
78 IEEE SIGNAL PROCESSING MAGAZINE   |   September 2020   | 1053-5888/20©2020IEEE

NONCONVEX OPTIMIZATION FOR SIGNAL 
PROCESSING AND MACHINE LEARNING

Digital Object Identifier 10.1109/MSP.2020.3003544
Date of current version: 2 September 2020

Xiao Fu, Nico Vervliet, Lieven De Lathauwer,  
Kejun Huang, and Nicolas Gillis

During the past 20 years, low-rank tensor and matrix decom-
position models (LRDMs) have become indispensable tools 
for signal processing, machine learning, and data science. 

LRDMs represent high-dimensional, multiaspect, and multi-
modal data using low-dimensional latent factors in a succinct 
and parsimonious way. LRDMs can serve a variety of purposes, 
e.g., data embedding (dimensionality reduction), denoising, 
latent variable analysis, model parameter estimation, and big 
data compression; see [1]–[5] for surveys of applications.

LRDMs often pose challenging optimization problems. This 
article aims at introducing recent advances and key computational 
aspects in structured low-rank matrix and tensor decomposition 
(SLRD). Here, structured decomposition refers to the techniques 
that impose structural requirements (e.g., nonnegativity, smooth-
ness, and sparsity) onto the latent factors when computing the 
decomposition (see Figures 1–3 for a number of examples and the 
references therein). Incorporating structural information is well 
motivated in many cases. For example, adding constraints/regu-
larization terms typically enhances performance in the presence 
of noise and modeling errors since constraints and regularization 
terms impose prior information on the latent factors. For certain 
tensor decompositions, such as the canonical polyadic decom-
position (CPD), adding constraints (including nonnegativity and 
orthogonality) converts ill-posed optimization problems (where 
optimal solutions do not exist) into well-posed ones [6]. In addi-
tion, constraints and regularization terms can make the results 
more “interpretable”; e.g., if one aims at estimating probability 
mass functions (PMFs) or power spectra from data, adding prob-
ability simplex or nonnegativity constraints to the latent factors 
makes the outputs consistent with the design objectives. For matrix 
decomposition, adding constraints is even more critical (e.g., add-
ing nonnegativity to the latent factors can make highly nonunique 
matrix decompositions have essentially unique latent factors [1], 
[4]) as model uniqueness is a core consideration in parameter iden-
tification, signal separation, and unsupervised machine learning.

Due to the importance of LRDMs, a plethora of algorithms has 
been proposed. The overview papers on tensor decomposition [2], [5] 
have discussed many relevant models and their algebraic properties 
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as well as popular decomposition algorithms (without emphasizing 
structured decomposition). In terms of incorporating structural infor-
mation, nonnegativity- and sparsity-related algorithms have been 
given the most attention, due to their relevance in image, video, and 
text data analytics; see, e.g., the tutorial articles published in 2014 in 
[9] and [1] for LRDMs with nonnegativity constraints.

In this article, instead of offering a comprehensive overview 
of algorithms under different LRDMs and particular types of 
constraints, we will provide a unified and principled nonconvex, 
nonsmooth optimization perspective for SLRD. We will pay 
particular attention to the following two aspects. First, we will 
introduce how different nonconvex optimization tools [in par-
ticular, block coordinate descent (BCD), Gauss–Newton (GN) 
algorithms, and stochastic optimization] can be combined with 
tensor/matrix structures to come up with lightweight algorithms 
while considering various structural requirements. Second, we 
will touch upon the key considerations for ensuring that these 
algorithms have convergence guarantees (e.g., assurances for con-
vergence to a stationary point) since convergence guarantees are 
important for designing stable and disciplined algorithms. Both 
nonconvex, nonsmooth optimization and tensor/matrix decom-
position are nontrivial. We hope that this article will provide the 
readers (especially graduate students) with an entry point for 
understanding the key ingredients that are needed for designing 
structured decomposition algorithms in a disciplined way.

Notation
We follow the established conventions in signal processing and 
use , ,XT  and x  to denote a tensor, a matrix, and a vector, 
respectively. The notations , , , and7 9 U % denote the Kronecker 
product, Khatri–Rao product, Hadamard product, and outer 
product, respectively. The MATLAB notation ( , :)X m  is used to 
denote the mth row of ,X  and other MATLAB notations, such as 

(: , )X n  and ( , ),X i j  are also used. In some cases, [ ]X ,i j  and [ ]x j  
denote the (i, j)th entry of X  and the jth element of ,x  respec-
tively. The notation [ ; ; ] [ , , ]X X X X XN N1 1f f= = << <  denotes 
the concatenation of the matrices { } .X n

N
n 1=

Problem statement

Low-rank matrix and tensor decomposition models
Under a noiseless setting, matrix decomposition aims at finding 
the following representation of a data matrix X:

FIGURE 1. An SLRD model in fluorescence data analytics. The rank-1 com-
ponents correspond to different analytes that constitute the data samples. 
The latent factors have a physical meaning, and using prior structural 
information improves the decomposition performance. 
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FIGURE 2. The linear mixture model for hyperspectral unmixing (HU). The 
HU problem can be considered either as an NMF problem [1], [4] or a 
block-term tensor decomposition problem [7]. Both are SLRDs. 
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FIGURE 3. An SLRD perspective for community detection under the mixed-membership stochastic block model [8]. The binary adjacency matrix can be consid-
ered a noisy, structured, low-rank model. Again, a series of model priors can be used as structural constraints on the latent factor matrices on the right-hand side.
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	 (: , ) (: , ),X A A A Ar r
r
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2= =<

=
c/ � (1)

where , ,X AR RI I I R
1

1 2 1! !# #  and .A RI R
2

2! #  The integer 
{ , }minR I I1 2#  is the smallest integer such that the preceding 

equality holds; i.e., R denotes the matrix rank. If the data entries 
have more than two indices, the data array is called a tensor. 
Unlike matrices whose rank decomposition is defined as in (1), 
there are a variety of tensor decomposition models involving dif-
ferent high-order generalizations of the matrix rank. One of the 
most popular models is CPD [10]. For an Nth-order tensor 

f ,RT I IN1! # #  its CPD representation is as follows:

	 (: , ) (: , ) : , ,A A A Ar rT
r

R

N N1
1

1% %f f=
=

= ," ,/ � (2)

where R is again the smallest integer such that the equality holds 
(i.e., R is the CP rank of T) and A Rn

I Rn! #  denotes the mode-
n latent factor (see the visualization of a third-order case in 
Figure 1). Besides CPD, there is, for instance, the Tucker 
decomposition model, i.e., AT G 1 1 2# # f= ,AN N#  where G  
denotes the so-called core tensor and n#  is the mode-n product. 
More recently, a series of extensions and hybrid models has also 
emerged, including the block-term decomposition (BTD), multi-
linear rank-( , , )L L 1r r  decomposition (LL1), coupled CPD/BTD 
models, the tensor train model, and the hierarchical Tucker 
model; see [2] and the references therein. In this article, we will 
mainly focus on the models in (1) and (2) and use them to illus-
trate different algorithm design principles. Generalization to 
other models will also be briefly discussed at the end.

In their general formulation, most SLRD problems are NP-
hard [11]–[13]. Apart from that, the era of big data brings its own 
challenges. For example, a , , ,2 000 2 000 2 000# #  tensor (i.e., 

,I I 2 000n = =  for all n) requires 58 GB of memory (if the dou-
ble precision is used). When there is no constraint or regulariza-
tion on the latent factors, using first-order optimization techniques 
(e.g., gradient descent or BCD) under the “optimization-friendly” 
Euclidean loss already costs RIO 3^ h floating-point operations 
(flops) per iteration for the rank-R CPD of this tensor. With con-
straints and regularization terms, the complexity might be even 
higher. The situation gets worse when one deals with higher-order 
tensors. Hence, designing effective algorithms requires synergies 
between sophisticated optimization tools and the algebraic struc-
tures embedded in LRDMs.

Structured decomposition as nonconvex optimization
SLRD can be viewed from a model-fitting perspective. That is, 
we hope to find a tensor/matrix model that best approximates the 
data tensor or matrix under a certain distance measure, with prior 
information about the model parameters. This point of view 
makes a lot of sense. In practice, the data matrix/tensor often 
consists of low-rank “essential information” and high-rank noise; 
thus, using a model-fitting formulation instead of seeking an 
exact decomposition, such as those in (1) and (2), is more mean-
ingful. Conceptually, the SLRD problems can be summarized 
as follows:

     
min dist data,model

penalty for
structure violation

under   structural constraints,
model param.

+^ ch m
�

(3)

where ,X Ydist ^ h is a “distance measure” between X  and Y  in 
a certain sense. The most commonly used measure is the 
(squared) Euclidean distance, i.e.,

,X Y X Ydist F
2

= - .^ h

In addition, a number of other measures are of interest in data 
science. For example, the Kullback–Leibler (KL) divergence is 
often used for measuring the “distance” between distributions of 
random variables (RVs), and it is also commonly used in integer 
data-fitting problems [since it is closely related to the maximum 
likelihood estimators (MLEs) that are associated with discrete 
RVs, e.g., those following the Poisson or Bernoulli distribu-
tions]. The 1,  norm and the Huber function as well as their non-
convex counterparts (e.g., the p,  function where p0 11 1  
[14]) are used for outlier-robust data analytics; see the “More 
Discussions and Conclusion” section. The “structural con-
straints” and “structure violation penalty” are imposed on the 
model parameters [e.g., the Ans in (2)]. For example, consider 
CPD under sparsity and nonnegativity conditions, which finds 
applications in many data analytics problems [15]:

	 , ,min AA A
2
1 T

{ }A
N n

n

N

1
1

1 F
2

n n
N

1

f m+-
==

" , / 	

                    .,A n0s.t. n 6$ � (4)

From an optimization viewpoint, these SLRD problems can be 
summarized in a succinct form:

	 ( ) ( ),min f hi i+
i

� (5)

where i  collects all the latent parameters of the tensor/matrix 
model of interest, ( )f i  represents the data-fitting part, and ( )h i  
represents regularization terms added on the latent factor. Note 
that the expression in (5) also includes the case where i  is sub-
ject to hard constraints; i.e., C!i  can also be expressed as a 
penalty term, where ( )h i  is the indicator function of the set .C  
For example, in (4), [ ; ; ]N1 fi i i=  where ( ) .Avecn ni =  
Here, ( ) ( ),hh n

N
n n1i iR= =  and ( ) ( ) ( ),h h h( ) ( )

n n n n n n
1 2i i i= +  

in which h( )
n
1  is the indicator function of the nonnegativity 

orthant and ( )h( )
n n
2 i  is the 1,  regularization.

Several observations can be made from (4) and (5). First, the 
SLRD problems are usually nonconvex since the model approxi-
mation part ( )f i  is nonconvex; in some cases, ( )h i  is also non-
convex; see, e.g., volume minimization-based nonnegative matrix 
factorization (NMF) [4]. Second, the objective function in (5) is 
often nonsmooth, especially when a nondifferentiable regulariza-
tion term ( )h i  is involved (e.g., an indicator function for enforc-
ing “hard constraints” or an 1, -norm regularization term). Like 
many nonconvex, nonsmooth optimization problems, the SLRD 
problems are NP-hard in most cases [11], [13]. The analytical tool 
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for characterizing their global optimality-attaining properties of 
general nonconvex optimization algorithms has been elusive. The 
convention from the optimization literature is to characterize the 
algorithms’ stationary-point-approaching properties since i  must 
be a stationary point of (5) for i  to be an optimal solution. Sim-
ply speaking, assume that the data-fitting part ( )f i  is differen-
tiable, and ( ) ,f hdom Rd+ =  where d is the number of variables. 
Denote ( ) ( ) ( ) .F f hi i i= +  Then, any stationary point of (5) 
satisfies the following:

	 ( ) ( ) ( ),F f h0 2 d 2! i i i= + � (6)

where ( )h2 i  denotes the limiting Fréchet subdifferential of 
(·),h  which is the subgradient when (·)h  is convex [16]–[18].

BCD-based approaches
One of the workhorses for LRDMs is BCD. The rationale 
behind BCD-based structured factorization is straightforward: 
the factorization problems with respect to a single-block variable 
An  in (4) are convex under various models and different (·)F ’s. 
BCD alternatingly updates the parameters ni  (the nth block of 

)i  while fixing the others; ( )
n
t 1i +  is updated using

	 , , , , , ( ),argmin f h( ) ( ) ( ) ( )t
n
t

n n
t

N
t

n n1
1

1
1

1
n

f fi i i i i i+
i

+
-
+

+^ h � (7)

where (·)hn  is the part of (·)h  that is imposed onto ni  and 
( )ti  denotes the optimization variables in iteration t. In the 

sequel, we will use the shorthand notation ;f ( )
n n

ti i =-^ h
, , , , , .f ( ) ( ) ( ) ( )t

n
t

n n
t

N
t

1
1

1
1

1f fi i i i i
+

-
+

-^ h
BCD and LRDMs are linked together through the “matrix-

unfolding” operation. Unfolding is a way of rearranging the 
elements of a tensor to a matrix. The mode-n unfolding (matrici-
zation) of T  is as follows [2] for all , , ,i iN1 f

( , ) ( , , ),X j i i iTn n N1 f=

where ( ) , .j i J J I1 1, ,n m m n m1 1
1R P= + - =, , , , ,

,
! != =

-  Note that 
tensor unfolding admits several forms in the literature. For exam-
ple, the unfolding expressions in the two tutorial papers [2] and 
[5] are different. In this article, we follow the convention in [2]. 
For tensors with CP rank R, the unfolding has the following 
compact and elegant expression:

	 ,X H An n n= < � (8)

where the matrix H R I
n

R,
N

nn1! #P, ,!=^ h  is defined as

.H A A A An N n n1 1 19 9 9 9 9f f= + -

Readers are referred to [2] and [5] for details of unfolding. The 
unfolding operation explicitly “pushes” the latent factors to the 
rightmost position in the unfolded tensor representation, which 
helps efficient algorithm design. Note that many tensor factoriza-
tion models, e.g., Tucker, BTD, and LL1, have similar multilin-
earity properties in their respective unfolded representations 
[19]. Representing the tensor using matrix unfolding, the BCD 
algorithm for structured CPD consists of the following updates 
in a cyclical manner:

	 ( )argminA X H A Ah
2
1 ( )

n n n
t

n nF

2

n

! - +< ,
A

� (9)

where H A A A A( ) ( ) ( ) ( ) ( )
n
t

N
t

n
t

n
t t

1 1
1

1
1

9 9 9 9 9f f= + -
+ +  since 

A,  for n, 1  has been updated.

Classic BCD-based structured decomposition
If ( )Ahn n  is absent, (9) admits an analytical solution; i.e., 

,A H X( ) ( )
n
t

n
t

n
1 !

@+ ^ h  which recovers the classic alternating least-
squares (ALS) algorithm for the unconstrained LS loss-based 
CPD [10]. In principle, if ( )Ahn n  is convex, then any off-the-
shelf convex optimization algorithms can be utilized to solve (9). 
However, in the context of SLRD, the employed algorithms 
should strike a good balance between complexity and efficiency. 
The reason is that (9) can have a very large size because the row 
size of H( )

n
t  is ,I,

N
n1P, , ,!=  which can reach into the millions, 

even when In  is small.
First-order optimization algorithms (i.e., optimization algo-

rithms using only the gradient information) are known to be scal-
able, and thus they are good candidates for handling (9). Proximal/
projected gradient descent (PGD) [20], [21] is perhaps the easiest 
to implement. PGD solves (9) using the following iterations:

Prox ;A A A Af( ) ( ) ( ) ( )
An

k
h n

k
n
k

n
t1

n n! da-+
- ,^ ^ hh

where k indexes the iterations of the PGD algorithm. The nota-
tion Prox ( )Zh  is defined as

Prox ( )argminZ Y Y Zh
2
1 h F

2
= + - ,

Y
^ h

and ( ; ) ( ) .A A A H H X Hf ( ) ( ) ( ) ( ) ( ) ( )
A

k
n

t k
n
t

n
t

n n
t

nd = -< <
-  For a vari-

ety of ( )h $ ’s, the proximal operator is easy to compute. 
For example, if ,1( ) || ||Z Zh m=  we have Prox[ ]Z ij1 =$< <m ^ h

( ) (| |) ,Z Zsign ij ij m- +  and if ( )Zh  is the indicator function of 
a closed set ,H  then the proximal operator becomes a pro-
jection operator; i.e., Prox Proj ( )  argminZ Z Yh H H= = !^ h
|| || .Y Z F

2-  A number of ( )h $ ’s that admit simple proximal 
operations (e.g., the 1,  norm) can be found in [20].

PGD is easy to implement when the proximal operator is 
simple. When the regularization is complicated, then using algo-
rithms such as the alternating directional method of multipliers 
(ADMM) to replace PGD may be more effective; see [22] for 
a collection of examples of ADMM-based constrained LS solv-
ing. Beyond PGD and ADMM, many other algorithms have been 
employed for handling the subproblem in (9) for different struc-
tured decomposition problems. For example, accelerated PGD, 
active set methods, and mirror descent have all been considered 
in the literature; see, e.g., [23] and [24].

Inexact BCD
Using off-the-shelf solvers to handle the subproblems under the 
framework of BCD is natural for many LRDMs. However, when 
the block variable ni-  is only roughly estimated, it is not neces-
sarily efficient to exactly solve the subproblem with reference to 

;ni  after all, ni-  will change in the next iteration. This argument 
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leads to a class of algorithms that solves the block subproblems 
in an inexact manner [16], [18]. Instead of directly minimizing 

( ; ) ( ),A A Af h( )
n n

t
n n+-  inexact BCD updates An  via minimizing 

a local approximation of ( ; ) ( )A A Af h( )
n n

t
n n+-  at ,A A( )

n n
t=  

which we denote as

( ; ) ( ; ) ( ),A A A Ag f hA( ) ( )
n

t
n n

t
n n. +-

where { , , , , , } .A A A AA( ) ( ) ( ) ( ) ( )t t
n
t

n
t

N
t

1
1

1
1

f f=
+

-
+  That is, inexact 

BCD updates An  using

( ; ) .argminA Ag A( ) ( )
n
t

n
t1

n

!+

A

If ( ; )Ag A( )
n

t  admits a simple minimizer, then the algorithm can 
quickly update An  and move to the next block. One of the fre-
quently used ( ; )Ag A( )

n
t  is as follows:

( ; ( ; ) ( )) ( ; ) ( )A A A A A

A A

A A Ag f h f

2
1

A ( ) ( ) ( )

( )

( ) ( ) ( )
An

t
n
t

n
t

n n n
t

n
t

n n
t

n n
t

F

2

nd

a

+ -

+ -

= + <
--

,� (10)

which is obtained via applying Taylor’s expansion on the smooth 
term ( ) .f i  Using this local approximation, the update admits 
the following form:

	 Prox ; ,A A A Af( ) ( ) ( ) ( )
An

t
h n

t
n
t

n
t1

n n! da-+
-^ hh^ � (11)

which is equivalent to running PGD for one iteration to solve 
(9)—and this echoes the term inexact. A number of frequently 
used local approximations can be seen in [18]. Note that inexact 
BCD is not unfamiliar to the SLRD community, especially for 
nonnegativity constraints. One of the most important early algo-
rithms for NMF, namely, multiplicative updates (MUs) [25], is 
an inexact BCD algorithm.

Pragmatic acceleration
Compared to exact BCD, inexact BCD normally needs to update 
all block variables for many more rounds before reaching a 
“good” solution. Nonetheless, when inexact BCD is combined 

with the so-called extrapolation technique, the convergence 
speed can be substantially improved. The procedure of extrapo-
lation is as follows: Consider an extrapolated point

	 ( ) ,A A A1
( ) ( ) ( )
n
t

n
t

n
t

n
t

n
t 1~ ~= + + -X � (12)

where { }n
t~  is a predefined sequence (see practical choices of 

n
t~  in [16]). Then, the extrapolation-based inexact BCD replaces 

(11) by the following:

Prox ; .A A A Af( ) ( ) ( ) ( )
An

t
h n

t
n
t

n
t1

n n! da-+
-` hjX X^

In practice, this simple technique often makes a big difference in 
terms of the convergence speed; see Figure 4. The extrapolation 
technique was introduced by Nesterov in 1983 to accelerate 
smooth, single-block convex optimization problems using only 
first-order derivative information [26]. It was extended to han-
dling nonconvex, multiblock, and nonsmooth problems in the 
context of tensor decomposition by Xu et al. in 2013 [16]. In this 
case, no provable acceleration has been shown, which leaves a 
challenging and interesting research question open. We refer the 
readers to [73] and the references therein for more information 
on this topic.

Convergence properties and computational complexity
Convergence properties of both exact BCD and inexact BCD are 
well studied in the literature [18], [28]. An early result from 
Bertsekas [28] shows that every limit point of { }( )t

ti  is a station-
ary point of (5) if h is either absent or the indicator function of a 
convex closed set, and if the subproblems in (7) can be exactly 
solved with unique minimizers while the objective function is 
nonincreasing during the interval between two consecutive iter-
ates. This can be achieved if the subproblems in (7) are strictly 
(quasi)convex. Nonetheless, since H( )

n
t  may be rank deficient, 

stationary-point convergence under this framework is not neces-
sarily easy to ensure. In addition, this early result does not cover 
nonsmooth functions.

For inexact BCD, it was shown in [18] that if ( )Ahn n  is con-
vex, and if the local surrogate is strictly (quasi)convex and is 
“tangent” to ( ; )A AF ( )

n n
t
-  at A A( )

n n
t=  (i.e., ( ; )Ag A( )

n
t  is a tight 

approximation for ( ; )A AF ( )
n n

t
-  at ,A A( )

n n
t=  and they share the 

same directional derivative at this point), then every limit point 
of the produced solution sequence is a stationary point. This is 
a somewhat more relaxed condition relative to those for BCD 
since the upper bound ( ; )Ag A( )

n
t  can always be constructed as a 

strictly convex function, e.g., by using (10).
In terms of per-iteration complexity, BCD combined with 

first-order subproblem solvers for structured tensor decomposi-
tion is not a lot more expensive than solving unconstrained ones 
in many cases, which is the upshot of using algorithms such as 
PGD, accelerated PGD, and ADMM. The most expensive opera-
tion is the so-called matricized tensor times Khatri–Rao product 
(MTTKRP), i.e., .X H( )

n n
t<  However, even if one uses exact BCD 

with multiple iterations of PGD and ADMM for solving (9), the 
MTTKRP needs only to be computed once for every subproblem 

FIGURE 4. The speedup for inexact BCD via extrapolation. The performance 
is measured by the mean square error (MSE) on the estimated latent 
factor; see [27]. The tensor size is  ,30 30 30 30# # #  and R = 10. The 
inexact BCD and extrapolated version use the updates in (11) and (12) 
[16], respectively.
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with respect to ,An  which is the same as in the unconstrained 
case; see more discussions in [22] and [73].

Block splitting and ordering within BCD
In this article, we focus on the most natural choice of blocks to 
perform BCD on LRDMs, namely, { } .An n

N
1=  However, in some 

cases, it might be preferable to optimize across smaller blocks 
because the subproblems are simpler. For example, with nonneg-
ativity constraints, it has been shown that optimizing across the 
blocks made of the columns of the A sn  is rather efficient 
(because there is a closed-form solution) and outperforms exact 
BCD and the MU [1], [9] that are based on An-block splitting. 
Another way to modify BCD and possibly improve convergence 
rates is to update the blocks of variables in a noncyclic way, for 
example, using random shuffling at each outer iteration or pick-
ing the block of variables to update using some criterion that 
increases our chances to converge faster (e.g., pick the block that 
was modified the most in the previous iteration, i.e., pick 

);F|| || / || ||argmin A A A( ) ( ) ( )
n n

t
n
t

n
t1 1- - -  see, e.g., [29] and [30].

Second-order approaches
Combining SLRD and optimization techniques that exploit 
(approximate) second-order information has a number of advan-
tages. Empirically, these algorithms converge in much fewer iter-
ations relative to first-order methods, they are less susceptible to 
the so-called swamps, and they are often more robust to initial-
izations [31], [32]; see, e.g., Figure 5. There are many second-
order optimization algorithms, e.g., Newton’s method that uses 
the Hessian and a series of “quasi-Newton” methods that 
approximate the Hessian. Among these algorithms, the GN 
framework specialized for handling nonlinear LS (NLS) prob-
lems fits Euclidean distance-based tensor/matrix decompositions 
particularly well. Under the GN framework, the structure inher-
ent to some tensor models (e.g., CPD and LL1) can be exploited 
to make the per-iteration complexity of the same order as the 
first-order methods [31].

GN preliminaries
Consider the unconstrained tensor decomposition problem

	 .( ) ( ) , ,min A Aff
2
1with T

( )

N1 F
2

F

f< <i i = -
i

i
1 2 34444 4444
" , � (13)

The GN method starts from a linearization of the residual ,F

	 ( ) ·( )vec vec
d vec
d vec

F
F

F ( )t

( )t

.i i
i

+
i

p^ ^ ^
^h h h
h

� (14)

	 ,f J p( ) ( )t t= + � (15)

where J( )t  is the Jacobian of F  with respect to the variables ,i  
,p ( )ti i= -  and .( )f vec F( ) ( )t ti= ^ h  Substituting (15) in (13) 

results in a quadratic optimization problem

	 f ,argminp g p p p
2
1

2
1( ) ( ) ( ) ( )

p

t t t t2
! U+ +< < � (16)

in which the gradient is given by g J f( ) ( ) ( )t t t= <  and the Gramian 
(of the Jacobian) is given by .J J( ) ( ) ( )t t tU = <  The variables are 
updated as .p( ) ( ) ( )t t t1 !i i ++  We have

	 p g( ) ( ) ( )t t tU =- � (17)

by the optimality condition of the quadratic problem in (16). In 
the case of CPD, the Gramian J J( ) ( )t t<  is a positive semidefinite 
matrix instead of a positive definite one (the Gramian J J( ) ( )t t<  
has at least ( )N R1-  zero eigenvalues because of the scaling 
indeterminacy), which means that p( )t  is not an ascent direction, 
although it may not be a descent direction either. This problem 
can be avoided by the Levenberg–Marquardt method, i.e., using 

mJ J I( ) ( ) ( )t t tU = +<  for some 0$m  or using a trust region 
(TR) that implicitly dampens the system. The GN method can 
exhibit up to a quadratic convergence rate near an optimum if the 
residual is small [28], [31].

Second-order methods converge fast once ( )ti  is near a sta-
tionary point, while there is a risk that ( )ti  may never come close 
to any stationary point. To ensure global convergence, i.e., that 

( )ti  converges to a stationary point from any starting point ,( )0i  
globalization strategies can be used [28]. Globalization is consid-
ered crucial for nonconvex optimization-based tensor decomposi-
tion algorithms and makes them robust with respect to the initial 
guess ,( )0i  as illustrated in Figure 6.

The first effective globalization strategy is determining ( )ta  via 
solving the following:

	 ( )argmin f( ) ( ) ( )t t tia a= +
a

,p � (18)

which is often referred to as the exact line search in the optimi-
zation literature. Solving this equation can be costly, in general, 
but when the objective is to minimize a multilinear error term in 
a LS sense, as in (13), the global minimum of this problem can 
be found exactly, as the optimality conditions boil down to a 
polynomial root-finding problem; see [33] and the references 
therein. This exact line search technique ensures that maximal 
progress is made in every step of GN, which helps to quickly 
improve the objective function. Similarly, the exact plane search 

FIGURE 5. While ALS initially improves the function value faster, the GN 
method converges more quickly, both in terms of time and the number of 
iterations. Results are shown for a ,100 100 100# #  rank R 10=  tensor 
with highly correlated rank-1 terms (the average angle is 59°), starting 
from a random initialization.
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can be used to find the best descent direction in the plane 
spanned by p( )t  and g( )t  by searching for coefficients a  and b  
that minimize )( p gf ( ) ( ) ( )t t ti a b+ +  [33]. Empirically, the steep-
est descent direction g( )t-  decreases the objective function more 
rapidly during earlier iterations, while the GN step enables fast 
convergence. Note that plane search can be used to speed up 
BCD techniques as well [33].

Another effective globalization strategy uses a TR. There, the 
problems of finding the step direction p( )t  and the step-size are 
combined; i.e., p( ) ( ) ( )t t t1i i= ++  with

	 ( ) ,argminp p pm s.t.( )

p

t # D= � (19)

where ( ) / /f g p p pm 1 2 1 2( ) ( ) ( )t t t2< < U= + +< <p  under the GN 
framework. Intuitively, the TR is employed to prevent the GN 
steps from being too aggressive to miss the contraction region of 
a stationary point. The TR radius D is heuristically determined 
by measuring how well the model predicts the decrease in the 
function value [28]. Often, the search space is restricted to a 2D 
subspace spanned by g( )t  and .p( )t  Then, (19) can be approxi-
mately solved using the dogleg step or by using plane search 
[31], [33].

Exploiting tensor structure
The bottleneck operation in the GN approach involves construct-
ing and solving the linear system in (17); i.e.,

	 ,J Jp g=-< � (20)

where the superscripts ( ) ( )t$  have been dropped for the simplicity 
of notation. Note that this system is easily large scale since 

,J R I Tnn! #%  where .T R In
I

n1R= =^ h  Using a general-purpose 
solver for this system costs ( )TO 3  flops, which may be prohibi-
tive for big data problems. Fortunately, the Jacobian and the 
Gramian are both structured under certain decomposition mod-
els (e.g., CPD and LL1) that can be exploited to come up with 
lightweight solutions.

The gradient ( )g fd i=  of ( )f i  can be partitioned as 
[ ; ; ],g G Gvec vec N1 f= ^ ^h h  in which the Gn  with respect to 

factor matrix An  is given by

	 ,G F Hn n n= < � (21)

in which Fn  is the unfolding of the residual ;F  see (8). The 
operation F Hn n

<  is the well-known MTTKRP, as we have seen 
in the BCD approaches. However, the factor matrices An  
( , , )n N1 f=  have the same value for every gradient ,Gn  in 
contrast to BCD algorithms, which use updated variables in 
every inner iteration. This can be exploited to reduce the compu-
tational cost [34].

Similar to the gradient, the Jacobian J  can also be partitioned 
as [ , , ],J J JN1 f=  in which / :J Avec vecFn n2 2= ^ ^h h

	 ( ),J H In n n In7P= � (22)

in which nP  is a matrix corresponding to the permutation of 
mode 1 to mode n  of the vectorized tensors. By exploiting 
the block and Kronecker structures, constructing U  requires 
only TO 2^ h flops, as opposed to ( );TO 3  for details, see [32] 
and [35].

Instead of solving (20) exactly, an iterative solver, such as con-
jugate gradient (CG) methods, can be used. As in power itera-
tions, the key step in a CG iteration is a Gramian-vector product, 
i.e., given ,y  compute y as

	 .y J Jy= < � (23)

Both y and y  can be partitioned according to the variables; 
hence, [ ; ; ]N1 fy y y=  and [ ; ; ] .y y yN1 f=  Then, (23) can be 
written as ,y J Jn n k

N
k k1 yR= <

=  which is efficiently computed by 
exploiting the structure in Jn  [see (22)]:

	

m n!

( ),Y V W A W V A
N

n n n n mn k k
m 1

U= + <

=

/ � (24)

where , ,Y V Rn n
I Rn! #  ,Yy vecn n= ^ h  and ,Vvecn ny = ^ h  

respectively. Here, Wn  and W nm  are defined as follows:

	 , .W A A W A A1
,
1

k n
k

k m n
kn k k mn k k= =< <

! !
= =

N
U U

N

� (25)

Hence, to compute J Jy<  only products of small I Rn #  
and R R#  matrices are required. Since CG performs a num-
ber of iterations with constant ,An  the inner products A An n

<  
required for Wn  and W nm  can be precomputed. This way, the 
complexity per Gramian-vector product is only .R IO n n

2R^ h  
Note that for both the GN and the BCD methods, the computa-
tion of the gradient, which requires R IO n

N
n1P =^ h operations, 

usually dominates the complexity. Therefore, the GN approach 
is also an excellent candidate for parallel implementations, as it 
reduces the number of iterations and expensive gradient com-
putations, while the extra CG iterations have a negligible com-
munication overhead.

FIGURE 6. Without a globalization strategy, the pure GN does not always 
converge to a stationary point; by using a dogleg TR-based globaliza-
tion, GN converges for every initialization .( )0i  Results are shown for a 

,20 20 20# #  rank-10 tensor in which all factor matrix entries truei  are 
drawn from the normal distribution ( , )0 1N  and for 100 different initializa-
tions for three scenarios ranging from good (left) to bad (right).
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In practice, it is important to notice that a well-conditioned 
J J<  makes solving the system in (20) much faster using CG. 
In numerical linear algebra, the common practice is to pre-
condition J J< , leading to the so-called preconditioned CG 
(PCG) paradigm. Preconditioning can be done rather effi-
ciently under some LRDMs, such as CPD; see “Acceleration 
via Preconditioning.”

Structured decomposition
As mentioned, the GN framework is specialized for NLS prob-
lems; i.e., objectives can be written as ( ) .F

2
Fi  If there are 

structural constraints on ,i  incorporating such structural 
requirements is often nontrivial. In this section, we introduce a 
number of ideas for handling structural constraints under the 
GN framework.

Parametric constraints
One way to handle constraints is to use parametrization to con-
vert the constrained decomposition problem to an unconstrained 
NLS problem. To see how it works, let us consider the case 
where ( )hn ni  is an indicator function of set ,Cn  i.e., the con-
strained decomposition case where Cn n!i . In addition, we 
assume that every element in Cn  can be parameterized by an 
unconstrained variable. Assume ( )Avecn ni =  and that every 
factor matrix An  is a function qn  of a disjoint set of parame-
ters ;na  i.e., ( ),A qn n na=  , , .n N1 f=  For example, if 

,RCn
I Rn= #
+  i.e., the nonnegative orthant, one can parameterize 

An  using the following:

,  .A D D D Rn
I RnU != #

In this case, ( ),Dvecna =  and :q RR I R
n

I R nn "$^ h  denotes the 
elementwise squaring operation. If no constraint is imposed on 
some ,An  ( ) ( );q unvecn n na a=  see many other examples for 
different constraints in [35].

By substituting the constraints in the optimization problem 
(13), we obtain a problem in variables [ ; ; ]:N1 fa a a=

	 .( ), , ( )min q q
2
1 T N N

2
1 1 Ffa a-

a
" , � (26)

Applying GN to (26) follows the same steps as before. Central to 
this unconstrained problem is the solution of

	 ,gpU = - uu u � (27)

where we denote quantities related to parameters by tildes to dis-
tinguish them from quantities related to factor matrices. The 
structure of the factorization models can still be exploited if we 
use the chain rule for derivation [36]. This way, (27) can be writ-
ten as

	 ,J Jp J gU =-< <u uu u � (28)

in which U and g are exactly the expressions as derived before 
in the unconstrained case. The Jacobian Ju  is a block-diagonal 
matrix containing the Jacobian of each factor matrix with respect 
to the underlying variables; i.e.,

	 ( , , ) .J JJ blkdiag N1 f=u u u � (29)

The Jacobians Jnu  are often straightforward to derive. For exam-
ple, if An  is unconstrained, ;J In I Rn=u  if nonnegativity is imposed 
by squaring variables, ,A D Dn U=  and ( );J D2diag vecn =u ^ h  
in the case of linear constraints, e.g., A BXCn =  with B and 
C  known, .J C Bn 7= <u  More complicated constraints can be 
modeled via composite functions and by repeatedly applying the 
chain rule [35], [36].

When computing the Gramian or Gramian-vector products in 
(28), we can exploit the multilinear structure from the CPD as 
well as the block-diagonal structure of the constraints. Moreover, 
depending on the constraint, Jnu  may, for example, also have a 
diagonal or Kronecker product structure. Therefore, the Gramian-
vector products can be computed in three steps:

	 , , ,J y J J y J yn n n n n k
k

N

k n n n
1

y y y= = = <<

=

u u u u/ � (30)

As the convergence speed of CG depends on the “cluster-
ing of the eigenvalues” of ,J J<  a preconditioner is often 
applied to improve this clustering. More specifically, 
the system

	 M J Jp M g1 1=-<- - � (S1) 

is solved instead of (20), and the preconditioner M  is chosen 
to reduce the computational cost. In practice, a Jacobi pre-
conditioner, a diagonal matrix with entries ( ),J Jdiag <  or a 
block-Jacobi preconditioner, i.e., a block-diagonal approxi-
mation to ,J J<  are often effective for the unconstrained CPD 
[31]. For example, the latter preconditioner is given by

	 ( , , ).M W I W Iblkdiag I N I1BJ N17 7f= � (S2)

Because of the block-diagonal and the Kronecker struc-
ture in ,MBJ  the system M y1

BJy = -  can be solved in N 
steps; i.e., V Y Wn n n= 1-  for , , .n N1 f=  Applying M 1

BJ
-  

involves only inverses of small R R#  matrices, which are 
constant in one GN iteration. Interestingly, MBJ  appears in 
the ALS algorithm with simultaneous updates, i.e., without 
updating An  every inner iteration. The PCG algorithm can 
therefore be seen as a refinement of the ALS with simulta-
neous updates by taking the off-diagonal blocks into 
account [31].

Acceleration via Preconditioning
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which may all be efficiently computed using similar ideas as in 
the unconstrained case [compare with (24)]. By leveraging the 
chain rule and the Gramian-vector-product-based PCG method 
for handling the unconstrained GN framework, it turns out that 
many frequently used constraints in signal processing and data 
analytics can be handled under this framework in an efficient way. 
Examples include nonnegativity, polynomial constraints, orthogo-
nality, matrix inverses, Vandermonde, and Toeplitz or Hankel 
structures; see details in [35]. We should mention that the parame-
trization technique can also handle some special constraints that 
are considered quite challenging in the context of tensor and 
matrix factorization, e.g., (partial) symmetry and coupling con-
straints; see “Handling Special Constraints via Parametrization.”

Proximal GN
To handle more constraints and the general cost function 

( ) ( )f hi i+  in a systematic way, one may also employ the 
proximal GN (ProxGN) approach. To be specific, in the pres-
ence of a nonsmooth ( ),h i  the ProxGN framework modifies the 
per-iteration subproblem of GN into

	 ( ).f J h
2
1argmin ( ) ( ) ( )t t t t1

2

2
!i i i i+ - +

i

+ ^^ hh � (31)

This is conceptually similar to the PGD approach: linearizing the 
smooth part (using the same linearization as in unconstrained 
GN) while keeping the nonsmooth regularization term 
untouched. The subproblem in (31) is again a regularized LS 

problem with respect to .i  Similar to the BCD case [see (9)], 
there exists no closed-form solution for the subproblem, in gen-
eral. However, subproblem solvers, such as PGD and the 
ADMM, can again be employed to handle (31).

A recent theoretical study has shown that incorporating the 
proximal term does not affect the overall superlinear convergence 
rate of the GN-type algorithms within the vicinity of the solution. 
The challenge, however, is to solve (31) in the context of SLRD 
with lightweight updates. This is possible. The recent paper in 
[39] has shown that if the ADMM is employed, then the key steps 
for solving (31) are essentially the same as for the unconstrained 
GN, namely, computing ( )J J I( ) ( )t t 1t+< -  for a certain 02t  
once per ProxGN iteration. Note that this step is nothing but 
inverting the regularized Jacobian Gramian, which, as we have 
seen, admits a number of economical solutions. In addition, with 
judiciously designed ADMM steps, this Gramian inversion never 
needs to be instantiated, and the algorithm is memory efficient, as 
well; see details in [39] for an implementation for NMF.

Stochastic approaches
Batch algorithms, such as BCD and GN, could have serious 
memory and computational issues, especially when the data ten-
sor or matrix is large and dense. Recall that the MTTKRP (i.e., 

)H Xn n
<  costs R IO n

N
n1P =^ h operations if no structure of the ten-

sor can be exploited. This is quite expensive for large In  and 
high-order tensors. For big data problems, stochastic optimiza-
tion is a classic workaround for avoiding memory/operation 

Factorizations are often (partially) symmetric, e.g., in blind-
source separation and topic modeling (see examples in the 
tutorial [2]). Symmetry here means that some A sn  are 
identical. The conventional BCD treating each An  as a 
block is not straightforward anymore. For example, cycli-
cally updating the factor matrices A A A A1 2 3= = =  in the 
decomposition , ,A A A" , breaks symmetry, while the sub-
problems are no longer convex when enforcing symmetry; 
see the “Block Splitting and Ordering Within BCD” sec-
tion. Nevertheless, the GN framework handles such con-
straints rather naturally.

A (partially) symmetric CPD can be modeled by setting 
two or more factors to be identical. For example, consider 
the model , , , , ;A A A AN N N1 2 1 1f - - -" ,  i.e., the last two fac-
tor matrices are identical. This symmetry constraint leads to 
a Ju  with the following form:

( , , , [ ; ]),I I I IJ blkdiag I R I R I R I RN N N1 2 1 1f= - - -
u

in which ,Jn
u  , ,n N1 1f= -  are identity matrices, as no 

constraints are imposed on .An  Because of the structure in 
J,u  the extra steps in the Gramian-vector products in (23) 
only involve summations.

Coupled decomposition often arises in data fusion, e.g., 
integrating hyperspectral and multispectral images for 
superresolution purposes [37], spectrum cartography from 
multiple-sensor-acquired spatiospectral information [38], 
and jointly analyzing primary data and side information 
[15]. These problems involve mutually factorizing tensors 
and/or matrices: the decompositions can share, or are 
coupled through, one or more factors or underlying vari-
ables. For example, consider the coupled matrix tensor 
factorization problem:

, , , ,A A A A A Mmin 2 2T
{ }A

F F
1

1 2 3
2 2

3 4
2

n n 1
4

m m- + -
=

" ", ,
where the two terms are coupled through .A3  Coupled 
decomposition can be handled via BCD. However, in 
some cases, the key steps of BCD boil down to solving 
Sylvester equations in each iteration, which can be costly 
for large-scale problems [37]. Using parametrization and 
GN, the influence of the coupling constraint and the 
decomposition can be separated in the CG iterations [35], 
[36], thus easily putting forth efficient and flexible data 
fusion algorithms. This serves as the foundation of the struc-
tured data fusion toolbox in Tensorlab.

Handling Special Constraints via Parameterization
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explosion. In a nutshell, stochastic algorithms are particularly 
suitable for handling problems having the following form:

	 ( ) ( ),min
L

f h1 L

1

i i+,

,
i

=

/ � (32)

where the first term is often called the empirical risk function in 
the literature. The classic stochastic proximal gradient descent 
(SPGD) updates the optimization variables via

	 Prox ( ) ,g( ) ( ) ( ) ( )t
h

t t t1 !i i ia-+ ^ h � (33)

where ( )g ( )ti  is a random vector (or “stochastic oracle”) evalu-
ated at ,( )ti  constructed through a RV .( )tp  The idea is to use an 
easily computable stochastic oracle to approximate the compu-
tationally expensive full gradient ( ) ( / ) ( ),f N f1 L

1d di iR= , ,=  
so that (33) serves as an economical version of the PGD algo-
rithm. A popular choice is ( ) ( ),g f( ) ( )t tdi i= ,  where { , , }L1 f, !  
is randomly selected following the PMF Pr ( ) / .L1( )t ,p = =  
This simple construction has a nice property: ( )g ( )ti  is an unbi-
ased estimate for the full gradient given the history of random 
sampling; i.e.,

( ) ( ) ( ) ,gf
L

f1 E H( ) ( ) ( ) ( )t
L

t t t

1

( )rd di i i= =
,

, p

=

6 @/

where H( )t  collects all the RVs appearing before iteration t. The 
unbiasedness is often instrumental in establishing the conver-
gence of stochastic algorithms. Biased stochastic oracles and 
their convergence properties are also discussed in the literature; 
see, e.g., [17]. However, the analysis is more involved. In addi-
tion, some conditions (e.g., the bounded bias) are not easy to ver-
ify. Another very important aspect is the variance of ( ) .g ( )ti  
Assume that the variance is bounded; i.e., ( ) .gV H( ) ( )t t #i x6 @  
Naturally, one hopes x  to be small so that the average deviation 
of ( )g ( )ti  from the full gradient is small, and thus the SPGD 
algorithm will behave more like the PGD algorithm. A smaller x  
can be obtained via using more samples to construct ( ),g ( )ti  
e.g., using

( ) ( ),g f1
B

( ) ( )
( )

t
t

t

B( )t

di i=
,

,

!

/

where B( )t  denotes the index set of the ( )f s( )ti,  sampled at iter-
ation t. This leads to the so-called minibatch scheme. Note that 
if LB( )t = , then 0x =  and SPGD becomes PGD. As we 
have mentioned, a smaller x  would make the convergence 
properties of SPGD more like PGD, and thus a larger B( )t  is 
more preferred in terms of variance reduction. However, a larger 
B( )t  leads to more operations for computing the stochastic 

oracle. In practice, this is a tradeoff that often requires some tun-
ing to balance.

The randomness of stochastic algorithms makes character-
izing the convergence properties of a single sequence of { }( )

t
ti  

meaningless. Instead, the “expected convergence properties” are 
often used. For example, when ( )h i  is absent, a convergence cri-
terion of interest is expressed as follows:

	 ,liminf f 0E ( )
t

t
2
2

d i =
"3

^ h6 @ � (34)

where the expectation is taken across all the RVs that were used 
for constructing the stochastic oracles for all the iterations (i.e., 
the “total expectation”). Equation (34) means that every limit 
point of { }( )ti  is a stationary point in expectation. When ( )h i  is 
present, similar ideas are utilized. Recall that ( )F0 ( )t2! i  is a 
necessary condition for attaining a stationary point [see (6)]. In 
[17], the expected counterpart of (6), i.e.,

	 [ ( , ( ))] ,liminf F 00distE ( )
t

t2 i =
"3

� (35)

is employed for establishing the notion of stationary-point con-
vergence for nonconvex, nonsmooth problems under the sto-
chastic settings. For both (34) and (35), when some more 
assumptions hold (e.g., the solution sequence is bounded), the 
“inf” notation can be removed, meaning that the whole sequence 
converges to a stationary point on average.

Entry sampling
Many SLRD problems can be re-expressed in a similar form as 
that in (32). One can rewrite the constrained CPD problem under 
the LS fitting loss as follows:

	 ( ) ( ),min
L

f h1
, ,

A i

I

i i
i

I

1 1n n
N

N

N

N

1 1

1

1f i i+f

= ==" ,
/ / � (36)

where , ( ) ( )AL I h hn
N

n n
N

n n1 1iP R= == =  and ( )f , ,i iN1 i =f

( ( , , ) ( , )) .Ai i i rT N r
R

n
N

n n1 1 1
2f R P- = =  Assume B( )t  is a set of 

indices of the tensor entries that are randomly sampled [see 
Figure 7(a)]. The corresponding SPGD update is as follows: 

( )t 1i +  is given by

	 Prox ( ) .f
B

( )
( )

( )

( , , )

, ,
( )

h
t

t

t

i i

i i
t

B( )
N

t

N

1

1di ia-
f

f

!

e o/ � (37)

It is not difficult to see that many entries of ( )f , ,
( )

i i
t

N1d if  
are zero since ( )f , ,

( )
i i

t
N1d if  contains only the informa-

tion of ( , :);A in n  we have ( )f 0, ,
( )

i i
t

gN1d i =f6 @  for all g "i  
{ ( , ) ( , , ) }.A i r i i B( )

n n N
t

1 f; !  The derivative with respect to 
( , :)A in n  for the sampled indices is easy to compute; see [2]. 

This is essentially the idea in [15] for coupled tensor and 
matrix decompositions. This kind of sampling strategy ensures 
that the constructed stochastic oracle is an unbiased estima-
tion for the full gradient, and it features very lightweight 
updates. Computing the term ( )f , ,

( )
i i

t
B( )t

N1d iR f  requires only 
RO B( )t^ h operations, instead of R IO n

N
n1P =^ h operations for 

computing the full gradient.

Subtensor sampling
Entry sampling-based approaches are direct applications of 
conventional SPGD for tensor decomposition. However, these 
methods do not leverage existing tensor decomposition tools. 
One way to take advantage of existing tensor decomposi-
tion algorithms is sampling subtensors, instead of entries. The 
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randomized block sampling (RBS) algorithm [40] considers the 
unconstrained CPD problem. The algorithm samples a subtensor

, , ( , ) ( , )A Ar rT T S S S S( )t
N

r

R

N N1 1
1

1sub % %f f.=
=

^ h /

at every iteration t and updates the latent variables by computing 
one optimization step using

	
,

,

, ,argmin A AT( )

( ) ( )
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t

t
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1

2
1sub

sub

F

sub

sub
sub sub
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�
(38)

where all the variables affected by T( )t
sub  are collected in 

[ ( ); , ( )], ( , :)A A A Avec vec SN n n n1sub
sub sub subfi = =  and subi-  

contains all the other optimization variables. Since each update 
in (40) involves one step in a common tensor decomposition 
problem, many off-the-shelf algorithms, such as ALS or GN, can 
be leveraged [40].

The algorithm in (38) works well, especially when the ten-
sor rank is low and the sampled subtensors already have identi-
fiable latent factors; under such cases, the estimated An

sub  from 
subtensors can serve as a good estimate for the corresponding 
part of An  after one or two updates. In practice, one does not 
need to exactly solve the subproblems in (38). Combining some 
TR considerations, the work in [40] suggested using a one-step 
GN or a one-step regularized ALS to update .subi  Note that the 
sampled subtensors are typically not independent under this 
framework since one wishes to update every unknown parameter 
in an equally frequent way; see [40]. This is quite different from 
established conventions in stochastic optimization, which makes 
convergence analysis for RBS more challenging than the entry 
sampling-based methods.

Fiber sampling
In principle, the entry sampling and SPGD idea in (37) can han-
dle any (·)h  that admits simple proximal operators. In addition, 
the RBS algorithm can be applied with any constraint compati-
ble with the GN framework. However, such sampling strate-
gies are no longer viable when it comes to constraints/
regularization terms that are imposed on the columns of the 
latent factors, e.g., the probability simplex constraint that is 
often used in statistical learning ( ,  ),A A 01 1n n $= <<  the 
constraint ( , :)A A i,n i

I
n n2 1 1 2n

NR= =  used for promoting row 
sparsity, and the total variation/smoothness regularization terms 
on the columns of .An  The reason is that Tsub  contains only 
information about ( , :),A Sn n  which means that enforcing col-

umn constraints on An  is not possible if updates in (37) or (38) 
are employed.

Recently, the work in [27] and [41] advocated sampling (a set 
of) mode-n “fibers” for updating An . A mode-n fiber of the ten-
sor T  is an In-dimensional vector that is obtained by varying the 
mode-n index while fixing others of T  [see Figure 7(c)]. The 
interesting connection here is that

( , :),( , , , : , , , ) Xi i i i jT n n N n n1 1 1

a mode fibern

f f =
-

- +1 2 34444444 4444444

where ( )j i J1 1,n n1R= + -, , , ,!=  and .J I,m m n m1
1P=, ,

!=
-  

Under this sampling strategy, the whole An  can be updated in 
one iteration. Specifically, in iteration t, the work in [41] sequen-
tially updates An  for , , ,n N1 f=  as in the BCD case. To 
update ,An  it samples a set of mode-n fibers, indexed by ,Q( )

n
t  

and solves a “sketched LS” problem,

	 ( ,, :) ( , :)min X H A Q Q( ) ( ) ( )

A
n n

t
n
t

n
t

n
2

F
n

- < � (39)

whose solution is

( ( , :) ( , :)) .A H XQ Q( ) ( ) ( ) ( )
n
t

n
t

n
t

n n
t1 ! @ <+

This simple sampling strategy makes sure that every entry of An  
can be updated in iteration t. The rationale behind it is also rea-
sonable: if the tensor is low-rank, then one does not need to use 
all the data to solve the LS subproblems; using randomly 
sketched data is enough. If the system of linear equations 

( , :)X H AQ( ) ( )
n

t
n
t

n= <  is overdetermined, it returns the same solu-
tion as solving .X H A( )

n
t

n= <

The work in [41] did not explicitly consider structural infor-
mation on ,A sn  and the convergence properties of the approach 
are unclear. To incorporate structural information and to establish 
convergence, the recent work in [27] offered a remedy. There, a 
block-randomized sampling strategy was proposed to help estab-
lish the unbiasedness of the gradient estimation. Then, PGD is 
combined with fiber sampling for handling structural constraints. 
The procedure consists of two sampling stages: first, randomly 
sample a mode { , , }n N1 f!  with random seed ( )tg  such that 
Pr( ) / :n N1( )tg = =  then, sample a set of mode-n fibers indexed 
by Qn  uniformly at random (with another random seed ) .( )tp  
Using the sampled data, construct

	 [ ; ; ],G G G( ) ( ) ( )t t
N
t

1 f= � (40)

where ( , :) ,G A B B X BQ( )
n
t

n n n= - <<  with ( , :),B H Q( ) ( )t
n
t=  

and G 0( )
k
t
=  for .k n!  This block-randomization technique 

entails the following equality:

	 ( ),,G c fvec E H ( )( ) ( ) ( )t t t t( )t d ig =p` j8 B � (41)

where c > 0 is a constant; i.e., the constructed stochastic vector is 
an unbiased estimation (up to a constant scaling factor) for the 
full gradient, conditioned on the filtration. Then, the algorithm 
updates the latent factors via

	 Prox .A A G( ) ( ) ( ) ( )
n
t

h n
t t

n
t1

n! a-+ ^ h � (42)
FIGURE 7. Various sampling strategies used in stochastic optimization 
algorithms. (a) Entry. (b) Subtensor. (c) Fiber.

tijk Tsub Mode1Mode 2

Mode 3
(a) (b) (c)
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Because of (41), the algorithm is almost identical to single-block 
SPGD and thus enjoys similar convergence guarantees [27].

Fiber-sampling approaches, as in [41] and [27], are economi-
cal since they never need to instantiate the large matrix Hn  or 
compute the full MTTKRP. One remark is that fiber sampling is 
also of interest in partially observed tensor recovery [38], [42]; in 
the “Tractable SLRD Problems and Algorithms” section, it will 
actually be argued that under mild conditions, the exact comple-
tion of a fiber-sampled tensor is possible via a matrix eigenvalue 
decomposition [43].

Adaptive step-size scheduling
Implementing stochastic algorithms often requires somewhat 
intensive hands-on tuning for selecting hyperparameters, in 
particular, the step-size .( )ta  Generic stochastic gradient 
descent and SPGD analyses suggest setting the step-size 
sequence by following Robbins and Monro’s rule; i.e., 

,  .( ) ( )
t

t
t

t
0 0

2
3 31a aR R=3 3

= = ^ h  The common practice is to set 
/t( )ta a= b  with ,12b  but the “best” a  and b  for different 

problem instances can be quite different. To resolve this issue, 
adaptive step-size strategies that can automatically determine 

( )ra  are considered in the literature. The RBS method in [40] and 
the fiber-sampling method in [27] both consider adaptive step-
size selection for tensor decomposition. In particular, the latter 
combines the insight of adagrad, which has been popular in 
deep neural network training, with block-randomized tensor 
decomposition to come up with an adaptive step-size scheme 
(see “adagrad for Stochastic SLRD”).

In Figure 8, we show the MSE on the estimated A sn\  obtained 
by different algorithms after using a certain number of the full 
MTTKRP (which serves as a unified complexity measure). 
Here, the tensor has the size ,100 100 100# #  and its CP rank 
is .R 10=  One can see that stochastic algorithms (BrasCPD and 
AdaCPD) work remarkably well in this simulation. In particular, 
the adaptive step-size algorithm exhibits promising performance 
without tuning the step-size parameters. We also would like to 
mention that the stochastic algorithms naturally work with incom-
plete data (e.g., data with missing entries or fibers) since the 
updates rely only on partial information.

Table 1 presents an incomplete summary of structural con-
straints/regularization terms (together with the Euclidean data 
fitting-based CPD cost function) that can be handled by the 
introduced nonconvex optimization frameworks. One can see 
that different frameworks may be specialized for various types of 
structural constraints and regularization terms. In terms of accom-
modating structural requirements, the AO-ADMM algorithm [22] 
and the GN framework offered in Tensorlab [44] may be the most 
flexible ones since they can handle multiple structural constraints 
simultaneously.

More discussions and conclusion

Exploiting structure at data level
Until now, the focus has been on exploiting the multilinear struc-
ture of the decomposition to come up with scalable SLRD algo-
rithms. In many cases, the tensor itself has additional structure 

that can be exploited to reduce the complexity of some “bottle-
neck operations,” such as MTTKRP (which is used in both GN 
and BCD) and computing the fitting residual (needed in GN). 
Note that for batch algorithms, both the computational and the 
memory complexities of these operations scale as 

.tensor entriesO^ h  For classic methods, such as BCD, there is 

In [27], the following term is updated for each block n 
under the block-randomized fiber-sampling framework:

[ ]
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e
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where b and e  are inconsequential small positive quan-
tities for regularization purposes. Then, the selected 
block is updated via

	 Prox .A A G( ) ( ) ( ) ( )
n
t

h n
t

n
t

n
t1

n! Uh-+ ^ h � (S3)

This algorithm can be understood as data-adaptive 
preconditioning for the stochastic oracle .G( )

n
t  

Implementing adagrad-based stochastic CPD (AdaCPD) 
is fairly easy, and it often saves a lot of effort for fine-
tuning ( )ta  while attaining a competitive convergence 
speed; see Figure 8. This also shows the potential of 
adapting the well-developed stochastic optimization tools 
in deep neural network training to serve the purpose of 
SLRD. It is shown in [27] that, using the adagrad version 
of the fiber-sampling algorithm, every limit point of { }( )ti  
is a stationary point in expectation if ( )h i  is absent. 
However, convergence in the presence of nonsmooth 

( )h i  is still an open challenge.

adagrad for Stochastic SLRD

FIGURE 8. Stochastic algorithms [block-randomized stochastic CPD 
(BrasCPD) (manually fine-tuned step-size) and AdaCPD (adaptive 
step-size)] use significantly fewer operations to reach a good estimation 
accuracy for the latent factors, compared to batch algorithms. The MSE 
for estimating the An’s against the number of the full MTTKRP used. The 
CP rank is 10, and In = 100 for all n = 1, 2, 3. (Reproduced from [27].) 
AO-ADMM: alternating optimization-ADMM; APG: alternating proximal 
gradient.
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rich literature on exploiting the data structure (in particular, spar-
sity) to avoid memory and flops explosions; see [2] and [5] and 
the references therein. For all the batch methods, it is crucial to 
exploit the data structure to reduce the complexity of computing 
f and g to .parameters in representationO^ h  The key is avoid-
ing the explicit construction of the residual .F  The techniques 
for second-order methods and constraints outlined in the section 
“Second-Order Approaches” can be used without changes, as the 
computation of the Gramian as well as the Jacobians Ju  resulting 
from parametric, symmetry, or coupling constraints are indepen-
dent of the tensor [49], which can be verified from (20). This 
way, the nonnegative CPD of gigabyte-size tensors, and deter-
ministic blind source separation (BSS) problems with up to mil-
lions of samples, can be handled easily on simple laptops and 
desktops; see [49] for examples.

Other loss functions
In the previous sections, we focused on the standard Euclidean 
distance to measure the error of the data-fitting term. This is by 
no means the best choice in all scenarios. It corresponds to the 
MLE, assuming the input tensor is a low-rank tensor to which 
additive i.i.d. Gaussian noise is added. It may be crucial in some 
cases to adopt other data-fitting terms. Let us mention an array of 
important examples, including the following:

■■ For count data, such as documents represented as vectors of 
word counts (this is the so-called bag-of-words model), the 
matrix/tensor is nonnegative and typically sparse (most docu-
ments do not use most words from the dictionary), for which 
Gaussian noise is clearly not appropriate. Let us focus on the 

matrix case for simplicity. If we assume the noise added to 
the entry (i, j) of the input matrix X is a Poissonian of param-
eter 1 ,[ ]A A ,i j2m =  we have Pr ( ) / !X k e k,i j

km= = m-  with 
.k Z! +  The MLE leads to minimizing the KL divergence 

between X  and :A A1 2
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The KL divergence is also widely used in imaging because 
the acquisition can be seen as a photon-counting process (note 
that, in this case, the input matrix is not necessarily sparse).

■■ Multiplicative noise, for which each entry of the low-rank 
tensor is multiplied with some noise, has been shown to be 
particularly well adapted to audio signals. For example, if the 
multiplicative noise follows a Gamma distribution, the MLE 
minimizes the Itakura–Saito (IS) divergence between the 
observed tensor and its low-rank approximation [50]; in the 
matrix case with ,X A A1 2. <  it is given by

	 .min log
A A

X
A A

X
1

, ,

,

, ,

,

A A i j

i j

i j i j

i j

1 2 1 21 2
- -< <6 6@ @/ � (44)

■■ In the presence of outliers (that is, the noise has some entries 
with a large magnitude), using the component-wise 1,  norm 
is more appropriate:

	 ( , , ) ( , )Ai i i rT
, , ,

N n
n

N

r
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n
i i i

1
11N1 2

f -
f ==

%/ / � (45)

Table 1. An incomplete summary of structural constraints that can be handled by some representative algorithms.

Structural Constraint or Regularization
AO-ADMM [22]  
(Exact BCD)

APG [16]  
(Inexac BCD)

Tensorlab [44] 
(GN)

AdaCPD [27] 
(Stochastic)

Nonnegativity 0( )An $ ✓ ✓ ✓ ✓

Sparsity ,i rA An n
r

R

i

I

1
11

n

=
==

e ^ h o// ✓ ✓ ✓+ ✓

Column group sparsity : , rA A,n n
r

R

2 1 2
1

=
=

e ^ h o/ ✓ ✓ ✓+ ✓

Row group sparsity < , :iA A,n n
i

I

2 1 2
1

n

=
=

e ^ h o/ ✓ ✓ ✓+ ✓

Total variation T An1 1^ h* ✓ ✓ ✓+ ✓

Row probability simplex 1 1 0,  A An n $=^ h ✓ ✓ ✓ ✓

Column probability simplex < < 0,  A A1 1n n $=^ h ✓ ✓ ✓ ✓

Tikhonov smoothness T An2
2
F^ h* ✓ ✓ ✓ ✓

Decomposition symmetry A An m=^ h ✓ 

Boundedness ,a i r bAn# #^^ h h ✓ ✓ ✓ ✓

Coupled factorization (see [42], [45], [46], and [47]) ✓ ✓ ✓ ✓

Multiple structures combined T A Ae.g., ,n n2 1 2 1+^ h ✓ ✓ 

*The operators T1 and T2 are sparse circulant matrices whose expressions can be found in the literature, e.g., [48].
+GN-based methods (except for ProxGN in [39]) work with differentiable functions. In Tensorlab, the 1,  norm-related nondifferentiable terms are handled using function-smooth-
ing techniques as approximations; see details in [35].
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and corresponds to the MLE for Laplace noise [51]. This is 
closely related to robust principal component analysis and 
can be used, for example, to extract the low-rank background 
from moving objects (treated as outliers) in a video sequence 
[12]. When “gross outliers” heavily corrupt a number of slabs 
of the tensor data (or columns/rows of the matrix data), opti-
mization objectives involving nonconvex mixed / p2, ,  func-
tions (where p0 11 # h) may also be used [14], [52]. For 
example, the following fitting cost may be used when one 
believes that some columns of X  are outliers [14]:

(: , ) ( , :) ,X A Ai i
p

i

I

2 1 2 2 2
12

2

- <

=

/

where p0 11 #  is used to downweight the impact of the 
outlying columns.

■■ For quantized signals, that is, signals whose entries have been 
rounded to some accuracy, an appropriate noise model is the 
uniform distribution [to be more precise, for the ,3  norm to 
correspond to the MLE, all entries must be rounded with the 
same absolute accuracy (e.g., the nearest integer), which is 
typically not the case in most programming languages]. For 
example, if each entry of a low-rank matrix is rounded to the 
nearest integer, then each entry of the noise can be modeled 
with the uniform distribution in the interval [ . , . ] .0 5 0 5-  The 
corresponding MLE minimizes the component-wise ,3  
norm, replacing , , ,i i iN1 2R f  by max , , ,i i iN1 2 f  in (45).

■■ If the noise is not identically distributed among the entries of 
the tensor, a weight should be assigned to each entry. For 
example, for independently distributed Gaussian noise, the 
MLE minimizes
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where ( , , )i iN
2

1 fv  is the variance of the noise for the entry 
at position ( , , ) .i iN1 f  Interestingly, for missing entries, 

( , , )i iN1 f 3v =+  corresponds to a weight of zero while, if 
there is no noise [that is, ( , , ) ],i i 0N1 fv =  the weight is infi-
nite so that the entry must be exactly reconstructed.
In all these cases, we end up with more complicated opti-

mization problems because the nice properties of the Euclidean 
distance are lost, in particular, the Lipschitz continuity of the 
gradient (the 1,  and ,3  norms are even nonsmooth). For the 
weighted norm, the problem might become ill-posed (the opti-
mal solution might not exist, even with nonnegativy constraints) 
in the presence of missing entries because some weights are zero 
so that the weighted “norm” is actually not a norm. For the KL 
and IS divergences, the gradient of the objective is not Lipschitz 
continuous, and the objective is not defined everywhere: X 0,i j 2  
requires [ ]A A 0,i j1 2 2<  in (43) and (44).

The most popular optimization method for these divergenc-
es is multiplicative updates, which constitutes an inexact BCD 
approach; see the “Inexact BCD” section. For the component-
wise 1, , ,3  norms and nonconvex / p2, ,  functions, subgradient 
descent (which is similar to PGD), iteratively reweighed LS, and 

exact BCD are popular approaches; see, e.g., [14], [51], and [52]. 
Some of these objectives (e.g., the KL divergence and the com-
ponent-wise 1,  norm) can also be handled under a variant of the 
AO-ADMM framework with simple updates but possibly high 
memory complexities [22]. In all cases, convergence will be typi-
cally slower than for the Euclidean distance.

Tractable SLRD problems and algorithms
We have introduced a series of nonconvex optimization tools for 
SLRD that are all supported by stationary-point convergence 
guarantees. However, it is, in general, unknown if these algo-
rithms will reach a globally optimal solution (or if the LRDMs 
can be exactly found). While convergence to the global optimum 
can be observed in practical applications, establishing pertinent 
theoretical guarantees is challenging given the NP-hardness of 
the problem [11]–[13], [53]. Nevertheless, in certain settings, the 
computation of LRDMs is known to be tractable. We mention 
the following:

■■ In the case where a fully symmetric tensor admits a CPD 
with all latent factors identical and orthogonal (i.e., all the 
A sn  are identical, and ),A A In n =

<  the latent factors can be 
computed using a power iteration/deflation-type algorithm 
[53]. This is analogous to the computation of the 
eigendecomposition of a symmetric matrix through succes-
sive power iteration and deflation. One difference is that a 
symmetric matrix can be exactly diagonalized by an orthogo-
nal eigentransformation, while a generic higher-order tensor 
can only be approximately diagonalized; the degree of diago-
nalizability affects the convergence [54]. By itself, CPD with 
identical and orthogonal A sn  is a special model that is not 
readily encountered in many applications. However, in an 
array of BSS and machine learning problems (e.g., indepen-
dent component analysis, topic modeling, and community 
detection), it is possible under some conditions to transform 
higher-order statistics so that they satisfy this special model 
up to estimation errors. In particular, second-order statistics 
can be used for a prewhitening that is guaranteed to orthogo-
nalize the latent factors when the decomposition is exact. For 
deflation-based techniques that do not require orthogonality 
or symmetry, see [55] and [56].

■■ Beyond CPD with identical and orthogonal latent factors, 
eigendecomposition-based algorithms have a long history for 
finding the exact CPD under various conditions. The sim-
plest scenario is where two factor matrices have a full col-
umn rank and the third factor matrix does not have 
proportional columns. In this scenario, the exact CPD can be 
found from the generalized eigenvalue decomposition of a 
pencil formed by two tensor slices (or linear combinations of 
slices) [57]. The fact that, in the first steps of the algorithm, 
the tensor is reduced to just a pair of its slices implies some 
bounds on the accuracy, especially in cases where the rank is 
high compared to the tensor dimensions, i.e., when a lot of 
information is extracted from the two slices [58]. To mitigate 
this, [56] presents an algebraic approach in which multiple 
pencils are each partially used in a way that takes into 
account their numerical properties. 
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Moreover, the working conditions of the basic eigen-
decomposition approach have been relaxed to situations 
in which only one factor is required to have a full column 
rank [59]. The method utilizes a bilinear mapping to con-
vert the more general CPD problem to the “simplest sce-
nario” in the preceding. This line of work has been further 
extended to handle cases where the latent factors are all 
allowed to be rank deficient, enabling exact algebraic com-
putation up to the famous Kruskal bound and beyond [60], 
[61]. Algorithms of this type have been proposed for other 
tensor decomposition models, as well, e.g., BTD and LL1 
decomposition [19], [62], coupled CPD [63], and CPD of 
incomplete fiber-sampled tensors [43]. While the accuracy 
of these methods is sometimes limited in practical noisy set-
tings, the computed results often provide good initialization 
points for the introduced iterative, nonconvex, optimization-
based methods.

■■ In [64] noise bounds are derived under which the CPD mini-
mization problem is well posed and the cost function has 
only one local minimum, which is hence global.

■■ Many unconstrained low-rank matrix estimation problems 
(e.g., compressed matrix recovery and matrix completion) 
are known to be solvable via nonconvex optimization meth-
ods under certain conditions [65]. Structure-constrained 
matrix decomposition problems are, in general, more chal-
lenging, but solvable cases also exist under some model 
assumptions. For example, separable NMF tackles the 
NMF problem through the assumption that a latent factor 
contains a column-scaled version of the identity matrix as 
its submatrix. This assumption facilitates a number of algo-
rithms that provably output the target latent factors, even in 
the noisy cases; see tutorials in [1] and [4]. Solvable cases 
also exist in dictionary learning that identifies a sparse fac-
tor in an “overcomplete” basis. If the sparse latent factor is 
generated following a Gaussian-Bernoulli model, it has 
been shown that the optimization landscape under an 
“inverse-filtering” formulation is “benign”; i.e., all local 
minima are also global minima. Consequently, a globally 
optimal solution can be attained via nonconvex optimiza-
tion methods [66].

Other models
The algorithm design principles can be generalized to cover 
other models, e.g., BTD, LL1, Tucker, and Tensor Train (TT)/
hierarchical Tucker (hT), to name a few [67]–[72]. Note that, in 
their basic form, BTD, LL1, Tucker, and TT/hT involve subspac-
es rather than vectors so that optimization on manifolds is a natu-
ral framework. Some extensions of SLRD are straightforward. 
For instance, both BCD and second-order algorithms for struc-
tured Tucker, BTD, and LL1 decompositions exist [16], [19], 
[31], [36]. GN-based methods were also considered for nonneg-
ativity-constrained Tucker decomposition. LL1 can be regarded 
as CPD with repeated columns in some latent factor matrices, 
and thus the parametrization techniques can be used to come up 
with GN algorithms for LL1 as constrained CPD [31], [35]. 
However, some extensions may require more effort. For exam-

ple, in stochastic algorithm design, different tensor models and 
structural constraints may require the custom design of sampling 
strategies, as we have seen in the CPD case. This also entails 
many research opportunities ahead.

Concluding remarks
In this article, we introduced three types of nonconvex optimi-
zation tools that are effective for SLRD. Several remarks are 
in order.

■■ The BCD-based approaches are easy to understand and 
implement. Inexact BCD and extrapolation techniques are 
particularly useful in practice. This line of work can poten-
tially handle a large variety of constraints and regularization 
terms if the subproblem solver is properly chosen. The down-
side is that BCD is a first-order optimization approach at a 
high level. Hence, the speed of convergence (in terms of the 
number of iterations needed) is usually not fast. Designing 
effective and lightweight acceleration strategies may help 
advance BCD-based SLRD algorithms.

■■ The GN-based approaches are powerful in terms of their 
convergence speed and per-iteration computational complex-
ity. They are also the foundation of the tensor computation 
infrastructure Tensorlab. On the other hand, the GN 
approaches are specialized for NLS and smoothed objective 
functions. In other words, they may not be as flexible as 
BCD-based approaches in terms of incorporating structural 
information. Using ProxGN may improve the flexibility, but 
the subproblems arising in the ProxGN framework are not 
necessarily easy to solve. Extending the second-order 
approaches to accommodate more structural requirements 
and objective functions other than the LS loss promises a 
fertile research ground.

■■ The stochastic approaches strike a balance between per-iter-
ation computational/memory complexity and the overall 
decomposition algorithm effectiveness. Different sampling 
strategies may be able to handle various types of structural 
information. Stochastic optimization may involve more 
hyperparameters to tune (in particular, the minibatch size 
and the step-size) and thus may require more attentive soft-
ware engineering for implementation. Convergence proper-
ties of stochastic tensor/matrix decomposition algorithms 
are not as clear, which also poses many exciting research 
questions for the tensor/matrix and optimization communi-
ties to explore.

Acknowledgments
Xiao Fu is supported by the National Science Foundation, 
under projects ECCS-1608961, ECCS-1808159, and III-1910118, 
and the Army Research Office, under projects ARO 
W911NF-19-1-0247 and ARO W911NF-19-1-0407. Nico Vervliet 
is supported by a junior postdoctoral fellowship (12ZM220N) from 
the Research Foundation–Flanders. The work of the Belgian team 
is also supported by the Fonds de la Recherche Scientifique–Fonds 
National de la Recherche Scientifique and the Fonds 
Wetenschappelijk Onderzoek–Vlaanderen, under Excellence Of 
Science project 30468160 (SeLMA); KU Leuven Internal Funds 

Authorized licensed use limited to: Cornell University Library. Downloaded on September 11,2020 at 04:50:59 UTC from IEEE Xplore.  Restrictions apply. 



93IEEE SIGNAL PROCESSING MAGAZINE   |   September 2020   |

C16/15/059 and ID-N project 3E190402; and the Flemish 
Government (Artificial Intelligence Research Program). Nicolas 
Gillis acknowledges the support of the European Research Council 
(starting grant 679515).

Authors
Xiao Fu (xiao.fu@oregonstate.edu) received his Ph.D. degree in 
electronic engineering from the Chinese University of Hong 
Kong in 2014. He is an assistant professor in the School of 
Electrical Engineering and Computer Sciences at Oregon State 
University, Corvallis. He was a postdoctoral associate at the 
University of Minnesota from 2014 to 2017. His research inter-
ests include the theory and methods of matrix and tensor factor-
ization and their applications in signal processing and machine 
learning. He received a Best Student Paper Award at ICASSP 
2014 and the Outstanding Postdoctoral Scholar Award at the 
University of Minnesota in 2016.

Nico Vervliet (nico.vervliet@esat.kuleuven.be) received his 
Ph.D. degree from the Faculty of Engineering, KU Leuven, 
Belgium, in 2018. He is currently a postdoctoral researcher at the 
STADIUS Center for Dynamical Systems, Signal Processing, 
and Data Analytics, Department of Electrical Engineering, KU 
Leuven. His research interests include numerical multilinear 
algebra, the optimization and application of tensor decomposi-
tions in signal processing, and data analysis, with a focus on big 
data and data fusion. He is the lead developer of Tensorlab.

Lieven De Lathauwer (lieven.delathauwer@kuleuven 
.be) received his Ph.D. degree from the Faculty of Engineering, 
KU Leuven, Belgium, in 1997, where he is currently a full pro-
fessor. From 2000 to 2007, he was a research associate at the 
CNRS-ETIS. He is an associate editor of SIAM Journal on 
Matrix Analysis and Applications and has served as an associ-
ate editor of IEEE Transactions on Signal Processing. He was 
a corecipient of the IEEE Signal Processing Society Signal 
Processing Magazine best paper award in 2018. His research 
concerns the development of tensor tools for engineering 
applications. He is a Fellow of IEEE, the Society for Industrial 
and Applied Mathematics, and European Association for 
Signal Processing.

Kejun Huang (kejun.huang@ufl.edu) received his B.Eng. 
degree in communications engineering from the Nanjing 
University of Information Science and Technology, China, in 
2010 and his Ph.D. degree in electrical engineering from the 
University of Minnesota, Minneapolis, in 2016. He is an assis-
tant professor in the Department of Computer and Information 
Science and Engineering at the University of Florida, 
Gainesville. He was a postdoctoral associate in the Department 
of Electrical and Computer Engineering at the University of 
Minnesota from 2016 to 2018. His research interests include 
machine learning, signal processing, optimization, and statistics. 
He is a Member of IEEE.

Nicolas Gillis (nicolas.gillis@umons.ac.be) received his 
M.S. and Ph.D. degrees in applied mathematics from 
UCLouvain, Belgium, in 2007 and 2011, respectively. He is cur-
rently an associate professor in the Department of Mathematics 
and Operational Research, University of Mons, Belgium. His 

research interests include optimization, numerical linear algebra, 
signal processing, machine learning, and data mining. He 
received the Householder Award in 2014 and a European 
Research Council starting grant in 2015. He currently serves as 
an associate editor of IEEE Transactions on Signal Processing 
and SIAM Journal on Matrix Analysis and Applications.

References
[1] N. Gillis, “The why and how of nonnegative matrix factorization,” in Regularization, 
Optimization, Kernels, and Support Vector Machines (Machine Learning and Pattern 
Recognition), J. A. K. Suykens, M. Signoretto, and A. Argyriou, Eds. Boca Raton, FL: 
Chapman & Hall/CRC, 2014, ch. 12, pp. 257–291. 

[2] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalexakis, and C. 
Faloutsos, “Tensor decomposition for signal processing and machine learning,” IEEE 
Trans. Signal Process., vol. 65, no. 13, pp. 3551–3582, 2017. doi: 10.1109/
TSP.2017.2690524.

[3] A. Cichocki, D. Mandic, L. De Lathauwer, G. Zhou, Q. Zhao, C. Caiafa, and H.-A. 
Phan, “Tensor decompositions for signal processing applications: From two-way to mul-
tiway component analysis,” IEEE Signal Process. Mag., vol. 32, no. 2, pp. 145–163, 
2015. doi: 10.1109/MSP.2013.2297439.

[4] X. Fu, K. Huang, N. D. Sidiropoulos, and W.-K. Ma, “Nonnegative matrix 
factorization for signal and data analytics: Identifiability, algorithms, and applications,” 
IEEE Signal Process. Mag., vol. 36, no. 2, pp. 59–80, Mar. 2019. doi: 10.1109/
MSP.2018.2877582.

[5] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,” SIAM Rev., 
vol. 51, no. 3, pp. 455–500, 2009. doi: 10.1137/07070111X.

[6] L.-H. Lim and P. Comon, “Nonnegative approximations of nonnegative tensors,” J. 
Chemometr., vol. 23, no. 7–8, pp. 432–441, 2009. doi: 10.1002/cem.1244.

[7] Y. Qian, F. Xiong, S. Zeng, J. Zhou, and Y. Y. Tang, “Matrix-vector nonnegative tensor 
factorization for blind unmixing of hyperspectral imagery,” IEEE Trans. Geosci. Remote 
Sens., vol. 55, no. 3, pp. 1776–1792, 2017. doi: 10.1109/TGRS.2016.2633279.

[8] K. Huang and X. Fu, “Detecting overlapping and correlated communities without 
pure nodes: Identifiability and algorithm,” in Proc. 36th Int. Conf. Machine Learning, 
Long Beach, CA, June 9–15, 2019, vol. 97, pp. 2859–2868. 

[9] G. Zhou, A. Cichocki, Q. Zhao, and S. Xie, “Nonnegative matrix and tensor factoriza-
tions: An algorithmic perspective,” IEEE Signal Process. Mag., vol. 31, no. 3, pp. 54–65, 
2014. doi: 10.1109/MSP.2014.2298891.

[10] R. A. Harshman, “Foundations of the PARAFAC procedure: Models and conditions 
for an ‘explanatory’ multimodal factor analysis,” UCLA Work. Papers Phonetics, vol. 16, 
pp. 1–84, 1970. 

[11] C. J. Hillar and L.-H. Lim, “Most tensor problems are NP-hard,” J. ACM, vol. 60, 
no. 6, pp. 45:1–45:39, 2013. doi: 10.1145/2512329.

[12] N. Gillis and S. A. Vavasis, “On the complexity of robust PCA and 1-norm low-rank 
matrix approximation,” Math. Oper. Res., vol. 43, no. 4, pp. 1072–1084, 2018. doi: 
10.1287/moor.2017.0895.

[13] S. A. Vavasis, “On the complexity of nonnegative matrix factorization,” SIAM J. 
Optim., vol. 20, no. 3, pp. 1364–1377, 2009. doi: 10.1137/070709967.

[14] X. Fu, K. Huang, B. Yang, W. Ma, and N. D. Sidiropoulos, “Robust volume minimi-
zation-based matrix factorization for remote sensing and document clustering,” IEEE 
Trans. Signal Process., vol. 64, no. 23, pp. 6254–6268, Dec. 2016. doi: 10.1109/
TSP.2016.2602800.

[15] A. Beutel, P. P. Talukdar, A. Kumar, C. Faloutsos, E. E. Papalexakis, and E. P. Xing, 
“Flexifact: Scalable flexible factorization of coupled tensors on Hadoop,” in Proc. SIAM 
Int. Conf. Data Mining (SDM 2014), 2014, pp. 109–117.

[16] Y. Xu and W. Yin, “A block coordinate descent method for regularized multiconvex 
optimization with applications to nonnegative tensor factorization and completion,” 
SIAM J. Imaging Sci., vol. 6, no. 3, pp. 1758–1789, 2013. doi: 10.1137/120887795.

[17] Y. Xu and W. Yin, “Block stochastic gradient iteration for convex and nonconvex 
optimization,” SIAM J. Optim., vol. 25, no. 3, pp. 1686–1716, 2015.

[18] M. Razaviyayn, M. Hong, and Z.-Q. Luo, “A unified convergence analysis of block 
successive minimization methods for nonsmooth optimization,” SIAM J. Optim., vol. 23, 
no. 2, pp. 1126–1153, 2013. doi: 10.1137/120891009.

[19] L. De Lathauwer and D. Nion, “Decompositions of a higher-order tensor in block 
terms—Part III: Alternating least squares algorithms,” SIAM J. Matrix Anal. Appl., vol. 
30, no. 3, pp. 1067–1083, 2008. doi: 10.1137/070690730.

[20] N. Parikh and S. Boyd, “Proximal algorithms,” Found. Trends Optim., vol. 1, no. 3, 
pp. 123–231, 2014. 

[21] C.-J. Lin, “Projected gradient methods for nonnegative matrix factorization,” Neural 
Comput., vol. 19, no. 10, pp. 2756–2779, 2007. doi: 10.1162/neco.2007.19.10.2756.

[22] K. Huang, N. D. Sidiropoulos, and A. P. Liavas, “A flexible and efficient algorithmic 
framework for constrained matrix and tensor factorization,” IEEE Trans. Signal Process., 
vol. 64, no. 19, pp. 5052–5065, 2016. doi: 10.1109/TSP.2016.2576427.

Authorized licensed use limited to: Cornell University Library. Downloaded on September 11,2020 at 04:50:59 UTC from IEEE Xplore.  Restrictions apply. 



94 IEEE SIGNAL PROCESSING MAGAZINE   |   September 2020   |

[23] N. Guan, D. Tao, Z. Luo, and B. Yuan, “NeNMF: An optimal gradient method for 
nonnegative matrix factorization,” IEEE Trans. Signal Process., vol. 60, no. 6, pp. 2882–
2898, 2012. doi: 10.1109/TSP.2012.2190406.

[24] H. Kim and H. Park, “Nonnegative matrix factorization based on alternating non-
negativity constrained least squares and active set method,” SIAM J. Matrix Anal. Appl., 
vol. 30, no. 2, pp. 713–730, 2008. doi: 10.1137/07069239X.

[25] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix factorization,” in 
Proc. Advances Neural Information Processing Systems, 2001, vol. 13, pp. 556–562.

[26] Y. Nesterov, “A method for unconstrained convex minimization problem with the 
rate of convergence o(1/k2),” Doklady an USSR, vol. 269, pp. 543–547, 1983. 

[27] X. Fu, S. Ibrahim, H.-T. Wai, C. Gao, and K. Huang, “Block-randomized stochastic 
proximal gradient for low-rank tensor factorization,” IEEE Trans. Signal Process., vol. 
68, pp. 2170–2185, Mar. 20, 2020. doi: 10.1109/TSP.2020.2982321. 

[28] D. P. Bertsekas, Nonlinear Programming. Athena Scientific, Nashua, NH, 1999. 

[29] C.-J. Hsieh and I. S. Dhillon, “Fast coordinate descent methods with variable selec-
tion for non-negative matrix factorization,” in Proc. 17th ACM SIGKDD Int. Conf. 
Knowledge Discovery and Data Mining, 2011, pp. 1064–1072. doi: 10.1145/2020408. 
2020577.

[30] Z. Li, A. Uschmajew, and S. Zhang, “On convergence of the maximum block 
improvement method,” SIAM J. Optim., vol. 25, no. 1, pp. 210–233, 2015. doi: 
10.1137/130939110.

[31] L. Sorber, M. Van Barel, and L. De Lathauwer, “Optimization-based algorithms for 
tensor decompositions: Canonical polyadic decomposition, decomposition in rank-(Lr, 
Lr, 1) terms, and a new generalization,” SIAM J. Optim., vol. 23, no. 2, pp. 695–720, 
2013. doi: 10.1137/120868323.

[32] A.-H. Phan, P. Tichavský, and A. Cichocki, “Low complexity damped Gauss–
Newton algorithms for CANDECOMP/PARAFAC,” SIAM J. Matrix Anal. Appl., vol. 
34, no. 1, pp. 126–147, 2013. doi: 10.1137/100808034.

[33] L. Sorber, I. Domanov, M. Van Barel, and L. De Lathauwer, “Exact line and plane 
search for tensor optimization,” Comput. Optim. Appl., vol. 63, no. 1, pp. 121–142, 2015. 
doi: 10.1007/s10589-015-9761-5.

[34] A.-H. Phan, P. Tichavský, and A. Cichocki, “Fast alternating LS algorithms for high 
order CANDECOMP/PARAFAC tensor factorizations,” IEEE Trans. Signal Process., 
vol. 61, no. 19, pp. 4834–4846, 2013. doi: 10.1109/TSP.2013.2269903.

[35] N. Vervliet and L. D. Lathauwer, “Numerical optimization based algorithms for data 
fusion,” in Data Fusion Methodology and Applications (Data Handling in Science 
and Technology), vol. 31, 1st ed., M. Cocchi, Ed. New York: Elsevier, 2019, ch. 4, pp. 
81–128.

[36] L. Sorber, M. Van Barel, and L. De Lathauwer, “Structured data fusion,” IEEE J. 
Sel. Topics Signal Process., vol. 9, no. 4, pp. 586–600, 2015. doi: 10.1109/
JSTSP.2015.2400415.

[37] Q. Wei, N. Dobigeon, and J.-Y. Tourneret, “Fast fusion of multi-band images based 
on solving a Sylvester equation,” IEEE Trans. Image Process., vol. 24, no. 11, pp. 4109–
4121, 2015. doi: 10.1109/TIP.2015.2458572.

[38] G. Zhang, X. Fu, J. Wang, X.-L. Zhao, and M. Hong, “Spectrum cartography via 
coupled block-term tensor decomposition,” IEEE Trans. Signal Process., vol. 68, pp. 
3660–3675, May 14, 2020. doi: 10.1109/TSP.2020.2993530.

[39] K. Huang and X. Fu, “Low-complexity proximal Gauss–Newton algorithm for non-
negative matrix factorization,” in Proc. IEEE Global Conf. Signal and Information 
Processing (GlobalSIP 2019), 2019, pp. 1–5. doi: 10.1109/GlobalSIP45357.2019. 8969492.

[40] N. Vervliet and L. D. Lathauwer, “A randomized block sampling approach to canon-
ical polyadic decomposition of large-scale tensors,” IEEE J. Sel. Topics Signal Process., 
vol. 10, no. 2, pp. 284–295, 2016. doi: 10.1109/JSTSP.2015.2503260.

[41] C. Battaglino, G. Ballard, and T. G. Kolda, “A practical randomized CP tensor 
decomposition,” SIAM J. Matrix Anal. Appl., vol. 39, no. 2, pp. 876–901, 2018. doi: 
10.1137/17M1112303.

[42] C. I. Kanatsoulis, X. Fu, N. D. Sidiropoulos, and M. Akcakaya, “Tensor completion 
from regular sub-Nyquist samples,” IEEE Trans. Signal Process., vol. 68, pp. 1–16, Nov. 
6, 2019. doi: 10.1109/TSP.2019.2952044. 

[43] M. Sørensen and L. De Lathauwer, “Fiber sampling approach to canonical polyadic 
decomposition and application to tensor completion,” SIAM J. Matrix Anal. Appl., vol. 
40, no. 3, pp. 888–917, 2019. doi: 10.1137/17M1140790.

[44] N. Vervliet, O. Debals, L. Sorber, M. Van Barel, and L. De Lathauwer. Tensorlab 3.0 
(2016). [Online]. Available: https://www.tensorlab.net 

[45] S. Ibrahim, X. Fu, N. Kargas, and K. Huang, “Crowdsourcing via pairwise co-
occurrences: Identifiability and algorithms,” in Proc. Advances Neural Information 
Processing Systems, 2019, vol. 32, pp. 7845–7855.

[46] S. Ibrahim and X. Fu, “Stochastic optimization for coupled tensor decomposition 
with applications in statistical learning,” in Proc. IEEE DSW, 2019, pp. 300–304. doi: 
10.1109/DSW.2019.8755797.

[47] M. Sørensen and L. De Lathauwer, “Coupled canonical polyadic decompositions 
and (coupled) decompositions in multilinear rank-(Lr,n, Lr,n, 1) terms—Part I: 
Uniqueness,” SIAM J. Matrix Anal. Appl., vol. 36, no. 2, pp. 496–522, 2015.

[48] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.: Cambridge 
Univ. Press, 2004.

[49] N. Vervliet, O. Debals, and L. De Lathauwer, “Exploiting efficient representations in 
tensor decompositions,” SIAM J. Sci. Comput., vol. 41, no. 2, pp. A789–A815, 2019. doi: 
10.1137/17M1152371.

[50] C. Févotte, N. Bertin, and J.-L. Durrieu, “Nonnegative matrix factorization with the 
Itakura–Saito divergence: With application to music analysis,” Neural Comput., vol. 21, 
no. 3, pp. 793–830, 2009. doi: 10.1162/neco.2008.04-08-771.

[51] S. A. Vorobyov, Y. Rong, N. D. Sidiropoulos, and A. B. Gershman, “Robust iterative 
fitting of multilinear models,” IEEE Trans. Signal Process., vol. 53, no. 8, pp. 2678–
2689, 2005. doi: 10.1109/TSP.2005.850343.

[52] X. Fu, K. Huang, W.-K. Ma, N. Sidiropoulos, and R. Bro, “Joint tensor factorization 
and outlying slab suppression with applications,” IEEE Trans. Signal Process., vol. 63, 
no. 23, pp. 6315–6328, 2015. doi: 10.1109/TSP.2015.2469642.

[53] A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and M. Telgarsky, “Tensor decom-
positions for learning latent variable models,” J. Mach. Learn. Res., vol. 15, no. 80, pp. 
2773–2832, 2014. 

[54] M. Espig, W. Hackbusch, and A. Khachatryan, On the convergence of alternating 
least squares optimisation in tensor format representations. 2015. [Online]. Available: 
arXiv:1506.00062

[55] A.-H. Phan, P. Tichavsky`, and A. Cichocki, “Tensor deflation for CANDECOMP/
PARAFAC-Part I: Alternating subspace update algorithm,” IEEE Trans. Signal Process., 
vol. 63, no. 22, pp. 5924–5938, 2015. doi: 10.1109/TSP.2015.2458785.

[56] E. Evert, M. Vandecappelle, and L. De Lathauwer, “The generalized eigenspace 
decomposition,” ESAT-STADIUS, KU Leuven, Leuven, Belgium, Tech. Rep. 20-80, 
2020.

[57] S. E. Leurgans, R. T. Ross, and R. B. Abel, “A decomposition for three-way arrays,” 
SIAM J. Matrix Anal. Appl., vol. 14, no. 4, pp. 1064–1083, 1993. doi: 10.1137/0614071.

[58] C. Beltrán Álvarez, P. Breiding, and N. Vannieuwenhoven, “Pencil-based algorithms 
for tensor rank decomposition are not stable,” SIAM J. Matrix Anal. Appl., vol. 40, no. 2, 
pp. 739–773, 2019. doi: 10.1137/18M1200531.

[59] L. De Lathauwer, “A link between the canonical decomposition in multilinear alge-
bra and simultaneous matrix diagonalization,” SIAM J. Matrix Anal. Appl., vol. 28, no. 3, 
pp. 642–666, 2006. doi: 10.1137/040608830.

[60] I. Domanov and L. De Lathauwer, “Canonical polyadic decomposition of third-
order tensors: Reduction to generalized eigenvalue decomposition,” SIAM J. Matrix Anal. 
Appl., vol. 35, no. 2, pp. 636–660, 2014. doi: 10.1137/130916084.

[61] I. Domanov and L. De Lathauwer, “Canonical polyadic decomposition of third-
order tensors: Relaxed uniqueness conditions and algebraic algorithm,” Linear Algebra 
Appl., vol. 513, pp. 342–375, Jan. 2017. doi: 10.1016/j.laa.2016.10.019.

[62] I. Domanov and L. D. Lathauwer, “On uniqueness and computation of the decom-
position of a tensor into multilinear rank-(1,Lr, Lr) terms,” SIAM J. Matrix Anal. Appl., 
vol. 41, no. 2, pp. 747–803, 2020. doi: 10.1137/18M1206849. 

[63] M. Sørensen, I. Domanov, and L. De Lathauwer, “Coupled canonical polyadic 
decompositions and (coupled) decompositions in multilinear rank-(Lr,n, Lr,n 1) terms—
Part II: Algorithms,” SIAM J. Matrix Anal. Appl., vol. 36, no. 3, pp. 1015–1045, 2015. 
doi: 10.1137/140956865.

[64] E. Evert and L. De Lathauwer, “Perturbation theory for CPD and for joint general-
ized eigenvalues,” ESAT-STADIUS, KU Leuven, Leuven, Belgium, Tech. Rep. 19-71, 
2019.

[65] Y. Chi, Y. M. Lu, and Y. Chen, “Nonconvex optimization meets low-rank matrix fac-
torization: An overview,” IEEE Trans. Signal Process., vol. 67, no. 20, pp. 5239–5269, 
2019. doi: 10.1109/TSP.2019.2937282.

[66] J. Sun, Q. Qu, and J. Wright, “Complete dictionary recovery over the sphere I: 
Overview and the geometric picture,” IEEE Trans. Inf. Theory, vol. 63, no. 2, pp. 853–
884, Feb. 2017. doi: 10.1109/TIT.2016.2632162.

[67] I. V. Oseledets, D. Savostianov, and E. E. Tyrtyshnikov, “Tucker dimensionality 
reduction of three-dimensional arrays in linear time,” SIAM J. Matrix Anal. Appl., vol. 30, 
no. 3, pp. 939–956, 2008. doi: 10.1137/060655894.

[68] B. Savas and L.-H. Lim, “Quasi-Newton methods on Grassmannians and multilin-
ear approximations of tensors,” SIAM J. Sci. Comput., vol. 32, no. 6, pp. 3352–3393, 
2010. doi: 10.1137/090763172.

[69] M. Ishteva, P.-A. Absil, S. Van Huffel, and L. De Lathauwer, “Best low multilinear 
rank approximation of higher-order tensors, based on the Riemannian trust-region 
scheme,” SIAM J. Matrix Anal. Appl., vol. 32, no. 1, pp. 115–135, 2011. doi: 
10.1137/090764827.

[70] W. Hackbusch, Tensor Spaces and Numerical Tensor Calculus, 2nd ed. (Springer 
Series in Computational Mathematics 56). Berlin: Springer-Verlag, 2012. 

[71] L. Grasedyck, D. Kressner, and C. Tobler, “A literature survey of low-rank tensor 
approximation techniques,” GAMM-Mitteilungen, vol. 36, no. 1, pp. 53–78, 2013. doi: 
10.1002/gamm.201310004.

[72] B. N. Khoromskij, Tensor Numerical Methods in Scientific Computing, vol. 19. 
Berlin: Walter de Gruyter GmbH & Co. KG, 2018. 

[73] A. M. S. Ang, J. E. Cohen, N. Gillis, and L. T. K. Hien, Accelerating block coordi-
nate descent for nonnegative tensor factorization. 2020. arXiv:2001.04321.

� SP

Authorized licensed use limited to: Cornell University Library. Downloaded on September 11,2020 at 04:50:59 UTC from IEEE Xplore.  Restrictions apply. 


