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Abstract

Overcoming population growth dilemma with less resources of soil and water, the irrigated agriculture allows us to increase the
yield and the production of several crops in order to meet the high requirements of demands of food and fibers. Efficiently, an
irrigation system should correctly evaluate the amount of water and also the timing, when applying certain irrigation doses. Global
warming of the planet, to which is added in some regions an irregular regime of precipitation and a scarcity of available water
resources, requires precision irrigation systems. The rational use of water and inputs (mainly fertilizers and pesticides) is crucial
in some areas of the planet suffering from a deficiency of water. Hence, in these regions where the environmental conditions are
harsh to ensure an efficient crop growth. Moreover, plant diseases and pests impact the yields of crops. For these reasons is it why
an early detection gives us the opportunity to treat the disease or pest as quickly and effectively as possible, in order, to reduce the
impact of these latter. Nowadays, the identification of plant diseases and pest with Artificial Intelligence algorithms on video flow
in real conditions with variable exposition are still being a very challenging problem. Researchers classically develop algorithms
that are trained on calibrated exposition images, which does not perform well in real conditions. Furthermore, the processing of
a video in real time needs specialized computing resources close to the pivot-center irrigation trained with AI algorithms on real
images and then analyzes rapidly, detects problem, and then react accordingly. In this paper, we complete our previous proposed
IoT system to optimize the water use and we displaced the computing of data at the edge level in order to be able to process videos
locally, event the Internet connection is limited. This local computing power also allows us to manage the supply of fertilizers and
the treatment of plant diseases, and pests.
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1. Introduction

Soil and water availability have declined in parallel with population growth. In addition, climate change is responsi-
ble for a change in temperatures and the rainfall, which impact agriculture for the whole planet at different intensities.
Humanity is facing an urgent need to increase agricultural production in order to face the demand of feeding the world
population and adapt to the climatic condition that has impacted crop yields at different geographics locations world-
wide. However, the pressure on the availability of sufficient quantities of water is only increasing in more regions
of the world. It has become mandatory to optimize and rationalize its use to conserve or even increase the yields of
agricultural production while saving it. Precision irrigation is one of the main ways to address this issue.

Irrigation is a process in which water is applying on the soil in order to improve the growth of crops or fruit trees,
to revegetate degraded soil, or to maintain landscapes in areas where rains are insufficient or irregular [21]. Different
techniques of irrigation allow us to substitute the lack of water by enhancing runoff surface or using an irrigation pivot
or by a drip system. Only a part of water that is effectively absorbed, will be partially stocked in the soil and available
for plants; the rest is mainly lost by runoff, percolation in the soil or evaporation during the routing of water to the
irrigated areas. Water is a solvent of salts, sugar and other solute needs for the growth of plan. In addition, it also plays
a crucial role in hydrolytic processes and acts as a reagent in photosynthesis.

This technique of water optimization must answer questions when how much and where to apply water to optimize
the yield of crops affected by minimum water. To achieve this goal, many models have been developed to calculate
the evapotranspiration of plants based on their phenotypic development, weather conditions, and the nature of the
soil. Evapotranspiration can be defined as the amount of water transferred to the atmosphere, through ground-level
evaporation from water tables, precipitation interception, and through plant transpiration. These models let us deter-
mine precisely the evapotranspiration (ET) of plant and compensate ET by irrigation. On the contrary, these models
cannot evaluate the water effectively stored in the soil in case of this latter is heterogeneous. To address this dilemma,
other models have been developed on the basis of networks of sensors that measure the environmental conditions and
the soil humidity to estimate the irrigation doses to be applied and maintained according to a specific range of soil
moisture. Nevertheless, they are not adaptable to any whereabout.

We propose a solution mixing targeted both approaches for center-pivot irrigation. We evaluate the potential evap-
otranspiration (ET0) on basis of Penman–Monteith equation, recommended by FAO. Afterwards, this one is adapted
in function of the development stage of the crop. A network of sensors placed in the soil to measure the moisture and
to correct doses volume to compensate for obstruction and aging of the spray equipment, or the failed of a sprinkler.

In this paper, we complete our previous work [4] adding dynamic adaptation to environmental conditions and the
detection of plant diseases and pests. The novelty of this paper is the combination of an Intelligent Variable Irrigation
System, plant diseases, and pests’ detection processed at the Edge of network on a micro heterogeneous cluster.

The next sections of the paper is articulated as follow: In section 2, we present a literature review organized in
two parts. The first remind our background in term of Internet of Things, edge computing, and irrigation. The second
part summaries related works with our research. In section 3, we describe our proposition using edge computing to
optimize center-pivot irrigation, plant and pest detection at quasi real-time. In section 4, we describe our experimen-
tation and discuss our findings. Finally, in section 5, we conclude in comparing our results with these findings in the
literature and trace our future works.

2. Literature Review

This section is composed of two parts: Firstly, we give a brief overview about our background through previous
works on edge AI and IoT, Internet of Things, and irrigation. Afterwards, we describe some major contributions in
term of smart irrigation and approaches used to optimized amount of water distributed on the field.

2.1. Background

In our previous work, we suggested an automation system based on the Internet of Things (IoT), Geographic
Information System (GIS) and quasi real-time in the cloud of water requirements to improve the efficiency of wa-
ter use [4]. We also developed an AI-IoT architecture [12] tested on various use cases such as climatic enclosure

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2020.10.009&domain=pdf


 Olivier Debauche  et al. / Procedia Computer Science 177 (2020) 40–48 41

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2020) 000–000
www.elsevier.com/locate/procedia

The 11th International Conference on Emerging Ubiquitous Systems and Pervasive Networks
(EUSPN 2020)

November 2-5, 2020, Madeira, Portugal

Edge AI-IoT Pivot Irrigation, Plant Diseases, and Pests Identification
Olivier Debauchea,b,∗, Saı̈d Mahmoudia, Meryem Elmoulatb,c, Sidi Ahmed Mahmoudia,

Pierre Mannebacka, Frédéric Lebeaud

aUniversity of Mons, Faculty of Engineering - ILIA / Infortech, Place du parc 20, Mons 7000, Belgium
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[11], smart poultry [9], and landslides monitoring [20]. Additionally, we developed a High Performance Comput-
ing (HPC) cloud architecture [18] and a Lambda cloud architecture developed on various use cases: landslides
monitoring[25], bee health[19], irrigation [4], elderly and patient monitoring[13], AI-IoT[12], smart campus[3], smart
home[7], smart city[8], smart building[16], cattle behavior[6][15][5][10], phenotyping[14][17], urban gardening[2],
climatic enclosure[11], and smart bird[1].

2.2. Related Works

Jimenez et al. [23] proposed an inference system using a Raspberry Pi and a network of xbee devices acquiring soil
moisture, soil and air temperatures, luminosity, and rain data. Their inference system determines the irrigation time on
basis of membership functions and a Mamdani inference methodology. In addition, the luminosity and ambient tem-
perature are used to determine periods with an important evapotranspiration, while soil moisture allows to determine
the volume of water contained in the soil. A fuzzy logic mechanism effects the inference of the dose and timing in
crop system [23].

Vilarrubia et al. [27] combined a multi-agent system using PANGEA, an open source platform to manage virtual
organizations, which monitor and control irrigation system. In addition, a Wireless Sensors Network (WSN) that
measures soil moisture, air temperature and humidity, conductivity, oxygen, water level, and pH. Agents interact
autonomously and provide to the system a greater flexibility and intelligence [27].

Mendes et al. [24] have proposed a variable rate irrigation system (VRIS) that spatially vary the application of
water on the field, especially, with different type of soils, and crops. It uses a fuzzy inference which create prescriptive
map based on normalized differences vegetation index (NDVI), canopy temperature, and satellite images to adapt to
pivot rotation speed [24].

González-Briones et al. [22] implemented a multi-agent system based on virtual organizations built with Java Agent
Development Framework (JADE) over the cloud. These authors argue that the use of cloud allows an immediate access
to evaluate the status of all sensors and devices. Furthermore, edge computing consumes less bandwidth, optimizes
processes, and reduces latency [22].

3. Our proposition

Our proposition relies on our previously describe Edge AI-IoT architecture [12] based on Kubernetes and Docker
which allows us to deploy easily Multi Agent Systems (MAS) and to adapt Artificial Intelligence (AI) algorithms on
a heterogeneous cluster composed of Odroid N2 and Nvidia Jetson Nano. This Edge cluster helps us to process data
close to the pivot center and gives a real-time analysis; and therefore, makes a quick decision. It can often use the
cloud computing to train artificial intelligence algorithm or process data when capabilities of the edge cluster are
temporary insufficient and that when a broadband connection is available.

As shown in Figure 1, a Wireless Sensors Network measures the soil moisture under each segment of center-
pivot to control and adapt dynamically amount of water sprinkled on plant and soil. These sensor network support
us to measures the soil temperature, and water content at 10cm and 30cm with SHT20 (Sensirion) sensors with a
temperature accuracy of ±0.3◦C and a moisture accuracy ±3%RH before and after irrigation and localization of the
pivot extremity by GPS NEO-M9N (U-Blox). In the meanwhile, a weather station measures data needs to calculate
potential evapotranspiration ETO (see Fig. 3 with the Penman–Monteith equation.

ET0 =
0.408∆(Rn −G) + γ(900/T + 273)U2(es − ea)

∆ + γ(1 + 0.34U2)
(1)

Where ET0 is the potential evapotranspiration [mm.day−1], Rn is the net radiation at the crop surface
[MJ.m2.day−1], G is the soil heat flux density [MJ.m−2.day−1], T is the mean daily air temperature at 2m
height of soil [◦C], U2 is the wind speed at 2m height of soil [m.s−1], es − ea is the saturation vapor pressure [kPa], ∆
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Fig. 1. Architecture Scheme

is the slope of the vapor pressure curve [kPa.◦C−1], γ is the psychrometric constant [kPa.◦C−1].

This latter is built around an ESP32 LoRA v2 and equipped with a win vane and anemometer Davis, a hygrometer,
thermometer and barometer BME280 (Bosch Sensortec), a rain gauge RG-15 (Hygreon), a net radiometer SN-500
(Apogee Instruments), which measures respectively the wind direction [◦], the wind speed [m/s], air humidity [%],
air temperature [◦C], air pressure, rainfall [mm], net radiation [W.m−2] for pivot irrigation in the vicinity. Actuators
are also built around an ESP32 LoRa V2 equipped of solenoid valve and flow sensors, which gives us the opportunity
to manage the flow and control applied one at sprinklers level. The data is transmitted with LoRa to a gateway that
route data them up to the edge cluster using TCP/IP.

Table 1. Power consumption according to manufacturer’s data and interface of connection.

Component Model Interface Accuracy Operation mode Supply Current (Max) Voltage

Microcontroller ESP32 Lora V2 Multiple N/A power / output 135mA / 500mA 2.7-6VDC
Sol moisture SHT20 I2C ±3% sleep mode / measuring 0.4µA / 330µA 2.1-3.6VDC
Sol temperature SHT20 I2C ±3◦ sleep mode / measuring 0.4µA / 330µA 2.1-3.6VDC
Air temperature DS18B20 1-Wire ±5% Standby / Active 1µA / 1.5 m 3.3-5.5VDC
Air temperature BME280 I2C ±1◦ sleep mode / normal 0.1µA / 1 µA 1.7-3.6VDC
Hygrometer BME280 I2C ±3% sleep mode / normal 0.1µA / 0.8 µA 1.7-3.6VDC
Barometer BME280 I2C 1hPa sleep mode / normal 0.1µA / 1.8 µA 1.7-3.6VDC
Anemometer Davis anemometer Digital 1m/s N/A N/A 5VDC
Win vane Davis anemometer N/A 3◦ N/A N/A 5VDC
Rain gauge RG-15 Serial 0.02mm nominal / raining 110µA / 2-4mA 3.3VDC
Net Radiometer SN-500 Analogic 5% power 740mA @ 12VDC 5.5-16VDC
GPS NEO-M9N Serial 2mhorizontal acquisition / tracking 100mA / 36mA 2.7-3.6VDC
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The Edge cluster hosts virtual organizations that may be deployed preferably on Odroid N2 and artificial intelli-
gence algorithms choose to run on Nvidia Jetson Nano. All the hosted virtual organizations and agents are detailed as
follow (See Fig. 1 and Fig. 2):

(1) The Anomalies Detection virtual organization contain an agent that transform data and three agents that use
Kalman Filter to detect respectively anomalies on values measured by the weather station and used for the ET0
calculus, values of soil moisture, and flows measured on the center-pivot. These parameters are acquired by the
Wireless Sensors Network (WSN). The verified data are then sent to Database agent (4).

(2) The ET0 calculus agent determines the values of the potential evapotranspiration with Penman-Montheith equa-
tion from data provided by the weather station and validated by (1). The calculus result is then store in database
by (4).

(3) The Parameters state virtual organization content four agents. The first analyzes the state of soil from values
acquires by soil moisture sensors. The second verify via the flow measurement associated with each solenoid
valve that the water dose is correctly applied by each sprinkler. The third agent evaluates the water pH. While
the fourth agent controls the water conductivity that controls the input concentration. States of all parameters
monitored by agents of the organization are sent to database agent (4) in order to be stored.

(4) The Database agent store raw data received from the virtual organization ”Anomalies Detection”, calculated
value from the agent ”ET0 Calculus”, and states of soil and flows evaluated by the virtual organization ”Soil
and Flow State”.

(5) A Water Requirements Calculus (WRC) agent evaluates water requirements on basis of values of soil mois-
ture sensors, precipitation, irrigation supply, potential evapotranspiration calculated by (2), and plant state of
development.

(6) A Water Requirements Prediction (WRP) agent estimates the future needs of plant for the next rotation of the
pivot in order to plan the volumes of water necessary for irrigation. The prediction of these volumes of water
and irrigation flows are also important when treatments must be applied to the irrigated perimeter.

(7) The Rules and Conditions virtual organization contain three agents. The first make decisions on amount of
water to apply on each segment of the pivot on basis of soil state, precipitation, previous irrigation, crop evap-
otranspiration, and water requirements calculated and predicated. The second make decisions when pest is
detected by several ”pest detection” agents (10). However, the third agent make decisions when several disease
detection agents detect the same anomaly (12).

(8) The Actions virtual organization allow to control actuators such as valve solenoid, pesticides, fungicides, and
fertilizers addition pump in the irrigation circuit, and so on.

(9) The Faults detection virtual organization aim to detect anomalies in the operation of the pivot. It controls by
means of sensors placed in critical points of the pivot: flows, pivot speed, pressure in the main pipeline. When a
fault is detected, depending on its severity, a warning is added to the logs. In addition, in case of a major fault,
a message is sent to the manager by means of the Alert System.

(10) The Pest Detection agent recognizes the different stages of development of the pests of the crop in place. The
early identification allows to quickly cure the crop and limit the impact on the harvest. The Pest detection is a
specific artificial algorithm trained on the cloud, compressed in TFLite and deployed on Jetson Nano nodes to
detect the presence of crop pest.

(11) The Features extraction virtual organization analyze images acquired from camera place on the pivot, prepro-
cess them, and detect zone of interest, which are sent to pest detection (10) and disease detection (12) agents to
predict the presence or any threat absence.
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(12) The Disease Detection agent identifies disease of the in-place crop. The early identification of diseases allows
us to cure quickly, limit the extension of the disease, and preserve yield of the crop. This agent is an artificial
algorithm specifically trained on the cloud, compressed in TFLite, and deployed on Jetson Nano nodes to detect
the presence of any disease that may harms the crop.

(13) The Master agent plays a crucial role of coordination between all other agents and virtual organizations.

The Figure 2 shows a more detailed views of agents and the agents contained in Virtual Organizations (VO).

Fig. 2. Detailed View on Agents and Virtual Organizations

The cloud architecture hosts two mains components namely an Apache web server with Mapserver [26] an open
source platform used to publish online interactive maps and GIS data of all pivot data. The second is the training
environment of disease and pest detection.

The use of a Multi Agent System (MAS) coupled with docker containerization and Kubernetes orchestration allow
to manage dynamically the virtual organization size. Moreover, MAS offers a great reactivity, which provides the
system to adapt dynamically to deal with events such as for example to compensate dynamically a fail sprinkler or the
decreasing of the effectiveness of sprinklers due to their aging.

4. Experimentation and discussion

We have experimented our architecture on a pivot installed at In Salah, Algeria with a wheat crop planted on
November 25, 2019. The water requirements have been calculated with CropWat 8.01 which uses Penman-Monteith
equation to estimate water requirements theoretically on basis of weather data. The daily estimation of water require-
ments has been achieved on basis of Climwat database2. It contains needed to calculate the potential evapotranspi-

1 http://www.fao.org/land-water/databases-and-software/cropwat/en/
2 http://www.fao.org/land-water/databases-and-software/climwat-for-cropwat/en/
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ration: mean daily maximum temperature [◦C], mean daily minimum temperature[◦C], mean relative humidity [%],
mean wind speed. [km.day−1], and mean solar radiation [MJ.m−2.day−1].

These values have been used as baseline to compare on one hand, with evapotranspiration of the crop based on
measurement of our weather station to demonstrate; on the other hand, the performance of our position, and shows
water saving obtained. More details have been given in our previous paper on the evapotranspiration calculation [4].

Table 2. Water requirements.

Month Decade Stage
Kc Theoretical ETc Real ETc Practical Etc

Coefficient mm.day−1 mm.day−1 mm.day−1

November 1 Initial 0.30 1.04 1.02 0.88
December 2 Initial 0.30 0.90 0.90 0.75
December 3 Initial 0.30 0.77 0.87 0.74
December 4 Initial 0.30 0.78 0.82 0.71

January 5 Development 0.35 0.95 0.93 0.81
January 6 Development 0.54 1.46 1.48 1.35
January 7 Development 0.74 2.19 2.25 1.98
February 8 Mid-season 0.94 3.01 2.95 2.74
February 9 Mid-season 1.12 3.86 3.82 3.66
February 10 Mid-season 1.16 4.42 4.42 4.22

March 11 Mid-season 1.16 4.85 4.89 4.59
March 12 Mid-season 1.16 5.28 5.36 4.95
March 13 Mid-season 1.16 5.89 6.03 5,65
April 14 Mid-season 1.16 6.51 6.65 6,34
April 15 Late season 1.10 6.76 6,83 6.49
April 16 Late season 0.89 5.71 5.73 5.58
May 17 Late season 0.68 4.52 4.60 4.28
May 18 Late season 0.46 3.20 3.20 2.98

Total: 621.0 mm 627.5mm 587.0mm

Table 4 shows water requirements obtained based on statistical data from Climwat database provided by Food and
Agriculture Organization (FAO)3. The theoretical calculus gives water requirements for our wheat crop of 621.0 mm.
However, the amount of water calculated with the same equation (Penman-Monteith) with data from our weather
station give a real evapotranspiration of the crop evaluated to 627.5 mm. This value is similar to the theoretical
evaluation which allows us to ensure that the values provided by our weather station are sufficiently accurate to be able
to obtain a sufficiently precise evapotranspiration calculation. The practical evapotranspiration used for the irrigation;
this one is corrected with soil moisture measurement achieved by the wireless sensors network. Our systems allow a
reductions of irrigation water amount of 5% compared to the theoretical calculation based on meteorological statistics
and 6% compared to the calculation on the actual meteorological data.

The performance of the plant diseases recognition have archived in our previous paper describing the Edge AI-IoT
architecture with which several AI algorithms are tested on plant village database, a database of several species taken
in real conditions 4 [12] and was used to validate the operation of our architecture before testing it in real conditions.

5. Conclusion and perspective

In this paper, we propose Multi Agent System (MAS) deployed with docker containerization and orchestrated by
Kubernetes on an Edge AI-IoT architecture place in the vicinity of a set of pivots. A Wireless Sensor acquires en-
vironmental data for each pivot allowing the evaluation and the actualization of water requirements each 5 minutes.
A common weather map ensures the measurements of parameters needed to calculate precisely the potential evapo-
transpiration which is multiplied with a pondering coefficient (Kc) to calculate the water requirements for the crop.

3 http://fao.org
4 https://data.mendeley.com/datasets/tywbtsjrjv/1
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Our proposition based on a multi agent system to better address water requirements and compensate in particular for
the loss of performance of the sprinklers or the defectiveness of one of them. In addition, our system integrates plant
disease and pest recognition and provides the crop to be treated using the irrigation pivot.

The proposed solution can be adapted to drip irrigation where camera images must be replaced by regular drone
flies and photos captured by farmers. In our future works, we would like to evaluate our architecture on drip irrigation.
Indeed, the plant disease and pest identification must be improved adding preprocessing to normalize image before
the prediction to reduce the impact of photo exposure (variable light intensity in outdoor conditions). Water saving
can be improved by limiting the amount of water supplied by irrigation to 70% of the field capacity, i.e. the maximum
amount of water that a soil can retain under drainage normal conditions.

In our future works we plan to test the scalability of our approach on several pivot-center irrigation to demonstrate
definitively the feasibility of our proposition with industrial partners.
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