Fig. 8. Examples at RM of false positives from DCNN drums detection.

Table 9
Drums detection: false positives and false negatives.

Deep network False positives False negativesa

TN LPR2 LPR3 RM TN LPR2 LPR3 RM

DenseNet 24 12 36 1263 9 3 7 15
Inception 34 16 70 1446 14 6 1 6
ResNet 34 3 8 25 846 26 8 4 15
ResNet 152 13 12 70 967 14 6 1 1
Pool 4 4 26 822 12 5 1 2

a Not all negative predictions were reviewed. This is an evaluation of false
negatives that were positively identified by at least one network.
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positives; seemingly, low analysis power is sufficient to reliably identify
the simple patterns of drums. Networks with a greater depth can catch
less obvious drums, but make more mistakes as they rely on tenuous
details. The great flexibility of Inception toward the size of patterns
made it a false prediction machine. It was not supposed to, but Incep-
tion also detected 34 out of the 52 occurrences of tapping in the RM
dataset; the next “best” was ResNet 34 with 12. In any case, pooling
together the four models improved the precision for all datasets.

LPR3, and particularly RM, are more complex cases because of lo-
cation and month of recording. In March (TN, LPR1), the woodpeckers
have the forest more or less to themselves. In May (LPR3, RM), the
passerines have taken over and provide a variety of new sounds that
confuse the algorithms. This is exacerbated in Remerschen where the
avian community is remarkable.

4.2. Drums identification

The predictions on the test set are again very accurate (Table 6),
5–8% above the accuracy Florentin et al. (2016) obtained with k-NN
and simple parameters. DenseNet is the best performing network, with
accuracy per species ranging from 81.3% (the soft drums of P. viridis) to
100% (P. canus). Soft drums have a weaker species character (Florentin
et al., 2017).

The results on the field datasets paint a more contrasted picture; see
the confusion matrices and accuracies per class in Table 10 (only three
species were heard drumming at each location). The performance of k-
NN with two different training sets is shown for the TN dataset. The
three species present at that location were D. major, D. martius and most
of all P. canus. The accuracy per species is higher with the KT set as

Table 10
Drums identification: confusion matrices and accuracy.

Tenneville

Actual classes ↓ Predicted classes Accuracy

D.leu. D.maj. D.mart. D.min. D.syr. P.can. P.tri. P.vir.

k-NN with XC/TS training set
D. major 0 11 0 3 0 0 0 0 78.6%
D. martius 2 0 76 18 0 0 24 0 63.3%
P. canus 1 3 2 1902 0 525 14 0 21.5%

Average 54.5%

k-NN with KT training set
D. major 0 12 0 1 0 0 0 0 85.7%
D. martius 0 0 108 0 0 0 12 0 90.0%
P. canus 0 1 10 151 0 2278 0 5 93.1%

Average 89.6%

Ensemble of deep networks
D. major 0 8 0 0 0 4 0 2 57.1%
D. martius 0 2 104 0 0 1 13 0 86.7%
P. canus 7 34 35 329 0 2032 1 9 83.0%

Average 75.6%

Remerschen

Actual classes↓ Predicted classes Accuracy

D.maj. D.mart. D.min. D.syr. J.tor. P.can. P.tri. P.vir.

k-NN with KT training set
D. major 204 0 5 48 0 0 0 0 79.4%
J. torquilla 0 2 1 0 0 0 2 1 0.0%
P. canus 0 0 0 0 0 3 0 0 100.0%

Average 59.8%

Ensemble of deep networks
D. major 232 4 14 5 0 1 1 0 90.3%
J. torquilla 1 3 0 0 0 1 1 0 0.0%
P. canus 0 0 3 0 0 0 0 0 0.0%

Average 30.1%

La Petite Raon

Actual classes ↓ Predicted classes Accuracy

D.leu. D.maj. D.mart. D.min. D.syr. P.can. P.tri. P.vir.

k-NN with KT training set
D. major 0 808 0 19 158 5 0 11 80.7%
D. martius 5 0 88 2 0 1 5 7 81.5%
P. canus 0 0 0 0 0 10 0 0 100.0%

Average 87.4%

Ensemble of deep networks
D. major 3 934 8 42 0 3 2 9 93.3%
D. martius 16 11 39 32 0 2 2 6 36.1%
P. canus 0 0 3 6 0 0 0 1 0.0%

Average 43.1%
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reference. The XC/TS set confuses P. canus with D.minor and D. martius
with other classes, because it does not contain enough samples of
P. canus and D. martius. Also, because of the greater variety of sources,
XC/TS exhibits larger parameter distributions, and supposedly a few
labeling mistakes.

The deep networks perform less well than k-NN. Despite the 100%
accuracy for P. canus on the test set, the P. canus/D.minor confusion is
not sorted out. The best performance for this aspect is from DenseNet
(predicted 2197 P. canus and 153 D. minor in TN; all should be P. canus)
and the worst, Inception (962 P. canus and 1434 D. minor). None of the
P. canus drums in RM and LPR are correctly identified. The accuracy for
D. major improves in RM and LPR as the number of confusions with
D. syriacus diminishes; however this is because the networks predicted
the classes that they saw the most during training (1407 D. major, 316
D. syriacus). The poor results for D. martius comprise a number of unu-
sual confusions. It is common for D. martius to be confused with
Dendrocopos leucotos and Picoides tridactylus (Florentin et al., 2016) but
not with D. major and D. minor which have much shorter drums. Given
our training set, D. major and D. minor are three times more probable
classes than D. martius to the networks. Finally, if we consider the
wrong P. viridis identifications in LPR (18 for k-NN and 16 for the
networks), only three drums are in both groups. The difficult drums are
not the same for the two methods, although overall, the mispredicted
drums were distant drums in both cases. Like k-NN, the networks
struggle to differentiate a distant D. martius drum from a soft P. viridis
drum. They also make blatant and inexplicable mistakes, e.g. a D. major
drum at close range mistaken for P. viridis. The excellent performance
on the test set (Table 6) does not mean that the networks identified
discriminant features from the images, but that the test set is not dif-
ferent enough from the training set. Indeed, for example, XC98152 is in
the test set, and XC98153 and XC98154 (different recordings, same
bird) are in the training set.

As mentioned earlier, imbalance between the classes in the training
set causes the networks to wrongly learn that some classes are more
probable than others. On the contrary, k-NN preserves the ability to
match test samples to smaller classes. Even with an overwhelming
number of D. minor in the training set, it successfully assigned the
P. canus class based on the few samples that were close to the candidate
drums.

Overall, deep convolutional networks are not incompetent with
time structures (the TN predictions are fair, for example) but k-NN
produces more reliable, more physical results. The networks retain a
strong advantage in terms of the simplicity of the process; the image
generation is neither subtle nor long; training the networks requires 2 h
at most and running the test samples a few minutes. In the k-NN
method, the calculation of the drum parameters is tedious.

4.3. Detection and identification of calls

All networks excel on the validation set (Table 6). DenseNet delivers
the top performance. The accuracy for the noise class is greater than
96% for all networks and promises few false positives. For the call
classes, accuracies greater than 90% are routine. Only the D. minor re-
sult can be viewed as a shortcoming: the top accuracy for this class is
83.3% with DenseNet. This call should be easily identified because of
the specific frequency range, but the networks have learned vertical
translational invariance. It also has a greater plasticity than other calls.
The syllable production rate varies significantly from one sample to the
next.

Table 11 documents the accuracy for the field datasets. The most
abundant calls are in bold, to separate them from circumstantial data
(e.g. the 100% P. canus accuracy in RM corresponds to one call). The
accuracy for TN is outstanding and for LPR1 rather good. Then the
performances decrease as we move toward the right of the table. The
datasets were intentionally ordered by month of recording, and we
observe that woodpeckers become harder to identify as the passerines

take over the acoustic space. The decay in accuracy for the D. martius
rattle and above all for the noise class is significant. A drop from 99% to
93% in noise identifications means an increase in false positives in the
woodpecker identifications. The drop to 97.9% in RM might seem
limited, but the RM dataset includes 641,561 images in the noise class,
and thus the ability to isolate these samples is critical.

The number of false positives for the woodpecker call classes are
manageable in TN or LPR1, then escalate to exceed 10,000 images in
LPR3 and RM. This is put in perspective in Table 11 with the true
number of images from woodpecker calls in the dataset; in LPR3 par-
ticularly, the number of files that have to be manually set aside becomes
out of proportions with the number of interesting images in the set.
Four classes are systematically over-predicted by the networks: the
D. martius rattle, D. medius, P. canus and P. viridis. These are the most
abundant in the training set. We seem to have built models that pre-
dicted these classes a lot, rather than well. On the other hand, con-
sidering the amount of J. torquilla samples in the training set, the
numbers of false positives for this class is not excessive: for 2263 true
positives in Remerschen, there are 2476 false positives. These samples
were quite redundant (from the same two birds). D. minor is abundantly

Table 11
Calls identification: performance on images from the field datasets.

Net TN LPR1 LPR2 LPR3 RM

Accuracy (%)

D. martius1 (Rattle) 96.2 84.7 71.7 30.8 0.0
D. martius2 (Flight) 100.0 75.5 54.2 75.0
D. martius3 (Contact) 100.0 88.7 80.0 87.5
D. medius 79.3 84.6 100.0
J. torquilla 75.0 100.0 56.0
P. canus 98.0 59.5 48.0 50.0 100.0
P. viridis 76.5 31.3
Noise 99.5 99.2 92.8 93.4 97.9

Number of images

Actual calls 197 3388 1489 267 2340
False positives 62 529 6938 11,440 13,356
False negatives 5 455 127 23 1019

Only the audio segments for which one of the images was predicted as a call
were reviewed to assess the ground truth. Calls that were not detected by any
model are a blind spot. In bold, the most abundant calls. False positives and
false negatives evaluate any woodpecker call versus noise.

Fig. 9. Confusions in Remerschen and La Petite Raon.
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predicted foremost in RM; there are indeed species in the dataset that
can provoke this confusion. In the end, every class found its imitator;
see Fig. 9 for a few examples. In the other direction, 21% of the
woodpecker images were misdiagnosed as noise. Many of these misses
were to be expected, e.g. when the images caught only a part of a
syllable or the fuzzy tail of a call.

The numbers discussed above relate to partial images of wood-
pecker calls. At the call level, the resulting accuracy is documented in
Table 12. Here, the identification was deemed correct if one of the sub-
images was correct. The accuracy increased by approximately 20% for
the abundant calls compared to Table 11. Even late in the season,
72.5% and 81.7% of the calls from the birds that owned the territory
(P. canus in LPR; J. torquilla in RM) were detected. We conclude that
some groups of syllables enable the identification of calls better than
others. This suggests it would be beneficial to group them into larger
images, assuming the better syllables would prevail in the analysis.

The false positives now amount to 1%–18% of the noise audio
segments. In a dataset such as RM, having to review only 6% of the
irrelevant data is what makes any analysis possible to start with. After
the number and diversity of singers pick up in the late spring, false
positives increase dramatically.

There are relatively few confusions between the classes of wood-
pecker calls, aside from a triangle between the rattles of D. martius,
P. canus and P. viridis (Table 13). The last two are indeed sometimes

hard to discriminate, but the first one has an early ascent in pitch
whereas the two Picus tend to decrease in pitch through the call.
Naturally, it is arduous to capitalize on these characteristics when
considering only a fraction of the call. Besides this, the bulk of the
confusions are with noise.

4.4. Overall woodpecker monitoring

Figs. 10 through 15 show a time line of drums and calls detected in
the three field datasets. The Tenneville P. canus appears as an out-
standing drummer, perhaps due to its isolated position on the edge of
the distribution zone. The same species did not drum as much at the
other locations. Tenneville was the site of a territorial dispute between
P. canus and D. martius on April 14th 2016, rather visible in the drums;
the calls actually show that the D. martius had been in the vicinity for a
while. A J. torquilla also called on 2 days, including on the day of the
dispute.

There is not much drumming at Remerschen due to the lack of

Table 12
Calls identification: performance at the call level.

Class TN LPR1 LPR2 LPR3 RM

Accuracya (%)

D. martius1 (Rattle) 100.0 98.7 92.3 50.0 0.0
D. martius2 (Flight) 100.0 94.1 66.7 100.0
D. martius3 (Contact) 100.0 97.3 100.0 80.0
D. medius 97.1 100.0 100.0
J. torquilla 100.0 100.0 81.7
P. canus 100.0 94.7 65.5 72.5 100.0
P. viridis 94.1 40.9
All woodpeckers 100.0 97.9 80.5 73.5 80.0
Noise 98.6 98.0 81.7 81.8 94.1

Number of calls

Actual calls 72 699 394 98 656
False positivesb 51 429 5437 9449 8905
False negatives 0 3 7 2 112

Bold indicates the most abundant calls.
a As we used majority-voting to pool the different models, the Mean

Reciprocal Rank (MRR) is at least equal to the accuracy. Both would decrease if
additional false negatives were uncovered. For comparison, Lasseck (2018)
obtains an MRR of 82.7% on foreground species, 74.0% when including the
background species as well.

b False positives and false negatives evaluate any woodpecker call versus
noise.

Table 13
Calls identification (at the call level): confusion matrix accumulated over all field datasets.

Actual classes↓ Predicted classes: number of samples

mart1 mart2 mart3 med min torq can shp vir noise

D. martius1 718 3 2 10 9 9 27 13 152 6
D. martius2 14 80 1 2 1 2 3 0 4 0
D. martius3 0 0 46 2 0 0 0 0 0 2
D. medius 3 0 2 42 0 0 1 0 0 0
J. torquilla 2 0 1 10 5 517 1 0 0 108
P. canus 95 4 14 17 0 4 242 0 97 4
P. viridis 1 0 0 1 11 3 1 0 25 4
noise 4094 487 510 9063 2326 2266 4046 178 3610 232,395
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Fig. 10. Tenneville: Drums Identifications by Date.
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proper substrates. The willow trees that surround the ponds are too soft.
As in La Petite Raon, the drums analysis is dominated by D. major. The
station was installed in the midst of a J. torquilla territory, and an
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Fig. 11. Tenneville: calls identifications by date.
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Fig. 12. Remerschen: drums identifications by date.

M
ar

ch

01-Mar
02-Mar
03-Mar
04-Mar
05-Mar
06-Mar
07-Mar
08-Mar
09-Mar
10-Mar
11-Mar
12-Mar
13-Mar
14-Mar
15-Mar
16-Mar
17-Mar
18-Mar
19-Mar
20-Mar
21-Mar
22-Mar
23-Mar
24-Mar
25-Mar
26-Mar
27-Mar
28-Mar
29-Mar
30-Mar
31-Mar

0 5 10 15

A
pr

il

01-Apr
02-Apr
03-Apr
04-Apr
05-Apr
06-Apr
07-Apr
08-Apr
09-Apr
10-Apr
11-Apr
12-Apr
13-Apr
14-Apr
15-Apr
16-Apr
17-Apr
18-Apr
19-Apr
20-Apr
21-Apr
22-Apr
23-Apr
24-Apr
25-Apr
26-Apr
27-Apr
28-Apr
29-Apr
30-Apr

Call Count
0 100

Remerschen

M
ay

01-May
02-May
03-May
04-May
05-May
06-May
07-May
08-May
09-May
10-May
11-May
12-May
13-May
14-May
15-May
16-May
17-May
18-May
19-May
20-May
21-May
22-May
23-May
24-May
25-May
26-May
27-May
28-May
29-May
30-May
31-May

0 5 10 15

martius (1)
martius (2)
martius (3)
medius
minor
torquilla
canus
sharpei
viridis

Fig. 13. Remerschen: calls identifications by date.
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Fig. 14. La Petite Raon: drums identifications by date.
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abundance of calls were recorded. In the mistakes of the different
networks, particularly Inception, we discovered rare J. torquilla drums
and taps (only the drums are showed in Fig. 12).

The LPR recordings show different woodpecker species sharing the
same territory. On Fig. 15, we see that it was initially occupied by
D. martius, which used its rattle call above all and the other two spor-
adically. The site was visited on occasion by P. viridis and D. medius. At
the end of March, D. major started drumming and continued throughout
most of April (Fig. 14). In early April, P. canus also claimed the territory
and D. martius gave up ground. P. canuswas still calling at the beginning
of May. Then woodpecker activity receded.

Of all the species that we could have recorded, D. minor is the only
one we missed. The signals from this species were always a bit fringe;
fast drums, high-pitched calls. The drums are almost impossible to tell
apart from P. canus, and the calls are confused with passerines. Without
a positive identification in our data, we cannot be assured that we are
able to detect these signals.

5. Discussion

5.1. On the success of deep convolutional neural networks

There is no doubt that without DCNNs, we would have been unable
to analyze the RM and LPR datasets. The networks reduced these vast
datasets into tentatively annotated datasets of a manageable size. A
large part of these tentative annotations were actually correct (Tables 8,
10, 12). A manual review was still necessary because of a non-negligible
amount of false positives, which increased as the reproduction season
progressed. In the worst case (RM calls), the false positives amounted to
13,384 images (total positive predictions: 14677 images) out of a da-
taset of 643,901 images. In terms of recording time, the RM dataset
amounts to 435 h of audio; the segmentation into individual acoustic
events reduced it to 164.7 h, and the DCNNs made positive identifica-
tions in audio files totaling 13.9 h. Thus the deep networks transformed
an impossible review into a tedious review. With the help of a good

setup to look at images in batches, the task could be completed. The
drums datasets are an order of magnitude smaller because of the re-
stricted frequency range; RM, again the most difficult case, generated
17.3 h of audio to process (28,601 images), which was reduced to 1.6 h
of positive predictions by the DCNNs (1000 images).

This success of deep networks in sound problems is also the success
of spectrograms as acoustic features. We saw with the drums detection
exercise that image-based methods (deep networks, spectrogram cross-
correlation) performed much better than signal-descriptive methods
(repetitions analysis). This reflects the efficiency of spectrograms in
describing sounds. The spectrogram is not exactly the raw sound, but it
spares the networks from having to reinvent the primary analytical tool
in acoustics, i.e. the Fourier Transform. It follows that the time para-
meters used in its calculation have to be carefully considered, namely
the frame duration and the overlap between the successive frames. We
saw for example that 46ms frames were problematic for some drums
(Fig. 1), notably the D. minor ones. Then the time resolution became
critical in the drums identification.

The drums identification could probably have been done together
with the detection, as we did for the calls. For this task, the signal-
descriptive method (handcrafted features and k-NN) worked better than
the deep networks. This is not only connected to the limited precision of
the images, but also to a conceptual difficulty. The temporal features
that discriminate the different species (acceleration, speed, duration,
number of strikes) are not immediate information in the images. Image
analysis first picks up on shapes; it works well on spotting the peculiar
patterns of woodpecker call syllables or the series of vertical lines that
drumming produces. But the time intervals between the lines and the
number of lines is another level of information processing, just like the
agency of syllables in a call. We supply the spectrograms on the left of
Fig. 1, and the deep networks must recover the graphs on the right.
Performing this sophisticated task requires a deep network, which is not
an issue here, but learning it demands a large quantity of data. Five
thousand drums is a small dataset to retrain the networks through their
entire depth. The consequences were felt in our study as some classes
were assigned seemingly based on their perceived probability. This is a
sign that the DCNNs were not able to construct reliable discriminant
features, and therefore that their analysis of time structures was not
thorough enough. As often with DCNNs, improvement would be best
achieved using a larger training set. Here, the additional data would
help the networks unlearn that objects have varying sizes (drums have
fixed dimensions) and develop their notion of rhythm (not only the
presence of objects is discriminant, but also their respective positions).
In a second step, using larger images could be considered to accom-
modate finer spectrograms.

The task of distinguishing the woodpecker calls from each other is
simpler than distinguishing them from non-target signals. Real-life da-
tasets are full of bird calls that can legitimately be confused with
woodpecker calls on sight, either in the same bandwidth and with
somewhat similar syllables (owls) or in a different bandwidth and with
almost identical syllables (unidentified passerines). There is definite
value in building a noise class that represents the full scope of biodi-
versity that the networks might subsequently have to deal with. We had
done it more diligently for the drums detection. For the calls we as-
sembled a noise class that comprised a lot of non-target woodpecker
signals (e.g. drums, call notes), which were likely to be encountered in
woodpecker territory, but we had not sufficiently represented other
species. In effect, the construction of the positive class is obvious
(woodpecker calls) but the construction of the noise class is a notch
more difficult. The sounds that are confused with woodpeckers are
mostly known from accumulating bad experiments.

This remark brings the following issue: to be complete, the noise
class has to be large. Yet, to teach neural networks that the different
classes all have, a priori, the same probability, one needs to populate
the different classes in the training set equally. If the noise class has to
be large, then we need more data for the woodpecker classes, otherwise
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Fig. 15. La Petite Raon: calls identifications by date.
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their detection probability decreases. On the other hand, such an effect
could be desirable, because woodpecker calls are a less probable oc-
currence than a lot of other noises in forests. Our considerations loop
back to a choice between false positives and false negatives. In the
context of a woodpecker monitoring scheme, it is preferable to mini-
mize the false negatives, and thus to cope with the excess audio to re-
view. This being said, the magnitude of the datasets limited us to re-
viewing only the calls that at least one of the networks had qualified as
woodpecker signals. Our study is blind to pure false negatives.
Fortunately, we observed that the birds that own the territory call and
drum abundantly, thereby increasing their detection probability.

Our end-to-end methodology was designed for woodpeckers and as
such will not readily address other species, but most of the aspects that
do not transfer pertain to the steps ahead of the DCNNs rather than to
the DCNNs themselves. The frequency ranges used for the ACI calcu-
lations and for the segmentation into acoustic events are too restrictive
for other species, yet were instrumental in downsizing our datasets. The
spectrogram computation parameters we used might elsewhere be ill-
suited. The use of one-second audio excerpts to identify the calls, i.e.
the focus on syllables rather than full calls, might also be problematic
for other species. Finally, the woodpecker signals, both drums and calls,
are heavily stereotyped and thus generate similar images as they are
repeated. The capacity of the DCNNs is untested when it comes to
handling variable structures. For example the blackbird (Turdus
merula), whose phrases are series of random elements with infinite
variations, could be a difficult case. Still, we recall that Sevilla and
Glotin (2017) and Lasseck (2018) used the same computer vision
DCNNs on large groups of species with some success. Additional studies
focused on difficult species would be informative.

5.2. On the identification of species

The positive results in Table 12 lead us to believe that most
woodpecker calls can be identified at the syllable level. They were very
few confusions between the different species; some were observed be-
tween the rattles of D. martius, P. canus and P. viridis. Larger images
would allow incorporating some of the call structures into the analysis
to improve this result. The deeper networks certainly have the analy-
tical power to study call structure, but again, the limitation is on the
available training data.

Calls identifications are more confident than drums identifications,
with either method; we did not need to seek context or other signals in
the recordings to confirm the species. Advertising calls are without
question species-specific. For drums, the debate is ongoing (Dodenhoff
et al., 2001; Florentin et al., 2016). There is enough overlap between
the various parameter ranges that some of the species cannot be dif-
ferentiated in practice, e.g. P. canus and D. minor. Sex, region and
function all affect the structure of drums, notably by a modification of
the number of strikes (Blume, 1996; Blume and Tiefenbach, 1997). The
shorter soft drums also increase the confusions in drums identifications
(Florentin et al., 2017). This is further impaired by the realities of field
recordings: distant drums, poorly executed signals, significant varia-
tions in the production of a single individual. The most confident pre-
dictions are the ones for which there is a volume of observations.
Otherwise the predictions must be confronted with contextual data:
location, habitat, co-occurrence of calls. Without this secondary in-
formation, the scope of drums analysis is somewhat limited.

5.3. On the respective merits of the different networks

In Lasseck (2018), Inception was the best performing network. In
our case, we obtained the best results with different architectures de-
pending on the problem and the training parameters. We also obtained
different standings from repeated identical simulations, and there was
no correlation between the networks that performed well on the vali-
dation set and the networks that performed well on the field data. As it

stands, our validation sets were poor windows into the actual perfor-
mance of the trained networks, which explains part of the randomness
in the results, but not all. During training, the samples are shuffled and
presented to the network in a random order, which can lead to different
results in repeated simulations. In the calls analysis, almost all training
runs, using different configurations for the learning rate, generated
models that exceeded 94% of accuracy on the validation set. However,
the models trained with an adaptive learning rate fared better with the
field datasets. Most often, the deeper networks outperformed the
shallower ones on the field datasets. ResNet 152 was the most accurate
to detect drums, DenseNet to identify drums and calls. Inception pro-
duced poor results, likely because both its architecture (with filters of
different sizes) and its original training (with 144 crops) made it skilled
at recognizing objects at different scales. For the same reason, this was
the best network to detect secondary signals like demonstrative tap-
ping. It remains hazardous to designate one architecture as superior.

Using a ensemble of models either improves or deteriorates the
accuracy compared to a single good model. For the three toughest calls
sets (LPR2, LPR3 and RM), using one of our instances of DenseNet alone
was a better choice than the ensemble. If we consider the J. torquilla
calls that dominate the RM dataset, 44% of the images (989 images)
were missed by the model pool. Half of these were actually correctly
identified by one or more models and not properly promoted by the
vote because the correct models were in the minority. Considering all
species in all datasets, 12% of the images were not recognized at all (but
adjacent images were, and allowed detecting these calls). Again, with
our poor validation set, we did not pick models wisely for the ensemble.
The majority-voting procedure still deserves some criticism; if too many
models in the ensemble are incompetent, the good models will not save
the day. We otherwise experimented with averaging the class prob-
abilities produced by the different architectures, but this lowered the
accuracy further. Note that the above comments pertain to the number
of images that were correctly detected; for the number of false positives,
the ensemble performed better than any individual network, by far.
DenseNet was one of the poorest networks for false positives.

5.4. On data augmentation

Data augmentation would be a logical option to try and compensate
for the modesty of our datasets. However, as mentioned, the original
training of the legacy image networks already deployed most of the
basic tricks of data augmentation. Applying a time shift to the images,
stretching them or degrading their quality were things that could not be
taught again with the same benefits. Dropout was also already used, in
all networks but ResNet.

We still ran limited experiments with the calls. We were not able to
gain anything from adding noise segments to our data, whereas it had
been a success in other studies (Lasseck, 2018). This was likely because
the noise we added was sampled from the existing noise class. Unlike
Lasseck, we did not have noise data at our disposal that the networks
had not already seen before. What actually improved our results was to
add new data: we retrained the networks using the results from the
LPR1 dataset, and this led to a decrease in false positives in LPR2, LPR3
and most significantly RM. This is consistent with our previous as-
sessment that there is value in populating the noise class using past
mistakes.

But the Lasseck (2018) result is interesting in that the added noise is
not focused on audio segments that bring in differential information. It
is just more sound data. Another interesting perspective is from
Pironkov et al. (2018). These authors trained a speech recognition
network simultaneously on two different objectives (recognizing speech
and denoising sound clips), with different data feeding into the two
tasks. The performance of the final network on speech recognition was
improved. Lu et al. (2004) also improved speech recognition by first
training on speaker gender recognition. Hence an interesting direction
for future work on woodpecker sound identification would be to
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mobilize auxiliary sound data by training the networks on different
objectives. For example, the 16,000 sound clips from the BAD challenge
(Stowell et al., 2019) could be used to train on the detection of bird
calls prior to training for woodpeckers, or simultaneously. We could
also envision that the secondary objective might not even be bird-re-
lated. The networks could first be trained to identify a number of fa-
miliar sounds, in the same way they were trained to detect common
objects (cars, animals…) in images.

This brings a last remark on the image invariants that are in-
appropriate for sound. An analysis based on spectral content would not
have confused the D. martius flight call in Fig. 9 with the unknown call
on the right; the vertical translational invariance was not properly
unlearned by the deep networks. However, unlearning invariants might
require just as much data as it took to learn them in the first place:
1 million images. In that case it could be more profitable to retrain the
different architectures from scratch with sounds and toward an acoustic
objective. Instead of color channels, different spectrogram scales could
be used (different time steps, frame durations, etc.). However, this is
contingent on the publication of large and correctly annotated audio
collections.

6. Conclusion

In this work we presented models to detect and identify the drums
and the characteristic calls of European woodpeckers in audio streams.
Two technologies proved decisive in our endeavor: the acoustic com-
plexity index and deep convolutional neural networks. Calculating the
ACI aboard our recording station allowed an early assessment of po-
tential woodpecker content. We turned an indicator that was originally
intended to measure species richness into a mean to scale down the
field datasets. They were still too large for most detection and classi-
fication techniques, but deep image networks enabled their detailed
analysis.

We singled out two limitations that could translate into future re-
search: the need for very large training sets and the fact that the image
invariants that the deep networks learned in their original training are
improper for spectrograms. For the first point, we concluded that
adding data by any means, including data serving peripheral objectives,
was the direction to explore. The second point is an argument in favor
of building deep networks directly for sound, and therefore supports the
establishment of a public million sound collection.

We tested our algorithms on continuous field recordings and this
brought an uncommon insight into the practicality of the developed
methods. For three successive years, we were able to record wood-
peckers in the wild and to analyze the audio in full. Such an outcome
was previously inaccessible and opens up new possibilities for or-
nithological research. Deep networks can support a number of beha-
vior, evolution and conservation studies for European woodpeckers.

Our recordings show that they drum and call abundantly, with
intra-species and inter-species exchanges. We lament the absence of
D. minor, but on the positive side, the capture of J. torquilla drums and
taps in Remerschen, the D. medius calls in La Petite Raon and the many
recordings of P. canus, both as a rarity in Belgium and in the heart of its
territory in the Vosges mountains, are all satisfying outcomes.
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