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Abstract—Hyperspectral images are used for ground-cover
classification because many materials can be identified by their
spectral signature, even in images with low spatial resolution. Pix-
els in such an image are often modeled as a convex combination
of vectors, called endmembers, that correspond to the reflectance
of a material to different wavelengths of light. This is the so-called
linear mixing model. Since reflectance is inherently nonnegative,
the task of unmixing hyperspectral pixels can be posed as a low-
rank nonnegative matrix factorization (NMF) problem, where
the data matrix is decomposed into the product of the estimated
endmembers and their abundances in the scene. The standard
NMF problem then minimizes the residual of the decomposition.
Thus, using NMF works well when materials are present in
similar amounts, but if some materials are under-represented,
they may be missed with this formulation. Alternatively, we
propose a novel hyperspectral unmixing model using a collection
of NMF subproblems solved for patches sampled from the
original image. The endmembers are estimated jointly, such that
the the maximum residual across all patches is minimized. In
this paper we estimate the solution to the patch-based minimax
NMF model, and show that it can estimate rare endmembers
with superior accuracy.

Index Terms—nonnegative matrix factorization, hyperspectral
unmixing, minimax, approximate subgradient, low-rank

I. Introduction
Hyperspectral images (HSI) are 3-mode tensors that mea-

sure the reflectance (or radiance) of a scene with respect to
a large number of narrow wavelength-bands of light. Due to
the high spectral resolution of modern imaging systems, it is
often possible to distinguish ground-cover materials in an HSI
even when spatial resolution is quite low. Pixels in such an
image can contain one or more materials depending on scale,
so they are commonly modeled by a linear mixing model. Let
- ∈ R1×?+ be a nonnegative matrix corresponding to a raster-
scanned hyperspectral image with 1 wavelengths measured at
each of ? pixels. If the image contains A unique materials, the
linear mixing model that describes the matrix - is written as

- = ,� (1)

for , ∈ R1×A+ and � ∈ RA×?+ with �) 1A ≤ 1A where 1A ∈ RA
is the vector of all 1’s. Note that we have relaxed the sum-
to-one constraints (that is, �) 1A = 1A ) on the abundances to
allow for different illuminations across the pixels of the image.

One significant arm of research in the remote sensing
community focuses on identifying the constituent materials
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in an observed HSI by ’unmixing’ the data matrix to reveal
the spectral signatures for the materials present in the image
and the weight of their contribution to each pixel. This
blind hyperspectral unmixing (HU) problem has the following
typical assumptions: , has full column rank, � has full row
rank, and A is known.
If we view the origin and the columns of , as the vertices

of an A-dimensional simplex, then in the noiseless case, the
data points are contained in this simplex. One technique to
perform the hyperspectral unmixing and recover this simplex
is nonnegative matrix factorization (NMF), which solves

min
, ∈R1×A+ � ∈RA×?+

3 (-,,�), (2)

where 3 : R1×? × R1×? → R is some distance measure.
The squared Frobenius norm is often chosen for the distance
function, 3 (�, �) = ‖�− �‖2

�
=

∑1
8=1

∑?

9=1 |�(8, 9) − �(8, 9) |
2,

because it makes the optimization problem computationally
easier to tackle (in particular, it is a convex nonnegative least-
squares problem in , for � fixed, and vice versa), and is the
maximum likelihood estimator for Gaussian noise. However,
two issues confound this approach to HU, first, Problem (2)
is ill-posed so the solution is not unique, and second, if the
image is dominated by a subset of the materials, finding A
endmembers with the best least-squares fit does not always
lead to the complete set of materials in the presence of noise.
The first issue, the uniqueness and identifiability of NMF,

is an active area of research in its own right. Under some
appropriate conditions on the data, it has been shown that the
solution can be uniquely identified by searching for a solution
such that the simplex defined by the columns of , has the
minimum volume [1]–[4], which is referred to as minimum
volume NMF (min-vol NMF).
The second issue, improving the estimation of rare endmem-

bers, is the topic of this paper. It has garnered less attention,
but research suggests that the number of groundtruth endmem-
bers in some popular datasets is much higher than typically
reported [5]. Existing approaches to improve their estimation
require a rough identification of the pixels that contain the rare
materials, and include techniques such as separately processing
pixels with abundant materials and rare materials [6], or using
bootstrap resampling on pixels containing rare materials to
increase their impact on unmixing [7].
In contrast, this paper proposes a novel method for blind

hyperspectral unmixing with rare materials that requires no
pre-identification of pixels containing those materials. We use



efficient existing methods to solve a variant of min-vol NMF,
and improve the estimation of the rare endmembers relative to
standard least-squares techniques. The main contributions of
this paper are three-fold: (i) the least-squares model of the data
is reformulated by partitioning the image into smaller regions
and minimizing the maximum least-squares fit across all the
patches, (ii) a heuristic solution is proposed for the minimax
problem based on an approximate subgradient algorithm ap-
plied to the dual, and (iii) we illustrate the effectiveness of the
proposed approach on realistic data sets.

II. Background
Given a nonnegative matrix - ∈ R1×?+ and a factorization

rank A , NMF attempts to decompose - into the product of
two nonnegative matrices, - = ,�, where , ∈ R1×A+ and
� ∈ RA×?+ . The decomposition problem can be written as
in (2). The constraints ,, � ≥ 0 mean that the elements
of , and � are nonnegative. Solving Problem (2) exactly is
NP-hard in general [8], and the solution is not unique [4].
A common variant of the NMF problem that makes it well-
posed is to search for a solution such that the simplex defined
by , has the minimum volume. This approach to NMF has
roots in the hyperspectral image processing community, see
for example [9]–[11]. With this modification and a sufficiently
scattered condition on the data, which essentially amounts
to points being distributed on all facets of the convex hull
spanned by , , the minimum volume solution to Problem (2)
is unique and identifiable up to permutation and scaling of
the columns of , and the rows of � [1]–[3]. The standard
approach to solve min-vol NMF is to penalize the volume of
simplex defined by the columns of, in the objective function:

min
, ,�8≥0
�)
8

1A ≤1A

3 (-,,�) + VE(,), (3)

where E : R1×A → R measures the volume of , and V > 0
is a penalty parameter. The additional constraint, �) 1A ≤ 1A ,
enforces the rows of - to be within the convex hull of the
columns of , and the origin. Thus one possibility for the
function E is the volume of this convex hull,

vol
(
conv{w1,w2, . . . ,wA , 0}

)
=

1
A!

√
det(,),). (4)

In this work, however, the simplex volume is measured by

E(,) � log det(,), + X�) (5)

for some X > 0. Adding the small diagonal weighting, X,
to the Gram matrix improves the conditioning of ,), ,
and the log det(·) function has a tight convex upper bound
which leads to more efficient optimization algorithms. It has
been empirically shown to provide good results as a volume
regularizer [11]–[13].

III. Minimax NMF and Proposed Method
Suppose that a hyperspectral image is partitioned into =

patches of < pixels, and raster-scanned to create -8 ∈ R1×<+
for 8 = 1, . . . , =. We can perform spectral unmixing with an

abundance matrix, �8 ∈ RA8×<+ , for each of these = patches
and a single endmember matrix, , ∈ R1×A+ , that is jointly
estimated for all patches. That is, for 8 = 1, . . . , = we solve

min
, ,�8≥0
�)
8

1A ≤1A

‖-8 −,�8 ‖2� + VE(,). (6)

The overall accuracy of the reconstruction can be assessed by
some function of the = costs described by Equation (6). One
possibility is the sum of the residuals,

min
, ,�8≥0
�)
8

1A ≤1A

=∑
8=1
‖-8 −,�8 ‖2� + VE(,), (7)

but this is equivalent to the original problem with pixel indices
appropriately permuted to match the partitioning because

#∑
8=1
‖-8 −,�8 ‖2� = ‖- −,�‖2� (8)

where - = [-)1 -
)
2 · · · -

)
= ]) and � = [�)1 �

)
2 · · ·�

)
= ]) .

Alternatively, we could measure the error as the maximum
of (6) across all patches. That is, we could solve

min
, ,�8≥0
�)
8

1A ≤1A

max
1≤8≤=

‖-8 −,�8 ‖2� + VE(,). (9)

By minimizing the maximum patch-residual, the decompo-
sition will have to approximate each patch with similar re-
construction error, including atypical patches containing the
endmembers present in small proportions. Thus for HU, the
, that minimizes Equation (9) will provide a better fit for rare
endmembers as desired.

a) Dual Problem: We will apply a subgradient method
to the dual of (9), but for convenience of terminology we will
consider the negative of the cost function and maximize its
minimum value. By adding an auxiliary variable, g, (9) can
be reformulated as

max
g∈R,, , {�8 }=8=1

g

s.t. g + ‖-8 −,�8 ‖2� + VE(,) ≤ 0,
�)8 1A ≤ 1A , and ,, �8 ≥ 0 for 1 ≤ 8 ≤ =.

(10)

Let , = [_1, . . . , _=]) be a vector of Lagrange multipliers
associated with the first = inequality constraints in (10). Then
the Lagrangian is

L(,, {�8}=8=1,g, ,) = g −
∑
8≤=

_8g

−
∑
8≤=

_8

(
‖-8 −,�8 ‖2� + VE(,)

)
s.t. �)8 1A ≤ 1A , and ,, ,, �8 ≥ 0.

(11)

The dual cost function, @(,), is then found by taking the
supremum of (11) over ,, �8 , and g. The supremum over
g yields @(,) = +∞ unless ,) 1= = 1, in which case the first
term is zero and the log det-term can be moved outside the



sum. Thus the dual cost simplifies to

@(,) = sup
, ,�8≥0
�)
8

1A ≤1A

− VE(,) −
∑
8

_8 ‖-8 −,�8 ‖2� , (12)

and the dual problem is given by

min
,∈R=+

@(,) s.t. ,) 1= = 1. (13)

b) Approximate Subgradient: We propose a heuristic to
minimize Problem (13) based on the subgradient method [14].
Recall that a vector g ∈ R= is a subgradient of @ : R= → R at
x ∈ dom @ if for all z ∈ dom @,

@(z) ≥ @(x) + g) (z − x). (14)

To minimize @ in Problem (13), the subgradient method uses
the iteration

, (C+1) = Π
(
, (C) − U (C)g(C)

)
, (15)

where Π : R= → R= is the projection onto the unit simplex
that keeps , (C+1) dual-feasible, and U (C) > 0 is a step size
like U = 0/C for 0 > 0. Other step sizes that also guarantee
convergence can be found in textbooks such as [15].
At step C, suppose the supremum of Equation (12) is achiev-

able for , (C) , and that , (C) and {� (C)
8
}=
8=1 are the matrices

which achieve that maximum. Classical subgradient theory
says that the vector g(C) ∈ R= defined as

g(C) = −
[
‖-1 −,

(C)
�
(C)
1 ‖

2
� , . . . , ‖-= −,

(C)
�
(C)
= ‖2�

])
(16)

is a subgradient to @(, (C) ) [15]. However, the NMF subprob-
lem represented by @(, (C) ) is NP-hard, and thus computing
, (C) and {� (C)

8
}=
8=1 exactly is intractable.

Instead we use a fixed number of iterations of the min-
vol NMF method of [12] to find approximate solutions to
the supremum in Equation (12). This leads to an approxi-
mate subgradient, g̃, and hence the heuristic nature of our
method. Algorithm 1 summarizes our proposed approach.
We initialize our algorithm using a pure-pixel search algo-
rithm, namely the successive nonnegative projection algorithm
(SNPA) from [16], as in min-vol NMF from [12].

IV. Numerical Experiments

The synthetic data for the experiments, - ∈ R1×? , is created
using the linear mixing model, so that the 8th sample is

x8 = ,h8 + [, (17)

where [ ∼ N(0, f2
#
) is additive white Gaussian noise. The

? data samples can be thought of as the raster-scan of an
image with spatial dimensions √? × √?. The last columns
of , corresponds to rare endmembers that are present in
a small proportion of the samples. More precisely, each
column of � is distributed with a Dirichlet distribution using
parameter [0.05, . . . , 0.05]) ∈ RA for samples with the rare

Algorithm 1 Minimax min-vol NMF via dual subgradient

input Data: - ∈ R1×?+ , window size: <, rank: A, step size: 0 >
0, volume penalty: Ṽ > 0, eigenvalue weight: X > 0, max
iterations: <0G8C4A, max subproblem iterations: 8==4A8C4A

output ,∗,
{
�∗
8

}=
8=1

1: ,, � ← approx. solution to ‖- −,�‖2
�
with SNPA [16]

2:
{
-8 ∈ R1×<+

}=
8=1 ← raster-scanned windows of -

3:
{
�8 ∈ RA×<+

}=
8=1 ← raster-scanned windows of �

4: ,← [1/=, . . . , 1/=]) ∈ R=

5: V← Ṽ
‖-−,� ‖2

�

log det(,), +X�A )
6: g̃← −

[
‖-1 −,�1‖2� , . . . , ‖-= −,�=‖2�

])
7: 5 (,, {�8}=8=1) ← min

8≤=
{−‖-8 −,�8 ‖2� } − VE(,)

8: @(,) ← ,) g − VE(,)
9: ,∗,

{
�∗
8

}=
8=1 ← ,,

{
�8

}=
8=1

10: for C = 1, . . . , <0G8C4A do
11: U← 0/C
12: ,← Π(, − Ug̃)
13: -, ←

[√
_1-

)
1 ,
√
_2-

)
2 , . . . ,

√
_=-

)
=

])
14: for ? = 1, . . . , 8==4A8C4A do % Min-vol NMF [12]
15: �, ←

[√
_1�

)
1 ,
√
_2�

)
2 , . . . ,

√
_=�

)
=

])
16: , ← arg max

, ≥0
− ‖-, −,�, ‖2� − VE(,)

17:
{
�8

}=
8=1 ← arg max

�8≥0, �)
8

1A ≤1A
− ‖-8 −,�8 ‖2�

18: g̃← −
[
‖-1 −,�1‖2� , . . . , ‖-= −,�=‖2�

])
19: 5 (,, {�8}=8=1) ← min

8≤=
{−‖-8 −,�8 ‖2� } − VE(,)

20: @(,) ← ,) g − VE(,)
21: if 5 (,, {�8}=8=1) > 5 (,∗, {�∗

8
}=
8=1) then

22: ,∗,
{
�∗
8

}=
8=1 ← ,,

{
�8

}=
8=1

endmembers1, and [0.05, . . . , 0.05, 0, . . . , 0]) ∈ RA for those
without. Samples containing the rare endmembers are chosen
by randomly selecting a rectangular region in the image for
each rare endmember such that the area of the rectangle equals
the specified number of samples. We use a small value for the
Dirichlet parameter in order to satisfy, with high probability,
the sufficiently scattered condition necessary for identifiability.
Additionally, any column of � whose maximum element is
greater than 0.8 is resampled to avoid pixels that are too pure.
This makes the scenario rather challenging; see Figure 1 for
an illustration with A = 4, and a single rare endmember only
present in 1% of the samples.

a) Illustrative Example: The first experiment illustrates
the difference between applying min-vol NMF to the tra-
ditional least-squares objective function using [12], and the
minimax objective function via Algorithm 1. The endmembers

1Since we use the Dirichlet distribution that generates columns of � that
are sparse, rare endmembers are not present in all the samples with an non-
zero Dirichlet parameter for that endmember.



Data Groundtruth
Algorithm 1 min-vol NMF [12]

Fig. 1: True and estimated endmembers for the illustrative
example projected onto the canonical basis vectors, e2 and e3.

are the columns of the matrix

, =

©«
1 1 0 0
0 0 1 1
0 1 1 0
1 0 0 1

ª®®®¬ , (18)

with 2500 samples drawn according to Equation (17) with
f2
#
= 0.001, and 1% of samples containing the rare endmem-

ber which is the last column of , . The penalty parameter Ṽ
must balance the data fidelity term with the minimum volume
term. Each patch contains less samples than the entire data
set so the parameter is chosen as Ṽ = 10−3 for Algorithm 1
and Ṽ = 0.1 for min-vol NMF (as recommended in [12]). The
eigenvalue weight is selected as X = 0.1 for both methods. The
step size for the proposed method is 0 = 2

min8 ‖-8 ‖2�
, and we

perform each method for <0G8C4A = 200 and 8==4A8C4A = 20.
Patches are 10 × 10 squares that tessellate the 50 × 50 image.
Figure 1 shows a projection of the data and results onto

the 2-dimensional subspace spanned by the 2nd and 3rd
canonical basis vectors, e2 and e3. The pink circles are the
data samples generated from noisy convex combinations of
the groundtruth endmembers (purple circles). The estimated
endmembers using [12] are demarcated by turquoise x’s and
the estimated endmembers from the proposed method are
the black diamonds. We observe the effect of the minimax
reformulation clearly in this illustration. The endmember in the
bottom right corner is the rare element, and although samples
exist on all facets of the simplex, the least-squares estimate
is further from the true endmember than the estimate from
the proposed method. The relative error of reconstructing the
endmembers, ‖,−,est ‖�

‖, ‖� (after a proper permutation), is 17.1%
for [12] and 4.8% for the proposed method.
The solid lines in Figure 2 show the effect of noise on the

accuracy of estimating endmembers (left) and reconstructing

the data (right) averaged over 20 runs. Min-vol NMF leads,
on average, to lower global reconstruction error. This is
expected since it minimizes this criterion. However, for low
noise levels, both methods actually have almost the same
reconstruction error (Figure 2, right). Moreover, the proposed
method outperforms min-vol NMF in terms of estimating the
endmembers when the noise level is sufficiently low, with an
average improvement of about 10% (Figure 2, left).

b) Synthetic HSI Data with Groundtruth: The second set
of experiments demonstrates the utility of the proposed method
on more realistic synthetic data. Data is generated from A = 10
endmembers selected from the USGS Spectral Library [17] to
create synthetic hyperspectral images. The spectral signatures
of the endmembers used are shown in Figure 3, however the
results are comparable for any collection signatures randomly
selected from the library. The noisy bands 1-2, 221-224,
and the water absorption bands 104-113, 148-167, have been
removed from the data leaving 188 channels. The two spectra
denoted by dashed lines in Figure 3, ’Chabazite HS193.3B’
and ’Nepheline HS19.3’, correspond to the rare endmembers.
They have nonzero Dirichlet parameters for 2% of samples.
Using the model in Equation (17), 2500 samples are generated
to create - ∈ R188×2500. Patches and hyperparameters are
selected in the same way as in the first experiment.
This experiment is more challenging due to the number of

endmembers, the additional rare endmember, the magnitudes
of the endmembers, (min=25, max=151.5), and their spectral
similarity (the minimum angle between two spectra is 0.06
radians). The relative error for this experiment is shown by the
dashed lines in Figure 2. Even with these hurdles, we observe
a similar behavior as in the first experiment: the difference
in global reconstruction error is minor, Algorithm 1 reports
1% lower error for the smallest noise variance (Figure 2,
right), but Algorithm 1 allows to recover the endmembers more
accurately when the noise variance is low (Figure 2, left). The
proposed method reduces the error of the endmember matrix
of >13% on average at the lowest noise levels.

V. Conclusion
We proposed a novel heuristic for solving minimax min-

vol NMF to improve the estimation of rare endmembers in
blind hyperspectral unmixing. The method requires no pre-
identification of pixels containing atypical materials. As the
minimax paradigm fits the worst examples from the data set,
it is key that the data be free from outliers before processing.
Using a minimax strategy such as the one presented here,
it is possible to trim outliers by removing the support set
(the patches with non-zero dual variables) after the subgra-
dient algorithm has converged and repeating the process [18],
however some inliers may be rejected as well without more
sophisticated methods.
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