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Abstract

In this paper, we propose a study on multi-modal (au-

dio and video) action spotting and classification in soc-

cer videos. Action spotting and classification are the tasks

that consist in finding the temporal anchors of events in a

video and determine which event they are. This is an impor-

tant application of general activity understanding. Here,

we propose an experimental study on combining audio and

video information at different stages of deep neural net-

work architectures. We used the SoccerNet benchmark

dataset, which contains annotated events for 500 soccer

game videos from the Big Five European leagues. Through

this work, we evaluated several ways to integrate audio

stream into video-only-based architectures. We observed

an average absolute improvement of the mean Average Pre-

cision (mAP) metric of 7.43% for the action classification

task and of 4.19% for the action spotting task.

1. Introduction

The annual revenue of the global sports market was es-

timated to $90.9 billions in 2017 [15]. From this large

amount, $28.7 billion came from the European soccer mar-

ket [16], more than half ($15.6 billion) of which was gener-

ated by the Big Five European soccer leagues (EPL, Ligue

1, Bundesliga, Serie A and La Liga) [17, 18]. The main in-

terest of sports broadcast is entertainment, but sports videos

are also used by professionals for strategy analysis, player

scouting or statistics generation. These statistics are tradi-

tionaly gathered by professional analysts watching a lot of

videos and identifying the events occuring within a game.

For football, this annotation task takes over 8 hours to pro-

vide up to 2000 annotations per game, according to Matteo

Campodonico, CEO of Wyscout, a company specialized in

soccer analytics [73].

To assist sports annotators in this task, several automated

computer vision methods can be devised to address many

of the challenges in sports video understanding: field and

lines localization [22, 33, 37], ball position [38, 57, 64]

and camera motion [43, 75] tracking, detection of play-

ers [11, 41, 70], their moves [24, 44, 65], and pose [6, 80]

and the team they are playing for [35]. Detecting key ac-

tions in soccer videos remains a difficult challenge since

these events within the videos are sparse, making machine

learning on massive datasets difficult to achieve. Some

work has nevertheless achieved significant results in that di-

rection [10, 28].

In this paper, we focus on action spotting and classifica-

tion in soccer videos. This task has been defined as finding

the anchors of human-induced soccer events in a video [28]

as well as naming the action categories. Several issues arise

when dealing with this task. Important actions often have

no clear start and end frames in the video, they are tem-

porally discontinuous (i.e. adjacent frames may have dif-

ferent annotations), and they are rather rare. To improve

action spotting performance, we propose to use both audio

and video input streams while previous work did only use

video. Different audio-visual neural network architectures

are compared. Our intuition leads us to believe that some

categories of actions trigger particular reactions on the part

of the public present in the stadium. For example, when

a goal is scored, fans shout out. Similarly, a red card can

cause discontent. Audio signals should hence provide use-

ful information in such key cases, for instance to distinguish

real scored goals from goal attempts. This is what we will

show in the paper.

Contributions. (i) We carried out an initial analysis about

the possibilities of adding audio as an input in a soccer ac-

tion spotting and classification context. (ii) Our best ap-

proach improved the performance of action classification on

SoccerNet [28] by 7.43% absolute with the addition of au-

dio, compared to the video-only baseline. (iii) We also in-

creased the performance of the action spotting on the same

dataset by 4.19% absolute.

2. Related Work

Sports Analytics and Related Applications. Computer

vision methods have been developed to help understand
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sport broadcasts, carry out analytics within a game [12,

20, 66], or even assist in broadcast production. Inter-

esting use cases innclude the automatic summarization of

games [21, 56, 69], the identification of salient game ac-

tions [23, 45, 76] or the reporting of commentaries of live

game video streams [78].

Early work used camera shot segmentation and classifi-

cation to summarize games [21] or focused on identifying

video production patterns in order to detect salient actions

of the game [55]. Later, Bayesian networks have been used

to detect goals, penalties, corner kicks and cards events [34]

or to summarize games [63].

More recently, deep learning approaches have been ap-

plied. Long Short-Term Memory (LSTM) networks [32]

enabled to temporally traverse soccer videos to identify

the salient actions by temporally aggregating particular fea-

tures [68]. These features can be local descriptors, extracted

by a Bag-of-Words (BOW) approach, or global descriptors,

extracted by using Convolutional Neural Networks (CNN).

Besides features, semantic information, such as player lo-

calization [40], as well as pixel information [9], are also

used to train attention models to extract relevant frame fea-

tures. Besides, a loss function for action spotting was pro-

posed to tackle the issue of unclear action temporal location,

by better handling the temporal context around the actions

during training [10].

Some of the most recent works propose to identify

kicks and goals in soccer games by using automatic multi-

camera-based systems [81]. Another work uses logical

rules to define complex events in soccer videos in order to

perform visual reasoning on these events [39]. These com-

plex events can be visualized as a succession of different vi-

sual observations during the game. For example, a “corner

kick” occurs when a player of the defending team hits the

ball, which passes over the goal line. This complex event

is the succession of simple visual observations: the ball is

seen near a flag, a player comes near the position of the ball,

this player kicks the ball, and the goal post becomes visible

in the scene. The logical rules used to define these complex

events are Event Calculus (EC) [60], i.e. a logic frame-

work for representing and reasoning about events and their

effects. These EC allow to describe a scene with atomic

descriptions through First Order Logic (FOL).

Activity Recognition. Activity recognition is the general

problem of detecting and then classifying video segments

according to a predefined set of activity or action classes in

order to understand the videos. Most methods use tempo-

ral segments [7, 26, 74] that need to be pruned and classi-

fied [29, 62].

A common way to detect activities is to aggregate and

pool these temporal segments, which allows to search for a

consensus [2, 67]. Naive methods use average or maximum

pooling, which require no learning. More complex ones aim

to find a structure in a feature set by clustering and pool-

ing these features while improving discrimination. These

work use learnable pooling like BOW [3, 36], Fisher Vec-

tor [14, 48, 51] or VLAD [3]. Some works improve these

techniques by respectively extending them by the incorpo-

ration of the following Deep Neural Network (DNN) archi-

tectures: NetFV [61], SoftDBOW [54] or NetVLAD [29].

Instead of pooling features, some works try to iden-

tify which features might be the more useful given the

video context. Some of these approaches represent and har-

ness information in both temporal and/or spatial neighbor-

hoods [13, 42], while other ones focus on attention mod-

els [49, 72] as a way to better leverage the surrounding in-

formation by learning adaptive confidence scores. For in-

stance, the evidence of objects and scenes within a video

can be exploited by a semantic encoder for improving ac-

tivity detection [31]. Moreover, coupling recognition with

context-gating allows the learnable pooling methods to pro-

duce state-of-the-art recognition performance on very large

benchmarks [47].

Advanced methods for temporal integration use particu-

lar neural network architectures, such as Convolution Neu-

ral Network (CNN) [58] or Recurrent Neural Network

(RNN) [52]. More particularly, LSTM architectures are of-

ten chosen for motion-aware sequence learning tasks, which

is beneficial for activity recognition [2, 4]. Attention mod-

els are also harnessed to better integrate spatio-temporal in-

formation. Within this category of approaches, recent work

uses a 2-models-based attention mechanism [53]. The first

one consists of a spatial-level attention model, which de-

termines the important regions in a frame, and the second

one concerns the temporal-level attention, which is used

to harness the discriminative frames in a video. Another

work proposes a convolutional LSTM network supporting

multiple convolutional kernels and layers coupled with an

attention-based mechanism [2].

Multimodal approaches. Using several different and

complementary input modalities can improve model perfor-

mance in both action classification and action spotting tasks,

since this leverages more information about the video. Ear-

lier work uses textual sources [50], such as the game logs

manually encoded by operators.

Recently, research in multimodal models use, in addi-

tion to the RGB video streams, information about the mo-

tion within the video sequences: the optical flow can be

used [77, 79] or even player pose sequences [8, 71]. For golf

and tennis tournaments, a multimodal architecture using the

reactions (such as high fives or fist pumps) and expressions

of the players (aggressive, smiling, etc.), spectators (crowd

cheering) and commentator (tone and word analysis), and

even game analytics, was proposed [46].



Some work use the audio stream of the video but in a

different manner than ours. The audio stream was used to

make audio-visual classification of sport types [25]. Also,

acoustic information was used to detect tennis events and

track time boundaries of each tennis point in a match [5].

3. Methodology

Our main objective is to set-up multimodal architectures

and analyze the benefit of the audio stream on the perfor-

mance of a model within the soccer action spotting and clas-

sification tasks. Action spotting is the task that consists in

finding the right temporal anchors of events in a video. The

more a candidate spot is close to the target event, the more

the spotting is considered as good. Reaching perfect spot-

ting is hence particularly complex. Tolerance intervals are

hence typically used.Regarding classification, we will use

a typology of different soccer actions classes and evaluate

how well our systems distinguish those classes.

We use the SoccerNet dataset [28]. It uses a typology

of 3 soccer event categories: goals, substitutions and cards

(both yellow and red cards).

This section starts by explaining how the video and the

audio streams are represented with feature vectors to be

used as input of the different models. Next, it presents the

baseline approach proposed in [28]. This approach consists

of training models for soccer action classification but to in-

clude a background class too, so that both classification and

action spotting tasks can be addressed.Since the baseline

[28] uses only video stream, we finish this section by expos-

ing how we use the audio stream too, with different variants

for multimodal fusion.

3.1. Video and Audio Representations

We want to work with both video and audio streams. The

volume of data available for training may however be in-

sufficient for training fully end-to-end machine learning ar-

chitectures. Hence, we will here reuse existing visual and

auditory feature extraction architectures, pre-trained on rel-

evant visual and audio reference datasets. As explained in

more details later, we used a ResNet [30] trained on the

ImageNet [19] data for the visual stream and, for the au-

dio stream, a VGG [59] trained on spectrogram representa-

tions of the AudioSet [27] data. Fine-tuning of these models

might be considered in the future, but at this stage, we keep

their parameters fixed during our training process. In prac-

tice, we hence extracted visual and auditory features before

running our experiments.

Video streams. For the video streams, we used the fea-

tures extracted by [28] using ResNet-152 [30], a deep con-

volutional neural network, pretrained on 1000 categories

ImageNet [19] dataset. Particularly, they used the output

of the fc1000 layer, which is a 1,000-way fully-connected

layer with a softmax function in the end. This layer outputs

a 2,048-dimensional feature vector representation for each

frame of the video. To extract these features, each video

was unified at 25 frames per second (fps) and trimmed at

the start of the game, since the reference time for the event

annotations is the game start. Each frame was resized and

cropped to a 224 × 224 resolution. A TensorFlow [1] im-

plementation was used to extract the features of the videos

every 0.5 second, hence a 2 frames per second sampling

rate. Then, Principal Component Analysis (PCA) was ap-

plied on the extracted features to reduce their dimension to

512. This still retain 93.9% of their variance1

Audio streams. For the audio streams, we used

VGG [59], a deep convolutional network architecture. Par-

ticularly, we used VGGish, a VGG architecture pretrained

on AudioSet [27]. AudioSet is a benchmark dataset contain-

ing 632 audio event categories and 1,789,621 labeled 10-

seconds audio segments from YouTube videos. To extract

audio features, we used a TensorFlow implementation of a

pretrained slim version of VGGish2. We extracted the out-

put of the last convolutional layer (conv4/conv4 2) to which

we applied a global average pooling to get 512-dimensional

feature vector. Since this model uses a chunk of the au-

dio stream spectrogram as input and we want to have the

same frame rate as the video features, we trimmed the au-

dio streams at the game start and divided them into chunks

of 0.5 second.

3.2. SoccerNet baseline approach

The baseline approach proposed in [28] is divided into

two parts: (i) video chunk classification and (ii) action spot-

ting. In order to compare the performance with and without

the audio stream, we followed the same approach and used

the best performing models as baselines for our approach.

Video chunk classification. For the classification task,

shallow pooling neural networks are used. Each video is

chunked into windows of duration T seconds. Since the fea-

tures are sampled at 2 frames per second, the input matrix to

our systems is, for each chunk to be classified, an aggrega-

tion of W = 2T feature vectors. Therefore, the dimension

of the input is W × 512. Although quite rare, some chunks

may have multiple labels when several actions are tempo-

rally close-by. Our deep learning architectures will hence

use a sigmoid activation function at their last layer. For all

the classes, a multi binary cross-entropy loss is minimized.

The Adam optimizer is used. The learning rate follows a

1Although the reference publication does not mention it, we assume the

PCA transformation matrix is estimated on the SoccerNet training data.
2https://github.com/DTaoo/VGGish



step decay and early stopping is applied, based on the vali-

dation set performance. The final evaluation metric used is

the mAP accross the classes defined on SoccerNet [28].

One of the main challenges in designing the neural net-

work architectures for this task was related to the temporal

pooling method to be used. Indeed, the selected feature ex-

traction approaches use fixed image based models, while we

want to use chunks consisting of several video frames as in-

put to provide the system with longer term information that

should be beneficial (or even necessary) to achieve useful

performance.

Seven pooling techniques have been tested by [28]: (i)

mean pooling and (ii) max pooling along the aggregation

axis outputting 512-long features, (iii) a custom CNN with

kernel dimension of 512 × 20 traversing the temporal di-

mension. At last, the approaches and implementations pro-

posed by [47] such as (iv) SoftDBOW, (v) NetFV, (vi)

NetVLAD and (vii) NetRVLAD have also been compared.

These last pooling methods use clustering-based aggrega-

tion techniques to harness context-gating, which is a learn-

able non-linear unit aiming to model the interdependencies

among the network activations. To predict the labels for the

input window, a fully connected layer was then stacked af-

ter the pooling layer of each model. Dropout is also used

during training in order to improve generalization. We use

a keep probability of 60%.

Action spotting. For the spotting task, [28] reused their

best performing model from the classification task. This

model is applied on each testing video. In this case, instead

of splitting video into consecutive chunks, a sliding window

of size W is used through the videos, with a stride of 1 sec-

ond. Therefore, for each position of the sliding window, a

W × 512 matrix can be obtained by the content currently

covered by this window. This matrix is used as input for

the model, which computes a probability vector for classi-

fying the video chunk. Then, we get for each game a series

of predictions consisting of probabilities to belong to each

class (including the background no-action class).

To obtain the final spotting candidates from the predic-

tions series, three methods were used in [28]: (i) a water-

shed method using the center time within computed seg-

ment proposals; (ii) the time index of the maximum value

of the watershed segment as the candidate; and (iii) the lo-

cal maxima along the video and applying non-maximum-

suppression (NMS) within the window. Here, a tolerance

δ is added to the mAP as evaluation metric. Therefore, a

candidate spot is defined as positive if it lands within a tol-

erance of δ seconds around the true temporal anchor of an

event. Another metric is the Average-mAP, which is the

area under the mAP curve with δ ranging from 5 to 60 sec-

onds.

In this paper, we use NetVLAD and NetRVLAD as

pooling layers, since they are the best approaches in the

chosen baseline.

3.3. Audio Input and Multimodal Fusion

We need to define architectures of audio-visual models

in order to study the influence of the audio stream on per-

formance. We decided to use the baseline architecture de-

scribed in Section 3.2 for both visual and audio streams, the

only difference being the feature extraction front-end (cfr.

3.1).

Next, we need to determine where the two models need

to merge their pipeline in order to get better results. Both

visual and audio processing pipelines can be applied un-

til their last layers, with their outputs then being combined

with a late fusion mechanism. Earlier fusion points will also

be investigated. The general appearance of our multi-modal

pipeline is illustrated in Figure 1. We hence train our mod-

els with different merge points, illustrated by green circles

and arrows on the figure. At the merge points, the audio

stream and video stream representation vectors are concate-

nated, and the concatenated vectors are then processed by a

single pipeline consisting of the remaining part of the base-

line processing pipeline downstream the fusion point. We

distinguish 5 merge points and 7 methods.

The first two methods are the only ones to be applied af-

ter having trained both models. The first method multiplies

the probabilities estimated for each class, while the second

one averages the logits, followed by the sigmoid activation

function, applied on the resulting logits vectors. The third

method applies the same process then method one, but the

two parallel models are trained with a loss computed from

the output of the common sigmoid function, instead of us-

ing pre-trained models. Methods 4 and 5 have their merge

point respectively before the fully-connected layer, and be-

fore the dropout layer of the model. Merging before and

after the dropout can lead to different results. Indeed, if

we merge after the dropout, we will keep for each training

sample the same proportion of activations from both flows,

while merging before the dropout does not ensure that the

information from both streams is kept fairly. Methods 6 and

7 both merge the representation vectors before the pooling

layer. The difference between these methods lies in the size

of the pooling layer output (1,024 for method 5 and 512 for

method 6).

Every method, except the two first ones, requires a train-

ing since there are learnable parameters in both the pooling

process and in the fully-connected layers.

4. Experiments

4.1. SoccerNet dataset

For our experiments, we use the same dataset as our

reference baseline: SoccerNet [28]. This dataset contains



Figure 1. Example of a short caption, which should be centered.

videos for 500 soccer games from the Big Five European

leagues (EPL, La Liga, Ligue 1, Bundesliga and Serie A):

300 as training set, 100 as validation set and 100 as testing

set. There are 6,637 events referenced for these games, split

into 3 classes: “goals”, the instant the ball crosses the goal

line to enter the net; “cards”, the instant a yellow or a red

card is shown by the referee; and “substitutions”, the in-

stant a new player enters in the field to replace another one.

Each one of these events is annotated by the exact second

it occurs in the game. For the classification task, a fourth

class was added: “background”, which corresponds to the

absence of the three events.

4.2. Video chunk classification

We train models with our 7 fusion methods. In the base-

line, the best model uses NetVLAD as pooling layer, with a

number of clusters of k = 512. However, such a large num-

ber of clusters incurs a larger computational load, which in-

creases linearly with the value of k. Therefore, we first com-

pare our merging methods with a smaller number of clus-

ters: k = 64. According to [28], the best pooling method

with a number of cluster k = 64 is NetRVLAD. Therefore,

we try our merging methods on models having a 64-clusters

NetRVLAD as pooling layer. Our results are presented on

Table 1. The video baseline result is obtained by executing

the code provided by Giancola et a., and the audio baseline

uses the same code, but using the audio stream as input. We

also compared the performance for chunks of size 60 sec-

onds or else 30 seconds.

We observe that a chunk of 60 seconds provides better

results. This can be explained by the fact that, with 30-

seconds video chunks, the “background” class represent

93% of the training data samples, whereas for a 60-seconds

window, it represents 87%. Since there are more samples

in the “background” class, the 30-seconds models tend to

classify more samples with this label, which reduces perfor-

mance on other classes.

Regarding multimodal fusion, we can see that using only

the audio stream provides inferior results than the video-

only model. On the other hand, all our methods to combine

video and audio streams improve over the performance of

mono-modal systems. The best performance is obtained by

the fourth merging method, which correspond to the merge

point localized before the last fully connected classification

layer.

In Table 2, we compare the mAP for each class for

the video baseline, the audio baseline and our best fusion

method. We can observe that including audio improves the

performance on each category, especially for the “goals”

event, where the relative reduction of the error rate exceeds

50%. Moreover, if the audio baseline generally performs

worse than the video baseline, this is not the case for the

“goals” class, where audio alone yields better results than

video alone. This corroborates our intuitions exposed in

Section 1. Indeed, a scored goal, which clearly leads to

a strong emotional reaction from the public as well as the

commentators, is easier to detect through the audio stream

than the video stream, where it could for instance be con-

fused with shots on target. However, the audio stream does

not seem to provide sufficient information to efficiently de-

tect cards, leading to a poor result for this category. Finally,

audio carries information about the substitutions. This can

likely be explained by the fact that the public can applaud

or boo the player that comes in or comes out of the field,

depending on his status or the quality of his play during the

game.

Another interesting observation concerns the difference

between the confusion matrices of 60-seconds and 30-

seconds models. Table 3 presents these confusion matrices

for the model trained with the merge point before the fully

connected layer (fourth merging method). If we focus only

on the samples classified in one of the three events of in-

terest (“cards”, “substitutions” and “goals”), we can see

that the proportion of errors is lower in the 30-seconds ver-

sion (2.68% instead of 4.83%). This observation can be ex-

plained by the fact that a smaller video chunk size reduces

the probability to have multiple different events in the same

window. Therefore, it becomes easier to determine the dif-



Table 1. Classification metric (mAP) for different merging meth-

ods and different video chunk sizes using NetRVLAD, with k =

64 clusters, as pooling layer.

Models T = 60 sec. T = 30 sec.

Video baseline [28] 66.0 58.7

Audio baseline 50.6 43.7

Merging method 1 68.4 63.7

Merging method 2 72.6 67.3

Merging method 3 73.4 69.3

Merging method 4 73.7 68.8

Merging method 5 72.8 68.7

Merging method 6 64.1 59.6

Merging method 7 64.2 58.1

Table 2. Comparison of the classification metric (mAP) on each

label.

Labels
Video

baseline [28]

Audio

baseline

Merge

method 4

“background” 97.6 96.7 98.0

“cards” 60.5 19.2 63.9

“substitutions” 69.8 55.1 72.6

“goals” 67.7 77.3 84.5

ferences between the three classes of interest. However, as

explained earlier, the overall mAP score is worse due to the

higher proportion of “background” samples.

After finding the best merging method, we used the

best baseline model from [28], i.e. with a 512-clusters

NetVLAD as pooling layer, and we trained it three times

with different input configurations: (i) only video stream,

(ii) only audio stream, and (iii) both video and audio stream,

by using our best merging method. For each one of these

configurations, we used 60-seconds and 20-seconds video

chunks.

Table 4 presents the mAP score for each of these models.

As previously, we observe that using only audio stream per-

forms worse than video stream alone but the combination

of the two streams provides significantly improved perfor-

mance. Moreover, the use of 60-seconds chunks for train-

ing performs way better than the use of 20-seconds chunks,

except for the combination of audio and video, where the

difference is non-significant.

The model using NetVLAD as pooling layer and both

video and audio streams is the one registering the best re-

sults for the classification task with a mAP score of 75.2%.

In average, adding the audio stream as input to the models

increases the mAP by 7.43% in absolute terms compared to

the video-only-based models.

4.3. Action spotting

Following the methodology proposed by [28], the ac-

tion spotting task, as described in Section 3.2, uses the best

trained models from the classification task and the spotting

results are obtained using three method variants: segment

center, segment maximum and NMS. For each method,

we compute the Average-mAP, which is the area under the

mAP curve as a function of a tolerance δ in the precise time

instant of the detected event, ranging from 5 to 60 seconds.

In order to make comparisons, we applied this spotting pro-

cess to the 6 trained models using NetVLAD as pooling

layer, and to 3 of the models using NetRVLAD: (i) video-

only, (ii) audio-only, and (iii) both video and audio with

the merge point before the fully connected layer. Table 5

presents the Average-mAP for each.

Similarly to the classification task, using only audio is

not as good as using video alone, but the combination im-

proves the performance. What differs from classification is

that smaller video chunks leads to better results, regardless

of the method used. Our intuition is that shorter chunks

enable to distinguish and detect actions that are tempo-

rally closer to each other. However, the high difference

in the Average-mAP scores between models trained on 20-

seconds windows and the ones trained on 60-seconds win-

dows is particularly important. This can be explained by the

fact that models trained with 60-seconds video chunks will

have decreasing performances when tolerance δ becomes

lower than 60 seconds since the models was not trained

for this. However, if models trained on 20-seconds video

chunks performs well with δ = 20 seconds, it will still be

efficient for higher values of δ. Figure 2 illustrates this sug-

gestions by showing the mAP as a function of tolerance δ

for both NetVLAD-based models using audio and video

streams. We can observe that both models tend to their best

performance when δ is higher or equals to the correspond-

ing window size.

The best model is the one trained on 20-seconds video

chunks and using NetVLAD as pooling layer and both

video and audio streams, yielding an Average-mAP of 56%.

In average, adding the audio stream as input to the models

increases the Average-mAP of 4.19% absolute compared to

the video-only models.

4.4. Additional observations

Figure 3 presents the evolution of performance on both

the training set and the validation set during the training

process, for our best model. The green line represents the

evolution of the mAP classification score on the training set

and the blue line is the evolution of the mAP score on the

validation set. The horizontal dotted blue line represent the

best mAP score reached on the validation set. The vertical

black lines indicate the epochs at which a step decay was

applied on the learning rate.



Table 3. Confusion matrix for the model using the fourth merging method, with 60-seconds video chunks and 30-seconds video chunks.

60-seconds video chunks

Predicted labels

background cards subs goals

4*
Groundtruth

labels
background 7673 95 80 42

cards 178 243 13 3

subs 175 9 310 11

goals 91 1 2 215

30-seconds video chunks

Predicted labels

background cards subs goals

4*
Groundtruth

labels
background 16768 97 116 43

cards 224 212 5 0

subs 217 11 305 4

goals 114 0 0 209

Table 4. Classification metric (mAP) for models using NetVLAD,

with k = 512 clusters, as pooling layer.

Models T = 60 sec. T = 20 sec.

Video-based

NetVLAD baseline
67.5 56.6

Audio-based

NetVLAD baseline
46.8 35.9

Audio + Video

NetVLAD
75.2 75.0

Figure 2. mAP score as a function of tolerance δ for NetVLAD-

based models, trained with 20-seconds and 60-seconds video

chunks, by using both audio and video streams.

We can observe that the mAP score on the training set

quickly reaches a very high value, while performance on

the validation set always remains much lower. A gener-

alization gap of about 35% is visible, between the perfor-

mance on the training set and on the validation set. Even

our best performing model significantly overfits, possibly as

a consequence of the still too small size of the training set.

Indeed, despite being one of the best benchmark for the soc-

cer action spotting and classification challenges, SoccerNet

contains annotations for 500 games, which represents only

3,965 annotated events available for training.

This represents one of the current limitations of our

study, and strategies to either increase the training set size,

reduce over-fitting, or increase the generalization capabili-

ties of our models should represent an important avenue for

future research.

5. Future Work

In future works, we suggest to pursue the exploration

of additional types of input streams, like optical flow, or

even language streams such as transcriptions of commenta-

tors speech.

Furthermore, exploring more elaborate fusion mecha-

nisms could be interesting. In order to improve our cur-

rent models, one could also harness others feature extrac-

tion models than ResNet and VGG.

Another aspect that can be analyzed more in depth is try-

ing to get a better understanding of the information carried

by the audio stream. The audio in SoccerNet videos con-

tain a mix between the commentators’ voice and the sound

coming from the stadium , including the field and the pub-



Table 5. Average-mAP for action spotting.

Video-only Audio-only Audio + Video

Models Seg. max Seg. center NMS Seg. max Seg. center NMS Seg. Max Seg. center NMS

NetRVLAD 30.8% 41.9% 30.2% 21.8% 30.3% 22.1% 34.0% 47.6% 33.4%

60-sec. chunks

NetVLAD
29.6% 43.4% 29.0% 19.9% 27.1% 19.5% 32.3% 48.7% 31.8%

20-sec. chunks

NetVLAD
49.2% 50.2% 49.4% 30.0% 31.0% 30.0% 54.0% 56.0% 53.6%

Figure 3. Evolution of the learning curves, i.e. training and valida-

tion mAP score curves, through the epochs for our best model.

lic. Therefore, we still do not know which of those different

information source have the most impact on performance.

To address the issue related to the size of SoccerNet

dataset, increasing the number of training samples is a pos-

sible solution. This could rely in part on data augmenta-

tion strategies, as well as annotating additional soccer game

videos, or making use of unsupervised learning techniques.

6. Conclusion

In this paper, we studied the influence of the audio

stream on soccer action classification and action spotting

tasks, with performance evaluations on the SoccerNet base-

line. For both tasks, using only the audio stream provides

worse results than using only the video stream, except on

the “goals” class, where audio significantly exceeds video

performance. Furthermore, combining both streams yields

to better results on every category of actions. Combining

audio and video streams improves, in average, the perfor-

mance of action classification on SoccerNet by 7.43% ab-

solute, and the performance of action spotting by 4.19%.

We also showed that using smaller video chunk sizes per-

forms worse on classification, but improves the results for

the action spotting task.

A more in-depth study of the audio stream could lead to a

better understanding of what actually provides information

that the visual processing model fails to identify. In partic-

ular, separating the voices of commentators from the sound

ambiance coming from the stadium could definitely help in

this study.
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