
6th International Conference on Sensors Engineering and Electronics Instrumentation Advances (SEIA' 2020),
23–25 September 2020, Porto, Portugal

Type of Presentation:

Oral

Topic:

Mathematical Tools for Measurements

R-testbench: a Python library for instruments remote control and

electronic test bench automation

A. Quenon
1
, E. Daubie

2
, V. Moeyaert

3
 and F. C. Dualibe

1

1 University of Mons, Electronics and Microelectronics Unit, 31 Boulevard Dolez, 7000 Mons, Belgium

E-mail: alexandre.quenon@umons.ac.be, fortunato.dualibe@umons.ac.be
2 University of Mons, Nuclear and Subnuclear Physics Unit, 6 Av. du Champ de Mars, 7000 Mons, Belgium

3 University of Mons, Telecom. and Electromagnetism Unit, 31 Boulevard Dolez, 7000 Mons, Belgium

Summary: Numerous applications require instruments remote control and electronic test bench automation. Software
solutions exist but are either proprietary or low-level programming. In this paper, a high-level open-source software solution,
R-testbench, is presented. It is a Python package that allows to manage and control instruments remotely and to fetch data for
saving and post-processing. The communication with instruments is built on the well-known and reliable Virtual Instrument
Software Architecture (VISA) standard. The main advantages of the proposed solution are the high-level interface and the
automatic instrument recognition, which facilitate the user experience. The Python package has been validated by performance
characterization, unit tests, and by application to a real use case involving precise current measurements in the framework of
a feasibility study in the nuclear domain.

Keywords: Remote control, test bench, instrumentation, automation, software, python, VISA.

1. Introduction

Critical applications, such as experimental research

involving nuclear material or precise characterization
of integrated circuits, require remote control of

measurement instruments and electronic test bench

automation for safety and/or accuracy reasons.

In this respect, the most popular proprietary tools

that provide instruments control and automation are

LabVIEW [1] and MATLAB/Simulink [2]. Both offer

(partial) graphical programming, but scripting is based

on their own programming languages, which are less

known and practiced than generic purpose languages

such as C or Python. On the open-source side, Octave

and Scilab, which are MATLAB-like programs, have

both a toolbox dedicated to instruments control [3], [4].
The main drawback is the low-level programming,

which requires experience from the user. Finally, a

Python package, PyMeasure, is an existing solution

that tries to offer high-level programming [5], but lacks

of properties such as automatic instrument recognition.

When comparing the main features of the existing

software solutions for instruments remote control and

test bench automation, one can observe that the major

constraints are (1) the price, (2) the low-level

programming, and (3) the need to learn a proprietary

language. One solution to solve these problems
consists in developing a Python-based automation tool.

Indeed, Python has experienced a quick development

over the past years, especially for numerical

computation, data mining and artificial intelligence

[6], [7]. Hence, it can be considered for both academic

and industrial technical solutions.

Considering the needs for a high-level open-source

tool offering automatic instrument recognition, we

have developed R-testbench, an open-source Python

package that allows to create a software remote test
bench to control distant instruments from a computer

and automate a complete electronic test bench. The

proposed library relies on the Virtual Instrument

Software Architecture (VISA) standard [8], which

enables to communicate with instruments by software

through many types of interfaces (e.g., GPIB, USB),

and that is now implemented on most operating

systems (OS). Our approach aims to reach at least the

same performance and universality as the

aforementioned solutions, while offering a high-level

interface as well as improved automation capabilities.
This paper is organized as follows: section 2

describes the software architecture of the proposed

Python package, section 3 presents results that validate

the package for real use case, whereas section 4

summarizes the key points.

2. Software architecture

The object-oriented paradigm has been used to

develop a package which offers a unique manager

class, a generic instrument interface, and automatic

instrument recognition.

6th International Conference on Sensors Engineering and Electronics Instrumentation Advances (SEIA' 2020),
23–25 September 2020, Porto, Portugal

In addition, to make the proposed package robust

and reliable, the main Application Programming

Interfaces (APIs) available for scientific computation

have been used.

2.1. VISA communication API and automatic

instrument recognition implementation

The manager class is named RTestBenchManager.

Its main objectives are (1) to embed the VISA protocol
detecting and connecting instruments to the software

testbench, and (2) to manage all connected resources

regarding communication channel access, memory

allocation and tasks queuing. The VISA libraries are

accessed through the PyVISA Python package [9].

As shown in Fig. 1, the base class to control an

instrument is Tool, which defines the basic functions

required for all instruments, such as send() for

configuration or query() to get data. Then, one

interface per type of instrument, defining the main

functions, is created as an abstract class (a class from
which no object can be instantiated), inheriting from

Tool. This architecture allows to implement the

automatic recognition of instruments by using

polymorphism, i.e., an access to a specific class

through the generic mother class. The user experience

is then facilitated as the interface is always the same,

whatever the brand and the model of the instrument.

Fig. 1. R-testbench Unified Modeling Language (UML)
class diagram: manager, tool interfaces mechanism, and

interactions with PyVISA.

2.2. Data containers APIs and data management

implementation

All data gathered by R-testbench can be stored by

using Python built-in classes, such as lists, or by using

scientific computations libraries such as NumPy and

pandas. This provides flexibility and possibility to use

any data mining or processing framework.

For efficiency reasons, the default data containers

used to store data coming from any Tool is the well-
known NumPy’s N-dimensional array: ndarray [10]. It

is the current best compromise between the memory

and speed efficiencies of C/C++ and the high-level and

user-friendly data manipulation of Python.

For its ease of use and its rich interface, the pandas

API [11] is used to gather data all together and to save

them to a specific type of file. R-testbench can save

data either as human-readable or binary files.

Currently, human-readable files types comprise the

largely used CSV, which stands for comma-separate

values. On the other hand, supported binary files

formats are the common Python pickle, as well as

HDF5, that is extensively used for big data and

artificial intelligence. Other files types are supported

by the pandas API, such as the more and more popular

JSON, can be used to extend R-testbench in the future.

3. Validation

The R-testbench package has been used to carry out

measurements in the frame of experiments that

required real time monitoring of semiconductor

devices irradiated by -rays, as described in [12].

Taking advantage of these experiments, the software

has been intensively tested together with the B2985A

electrometer from Keysight [13]. In addition,

automated unit tests have been implemented by using
the unittest and PyTest modules. Finally, the package

has been made publicly available on GitHub

(https://github.com/Arkh42/rtestbench), in order to be

shared with and reviewed by the open-source

community.

All of these constitute the validation tests of the

proposed R-testbench package. Details are presented

further in this section.

3.1. Performance measurements

The main measurements to characterize the
performance of the proposed software are: 1) the time

required to fetch data from the instrument to the

computer, 2) the time required to save data locally to a

file, and 3) the size of the file. All measurements have

been done on a 64-bit computer, Windows 10 Pro OS,

16-GB RAM, Intel Core i7-8550U CPU.

The Keysight B2895A can be controlled by USB

and LAN (TCP/IP), among others. The maximum data

transfer speed of the USB interface is 488 Mbit/s,

whereas it is 100 Mbit/s for the LAN interface

(Ethernet cable) [13]. Each datum can be stored either
on 32 or 64 bits.

As expected, the transfer through USB is faster

than by TCP/IP (Fig. 2). This is, of course, explained

by the limitations due to the interfaces of the

electrometer. Moreover, data transferred by TCP/IP

are embedded with several addresses (MAC, IP),

which increase the number of bits to be sent. Data

stored on 32 bits are also fetched faster than data stored

on 64 bits, which is expected for the transfer speed but

could be jeopardized by the fact that the computer

operates in 64 bits.

In addition, the fetch time increases linearly with
N, the number of data. The linear regression performed

on the four sets of measured data (Fig. 2) provided the

following equations:

 𝑡fetch,USB 32 = 0.0204 𝑁 + 2.1, (1)

 𝑡fetch,USB 64 = 0.0281 𝑁 + 4.8, (2)

https://github.com/Arkh42/rtestbench

6th International Conference on Sensors Engineering and Electronics Instrumentation Advances (SEIA' 2020),
23–25 September 2020, Porto, Portugal

 𝑡fetch,LAN 32 = 0.044 𝑁 + 4.6, (3)

 𝑡fetch,LAN 64 = 0.064 𝑁 + 6.7, (4)

times given in milliseconds.

Fig. 2. Comparison of time required to fetch data from
the Keysight B2985A electrometer to the computer. Data

are stored locally in a numpy.ndarray container.

As explained in section 2, the pandas API is used

to save data to files, locally. The time required to save

data (Fig. 3), as well as the file size (Fig. 4), have been

studied with an increasing number of data.

As expected, CSV is the worst format, considering

both speed and memory, especially when the number

of data increases. However, if the number of data to

save is lower than 1,000, the HDF5 is surprisingly less

efficient. A possible explanation might be that this file

format has been created to target big data applications

and could suffer from a lack of optimization for a small

amount of data.
Regarding the binary files, the pickle format seems

to have better performance than the HDF5 format. This

assertion is true on the tested range of data number.

Considering the speed, it seems that the gap tends to

reduce for large sets of data (Fig. 3). Conversely, the

evolution of the size seems to be linear, except for

small datasets.

3.2. Continuous integration automated testing

Reliability is of utmost importance in
instrumentation. This is the reason for which the

proposed R-testbench package has been built on top of

industrial protocols, such as VISA. In order to achieve

the same objective, continuous integration and

automated tests have been deployed together with the

package. Both rely on the well-known PyTest library

and GitHub workflows.

The functions of R-testbench are tested extensively

(different conditions, success and fail cases) by

creating unit tests. Each test ensures that a function

behaves as expected for a specific condition. Once a

test passes, it should never be modified, so that the user
application is guaranteed to continue working even if

the development of the package goes further.

Fig. 3. Comparison of the evolution of the time

required to save data into CSV, pickle and HDF5 files
formats with the number of data. Data are saved to files

using pandas.

Fig. 4. Comparison of the evolution of sizes of CSV,
pickle and HDF5 files with the number of data. Data are

saved to files using the pandas API.

Currently, more than 80% of the code is covered by

tests. The remaining 20% is mainly the part specific to

an instrument, for which automated testing is difficult

to implement. Nevertheless, this part has been covered

by the performance measurements exposed in section

3.1, as well as during the experiments conducted in

[12]. Hence a high confidence level in the proposed

tool.

3.3. Open-source community

R-testbench is publicly available on GitHub, an

open-source platform used by researchers and

developers from industry and academia to share and

contribute to open-source projects. It is licensed under

the Open Software License v. 3.0, a copyleft license

that emphasizes the possibility to share the code.

There is currently one contributor and maintainer:

A. Quenon. As the package has been made publicly
available for the SEIA’ 2020 conference, the interest

for this project is expected to grow up.

6th International Conference on Sensors Engineering and Electronics Instrumentation Advances (SEIA' 2020),
23–25 September 2020, Porto, Portugal

4. Conclusions

R-testbench is a Python package that allows to

control instruments remotely and to automate test

benches. Its main advantages over other available

solutions are the open-source share and the automatic

instrument recognition (Tab 1). It does not support
communications by User Datagram Protocol (UDP),

but this is not really important for instrumentation as

UDP provides a connection less communication model

and does not guarantee the packet delivery, so the

quality of the data transfer. However, it minimizes the

latency during the data transmission.

The library has been tested and validated on a real

critical use case, i.e., experiments involving nuclear

materials. Several parameters have been measured to

test the performance of data transfer speed and data

saving speed and memory. Other performance

parameters, such as the memory size necessary during
execution time, can be monitored in later studies.

The project is now awaiting for reviews by the

open-source community to be improved.

Acknowledgements

The authors would like to thank D. Binon and

J. Hanton for advices and fruitful discussions about

instrumentation.

This work was supported by the Fonds de la

Recherche Scientifique — FNRS under Grant

n° 33678493.

References

[1]. National Instruments, What is LabVIEW?
(https://www.ni.com/en-us/shop/labview.html).

[2]. MathWorks, Instrument Control Toolbox

(https://www.mathworks.com/products/instrument.ht
ml).

[3]. Octave Wiki contributors, Instrument control package
(https://wiki.octave.org/Instrument_control_package).

[4]. Scilab team, Signal acquisition & instrument control
(https://www.scilab.org/software/atoms/signal-
acquisition-and-instrument-control).

[5]. C. Jermain and G. Rowlands, PyMeasure scientific

package (https://pymeasure.readthedocs.io/en/latest/).
[6]. TIOBE, TIOBE Index for April 2020, 2 April 2020

(https://www.tiobe.com/tiobe-index).
[7]. D. Robinson, The Incredible Growth of Python

(https://stackoverflow.blog/2017/09/06/incredible-
growth-python).

[8]. National Instruments, NI-VISA™ User Manual, 2001.
[9]. G. Thalhammer, T. Bronger, F. Bauer, H. E. Grecco,

and M. Dartiailh, PyVISA: Control your instruments
with Python (https://pyvisa.readthedocs.io/en/latest/).

[10]. S. van der Walt, S. C. Colbert, G. Varoquaux. The
NumPy Array: A Structure for Efficient Numerical
Computation, Computing in Science & Engineering,
Vol. 13, Issue 2, 2011, pp. 22-30.

[11]. W. Mckinney, Data Structures for Statistical
Computing in Python, in Proceedings of the 9th Python
in Science Conference (SciPy 2010), Austin, Texas,

USA, 28-30 June 2010, pp. 56-61.
[12] A. Quenon, E. Daubie, V. Moeyaert and F. C. Dualibe,

On the Possibility to Use Energy Harvesting on Beta
Radiation in Nuclear Environments, in Proceedings of
the Nuclear & Space Radiation Effects Conference
(NSREC 2020)’, submitted.

[13]. Keysight Technologies, Keysight B2980A Series Data
Sheet, 2019.

Tab. 1. Main characteristics of software solutions for measurement instruments remote control and automation.

Tool License

Programming
Compatible

protocols

Automatic

recognition
Level Language Graphical

LabVIEW Proprietary all MathScript yes all no

MATLAB Proprietary low Matlab partial all no

Octave GPL low Octave no no PXI no

Scilab GPL low Scilab no no UDP no

PyMeasure MIT high Python no no UDP no

R-testbench OSL high Python no no UDP yes

https://www.ni.com/en-us/shop/labview.html
https://www.mathworks.com/products/instrument.html
https://www.mathworks.com/products/instrument.html
https://wiki.octave.org/Instrument_control_package
https://www.scilab.org/software/atoms/signal-acquisition-and-instrument-control
https://www.scilab.org/software/atoms/signal-acquisition-and-instrument-control
https://pymeasure.readthedocs.io/en/latest/
https://www.tiobe.com/tiobe-index
https://stackoverflow.blog/2017/09/06/incredible-growth-python
https://stackoverflow.blog/2017/09/06/incredible-growth-python
https://pyvisa.readthedocs.io/en/latest/

