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Abstract—Depth is a valuable piece of information for robots
and autonomous vehicles. Indeed, it enables them to move in
space and avoid obstacles. Nevertheless, depth alone is not
enough to let them interact with their surroundings. They
also need to locate the different objects that are present in
their environment. In this paper, we propose a deep learning
model that solves unsupervised monocular depth estimation
and supervised instance segmentation at the same time with
a common architecture. The first task is solved through novel
view synthesis while the second is solved by minimising an
embedding loss function. Our approach is motivated by the idea
that knowing where objects are in the scene could improve the
depth estimation of unsupervised monocular depth models. We
tested our architecture on two datasets, Kitti and Cityscapes
and reached state-of-the-art depth estimation results while
solving a second task.

Keywords-Computer vision; Monocular depth estimation;
Instance segmentation; Multi-task learning

I. INTRODUCTION

Recovering depth from RGB images has been an active
field of research for decades. Indeed, depth perception is one
of our most valuable assets when it comes to performing
daily tasks. It enables us to reach for objects in our sur-
roundings and to move in space while avoiding obstacles.
Therefore, depth prediction from images has numerous ap-
plications in robotics and autonomous driving. Nevertheless,
depth alone is not enough to enable machines to understand
their environment. Indeed, robots will never be able to
grasp one particular object if they cannot identify it among
others and autonomous vehicles will not be able to avoid
cars or pedestrians if they do not know that the item that
is located two meters away from them is either one of
those. In other words, to fully understand their environment,
computers need to solve a second task that aims to identify
and locate objects in an image. This task is known as
segmentation. There are two main types of segmentation:
semantic segmentation and instance segmentation [1]. The
first one, which is the easiest, assigns pixels to different
classes (e.g. car, tree, person, etc.) while the second groups
together pixels that belong to one particular object of a
class [2]. Recently, depth estimation and segmentation have

profited from the advances in deep learning to achieve new
state-of-the-art results.

In [3], Moreau et al. proposed a taxonomy of depth
estimation algorithms based on the training strategy and
the number of images needed to infer depth. The unsu-
pervised monocular setting is the most challenging since
depth prediction from a single view is an ill-posed problem.
Nevertheless, it is also the one that imposes the fewest
constraints on the datasets that can be used to train models.
Indeed, video sequences recorded with a hand-held camera
are usually enough to train such models. They rely on view
synthesis to recover depth. More precisely, from a pair of
images and the camera motion from the first to the second,
these models learn to synthesise one of the views. During
training, the models minimise the photometric error between
the synthesised view and the real one and depth is only a
by-product [4]–[6].

Different strategies have also been proposed to solve the
instance segmentation task. Two categories of algorithms
can be identified: proposal-based methods and proposal-
free methods. As explained in [1], the first category is
based on a detect-and-segment approach. It means that
objects are first detected using a bounding-box detection
method and then, that a binary mask is generated for each
object. Proposal-based methods are accurate, but they are
also slow and the resolution of the binary mask is low.
On the contrary, the proposal-free methods avoid the use
of the bounding-box detection component and work with
embedding loss functions. Since these methods are built
on dense-prediction networks, the predicted instance masks
have a higher resolution. The most common embedding is
the distance to the centroid of the instance mask [1], [2].

Instead of using two independent models to solve the
tasks, a practical solution consists in sharing some com-
ponents to compute shared features. This strategy in which
parts are shared between different tasks is known as multi-
task learning. The advantages of the approach are twofold.
First, it reduces the number of parameters that have to be
learned compared to the case where each task has its own
model. Therefore, it also reduces training and processing



time. Second, it has been shown that multi-task learning
could improve the results. Nevertheless, combining tasks in
a multi-task setting is not straightforward. Indeed, choosing
uniform weights for each task’s loss is suboptimal [2]. More-
over, there are various ways to create a shared architecture.

In this work, we propose a multi-task model that solves
unsupervised depth prediction and instance segmentation at
the same time. To the best of our knowledge, ours is the
first attempt to combine the unsupervised approach of depth
prediction with supervised instance segmentation. Our idea
is that, having some knowledge about where objects are in
the scene could help the model for the depth prediction task.
Indeed, such knowledge is helpful for humans. For instance,
we know that the depth of a glass door is close to that of
the walls it is attached to, not to the depth of what we see
through the glass.

The remainder of this paper is organised as follows. In
Section II, we present a brief state of the art in depth
prediction, instance segmentation and multi-task learning.
Section III presents our multi-task model. It describes our
architecture and the way we address both tasks. In Section
IV, we detail our experiments on two well-known datasets:
Kitti and Cityscapes. Finally, we conclude on our work and
give some prospects for improvement.

II. RELATED WORK

In the last few years, many solutions have been proposed
to use deep learning to predict depth from RGB images.
Eigen et al. were the first to leverage convolutional neural
networks’ abilities to solve the task in a supervised manner
[7]. Garg et al. later solved the unsupervised setting through
novel view synthesis [4]. More precisely, their model learns
to synthesise the right image of a stereo pair by sampling
from the left image. If constrained adequately, the model
learns to predict disparity (i.e.inverse depth) as a by-product.
Godard et al. improved this method by adding a left-right
consistency check to the algorithm [5]. Indeed, since depth
prediction from monocular images is an ill-posed problem,
nothing prevents the model from synthesising a realistic
view while predicting a wrong disparity map. The left-right
consistency check encourages the disparity computed in one
way, e.g. from left to right, to be consistent with the disparity
computed in the other way. This reduces significantly the
number of possible 3D structures that created the two views
of the stereo pair. To enable training on monocular datasets,
Zhou et al. proposed to solve camera motion estimation in
addition to depth prediction [6]. Indeed, such datasets are
easier to record. Their model is divided in two parts. The
first one takes care of computing the camera motion, also
known as ”egomotion”, between successive frames while the
second computes the disparity map. Note that the solutions
of Garg et al. and Godard et al. are only particular cases in
which the egomotion is known beforehand thanks to stereo
calibration and does not need to be computed. Others have

built on this idea of computing depth and egomotion at
the same time and have proposed variants of the algorithm.
Mahjourian et al. argued that using a 2D photometric loss
to compute 3D points was not the most robust approach and
explicitly considered the inferred 3D geometry of the whole
scene through an Iterative Closest Point term in the loss [8].
Wang et al. asserted that the pose network was suboptimal
and replaced it by a differentiable and deterministic objective
for pose prediction that is commonly used in Direct Visual
Odometry. The advantage is that it does not require any
learning compared to the pose network. In a subsequent
work, Godard et al. improved the monocular approach with
three simple architectural and loss innovations [9]. First, they
address the problem of occluded pixels that occurs in the
monocular setting. Then, they automatically ignore pixels
where no relative camera motion is observed. Finally, their
appearance matching loss performs all image sampling at
the input resolution.

The first attempts at instance segmentation with convo-
lutional neural networks were inspired by the advances in
the object detection task. To solve the latter, Girschick et al.
proposed R-CNN, an object detection system that consists of
three modules [10]. The first one uses selective search [11]
to generate 2000 category-independent region proposals.
From these, a large convolutional neural network extracts
fixed-length feature vectors. Finally, the third module uses
these feature vectors as the inputs of a set of class-specific
linear Support Vector Machines. R-CNN has an important
drawback: each of the 2000 region proposals has to go
through the convolutional neural network, which represents
a heavy load. To address this shortcoming, Girschick et al.
slightly modified the pipeline and added a Region of Interest
(RoI) pooling layer [12]. With this architecture called Fast
R-CNN, the entire image goes through the CNN only once
and the feature vectors of each region are computed by the
RoI pooling layer on the feature map. In Faster R-CNN, Ren
et al. removed the selective search module and replaced it by
a region proposal network, which enabled faster processing
at test time. Mask R-CNN was built on Faster R-CNN.
He et al. added a branch that takes care of computing a
binary mask for the objects detected by the model [13]. As
stated in [1], Mask R-CNN is still the most used method
for instance segmentation, but proposal-free approaches are
gaining traction. Compared to the previous, these methods
run faster and generate high resolution masks, but they
are often less accurate. They are based on embedding loss
functions or pixel affinity learning. The most used pixel
embedding is the distance to the centroid of the instance
object. It has been used in [1], [2], [14]. It is usually learned
thanks to a regression loss function with direct supervision.
For each pixel, these models predict the offset vector that
has to be added to its coordinates to point towards the
object centroid. As explained in [2], a post-processing step
is needed to cluster the pixels of an instance together, but



Neven et al. managed to avoid this step by using a hinged-
loss function that maximises the intersection-over-union of
the instance mask [1].

In the recent years, multi-task learning has attracted a
lot of attention. Indeed, solving multiple tasks with one
architecture has two advantages. First, it reduces the number
of trainable parameters and thus, the learning and processing
time. Then, it can also improve the results compared to when
a task is solved alone, as demonstrated in [2]. In their work,
Kendall et al. proposed a multi-task architecture to solve
supervised depth prediction, semantic segmentation and in-
stance segmentation. They showed that the naive approach
that consists in equally weighting the loss functions of the
tasks was suboptimal. Instead, they proposed to use the
homoscedastic uncertainty which is the task-dependent un-
certainty in Bayesian modelling. The weights are parameters
that the model needs to learn. Sener and Koltun agree on the
fact that equal weights are suboptimal, especially when tasks
compete with each other. Instead of combining the different
losses into one objective, they cast multi-task learning as
multi-objective optimisation with the overall objective of
finding a Pareto optimal solution [14]. To achieve this, they
rely on algorithms developed in the gradient-based multi-
objective optimisation literature. They tested their approach
on several tasks among which, the same as those solved
in [2]. Liu et al. proposed a multi-task architecture which
allows learning of task-specific feature-level attention [15].
Their Multi-Task Attention Network (MTAN) is made of
two parts. The first one is a shared network that takes
care of computing shared features while the second part
consists of task-specific soft-attention modules that use the
shared features to compute task-specific features. MTAN is
a flexible architecture, the soft-attention modules can be
attached to any feedforward network. In addition to the
task specific modules, they also proposed a novel weighting
technique called Dynamic Weight Average (DWA) and based
on the rate of change of the loss of each task. By doing
so, MTAN does not need to learn additional parameters.
They also applied the homoscedastic weighting to their
architecture, but reported better results with DWA. They
tested MTAN on depth prediction and semantic segmentation
as well as other combinations of tasks.

III. METHOD

Our work draws inspiration from some of the approaches
presented in Section II. To solve depth estimation and
instance segmentation at the same time, we use the soft-
attention modules proposed by Liu et al. [15]. The remainder
of this Section describes our adaptation of MTAN to solve
both tasks. For an extensive description of the attention
modules, we refer to the original publication [15].

A. Unsupervised Depth Estimation

To deal with unsupervised depth estimation, we relied
heavily on Monodepth2, the model of Godard et al. regard-
ing monocular depth prediction [9]. Fig. 1 shows a global
scheme of our model. We adopt the same representation
symbols as in [15]. The core of our architecture is an
encoder-decoder pair in which the encoder is a Resnet18 and
the decoder is a succession of five deconvolutional blocks
with skip connections. Contrary to Godard et al., we do not
use a separate network to solve pose estimation. Instead, we
add soft-attention modules on top of our core architecture.
On the encoder side, four attention encoders, named aedi,
are dedicated to computing depth-related features and four
other attention encoders, termed aepi, are in charge of
computing pose-specific features. On the decoder side, since
depth and pose outputs have distinctly different shapes, we
take another approach. In addition to the attention decoders,
we also add four convolutional blocks C with non linear
activation functions. For the depth estimation, we add five
soft-attention decoders addi while for the pose estimation
part, we use the same decoder as in Monodepth2. Our
choices give two advantages to our model:

– First, our network is lighter than Monodepth2 since we
avoid the use of a separate pose encoder;

– Second, using soft-attention decoders for depth estima-
tion enables to stack other attention modules dedicated
to any other task.

Our model learns novel view synthesis, i.e. it is trained to
synthesise a target image It from several source images It′
taken from different points of view. The subscript t′ either
represents the frame at time t − 1 or the one at time t + 1
in a monocular sequence. To achieve novel view synthesis,
it also needs to compute the relative pose for each source
view It′ with respect to the target image It’s pose, which
we write Tt→t′ . With the adequate constraint, the model
yields the disparity or depth map Dt corresponding to the
view It. During training, it minimises the same photometric
reprojection error Lp as in [9]:

Lp =
∑
t′

min
t′

(
pe
(
It, It′→t

))
(1)

where,

pe(Ia, Ib) =
α

2

(
1−SSIM

(
Ia, Ib

))
+
(
1−α

)
‖Ia−Ib‖1 (2)

and,
It′→t = It′

〈
proj

(
Dt, Tt→t′ ,K

)〉
(3)

In (1) keeping the minimum rather than computing the mean
photometric error over all the source images improves the
prediction where occlusions and disocclusions occur in the
monocular sequence. The photometric error, given by (2),
uses the structural similarity index (SSIM) and the L1-
norm [16]. The parameter α is set to 0.85. In (3), It→t′



Figure 1: Architecture of our multi-task model.

is the synthesised view, 〈·〉 designates the bilinear sampling
operator and proj(Dt, Tt→t′ ,K) is the adequate constraint
that forces the network to compute disparity. It represents
the 2D coordinates of the projected depth Dt in It′ , obtained
thanks to the relative pose Tt→t′ and the camera intrinsic
parameters K. The latter are not learned by the model.

The two other improvements proposed in [9] are also
implemented in our work. The first one consists in auto-
matically masking pixels that violate the assumption of a
moving camera in a static scene. Such pixels have similar
appearances from one frame to the other and can easily
be detected using this characteristic. More precisely, pixels
belonging to moving objects or to textureless regions or even
entire frames when the camera is static, are discarded from
the loss thanks to binary masks. The second improvement
consists in upsampling the intermediate low-resolution dis-
parity predictions made by the intermediate soft-attention
decoders to the resolution of the input frames. Indeed,
computing the photometric loss at each of the decoder
scale creates holes in large low-texture regions as well as
texture copy artefacts. Instead, intermediate disparity maps
are first upsampled, reprojected and then resampled to obtain
a synthesised view with the resolution of the input.

Finally, as in [9], the depth loss function also encompasses
an edge-aware smoothing term that helps against the ill-
posed nature of the monocular depth estimation problem:

Ls =
∣∣∂xd∗t ∣∣e−|∂xIt| +

∣∣∂yd∗t ∣∣e−|∂yIt| (4)

where d∗t = dt/dt is the mean normalised inverse depth
introduced in [17] to discourage the predicted disparity from
shrinking to zero. The resulting depth loss is given by:

Ld =
∑
sc

(
µscLsc

p + λLsc
s

)
(5)

in which sc represents the different scales, µ designates the
binary masks used to discard the violating pixels and λ is a
constant parameter set to 0.001.

B. Supervised Instance Segmentation

To address the problem of instance segmentation, we treat
it as the minimisation of an embedding loss. This approach is
the most compatible with a feedforward network like the one
we are using and avoids the addition of a proposal network
in the architecture. To achieve instance segmentation in our
multi-task framework, similarly to what is done for depth
estimation, we connect four soft-attention encoders and five
soft-attention decoders to our core architecture. They are
respectively called aeii and adii in Fig. 1

As in [2], [14], our model learns to predict a 2D offset
vector op for each pixel p that belongs to an instance I so
that, when the offset vector is added to the pixel coordinates,
it points to the object’s centroid CI :

CI
x = p+ opx and CI

y = p+ opy (6)

The learning is supervised by a L1-loss:

Li = ‖o− o‖1 (7)

where o designates the ground truth 2D offset vectors map.
Pixels that do not belong to any instance are masked in
the loss. Due to the supervised nature of the approach, our
model is only able to find instances of objects belonging to
a limited number of classes, i.e. the ones for which instances
are identified in the dataset. Contrary to what is done on the
depth side, the loss is only computed on the last scale of the
decoder features. Therefore, there is only one additional C
block with a rectified linear unit (ReLU) function.

C. The Multi-task Loss

As demonstrated by Kendall et al., the naive strategy that
uses equal weights when combining the various losses leads
to suboptimal results [2]. Here, we explain how our model
can use two existing weighting techniques to balance the
losses of depth prediction and instance segmentation.

In [2], to improve the performances compared to equal
weighting, they rely on the homoscedastic uncertainty which
is the task-related uncertainty in Bayesian modelling. The



weights derived from the homoscedastic uncertainty can be
learned by the network. This weighting scheme is termed
HUW in the remainder of the paper. Our model can use
HUW to balance the different losses. It just needs to predict
two additional parameters. The multi-task loss with HUW
is given by:

LHUW =
1

2σ2
d

Ld +
1

2σ2
i

Li + log σd + log σi (8)

where σd and σi are the homoscedastic uncertainties of
the depth estimation and the instance segmentation tasks
respectively.

In MTAN, Liu et al. proposed a different solution called
Dynamic Weighting Average (DWA). It is based on the rate
of change of the loss of each task. The weights are therefore
computed from the numeric values of the losses and the
model does not have to learn any new parameter. The weight
of task k among K tasks is updated as follows at time t:

λk(t) =
K exp

(
wk(t− 1)/T

)∑
i exp

(
wi(t− 1)/T

) (9)

with wk(t− 1) given by:

wk(t− 1) =
Lk(t− 1)

Lk(t− 2)
(10)

The parameter T in (9) is a temperature that controls the
softness of task weighting. If T is large enough, tasks are
weighted equally. In (10), Lk(t) is computed as the average
of loss k in each epoch over several iterations to reduce the
uncertainty from stochastic gradients descent and random
training data selection. At times t ∈ {1, 2}, the weights are
initialised arbitrarily. The multi-task loss resulting from the
use of DWA on our two tasks is:

LDWA =
1

2

(
λdLd + λiLi

)
(11)

IV. EXPERIMENTS

This Section describes our experiments with our multi-
task architecture on two well-known datasets presented in
Section IV-A: Kitti and Monodepth. In Section IV-B, we
present the different configurations under test. Finally, we
evaluate the performances of depth estimation and instance
segmentation in Section IV-C and Section IV-D respectively.

A. Datasets

Kitti is the most used dataset to train models for depth
prediction [18]. Created to encourage the development of
autonomous driving systems, it contains 61 road sequences
recorded in rural areas or on highways. Greyscales and RGB
images were recorded by two stereo rigs on the car roof
while depth ground truth was acquired by a 360◦ velodyne
laser scanner. This ground truth is sparse and only 5% of
the pixels have a known depth value. All these data are
synchronised at 10Hz. Among the frames, 400 are annotated

for instance and semantic segmentation. The instances are
divided in 8 classes: ’person’, ’rider’, ’car’, ’truck’, ’bus’,
’train’, ’motorcycle’ and ’bike’.

Cityscapes was also recorded on the road in 50 different
cities with a stereo rig but without any depth sensor [19].
Instead, the dataset contains disparity maps computed with
the semi-global matching algorithm (SGM) [20]. Video
sequences were recorded at 17Hz and are 30-frames long.
High quality pixel-level annotations of 5000 frames are
available as well as a larger set of 20 000 weakly annotated
ones. The instance classes are the same as those of Kitti.
Cityscapes is known to be a much more realistic and
challenging dataset than the previous one since it contains
many moving objects.

For the depth prediction task, our model needs three
successive frames Ii, i ∈ {t − 1, t, t + 1}, at training.
Consequently, it also needs three successive instance ground
truth masks Mi, i ∈ {t − 1, t, t + 1} to be trained for the
instance segmentation task at the same time. Nevertheless,
none of the two datasets provides such labelled sequences.
Therefore, to enable multi-task training, we generate the
missing data with Mask R-CNN. More precisely, the latter is
trained on Cityscapes and its prediction on each unlabelled
frame of both datasets is used to complete the ground truth.
A similar strategy has already been used in [21].

B. Training Details

For our experiments on Kitti, we use the so-called Eigen
split introduced in [7]. As in [6] and [9], we remove
static frames from the dataset. There remain 39 810 triplets
for training and 4424 for validation. For Cityscapes, we
randomly select as many training and validation triplets as
for the first dataset.

To validate the benefits of multi-task learning, various
configurations of our architecture are trained:

– MTd
d designates the multi-task setting with DWA. The

temperature parameter is set to 2, as recommended by
the authors;

– MTd
h refers to the multi-task setting with homoscedas-

tic weighting;
– MTd

e is the multi-task setting with equal weighting;
– STd

d is the configuration dedicated to depth and pose
estimation;

– STd
i designates the configuration that solves instance

segmentation alone.
Attention modules are used even in the single-task config-

uration. The superscript d designates the dataset. It is either
replaced by k or cs in the following.

Our models are implemented in PyTorch [22]. The en-
coder of the shared network is a pre-trained dilated Resnet18
modified to accept multiple frames as input. The remaining
components are initialised randomly. The training pattern is
similar to the one of Monodepth2. The models are trained
for 20 epochs with batches of 5 samples with a resolution



TABLE I: QUANTITATIVE DEPTH EVALUATION ON KITTI AND CITYSCAPES. OUR DIFFERENT TRAINING CONFIGURATIONS ARE COMPARED TO
MONODEPTH2. LOWER VALUES ARE BETTER FOR THE FOUR FIRST METRICS. MEDIAN SCALING IS APPLIED TO ALL THE RESULTS. PIXELS WITH A

GROUND TRUTH DEPTH HIGHER THAN 80m ARE IGNORED. BEST RESULTS ON KITTI ARE HIGHLIGHTED IN BLUE WHILE BEST RESULTS ON
CITYSCAPES ARE HIGHLIGHTED IN GREEN.

Model Test Set Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Monodepth2 K 0.115 0.903 4.863 0.193 0.877 0.959 0.981
Cs 0.186 4.798 8.298 0.236 0.815 0.929 0.963

STk
d

K 0.126 1.113 5.196 0.203 0.860 0.954 0.978
Cs 0.175 2.153 9.375 0.261 0.728 0.906 0.967

STcs
d

K 0.212 3.821 7.137 0.274 0.749 0.916 0.964
Cs 0.181 4.109 8.406 0.246 0.804 0.923 0.961

MTk
d

K 0.116 0.815 4.771 0.190 0.869 0.960 0.983
Cs 0.167 1.887 9.162 0.251 0.744 0.915 0.972

MTk
h

K 0.119 0.864 4.877 0.192 0.865 0.957 0.982
Cs 0.164 1.932 9.244 0.252 0.752 0.911 0.969

MTk
e

K 0.118 0.835 4.774 0.190 0.866 0.960 0.983
Cs 0.167 1.881 9.046 0.248 0.748 0.917 0.972

MTcs
d

K 0.185 1.549 6.657 0.259 0.726 0.913 0.968
Cs 0.127 1.504 6.915 0.189 0.855 0.956 0.984

MTcs
h

K 0.183 1.504 6.384 0.254 0.732 0.918 0.971
Cs 0.141 1.931 7.436 0.203 0.838 0.949 0.980

MTcs
e

K 0.183 1.433 6.348 0.256 0.728 0.914 0.969
Cs 0.133 1.678 7.228 0.195 0.847 0.953 0.983

of 640 × 192 for the input and the output as well. The
learning rate is set to 10−4 for the first 15 epochs and to
10−5 afterwards.

C. Depth Evaluation

We report the values of the 7 most commonly used metrics
in terms of depth evaluation in Table I. For Kitti, the test set
is that of Eigen which contains 697 frames. The predictions
are cropped, according to common practice, and compared to
the Lidar recordings provided in the dataset. They are sparse
and only cover around 5% of the pixels. For Cityscapes, we
use the 1525 test images provided by the authors [19]. This
time, the predictions are compared to the disparity computed
with SGM [20]. In both cases, depth is capped to 80m,
according to common practice. As our model is monocular
and is only able to predict up-to-scale depth maps, we apply
the median scaling proposed in [6] when computing the
metrics. The results of Monodepth2 on Kitti are those of
the original publication [9] while those on Cityscapes are
from our own training.

From these results, it appears that our single-task con-
figuration performs worse than Monodepth2, regardless of
the training set. The better performances of Monodepth2 are
likely due to their use of a separate pose network. Moreover,

the model trained on Kitti gives better results compared to
the one trained on Cityscapes which could be related to the
latter being more challenging than Kitti.

On the contrary, the multi-task configuration leads to
results that match Monodepth2 or even outperform it. This
demonstrates that letting a model know that some pixels
belong to certain objects can improve the depth estimation.
Regarding the loss weighting strategy, we do not observe
any improvement when using HUW, but the DWA approach
appears to lead to the best results as observed in Table I.

Fig. 2 shows two qualitative examples of our results on
Cityscapes. In the first frame, two cars are moving in the
same direction as the camera. They violate the assump-
tion of staticity and both Monodepth2 and the single task
configuration of our model fail to recover their depth. The
estimated disparity is equal to zero which corresponds to an
infinite depth. On the contrary, we observe that the depth
estimation is improved when the model is trained to solve
instance segmentation at the same time, which demonstrates
the benefit of introducing instance knowledge in the process.
However, some artefacts still remain in the car on the right.
The second frame shows a group of pedestrians crossing the
road on the left. Again, we can see that our model recovers
their shape more accurately than Monodepth2.

Input Ground truth Monodepth2 STcs
d MTcs

d

Figure 2: Qualitative results of depth prediction on Cityscapes.



D. Instance Segmentation Evaluation

To achieve instance segmentation, our model uses the
instance masks computed with Mask R-CNN for the seven
classes present in each dataset. More preciesely, it relies
on ground truth embeddings computed from these masks.
The embeddings are normalised so that they are within the
interval [0; 1[. Background pixels are set to 1 to easily mask
them in the loss computation as explained in Section III-B.

The predicted embeddings could be used with a clustering
algorithm such as OPTICS, as in [2]. Nevertheless, our
model is unaware of the class of the detected objects. There-
fore, we could not compute the traditional evaluation metrics
without getting the class ID from the ground truth. Instead,
similarly to [14], we report the Mean Squared Error of the
embeddings in Table II. For Kitti, we use the 200 frames
dedicated to instance segmentation while for Cityscapes, we
use again the 1525 test frames. As none of these two test
sets contains ground truth data, we rely on the prediction
of Mask R-CNN to compute the MSE. We also report the
masked MSE which is obtained by masking the background
pixels. If both errors are close, then, it means the model
finds the same instances as in the ground truth. Otherwise,
it either misses some instances or finds more than it should.

The best results on Kitti are obtained with STcs
i , the

single task configuration trained for instance segmentation
on Cityscapes. It is closely followed by MTk

h, the multi-task
configuration trained on Kitti with HUW. On Cityscapes,
STcs

i and MTcs
h are the best performing models. This

demonstrates that depth estimation does not necessarily
help instance segmentation within our framework. We also
observe that the DWA strategy has an opposite effect on the
instance segmentation task compared to the depth estima-
tion.

Fig. 3 shows an example of segmentation with MTcs
h .

The first row shows the input frame, the embeddings and
the result of OPTICS on these latter. The second row shows
the output of Mask R-CNN and the corresponding ground
truth. Edges of the clusters computed from the ground truth
embeddings are poorly recovered, but this is purely due to a
wrong choice of preprocessing steps’order. Indeed, ground
truth embeddings are computed on the full frame resolution
before being resized to 640× 192. Inverting the two step is
likely to solve that issue.

TABLE II: MEAN SQUARED ERROR FOR THE INSTANCE SEGMENTATION
TASK ON KITTI AND CITYSCAPES.

Model Test Set MSE Masked MSE

STk
i

K 0.010 0.007
Cs 0.024 0.016

STcs
i

K 0.006 0.001
Cs 0.012 0.006

MTk
d

K 0.105 0.064
Cs 0.109 0.081

MTk
h

K 0.008 0.001
Cs 0.023 0.012

MTk
e

K 0.022 0.025
Cs 0.048 0.025

MTcs
d

K 0.013 0.011
Cs 0.014 0.010

MTcs
h

K 0.012 0.011
Cs 0.012 0.007

MTcs
e

K 0.009 0.006
Cs 0.013 0.008

V. CONCLUSION

In this work, we presented a multi-task architecture
dedicated to unsupervised monocular depth estimation and
supervised instance segmentation. Our model is made of a
shared feedforward architecture and soft-attention modules
connected along the latter. The shared network computes
general features while the soft-attention modules refine them
to create task-specific features that help to solve each task.
For the depth estimation task, the model learns novel view
synthesis which enables it to learn depth as a by-product
and avoids the need of ground truth depth. For the instance
segmentation task, we use an embedding loss as it is the
approach that is the most compatible with feedforward
networks.

Regarding depth estimation, our results show the benefit
of combining both tasks. Indeed, making the model learn
where to find objects in the scene helps it to improve its
depth prediction abilities. Our model also gives satisfying
instance segmentation. Nevertheless, it could benefit from
semantic knowledge that would help it know the class the
objects belong to. This could be brought by the embedding
loss function presented in [1] or by adding a semantic
segmentation task.

Input - Mask R-CNN x-embeddings y-embeddings OPTICS clusters

Figure 3: Qualitative results of instance segmentation on Cityscapes with MTcs
h .
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