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Abstract

Artificial intelligence (AI) and Internet of things (IoT) have progressively emerged in all domains of our daily lives. Nowadays, both
domains are combined in what is called artificial intelligence of thing (AIoT). With the increase of the amount of data produced
by the myriad of connected things and the large wide of data needed to train Artificial Intelligence models, data processing and
storage became a real challenge.

Indeed, the amount of data to process, to transfer by network and to treat in the cloud have call into question classical data storage
and processing architectures. Also, the large amount of data generated at the edge has increased the speed of data transportation
that is becoming the bottleneck for the cloud-based computing paradigms.

The post-cloud approaches using Edge computing allow to improve latency and jitter. These infrastructures manage mechanisms
of containerization and orchestration in order to provide automatic and fast deployment and migration of services such as reasoning
mechanisms, ontology, and specifically adapted artificial intelligence algorithms.

In this paper we propose a new architecture used to deploy at edge level micro services and adapted artificial intelligence
algorithms and models.
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1. Introduction

The increase of the amount of data produced by the myriad of connected things, and the amount of data to
process, to transfer by network and to treat in the cloud computing question data storage and processing architectures.
The large amount of data generated at the edge has increased the speed of data transportation that is becoming
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the bottleneck for the cloud-based computing paradigms[32]. Different strategies have been proposed to reduce
the cloud load and reduce bandwidth requirements by reconciling user processing either on mobile devices or on
computers’ users. The post-cloud approaches appear after centralized cloud processing which allow to improve
latency and jitter for immobile entities. However, they do not provide an adapted answer for mobile devices and local
awareness. Edge resources allow to provide faster predictions compared to the use of cloud resources. A compromise
between the rational use of the cloud for learning models while not transferring all the data and deployment at
the edge level that constitutes a compromise between the amount of data to be transferred, bandwidth and performance.

Different ways of building models are used to process data using artificial intelligence and machine learning algo-
rithms :

(1) The ”Abstracted AI” uses machine learning to train models on data sets, processed natural language documents
or encoded human expertise and express models in different ways such as inference rule sets, decision trees, neural
networks, etc. Models allow then to infer from the sensors data, and guide the operation of the system [3];

(2) The ”Centralized Approach” needs to send all produced data to the cloud in order to train the model and
performing the inference. This way implies the availability of sufficient bandwidth and low latency. Moreover, it
induces other problems such as data privacy, data volume storage, and the cost of network connectivity [3];

(3) The ”Edge Approach” is less expensive because its bandwidth is efficient and sends less data to the cloud. In
addition, it improves latency, the responsiveness, and the scalability [3].

Container technology offers a lightweight cloud environment to allows the deployment and the execution of
applications in an isolated manner with a more density of application in a single host than virtual machine[30].
Applying advanced machine learning and deep learning to IoT data allows to get real-time prediction and provide
advance analytics. In this context, edge computing techniques can be used to address the problems of latency, jitter,
and to decrease the load processing on the cloud by bringing the processing to the producer or consumer level of the
data. Moreover, combining IoT and AI at an edge level allows different applications such as image processing, face
recognition, video processing, object segmentation, and object tracking, etc. [25].

Our contribution is an edge heterogeneous architecture which allows to :

1. process data with micro services in order to to annotate, analyze, detect data abnormalities and validate data, etc.
2. select the appropriate, pertinent and required features for training artificial intelligence algorithms and models in

the cloud,
3. achieved a predictive and/or prescriptive analysis at the edge level using adapted AI algorithms and models.

We use use Kubernetes containers orchestration to manage dynamically Docker images and select specific node
accordingly to algorithms requirements

The remaining of this paper is organized as follow : In section 2, we provide on one hand the summary of the
major contribution in the field of study and on the other hand, we describe this contribution in our previous works.
The section 3 presents our heterogeneous micro cluster used to process data, and exploit adapted artificial intelligence
algorithms for the prediction. In the fourth section, we experiment performances of our architecture on the recognition
of plant disease on the basis of the leaf image. The same experimentation is done on the cloud and performances of
both approaches are compared. In section 5, we discuss the obtained results with the different artificial intelligence
algorithms. Finally in section 6, we draw our conclusion and describe our future work.

2. Literature Review

Many authors have worked on innovative solutions allowing to bring the treatment at the edge of the network.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2020.07.006&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
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the bottleneck for the cloud-based computing paradigms[32]. Different strategies have been proposed to reduce
the cloud load and reduce bandwidth requirements by reconciling user processing either on mobile devices or on
computers’ users. The post-cloud approaches appear after centralized cloud processing which allow to improve
latency and jitter for immobile entities. However, they do not provide an adapted answer for mobile devices and local
awareness. Edge resources allow to provide faster predictions compared to the use of cloud resources. A compromise
between the rational use of the cloud for learning models while not transferring all the data and deployment at
the edge level that constitutes a compromise between the amount of data to be transferred, bandwidth and performance.

Different ways of building models are used to process data using artificial intelligence and machine learning algo-
rithms :

(1) The ”Abstracted AI” uses machine learning to train models on data sets, processed natural language documents
or encoded human expertise and express models in different ways such as inference rule sets, decision trees, neural
networks, etc. Models allow then to infer from the sensors data, and guide the operation of the system [3];

(2) The ”Centralized Approach” needs to send all produced data to the cloud in order to train the model and
performing the inference. This way implies the availability of sufficient bandwidth and low latency. Moreover, it
induces other problems such as data privacy, data volume storage, and the cost of network connectivity [3];

(3) The ”Edge Approach” is less expensive because its bandwidth is efficient and sends less data to the cloud. In
addition, it improves latency, the responsiveness, and the scalability [3].
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and to decrease the load processing on the cloud by bringing the processing to the producer or consumer level of the
data. Moreover, combining IoT and AI at an edge level allows different applications such as image processing, face
recognition, video processing, object segmentation, and object tracking, etc. [25].

Our contribution is an edge heterogeneous architecture which allows to :

1. process data with micro services in order to to annotate, analyze, detect data abnormalities and validate data, etc.
2. select the appropriate, pertinent and required features for training artificial intelligence algorithms and models in

the cloud,
3. achieved a predictive and/or prescriptive analysis at the edge level using adapted AI algorithms and models.

We use use Kubernetes containers orchestration to manage dynamically Docker images and select specific node
accordingly to algorithms requirements

The remaining of this paper is organized as follow : In section 2, we provide on one hand the summary of the
major contribution in the field of study and on the other hand, we describe this contribution in our previous works.
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2.1. Related works

Manco et al. developed an architecture based on Xen hypervisor 4.4, MiniOS and built around the concept of
massive consolidation in which an heterogeneous virtualization platform is deployed at different levels of the network
(access, aggregation, cloud). This architecture uses minimalistic Virtual Machines (VM) that can be easily and
quickly deployed and migrated at various levels of the network under 100 milliseconds. This massively distributed
and hierarchical architecture can deploy up to 10,000 specialized virtual machines on a server AMD Opteron
6376@2.3GHz with 128 GB of RAM. Virtual Machines can also be deployed at various points of the network on
micro servers such as Cubietruck, Raspberry Pi, Intel NUCs, Intel Edison, AMD Gizmos and can create on-the-fly
services [27]. We use inside our architecture docker because containerization is lighter than virtualization in terms of
consumption of system resources. In another work, Gazetti et al. proposed a streamed container deployment. In this
environment each node is present in a location (located in a same vicinity) and acts as a gateway and interact with the
remote cloud infrastructure. The gateway pulls images for the entire of the location and provides information about
status of nodes inside that place. The coordination inside the locality is assured by a message broker while a gateway
manager operates dynamically the peer-to-peer distribution graph [21]. The proposed solution is efficient even in case
of network unavailability with the cloud where the images cannot be brought back. Thus, we store docker images in
repositories replicated at different level of the network and externally to be independent of our cloud architecture.
For example, Calo et al. proposed an edge deployment system using a framework that implement a set of REST
APIs for automating the deployment of Machine learning algorithms on the edge in 4 phases: (1) In the Discover
phase, a user upload training data, label them and then test multiple machine learning models on the cloud. At the
end, the better models are selected; (2) During the deployment phase, the best models are retrieved, serialized, and
packaged as Docker image before storage in repositories shared with edge components; (3) In the Operate phase,
Docker containers are deployed and executed on edge device upon request of the user; (4) The retraining phase
capture information about the effectiveness of algorithms deployed and transfer them to the cloud in order to allow
learning and continuous improvement [3]. We adopt a similar strategy but in our case data are automatically upload
on the cloud without intervention from the users. Recently, Kousiouris et al. have proposed a solution based on three
modules: (1) Node-Red is used as a UI implementation layer, plugin mechanism with existing IoT management
platform, middleware which allows to adapt and modify a data source to another; (2) A semantic service block which
map data feeds with semantic concepts; (3) An artificial Intelligence block using TensorFlow which detect deviation
of normal behavior by comparison of real data with a prediction model established for an expected duration. They
use Docker containerization and Docker Swarm to manage the cluster [26]. Docker Swarm is generally used in
development, but it is simple and deploys fastly. However, Kubernetes is preferred to Docker Swarm for production
environment because it supports more demand and more complexity, and it is best adapted for production environment.

On the other hand, Teerapittayanon et al. have shown the capability of heterogeneous physical devices located
in the cloud, in the edge, and geographically distributed IoT end-devices to train a Distributed Deep Neural Network
(DDNN). Some shallow portions of Deep Neural Networks (DNN) are mapped onto a distributed computing hierarchy
to allows fast and localized inference [34]. All AI algorithms cannot be adapted in same manner. In an other work
Mittal el al. have presented a survey that investigates deep learning algorithms optimizations and their implementation
on NVIDIA Jetson: (1) The reduction of the number of frame by filtering and sampling to send only interesting frames;
(2) Reducing image resolution; (3) Reduction CNN size using knowledge distillation where a small network is trained
to imitate the output of an original larger network; (4) Using lightweight CNNs that trade-offs accuracy for reducing
CNN latency and memory demands; (5) Choosing the optimal CNN for a metric such as top-1, top-5 [28]. We use
several techniques proposed by theses authors to adapt our AI algorithms for the edge.

2.2. Background

In our previous paper, we have progressively developed and validated a semantic driven and modular cloud centric
Lambda Architecture[18] through various uses cases: landslides monitoring [29], bee health [19], smart poultry [10],
climatic enclosure[12], irrigation [5], elderly and patient monitoring [13], bird nesting [1], smart campus [4], smart
home [8], smart city [9], smart building [16], cattle behavior [7] [15][6][11], phenotyping [14][17], urban gardening
[2]. In parallel works, we proposed a Cloud Environment to Deploy Deep Learning Containerized Applications using
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Kubernetes (k8s) and Slurm [20]. We studied also the requirement needs of each application and based on this analysis,
we configured our Cloud environment to affect training for GPU and inference for CPU. In this paper we extend
previous paper with an Edge AIoT (Artificial Intelligence and Internet of Things) Architecture which complete and
collaborate with our cloud centric architecture previously.

3. Proposed Method

The proposed edge architecture is deployed on a set on interconnected device composed of three components :
(1) three Nvidia Jetson Nano (472 GFLOPS) with 128-core CUDA Maxwell, a Quad-core ARM A57@1.43 GHz,

4GB 64-bit LPDDR4@25.6 GB/s equipped with an additional M.2 SSD by means of an adapter M.2 Key-E to Mini
PCI-E adapter. Jetson Nano use JetPack 4.3 containing (NVIDIA L4T1, TensorRT2, cuDNN3, CUDA4, OpenCV5)
and installed on a ScanDisk Extreme 32GB Micro SDHC UHS-3. The aims of Jetson Nano is to train AI models on
collected IoT data;

(2) four Odroid N2 with integrates a quad-core ARM Cortex-A73 CPU cluster and a dual core Cortex-A53 cluster,
and a new generation Mali-G52 GPU which process data on the Edge;

(3) a 8-port Gigabit Network Switch manages communications between all elements of the heterogeneous cluster
(Jetson Nano, Odroid N2).

The coupling of Jetson Nano specifically developed for Artificial Intelligence with Odroid N2 offers better per-
formance than Raspberry Pi 4 and allows to create a heterogeneous cluster. This cluster is used to deploy by means
of Kubernetes on one hand micro services (i.e.: to enrich and annotate with specialized data ontology, validate, and
detect abnormal conditions with trained on the cloud artificial intelligence models) data collected from IoT, and on
the other hand, to deploy and train AI models in order to provide predictive or prescriptive analysis.

Kubernetes (k8s)6 is an open source container orchestration platform which manage containerized workloads and
services at scale. Kubernetes 1.17 used in conjunction with Docker-CE 19.03 to deploy and manage containers in
pods. A pod is the smallest unit of deployment in a k8s cluster in which runs one or more containers. The two main
types of nodes in the Kubernetes cluster are the master node and worker nodes.

The Fig. 1 provides a high level scheme of our architecture. It is composed from one Odroid N2 4GB master node
and six worker nodes (three Odroid N2 4GB and three Nvidia Jetson Nano). Micro services are deployed on Odroid
N2 while Jetson Nano are used to train, validate, and deploy AI models.

The Master Node, a Odroid N2 is responsible of all application workload deployment, scheduling, and place-
ment decision as well as detecting and managing changes to the state of deployed applications. The master Node is
composed of:

• (1) etcd7 a highly reliable, distributed, and consistent Key-Value Store, written in go, for persisting and main-
taining stat information about the various components of the k8s cluster;
• (2) API Server exposes endpoints for all interactions with and in the k8s cluster;
• (3) Scheduler planes in function of application resource requirements and specific affinity constraints which

application pod(s) to run on the selected worker node(s) of the k8s cluster;
• (4) Controller Manager composed of :

1. Node Controller responsible for monitoring and detecting the state of health of the worker node(s);

1 https://developer.nvidia.com/embedded/linux-tegra
2 https://developer.nvidia.com/tensorrt
3 https://developer.nvidia.com/cudnn
4 https://developer.nvidia.com/cuda-zone
5 https://opencv.org
6 https://kubernetes.io
7 https://github.com/etcd-io/etcd
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to imitate the output of an original larger network; (4) Using lightweight CNNs that trade-offs accuracy for reducing
CNN latency and memory demands; (5) Choosing the optimal CNN for a metric such as top-1, top-5 [28]. We use
several techniques proposed by theses authors to adapt our AI algorithms for the edge.

2.2. Background

In our previous paper, we have progressively developed and validated a semantic driven and modular cloud centric
Lambda Architecture[18] through various uses cases: landslides monitoring [29], bee health [19], smart poultry [10],
climatic enclosure[12], irrigation [5], elderly and patient monitoring [13], bird nesting [1], smart campus [4], smart
home [8], smart city [9], smart building [16], cattle behavior [7] [15][6][11], phenotyping [14][17], urban gardening
[2]. In parallel works, we proposed a Cloud Environment to Deploy Deep Learning Containerized Applications using

4 O. Debauche et al. / Procedia Computer Science 00 (2020) 000–000

Kubernetes (k8s) and Slurm [20]. We studied also the requirement needs of each application and based on this analysis,
we configured our Cloud environment to affect training for GPU and inference for CPU. In this paper we extend
previous paper with an Edge AIoT (Artificial Intelligence and Internet of Things) Architecture which complete and
collaborate with our cloud centric architecture previously.

3. Proposed Method

The proposed edge architecture is deployed on a set on interconnected device composed of three components :
(1) three Nvidia Jetson Nano (472 GFLOPS) with 128-core CUDA Maxwell, a Quad-core ARM A57@1.43 GHz,

4GB 64-bit LPDDR4@25.6 GB/s equipped with an additional M.2 SSD by means of an adapter M.2 Key-E to Mini
PCI-E adapter. Jetson Nano use JetPack 4.3 containing (NVIDIA L4T1, TensorRT2, cuDNN3, CUDA4, OpenCV5)
and installed on a ScanDisk Extreme 32GB Micro SDHC UHS-3. The aims of Jetson Nano is to train AI models on
collected IoT data;

(2) four Odroid N2 with integrates a quad-core ARM Cortex-A73 CPU cluster and a dual core Cortex-A53 cluster,
and a new generation Mali-G52 GPU which process data on the Edge;

(3) a 8-port Gigabit Network Switch manages communications between all elements of the heterogeneous cluster
(Jetson Nano, Odroid N2).

The coupling of Jetson Nano specifically developed for Artificial Intelligence with Odroid N2 offers better per-
formance than Raspberry Pi 4 and allows to create a heterogeneous cluster. This cluster is used to deploy by means
of Kubernetes on one hand micro services (i.e.: to enrich and annotate with specialized data ontology, validate, and
detect abnormal conditions with trained on the cloud artificial intelligence models) data collected from IoT, and on
the other hand, to deploy and train AI models in order to provide predictive or prescriptive analysis.

Kubernetes (k8s)6 is an open source container orchestration platform which manage containerized workloads and
services at scale. Kubernetes 1.17 used in conjunction with Docker-CE 19.03 to deploy and manage containers in
pods. A pod is the smallest unit of deployment in a k8s cluster in which runs one or more containers. The two main
types of nodes in the Kubernetes cluster are the master node and worker nodes.

The Fig. 1 provides a high level scheme of our architecture. It is composed from one Odroid N2 4GB master node
and six worker nodes (three Odroid N2 4GB and three Nvidia Jetson Nano). Micro services are deployed on Odroid
N2 while Jetson Nano are used to train, validate, and deploy AI models.

The Master Node, a Odroid N2 is responsible of all application workload deployment, scheduling, and place-
ment decision as well as detecting and managing changes to the state of deployed applications. The master Node is
composed of:

• (1) etcd7 a highly reliable, distributed, and consistent Key-Value Store, written in go, for persisting and main-
taining stat information about the various components of the k8s cluster;
• (2) API Server exposes endpoints for all interactions with and in the k8s cluster;
• (3) Scheduler planes in function of application resource requirements and specific affinity constraints which

application pod(s) to run on the selected worker node(s) of the k8s cluster;
• (4) Controller Manager composed of :

1. Node Controller responsible for monitoring and detecting the state of health of the worker node(s);

1 https://developer.nvidia.com/embedded/linux-tegra
2 https://developer.nvidia.com/tensorrt
3 https://developer.nvidia.com/cudnn
4 https://developer.nvidia.com/cuda-zone
5 https://opencv.org
6 https://kubernetes.io
7 https://github.com/etcd-io/etcd
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Fig. 1: High Level Scheme of our architecture

2. ReplicaSet responsible of maintaining the desired number of pod replicas in the cluster;
3. Endpoints Controller responsible for detecting and managing changes to the application service access

endpoints.

The master node will also be responsible to assign the application to a chosen node depending of its need. There
are two ways to configure our node: The first, by using the pod configuration file to describe which node will be
responsible to schedule our application. The second way, by using the command line, and specifying the label of the
specific node. Our goals is to provides an automatic system to deploy micro services and neural network dynamically
on a cluster place at the edge of the network.

Worker Nodes mix Odroid N2 and Nvidia Jetson Nano are composed of:

• (1) Kubelet, an agent that runs on each worker of k8s. It creates and starts an application pod on the worker and
monitors the state of health of worker and all running pods to the master node via the API server;
• (2) Kube-proxy, a network proxy that is an entry point allowing an access to various application service end-

points and routes request to the appropriate pod(s) in the cluster;
• (3) a Container Engine Docker manages the life cycle of containers such as getting the images, starting and

stopping containers, etc.

Finally, kubectl is a command line tool used by administrators or operators for deploy, scales applications, and
manages the k8s cluster.

The Fig. 2 shows the different activities achieved at each level of the data acquisition and processing chain.

Cloud Servers host multiple activities :

• (1) Ontology repository,
• (2) Knowledge Base deduced from ontology by the Semantic Reasoner.
• (3) MQTT Broker used by edge micro cluster to communicate with the cloud server.
• (4) containers Orchestrator that manages containers deployed locally and on edge devices forming the micro

cluster.
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• (5) Neural Networks trained from features extracted by tiny neural networks hosted on Jetson Nano;
• (6) Extraction Transformation Load (ETL) process raw data coming from IoT Note before them storage in

database.

Edge IA-IoT micro-cluster hosts :

• (1) MQTT client which allows the communication with the Cloud Server;
• (2) Local Knowledge Based associated with a local Semantic Reasoner do other deductions than the cloud;
• (3) Tiny Neural networks are deployed after compression on TensorFlow Lite to predict event, and also used to

extract data. In this case, lower Layers of the Distributed Neural Network are extracted from the original model
and distributed on Jetson Nano to extract features or fusion sensors data. Resulting data are then transmitted to
the cloud where the rest of Neural Network (NN) train on the data received from Edge Nodes;
• (4) Micro services are deployed to validate, cure, compress data;
• (5) The container engine manages the local deployment of micro services and Neural Network algorithms.

Finally, IoT Nodes achieve data collection from sensors and their annotation with the RDF annotator.

4. Experimentation

In order to demonstrate the usability of our architecture we have achieved a comparison between prediction
performance of several AI algorithms between edge and cloud.

The PlantVillage [24] dataset has been used for our experimentations. It contains 54,303 healthy and unhealthy
leaf images divided into 38 categories by species and disease. We have trained the raw dataset with MobileNet[22],
MobileNet V2 [31], DenseNet121 [23], NasNetMobile [35], EfficientNet-B0 [33], EfficientNet-B1 [33], EfficientNet-
B2 [33] in the cloud on servers equipped with a Tesla P100. All models are trained with SGD optimizer with a learning
rate (lr) value of 0.0001, an early stopping with a patience of 5 and a minimum delta of 0.001 on the monitored
parameter: validation accuracy (val acc). Trained models have been converted to TensorFlow Lite and containerized
to be deployed on Jetson Nano in order to evaluate their performances on the prediction test.
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• (5) Neural Networks trained from features extracted by tiny neural networks hosted on Jetson Nano;
• (6) Extraction Transformation Load (ETL) process raw data coming from IoT Note before them storage in

database.

Edge IA-IoT micro-cluster hosts :

• (1) MQTT client which allows the communication with the Cloud Server;
• (2) Local Knowledge Based associated with a local Semantic Reasoner do other deductions than the cloud;
• (3) Tiny Neural networks are deployed after compression on TensorFlow Lite to predict event, and also used to

extract data. In this case, lower Layers of the Distributed Neural Network are extracted from the original model
and distributed on Jetson Nano to extract features or fusion sensors data. Resulting data are then transmitted to
the cloud where the rest of Neural Network (NN) train on the data received from Edge Nodes;
• (4) Micro services are deployed to validate, cure, compress data;
• (5) The container engine manages the local deployment of micro services and Neural Network algorithms.

Finally, IoT Nodes achieve data collection from sensors and their annotation with the RDF annotator.

4. Experimentation

In order to demonstrate the usability of our architecture we have achieved a comparison between prediction
performance of several AI algorithms between edge and cloud.

The PlantVillage [24] dataset has been used for our experimentations. It contains 54,303 healthy and unhealthy
leaf images divided into 38 categories by species and disease. We have trained the raw dataset with MobileNet[22],
MobileNet V2 [31], DenseNet121 [23], NasNetMobile [35], EfficientNet-B0 [33], EfficientNet-B1 [33], EfficientNet-
B2 [33] in the cloud on servers equipped with a Tesla P100. All models are trained with SGD optimizer with a learning
rate (lr) value of 0.0001, an early stopping with a patience of 5 and a minimum delta of 0.001 on the monitored
parameter: validation accuracy (val acc). Trained models have been converted to TensorFlow Lite and containerized
to be deployed on Jetson Nano in order to evaluate their performances on the prediction test.
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5. Results and Discussion

The Table 1 presents information related of training of several AI algorithms : EfficientNet B-0, B-1 & B-2 using
weight of Imagenet or Noisy Student, and MobileNet, MobileNetV2, NASNetMobile, DenseNet121 with ImageNet
weight on the cloud. The analysis of Table 1 shows that there is not significant difference in term of accuracy and
val accuracy. The analysis of Table 2 shows that DenseNet121 provides the better accuracy with the minimum time
of prediction on the cloud and on the edge. This accuracy can be explained but EfficientNet usually provides better
performances on black and white images while MobileNet and MobileNetV2 are shallow models and therefore less
efficient in terms of precision.

(a) Comparison of h5 and tflite file size (b) Comparison of prediction time and accuracy

Fig. 3: Comparison between Cloud and Edge

The Figure 3a shows a comparison between standard trained models (h5) and compressed ones (TFlite) file size.
The Figure 3b presents also the validation test time expressed in seconds and precision obtained with h5 model on the
cloud and TFlite model on Jetson Nano. Our prediction test has been achieved on 443 images. In the end, Jetson Nano
is 28 more slow than the cloud server equipped with a Tesla P100.

6. Conclusion and future works

In this paper, we described a new Edge AIoT architecture collaborating with the cloud able to deploy micro
services; in addition to deploy Distributed Neural Network (DNN) or specific AI algorithms.

The proposed architecture was analyzed using Artificial Intelligence algorithms and models that were trained on a
cloud server, equipped with Tesla P100 card. Then, a comparative study was realized in terms of models performance
(inference time) and precision using a test data-set of 443 images. Experimental results showed that the Jetson Nano
is 28 more slow than Tesla P100 and accuracy decrease approximately of 5%.

In future works, we plan to extend our architecture to allows collaboration between many Edge Clusters and the
dynamic repartition of load. Indeed, multiple k8s clusters in the vicinity can also federated in one cluster of clusters
namely a Kubernetes Cluster Federation (KubeFed) in order to improve the resiliency of the service. Hence, it is
possible to federate Edge AIoT cluster by means of a federation application program interface (API) server which
interacts with the cluster through the federation controller manager. The federator master exposes the API, schedule,
and manage overall cluster. The interaction with the Kubernetes cluster is done through the Federation Controller
manager which use the federation API to automatically manages the subordinate Kubernetes cluster by providing an
API equivalent to the k8s API.
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5. Results and Discussion

The Table 1 presents information related of training of several AI algorithms : EfficientNet B-0, B-1 & B-2 using
weight of Imagenet or Noisy Student, and MobileNet, MobileNetV2, NASNetMobile, DenseNet121 with ImageNet
weight on the cloud. The analysis of Table 1 shows that there is not significant difference in term of accuracy and
val accuracy. The analysis of Table 2 shows that DenseNet121 provides the better accuracy with the minimum time
of prediction on the cloud and on the edge. This accuracy can be explained but EfficientNet usually provides better
performances on black and white images while MobileNet and MobileNetV2 are shallow models and therefore less
efficient in terms of precision.

(a) Comparison of h5 and tflite file size (b) Comparison of prediction time and accuracy

Fig. 3: Comparison between Cloud and Edge

The Figure 3a shows a comparison between standard trained models (h5) and compressed ones (TFlite) file size.
The Figure 3b presents also the validation test time expressed in seconds and precision obtained with h5 model on the
cloud and TFlite model on Jetson Nano. Our prediction test has been achieved on 443 images. In the end, Jetson Nano
is 28 more slow than the cloud server equipped with a Tesla P100.

6. Conclusion and future works

In this paper, we described a new Edge AIoT architecture collaborating with the cloud able to deploy micro
services; in addition to deploy Distributed Neural Network (DNN) or specific AI algorithms.

The proposed architecture was analyzed using Artificial Intelligence algorithms and models that were trained on a
cloud server, equipped with Tesla P100 card. Then, a comparative study was realized in terms of models performance
(inference time) and precision using a test data-set of 443 images. Experimental results showed that the Jetson Nano
is 28 more slow than Tesla P100 and accuracy decrease approximately of 5%.

In future works, we plan to extend our architecture to allows collaboration between many Edge Clusters and the
dynamic repartition of load. Indeed, multiple k8s clusters in the vicinity can also federated in one cluster of clusters
namely a Kubernetes Cluster Federation (KubeFed) in order to improve the resiliency of the service. Hence, it is
possible to federate Edge AIoT cluster by means of a federation application program interface (API) server which
interacts with the cluster through the federation controller manager. The federator master exposes the API, schedule,
and manage overall cluster. The interaction with the Kubernetes cluster is done through the Federation Controller
manager which use the federation API to automatically manages the subordinate Kubernetes cluster by providing an
API equivalent to the k8s API.
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