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Abstract—With the advent of the digital age and more specif-
ically videos, a huge amount of data is produced every day such
as television archiving, video surveillance, etc. Faced with the
need to keep control over this content, in terms of data analysis,
classification, accurate Al (Artificial Intelligence) algorithms are
required to perform this task efficiently and quickly. In this
paper, we propose an approach for movement analysis from
video sequences using deep learning technologies. The proposed
approach splits video in set of images, detects objects/entities
present in these images and stores their descriptions into a
standard XML file. As result, we provide a Deep Learning
algorithm using TensorFlow for tracking motion and animated
entities in video sequences.

Index Terms—object tacking, motion tracking, TensorFlow,
deep learning, video

I. INTRODUCTION

Lately, there has been an increase in video data that has been
noticed [1] [2] because it generally gives more information in
a simple way but the manners used to exploit them still human
supervised. This limits their benefits as it is expected in many
application domains. It also comes down to technological
advancements such as cameras, storage devices and scanners.
in this case the multimedia community has challenged to seek
and find more effective methods of video analysis such as
the classification concepts [3], [4], [5] and the recognition
of actions [6], [7]. These methods are increasingly important
to retrieve [8], [9], [10] or to summarize videos for efficient
navigation [11]. Exploiting large video databases is becoming
a very active field of research [12] [13]. The published works
present algorithms or tools developed while Deep Learning
technology and TensorFlow are considered to be a very
effective tool for video processing.

Deep Learning [14] represents a set of learning methods
that allow to model data with complex neural architectures
combining different layers and non-linear transformations.
The main components of a Deep Learning architecture are
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the perceptrons, which are combined to form several layers
and therefore a deep neural networks (DNN). However, there
are difficulties when looking for a representation of visual
content that reflects the semantics of the video. Extracting
semantic content directly from raw video data is difficult
because video is a temporal sequence of images, in explicit
relation to their semantic content. In this context, the Google’s
Open Source Machine Learning Framework for dataflow
programming, called TensorFlow, across a range of tasks
[15]. Nodes in the graph represent mathematical operations,
while the graph edges represent the multi-dimensional data
arrays (tensors) communicating between them. Tensors are
just multidimensional arrays, an extension of two dimensional
tables to data with a higher dimension. There are many features
of Tensorflow, which makes it appropriate for Deep Learning
[16].

In this paper, we present an approach that allows to detect
objects in video images (frames). Our approach starts by data
annotation that consists on providing label (type of object and
coordinates) to each object in the image, the labellmg package
!. For example, if an object and a person exist in one image,
an XML file is attributed to each one. XML files are first
converted to CSV format, then converted to TFRecord format
in order to use TensorFlow packages. As result, two new files
are generated “train.record” for training and “test.record” for
test. These two files allow to train and evaluate the tracking
model before moving the test phase to track real movements.

The remainder of the paper is organized as follows: the
background of Deep Learning algorithms are presented in
section 2. In section 3, we present some existing works in the
field of motion detection tracking; we present our contribution
and experimental results in section 4. Finally, the conclusion
and future work are drawn in section 5.

labelimg. https://github.com/tzutalin/labellmg



II. BACKGROUND
A. General presentation of TensorFlow

TensorFlow [17] is a software library or framework, de-
signed by the Google team for developing and training ma-
chine learning and deep learning models in an easiest manner.
It combines the computational algebra of optimization tech-
niques for easy calculation of many mathematical expressions.
The most important features of TensorFlow are: (1) it allows to
define, optimize and calculate mathematical expressions easily
with the help of multi-dimensional arrays called tensors ; (2)
it provides a programming support of deep neural networks
and machine learning techniques ; (3) it offers the possibility
to use the high computation power of GPU [18] [19] ; (4) it
provides a optimization and efficient management of memory
and the data used. Moreover, TensorFlow is well-documented
and includes plenty of machine learning libraries. It offers a
few important functionalities, methods and includes a variety
of machine learning and deep learning algorithms. TensorFlow
can train and run deep neural networks for handwritten digit
classification, image recognition, word embedding, and be
used for the creation of various sequence models.

B. General presentation of deep learning

Deep learning is a set of learning methods attempting to
model data with complex architectures combining different
non-linear transformations [20]. The elementary bricks of
deep learning are the neural networks that are combined to
form the deep neural networks (DNN). These techniques
have enabled significant progress in the fields of sound
and image processing, including facial recognition, speech
recognition, computer vision, automated language processing,
text classification (for example spam recognition). Potential
applications are very numerous. A spectacularly example is
the AlphaGo program, which learned to play the go game
by the deep learning method, and beat the world champion
in 2016. There exist several types of architectures for neural
networks (NN) [21]:

o The Multi-layer Perceptron, that are the oldest and sim-
plest ones

e The Convolutional Neural Networks (CNN), were in-
spired by the work of Hubel and Wiesel on the visual
cortex. Like MLPs (Multi-layer Perceptron, Perceptron
Multi layers), these ConvNets consist of several hidden
layers. They are mainly used for image classification and
extraction of visual features.

o The recurrent neural networks (RNN), used for sequential
data such as text or times series

III. RELATED WORK

Video analysis presents a fundamental computer vision
problem, which has received a lot of attention. We briefly
present the main existing motion and object extraction algo-
rithms in video sequences.

A. Object and person detection from video

The detection of objects in a video first passes through
the detection within an image. Several approaches have been
introduced over last years and will be detailed in this section.
Some methods rely on the color contained in the images by
means of histograms. Others use the shape of the objects or
the textures contained in the image. More recently, Neural
networks have proven their ability to perform detection.
Convolutional Neural networks (CNNs) are particularly
suitable for image processing. In order to be able to find
an object in an image, it is first necessary to obtain the
descriptors (feature) of this object. Then the objective is to
compare the descriptors of a given image and to conclude
if the resemblance is sufficient to affirm that the object in
question is in the image. The set of algorithms described
below makes it possible to extract the characteristics of an
image. The descriptions below focus on feature extraction
except for deep neural networks that have a an additional
classification step in their architecture.

1) Color histogram: Most images used today are recorded
in RGB. They have three components for each pixel rep-
resenting the intensity in Red Green and Blue color. Color
histograms consist of an inventory of colors in the image [22].
The three compound diagrams are the descriptors of the image
in input and can be used to perform object detection. They
represent the number of pixels contained in the image for a
precise intensity of color. Several works have been done to
study the similarity of images [22].

(b) Histogramme couleur

(a) Lenna couleur

Fig. 1. RGB color histograms for an image

2) R-CNN: Going through an entire image by moving
the convolution kernel was far too resource intensive. This
is why an algorithm based on the reduction of the number
of pixels to be analyzed has been introduced: the R-CNN
(Region-based Convolutional Neural Networks) [23]. It
consists of the selection of about 2000 regions with color,
texture and intensity as the criteria in order to estimate
a higher probability of presence of a desired object. This
algorithm is broken down into three main steps:

1) The selection of regions of interest.

2) The application of the convolution layers on the proposed
regions.

3) The optimization of the position thanks to a regression
algorithm on the boxes delimiting the detected objects.
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3) Yolo (You Only Look Once): It is an image classification
and object detection application based on a totally different ap-
proach [24]. This application uses a network of neurons to the
complete image. This network divides the image into regions
and predicts the boundaries (segments) and probabilities for
each region. These segments are weighted by the predicted
probabilities 2. The goal is to provide the membership class
of each segment detected in the image. Yolo has several
advantages over existing classification work in the literature.

Fig. 3. Selection boxes in YOLO. source : https://pjreddie.com/darknet/yolo/

B. Algorithms of motion detection

Being able to determine the movement of person or object
in a video is a challenge that requires the use several algo-
rithms of computer vision and deep learning. For example, to
determine the direction of movement of a vehicle, to detect a
car ghost (moving against the direction) or to detect the fall
of certain objects. In this context, object detection algorithms
are now performing well. However, they require access to
important resources.

In literature, motion detection algorithms consist of three
main steps: features detection, movement features tracking
(optical flow computation) and noise elimination (static
features removing).

1) Feature detection: The first step of this method is to
detect features that are good to track, i.e. corners. This is
a very efficient method thanks to its invariance to rotation,

Zhttps://pjreddie.com/darknet/yolo/

scaling, brightness and noise [25]. It is based on five steps:
spatial derivatives computation, eigenvalues computation,
maximum eigenvalue selection, small eigenvalues removing
and eigenvalues selection, all of them briefly described below:

(a) Spatial derivatives computation: this step consists of
computing the matrix G of spatial derivatives for each
pixel. Using the Eq. (2). This 4-element matrix (2x2) is
calculated with the spatial derivatives Ix, Iy computed
using the Eq. (1).

L(z,y) = j(IJrl’ll/)ngIiL?) (1)
I(s,y) = LewtDtea-n
2 LI
G= ( “ z y) ()
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(b) Eigenvalues computation: based on the matrix G, for
each pixel we calculate two eigenvalues of which only
the greater is kept.

(c) Maximum eigenvalue selection: once all the eigenval-
ues are calculated, the algorithm retrieves the maximum
value.

(d) Small eigenvalues removing: the search for small eigen-
values is performed by comparing the eigenvalue of each
pixel with the maximum eigenvalue. If this absolute value
is lower that 5% of the maximum value, the pixel is
Maximum eigenvalue selection: once all the eigenvalues
are calculated, the algorithm retrieves the maximum value
excluded.

(e) Corner selection: For each image area (of predefined
size), the algorithm extracts one pixel having the largest
eigenvalue. The selected pixels represent points of
interest (the final corners).

2) Movement features tracking (optical flow computation):
Once the corners are selected, we track them within the
next frame using the optical flow technique [26] [27]. We
exploit the Lucas-Kanade [25] algorithm for the optical flow
estimation. As pointed out in the Background section, this
method is well-known for its high efficiency, accuracy and
robustness. The algorithm consists of seven steps that.

(a) Pyramid construction

(b) Pixels matching over levels

(c) Local gradient computation

(d) Tterative loop launch and temporal derivative computation
(e) Optical flow computation

(f) Estimation correction and end of the iterative loop

(g) Result propagation and end of the pyramid loop

IV. PROPOSED ALGORITHM FOR OBJECT
DETECTION AND MOTION TRACING
A. Description of algorithm

The main goal of our approach is to create a method capable
of extracting the movement from a video. The proposed



approach permits to extract the key frames of a video then.
Before training models, we start by annotating data and video
frames using labellmg package. If an object or person exist, an
XML file is generated to each one. XML files that include the
objects coordinates and labels are converted to CSV format
than to TFRecord format in order to have an annotation
compatible with Tensorflow. Once the annotation of video
frames completed, two files are generated “train.record” for
model training and “test.record” for model evaluation. The
model is trained and evaluated at the end of each epoch
within validation dataset (10% from the training dataset). The
generated model is then evaluated within the test dataset in
order to validate our results. In our case, the model is used
for tracking the movements of persons or objects, present in
the video, via python script that allows to plot the results a in
a curve. What we have to do at rudimentary level is shown in
Fig. 4.

B. Technological choices

In our approach, we use two main libraries: OpenCV and
Pandas.

e OpenCV: This library is well adapted for image
processing. The functions of reading and annotating
images are very useful. In addition, this library offers an
interesting API for tracking algorithms [28].

« Pandas: To ensure easy processing of the produced data
(box coordinates ...), the pandas framework in python
provides access to very practical analysis tools. It intro-
duces the concept of DataFrame a structure designed to
facilitate treatments of data [29].

C. Description of steps

the following figure illustrates the main steps of our algo-
rithm

Our algorithms is composed of four steps: video segmen-
tation and annotation: video segmentation and annotation,
database division and format conversion, model training, test
and evaluation.

1) video segmentation and annotation: the first step is
video segmentation that provides a descriptive file including
the present features of each video frame. In our case, each
video frame is annotated using the labellmg package. This
annotation consists of listing the coordinates of all the boxes
containing an object or a person with the corresponding
class number (Fig 6 and fig 8). Once all the video images
annotated, a set of new XML files, one for each image is
generated (fig 7 and fig 9).

2) Database division and format conversion: After gener-
ating of our annotations, the file is split into three subsets:
training, validation and test datasets. These files are then
converted to csv format firstly and to TFRecords format
secondly in order to have a compatible format of annotations
with Tensorflow and Yolo.

3) Model training and evaluation: Once our records files
are ready, we are almost ready to train the model so we need
to launch the script tarin.py and we should see a series of print
outs. After training the model, we can follow it under a web
page based on Jupyter notebook. This will create a local web
page on the local computer at the address YourPCName: 6006,
which can be displayed via a web browser. The TensorBoard
page provides information and charts showing the progress
of the training. One of the most important graphs is the loss
graph, which shows the overall loss of the classifier over time.

4) Test and evaluation: The Test dataset provides the gold
standard used to evaluate the model. It is only used once a
model is completely trained (using the train and validation
sets). The test set is generally well curated. It contains care-
fully sampled data that spans the various classes that the model
would face, when used in the real world.

V. EXPERIMENTATAL RESULTS

Given an image or a video stream, an object detection
model can identify which of a known set of objects might be
present and provide information about their positions within
the image. The algorithm allows to browse one video after
another; each video is divided into images to facilitate the
detection of the people appearing on each image, then the
movements of each. to apply algorithm we followed the
following steps:

(a) Organize our workspace and training files.

(b) Prepare and annotate image datasets.

(c) Generate #f records from such datasets.

(d) Configure a simple training pipeline.

(e) Train a model and track its progress.

(f) Export the resulting model and use it to detect people.

To launch our algorithm, we are testing with two videos from
the “UCF101 Train TestSplit-Recognition Task™ database as
Table 1 shows. Training the model is as simple as executing
the following code. We just need to give it:

(a) model_main.py which runs the training process
(b) pipeline_config_path=Path/to/config/file/model.config
(c) model_dir= Path/to/training/

TABLE I
VIDEO USED
Video | Size Number of images | Number of key frames
1 69.3 MB 74 12
2 73.2 MB 81 15

A. Creating Tensorflow records

Tensorflow accepts the data as TFRecords data.record,
which represent a binary file that runs fast with low memory
usage. It contains all the images and labels in one file. In
our case, we will have two TFRecords; one for testing and
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Fig. 6. Example of output of person detector

another for training. To make this work, we need to make
sure that:

(a) The CSVs file names is matched:train_labels.csv and
test_labels.csv

(b) Current directory is object_detection/models/research

(c) Check if the path to data/ directory is the same as
data_base_url below

Fietet 8%

<annotation>
<folder>images</folder>
<filename>framel</filename>
<path>C:/Users/ASUS/Desktop/lyoumaz/workspace/training_demo/images/framel.jpg</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>1280</width>
<height>720</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<name>person</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>186</xmin>
<ymin>133</ymin>
<xmax>354</xmax>
<ymax>469</ymax>
</bhndhox>

Fig. 7. XML file generated for the previous image

Box Labels
[ Edit Label

bicycle
person

File List g X

Fig. 8. Example of output of object detector

B. Training the model and evaluation

Once our records files are ready, we are almost ready to
train the model so we need to launch the script train.py and
we should see a series of print outs similar to the one below.

In the Fig. 10, each step of the training reports the loss.
It will start high and decrease as training progresses. For our
training, it started around 2-3 and quickly dropped below the
0.5 mark. I recommend allowing your model to train until the
loss consistently falls below 0.05, which can take about 30,000
steps or hours (depending on the power of your processor or
graphics processor). The number of losses can be different if a
different model is used. In addition, it depends on the objects
you want to detect.



</size>
<segmented>0</segmented>
<object>
<name>person</name>
<pose>Left</pose>
<truncated>0</truncated:>
<difficult>0</difficult>
<bndbox>
<xmin>135</xmin>
<ymin>25</ymin>
<xmax>236</xmax>
<ymax>188</ymax>
</bndbox>
</object>
<object>
<name>bicycle</name>
<pose>Left</pose>
<truncated>0</truncated:>
<difficult>0</difficult>
<bndbox>
<xmin>95</xmin>
<ymin>85</ymin>
<xmax>232</xmax>
<ymax>253</ymax>
</bndbox>

Fig. 9. XML file generated for the previous image

Fig. 10. Output of training the model

C. Testing and motion detection

The test dataset provides the gold standard used to evaluate
the model. It is only used once a model is completely trained
(using the train and validation sets). The test set is generally
well curated. It contains carefully sampled data that spans the
various classes that the model would face, when used in the
real world. The following figures show the people detected by
the model and the location of a bounding box that contains
each person.

Fig. 12. Second example for person detection

The following diagram shows the movement of two objects
selected randomly by the algorithm during the video. The
motion is detected according to the change of the pixel
positions of an object or a person from one image to another
(Fig. 13).

As conclusion, detecting objects from images and videos is
a bit easier than in real- time. When we have a video or an
image that we want to detect an object from, we don’t care
much about the inference time the model might take to detect
the object. In real-time object detection, we might want to
sacrifice some precision over a faster inference time.

VI. CONCLUSION

The purpose of this work was to create a method that
combines detection and tracking algorithms to track objects
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Fig. 13. Motion tracking of two randomly selected objects

or people in a video. More precisely, we used Deep Learning
and TensorFlow for this goal. Our future work is to enhance
this algorithm in order to extract semantic features from

the

video and to record them as ontological entities with

formal relationships. We will improve the resulting ontology
by integrating the moves and actions rules e.g. injecting the
dynamic dimension of the video streams into the ontology
structure.
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