
electronics

Article

A Novel Design and Optimization Approach for Low
Noise Amplifiers (LNA) Based on MOST Scattering
Parameters and the gm/ID Ratio

Juan L. Castagnola 1,*, Fortunato C. Dualibe 2, Agustín M. Laprovitta 1 and Hugo García-Vázquez 3

1 Facultad de Ingeniería, Universidad Católica de Córdoba, Córdoba 5017, Argentina; alaprovitta@ucc.edu.ar
2 Service d’Électronique et Microélectronique, Université de Mons (UMONS), 7000 Mons, Belgique;

fortunato.dualibe@umons.ac.be
3 Departamento de Electrónica, Instituto de Astrofísica de Canarias (IAC), 38200 La Laguna, Spain;

hugo.garciavazquez@iac.es
* Correspondence: juancastagnola@ucc.edu.ar; Tel.: +54-351-493-8087

Received: 31 March 2020; Accepted: 9 May 2020; Published: 11 May 2020
����������
�������

Abstract: This work presents a new design methodology for radio frequency (RF) integrated circuits
based on a unified analysis of the scattering parameters of the circuit and the gm/ID ratio of the
involved transistors. Since the scattering parameters of the circuits are parameterized by means of the
physical characteristics of transistors, designers can optimize transistor size and biasing to comply
with the circuit specifications given in terms of S-parameters. A complete design of a cascode low
noise amplifier (LNA) in MOS 65 nm technology is taken as a case study in order to validate the
approach. In addition, this methodology permits the identification of the best trade-off between the
minimum noise figure and the maximum gain for the LNA in a very simple way.
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1. Introduction

The low noise amplifier (LNA) is considered a crucial component in wireless communication
systems. Since it is the first stage of the receiver, the LNA design characteristics (such as high-gain,
low-noise figure, linearity) condition the reception performance of the whole system [1]. However, it is
a fact that in radio frequency (RF) design, it is very difficult to meet all the specifications simultaneously
because of the large number of constraints to be satisfied. Broadly, there are two approaches to
designing an LNA, depending on the critical specification to be addressed: looking for the maximum
gain or the minimum noise figure. The traditional high frequency MOS design flow is tedious,
time-consuming, and usually relies on the designer’s experience. This supposes conducting an iterative
process, generally assisted by a CAD simulation tool, until the design specifications are satisfied.

In order to characterize these kinds of circuits, the scattering parameters (or S-parameters) are
the most likely symbolic approach, where signal power considerations are more easily quantified and
measured than currents and voltages. These parameters reflect the power gain and the input and
output matching of the circuit. However, there is no model that relates S-parameters to the physical
characteristics of the transistors, which represent the main variables to consider in order to address the
aforementioned LNA design constraints [2].

On one hand, the advanced compact MOSFET (ACM) model [3] is a powerful tool for hand
calculations with MOS transistors. Unlike most of the available models, it presents simple and precise
equations together with a small but meaningful number of physics parameters. On the other hand,
the relationship between the transistor’s transconductance (gm) and the drain current (ID), also known
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as the gm/ID ratio, is widely used as a design methodology for determining the transistor’s size [4].
This method is based on the dependence of both the transconductance and the current with the
variation of the transistor size (W/L). Through this method, it is possible to explore the transistor’s
behavior in all its inversion regions [5,6]. Consequently, an LNA design methodology based on a
unified analysis of the S-parameters and the gm/ID ratio, by means of the ACM model, will allow
designers to set the transistor sizes and bias conditions that best fit the design expectations.

Several approaches can be found in the literature reporting integrated LNA design methodologies,
with different strategies regarding the parameters analyzed in the design process [7–16]. An even larger
quantity of different configurations has been proposed for specific applications [17–26]. For example,
in [7,17–22] different LNA topologies using diverse design flows are presented, but all use the
S-parameters exclusively for verification purposes.

In [27], an interesting two-step design methodology is presented that generates a set of inductors
with the best trade-offs using iterative electromagnetic simulations. Inductors are selected from the
Pareto frontier, and its S-parameter matrix is included in the circuit to be simulated. This approach
eliminates the classical redesign iterations; however, it does not address the problem of transistor
sizing. On the other hand, [28] reports a portable design methodology based on a low-power figure
of merit (FOM) and inversion coefficient (IC). The IC is a normalization of the MOS drain current
that allows a description of the transistor behavior independently of its technological parameters.
Although this method solves the problem of the physical characterization of the amplifier core using
the gm parameter and the bias currents, the S-parameters are used independently to verify if the
targeted specification was reached at each iteration loop.

The characterization of an LNA common source (CS) stage in terms of the S-parameters, the gm/ID
ratio and the transistor’s size, was introduced for the first time in [29]. In [30], this approach
is extended to the whole design of an LNA. Based on these authors’ previous works, this paper
presents a comprehensive description of such a methodology for RF circuit design. In this strategy,
the S-parameters of the circuit are parameterized by means of the MOS gm/ID ratios, allowing designers
to choose the latter in order to optimize transistor size and bias to comply with the circuit specifications.
The design space exploration of a complete cascode LNA in CMOS 65 nm technology is reported,
considering the amplifier gain (G), noise figure (NF), and stability Stern factor (K) as its most relevant
design specifications. In addition, this approach allows the identification of the best trade-off between
the minimum noise figure and maximum gain for the LNA in a very simple way.

This work is based on the relationship between hybrid and Y-parameters in order to give a
theoretical background, while demonstrating the link between S-parameters and the gm/ID ratio of
transistors. It should be noted, however, that the central idea is that the designer directly uses the
S-parameters expressed in terms of the gm/ID ratio extracted from simulations or, more realistically,
from measurements on real transistors previously implemented in a test chip.

The remainder of this work is organized as follows: in Section 2, the relationships between the
S-parameters and the physical transistor (ACM model) are established. A complete LNA design
process is described as a case study in Section 3, where its available power gain and noise figure are
characterized as a function of the transistors’ gm/ID. Finally, Section 4 concludes the paper.

2. Design Approach: Linking the Circuit S-Parameters with the gm/ID Transistor Ratio

The gm/ID ratio is a resourceful tool for performing transistor sizing and biasing. As mentioned
earlier, this method exploits the fact that transconductance and drain currents vary with the gate width.
From the design perspective, the gm/ID ratio is the parameter that tells the designer how much current
is needed to obtain a particular gm, prescribed by the gain-bandwidth constraint.

Figure 1 shows the well-known ID versus Vgs characteristics of a NMOS transistor. From this
curve, one can obtain the gm/ID ratio as follows:( gm

ID

)
=

1
ID
·

dID

dVG
=

d
dVG

log(ID) (1)
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The above equation is plotted in Figure 2. From Equation (1), it can be noted that the gm/ID
ratio does not depend on the gate width but on the inversion region where the transistors are biased.
As seen in Figure 2, the gm/ID is at its maximum when the Vgs is at its minimum. This is because the
gm/ID is inversely proportional to the gate-voltage-overdrive Vov = Vgs – Vth. Based on the value of
Vgs, the MOS transistor can operate in three different regions: weak, moderate, and strong inversion.
In the first region, the value of the gm/ID is at its maximum, while its minimum is in strong inversion.
Conversely, the current is at its maximum in strong inversion and at its minimum in weak inversion,
as shown in Figure 1.

A more useful plot is shown in Figure 3, in which the gm/ID ratio is plotted as a function of the
normalized current iD, which is given by:

iD =
ID(W
L

) (2)

In this way, its position along the horizontal axis of the gm/ID curve becomes independent of the
threshold voltage Vth. For a given ID and a desired operation region (gm/ID), the transistor size is easily
obtained as the following:

W/L =
ID

iD
(3)

At the same time, through the curve in Figure 2, one can obtain the needed Vgs biasing voltage.
In short, the gm/ID, iD, and Vgs form a trinity that defines the transistor working conditions. Knowing the
value of one of these values and using the curves in Figures 2 and 3, the values of the other two can
be inferred.
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Figure 3. gm/ID versus iD.

The key idea is to use the gm/ID ratio as a free parameter that enables sweeping the transistor
through all modes of operation in order to explore the design space. Broadly, there are two working
methodologies: experimental or analytical. The first derives the gm/ID ratio from experimental
ID = f(Vgs) characteristics. The currents are acquired from measurements carried out on real transistors
whose W and L are known a priori. Another option is to obtain the ID from simulations with advanced
models, such as BSIM or PSP4, as these allow the reconstruction of drain currents that are very close to
real ones. The last option is also known as the semi-empirical gm/ID sizing method.

This LNA design approach is based on the analysis of the variation in the circuit S-parameters
as a function of the physical transistor (gm/ID). Thus, it is necessary to link the transistor geometry
and biasing conditions (expressed in terms of the gm/ID ratio) with the design specifications given
in terms of the S-parameters. In this direction, the expressions given by the ACM model for the full
characterization of the MOS transistors [3,8] can be used. Figure 4 shows the RF small signal equivalent
circuit for an MOS transistor with intrinsic and extrinsic components depicted separately.
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Figure 4. MOS radio frequency (RF) small signal equivalent circuit.

From the ACM model, it is possible to obtain the expressions of the intrinsic capacitances in terms
of the gm/ID transistor ratio. The latter are synthetized in Table 1, while Table 2 reports the expressions
for the extrinsic capacitances. In these expressions, W is the channel width, L is the channel length,Φt is
the thermal voltage, COX is the gate capacitance density, COV is the overlap capacitance density, and Cj’
is the junction capacitance density. Table 3 shows the definition of the gate and bulk transconductance
(gm and gmb, respectively) and the drain conductance (gds), which can also be expressed as a function
of the MOS gm/ID. In this case, n is the subthreshold slope factor, and VA represents the early voltage.
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Table 1. MOS intrinsic capacitance expressions.

Parameter Expression

Auxiliary expression A =
(gm/ID)

(gm/ID)MAX

Intrinsic gate-source capacitance Cgsi =
2
3

Cox·W·L
(
1−

1
2

A−
1
2

A2
)

Intrinsic gate-bulk capacitance Cgbi =
(
1− (gm/ID)MAX·Φt

)Cox·W·L
3

(
1 + A + A2

)
Intrinsic bulk-source capacitance Cbsi =

(
1

(gm/ID)MAX·Φt
− 1

)
2
3

Cox·W·L
(
1−

1
2

A−
1
2

A2
)

Table 2. MOS extrinsic capacitance expressions.

Parameter Expression

Extrinsic gate-drain overlap capacitance Cgd_ov = W·Cov
Intrinsic gate-source capacitance Cgs_ov = W·Cov
Intrinsic gate-bulk capacitance C jd = W·LDi f f ·C j′

Intrinsic bulk-source capacitance C js = W·LDi f f ·C j′

Table 3. MOS transconductance and conductance expressions.

Parameter Expression

Gate small signal transconductance gm =
∂IDS
∂Vgs

=
( gm

ID

)
ID

Body small signal transconductance gmb =
∂IDS
∂Vbs

= (1 + n)gm

Output small signal conductance gds =
∂IDS
∂Vds

=
VA
ID

When the transistor modelled in Figure 4 is part of a more complex circuit arrangement with
other external components, this arrangement can be represented as a quadrupole (shown in Figure 5),
and its admittance parameters (Yij) can be derived from the complete circuit using a two-port model.
Then, each Y-matrix element will be a function of the aforementioned MOS elements (capacitances,
conductance, and transconductance) and the involved external components. These admittance
parameters are used as an intermediate step for obtaining the S-parameters.
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Finally, the S-parameters can be easily obtained from the admittance matrix [31], as follows:

S11 =
[(Y0 −Y11)·(Y0 + Y22) + Y12·Y21]

(Y0 + Y11)·(Y0 + Y22) −Y12·Y21
(4)

S12 =
−2·Y12·Y0

(Y0 + Y11)·(Y0 + Y22) −Y12·Y21
(5)

S21 =
−2·Y21·Y0

(Y0 + Y11)·(Y0 + Y22) −Y12·Y21
(6)

S22 =
[(Y0 + Y11)·(Y0 −Y22) + Y12·Y21]

(Y0 + Y11)·(Y0 + Y22) −Y12·Y21
(7)
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Figure 6 summarizes the procedure for obtaining the circuit’s S-parameters as a function of the
physical properties of the transistor. A validation of these relations can be found in [29], where this
strategy was applied to the characterization of an LNA common source stage, and concurrent
simulations with the ACM and IBM BSIM4 MOS 65 nm models were performed.
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3. LNA Design Methodology

The selected LNA configuration, shown in Figure 7, corresponds to a cascode topology. It consists
of the transistors, M1 and M2, in common source and common gate configuration, respectively,
which fix the gain of the LNA. C1 and L1 set a stabilization network that ensures that the amplifier
is unconditionally stable. The C2–L2 pair is part of the input-matching network, setting the input
impedance to 50 ohms at the working frequency. C3–L3 is the output-matching network. The rest of
the circuit (M3, R1, and R2) form the bias network that sets the LNA bias conditions (Vgs and ID at M1).
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It is worth noting that the analysis of the admittance matrix must be individually performed for
each LNA stage. This is because the transistor configuration is different at each stage and, consequently,
the involved elements of the small signal transistor model will also be different for each of them.
As mentioned above, the presence of external components must be considered. This work focuses
on the amplifier core, consisting of the common source (CS) stage and the common gate (CG) stage,
highlighted in Figure 7. For the sake of clarity, the general expressions of the Y-matrix elements
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for the CS stage as a function of the MOS physical characteristics and bias conditions are presented
(Equations (8) to (11)). The admittance matrix for the CG stage can be ascertained in the same way.

Y11_CS =
S·Cgs·(YSB + gmb + Gds)

S·Cgs + YSB + gm + gmb + Gds
+ S·

(
Cgbi + Cgd_ov

)
(8)

Y12_CS = −
S·Cgs·Gds

S·Cgs + YSB + gm + gmb + Gds
+ S·Cgd_ov (9)

Y21_CS = −
S·Cgs·Gds + S·Cgs·gmb −YSB·gm

S·Cgs + YSB + gm + gmb + Gds
+ S·Cgd_ov (10)

Y22_CS =
Gds·

(
YSB + S·Cgs

)
S·Cgs + YSB + gm + gmb + Gds

+ S·
(
Cgbi + Cgd_ov

)
(11)

In these expressions, YSB is the MOS source-bulk admittance, and Cgs represents the gate-source
capacitance. Both are defined as follows:

YSB = S·
(
C jd + Cgdov

)
+

1
S·L1

(12)

Cgs = C1 + Cgsi + Cgs_ov (13)

The procedure, depicted in Figure 8, starts with the analysis of each LNA’s stage. For each,
the variation of the transistor drain current (ID) and transconductance (gm) with its size and bias
voltage (Vgs for CS and Vgg for CG) is determined by simulation. With both functions, the MOS
gm/ID ratio is then established. Using the relationships found in the second section (Tables 1–3 and
Equations (4) to (7)), the S-parameters are characterized as a function of the transistor’s gm/ID and size.
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The gain, noise figure, and stability factor of each stage can be easily derived from its S-parameters,
allowing the design space exploration of such parameters as a function of the gm/ID ratio and the
transistor geometry. In this way, the designer sizes the MOS transistor by simply selecting the gain and
noise figure points that best fit with the stage requirement and by verifying stability with the K factor.

The S-matrix of the whole amplifier can be expressed as the result of the cascade of two quadrupoles
(CS and CG stages), each characterized by its individual S-matrix. With this new S-matrix, it should be
verified that the amplifier complies with the gain and noise figure specifications. The next subsections
provide further details about the complete design procedure. The circuit was characterized in an MOS
65 nm technology for a 2440 MHz operation frequency. Simulations were performed with Microwave
Office (MWO)-AWR using the IBM BSIM4 model.
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3.1. Common Source (CS) Stage Characterisation

Figure 9 shows the simulation setup for the common source stage. As stated earlier, the elements
C1 and L1 were added to the circuit in order to ensure the stability of the amplifier. The S-parameters
are obtained as a function of the gm/ID performing parametric AC simulation by varying the W/L in the
range of 1000 and 5750 in steps of 250, and the Vgs between 600 and 1075 mV in steps of 25 mV.
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The available power gain (GA), defined as the ratio between the available power at the output
network (PN) and the available power from the source (PS), is given by the following:

GA =
PN

PS
=

1− |Γs|
2

|1− S11·Γs|
2 ·|S21|

2
·

1

1−
∣∣∣∣∣S22 +

S12·S21·Γs

1− S11·Γs

∣∣∣∣∣2 (14)

In the above equation, ΓS must be zero at the maximum gain. In this condition, the GA depends only
on the S-parameters that can be expressed in terms of the transistor gm/ID. Consequently, Equation (14)
now becomes:

GACS =
∣∣∣∣S21_CS

(
(gm/ID)CS

)∣∣∣∣2· 1

1−
∣∣∣∣S22_CS

(
(gm/ID)CS

)∣∣∣∣2 (15)

Figure 10a reports the result for the GACS as a function of the gm/ID ratio for different transistor sizes.
The maximum GACS is 10.71 dB for a gm/ID of 13.39 V−1 and a W/L ratio of 1000. Similarly, the noise
figure for the CS stage is depicted in Figure 10b. The minimum NFCS is 0.9076 dB for a gm/ID of
13.11 V−1 and a W/L ratio of 2000. As can be verified from Figure 10c, the circuit with the stabilization
network C1–L1 is unconditionally stable since the K factor is greater than one in all cases.

3.2. Common Gate (CG) Stage Characterisation

The same procedure is executed in order to obtain the S-parameters for the common gate
configuration (see Figure 11). It should be noted that this configuration does not need extra components
to warrant the stability of the circuit. As in the previous case, the simulation was performed varying
the W/L between 1000 and 5750 in steps of 250, but the Vgg was in the range between 1210 and 1400 mV
in steps of 10 mV.



Electronics 2020, 9, 785 9 of 17
Electronics 2020, 9, x FOR PEER REVIEW 9 of 17 

 

 
 

(a) 

 

(b) (c) 

Figure 10. CS stage response as a function of the gm/ID: (a) gain; (b) noise figure; (c) stability factor K. 

3.2. Common gate (CG) Stage Characterisation 

The same procedure is executed in order to obtain the S-parameters for the common gate 

configuration (see Figure 11). It should be noted that this configuration does not need extra 

components to warrant the stability of the circuit. As in the previous case, the simulation was 

performed varying the W/L between 1000 and 5750 in steps of 250, but the Vgg was in the range 

between 1210 and 1400 mV in steps of 10 mV. 

 

Figure 11. Common gate (CG) stage schematic circuit used for characterization. 

The GACG expression in terms of the S-parameters and transistor gm/ID is given by the following: 

𝐺𝐴𝐶𝐺 = |𝑆21_𝐶𝐺((𝑔𝑚/𝐼𝐷)𝐶𝐺)|
2

∙
1

1 − |𝑆22_𝐶𝐺((𝑔𝑚/𝐼𝐷)𝐶𝐺)|
2 (16) 

The available gain is plotted in Figure 12a for different W/L ratios. The maximum GACG is 9.76 

dB for a gm/ID of 12.41 V−1 with a W/L ratio of 3250. Figure 12b shows the NFCG for different W/L ratios. 

The minimum noise figure of this stage is 1.335 dB for a gm/ID of 13.85 V−1 and a W/L ratio of 5750. 

Finally, Figure 12c confirms that the configuration is unconditionally stable, with K always greater 

than one. 

Figure 10. CS stage response as a function of the gm/ID: (a) gain; (b) noise figure; (c) stability factor K.

Electronics 2020, 9, x FOR PEER REVIEW 9 of 17 

 

 
 

(a) 

 

(b) (c) 

Figure 10. CS stage response as a function of the gm/ID: (a) gain; (b) noise figure; (c) stability factor K. 

3.2. Common gate (CG) Stage Characterisation 

The same procedure is executed in order to obtain the S-parameters for the common gate 

configuration (see Figure 11). It should be noted that this configuration does not need extra 

components to warrant the stability of the circuit. As in the previous case, the simulation was 

performed varying the W/L between 1000 and 5750 in steps of 250, but the Vgg was in the range 

between 1210 and 1400 mV in steps of 10 mV. 

 

Figure 11. Common gate (CG) stage schematic circuit used for characterization. 

The GACG expression in terms of the S-parameters and transistor gm/ID is given by the following: 

𝐺𝐴𝐶𝐺 = |𝑆21_𝐶𝐺((𝑔𝑚/𝐼𝐷)𝐶𝐺)|
2

∙
1

1 − |𝑆22_𝐶𝐺((𝑔𝑚/𝐼𝐷)𝐶𝐺)|
2 (16) 

The available gain is plotted in Figure 12a for different W/L ratios. The maximum GACG is 9.76 

dB for a gm/ID of 12.41 V−1 with a W/L ratio of 3250. Figure 12b shows the NFCG for different W/L ratios. 

The minimum noise figure of this stage is 1.335 dB for a gm/ID of 13.85 V−1 and a W/L ratio of 5750. 

Finally, Figure 12c confirms that the configuration is unconditionally stable, with K always greater 

than one. 

Figure 11. Common gate (CG) stage schematic circuit used for characterization.

The GACG expression in terms of the S-parameters and transistor gm/ID is given by the following:

GACG =
∣∣∣∣S21_CG

(
(gm/ID)CG

)∣∣∣∣2· 1

1−
∣∣∣∣S22_CG

(
(gm/ID)CG

)∣∣∣∣2 (16)

The available gain is plotted in Figure 12a for different W/L ratios. The maximum GACG is 9.76 dB
for a gm/ID of 12.41 V−1 with a W/L ratio of 3250. Figure 12b shows the NFCG for different W/L ratios.
The minimum noise figure of this stage is 1.335 dB for a gm/ID of 13.85 V−1 and a W/L ratio of 5750.
Finally, Figure 12c confirms that the configuration is unconditionally stable, with K always greater
than one.

As can be seen from the analysis of each stage, the optimal condition of the MOS transistor
geometry and bias diverges depending on the design focus. At this point, the designer should set the
transistors’ W/L ratios and bias conditions that best fit with the LNA performance specifications and
in agreement with the design focus. Both the maximum gain and the minimum noise figure will be
analyzed in the next subsection for demonstration purposes.
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3.3. Cascode Characterisation

Once the CS and CG stages have been individually characterized by their S-matrices,
the S-parameters of the cascode topology can be expressed as the result of the cascade connection of
two quadrupoles [31]. In this way, each S-matrix element of the cascode stage is given as follows:

S11_Cascode = S11_CS +
S12_CS.S11_CG.S21_CS

1− S11_CG.S22_CS
(17)

S12_Cascode =
S12_CS.S12_CG

1− S11_CG.S22_CS
(18)

S21_Cascode =
S21_CS.S21_CG

1− S11_CG.S22_CS
(19)

S22_Cascode = S22_CS +
S12_CG.S22_CS.S21_CG

1− S11_CG.S22_CS
(20)

With the W/L ratios of the above stages fixed according to the design criteria, the cascode
S-parameters can be analyzed as a function of the gm/ID of both transistors. The cascode gain parameter,
given by Equation (21), can be processed in the same way.

GACASCODE =
∣∣∣S21_CASCODE

∣∣∣2· 1

1−
∣∣∣S22_CASCODE

∣∣∣2 (21)

First, the design procedure will be explained in order to obtain the maximum LNA gain.
The available power gain area in Figure 13a has been generated for a (W/L)CS ratio of 1000 and a
(W/L)CG ratio of 3250, which correspond to the transistor sizes for the maximum gain of each stage.
The GACASCODE is presented as a function of the gm/ID of each configuration in order to determine the
exact polarization points that set the maximum gain condition.

If the polarization conditions for the maximum gain in each stage (shown as P1 in Figure 13) are
evaluated, the available power gain of the cascode configuration results in 15.55 dB. However, the point
of the maximum power gain is 15.69 dB, and corresponds to a (gm/ID)CS of 10.07 V−1 and a (gm/ID)CG

of 12.12 V−1 (labelled as P2). This small shift in the bias conditions derives from an internal impedance
mismatch in the cascode connection of both stages. These new adjusted values will be those used in
the next design processes, focusing on the maximum gain constraint.
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An analysis of the noise figure behavior of the cascode configuration was performed for the
above-described conditions, and the results are shown in Figure 13b. This graph is obtained by using
the Friis equation [32] for the noise factor:

FT = F1 +
F2 − 1

G1
+

F3 − 1
G1.G2

+ . . . . . .+
FN − 1

G1.G2 . . . .GN−1
(22)

It can be noted that the total noise (FT) depends on the noise of each stage (Fi) and gain of the
previous stages (Gi−1 . . . GN−1). For the cascode arrangement, Equation (22) is reduced to the following:

NFCASCODE = 10·log
(
FCS +

FCG − 1
GACS

)
(23)

Figure 13c reports the behavior of the stability factor K as a function of the gm/ID of each stage.
In the evaluated points (P1 and P2), the cascode configuration is still unconditionally stable for the
maximum gain condition.
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Conversely, if the design had been approached following the noise criteria, the correct decision
would have been to minimize the noise figure at the CS and the CG stages. Using the same procedure
as in the previous case, an analysis of the noise behavior of the cascode stage is performed for a (W/L)CS

of 2000 and a (W/L)CG ratio of 5750, which correspond to the transistor sizes obtained for the minimum
noise figure in the CS and CG stages’ characterizations. Figure 14a summarizes the simulation results,
showing the NFCASCODE as a function of the gm/ID of each transistor.
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Figure 14. Plot of the cascode stage response for the minimum noise figure, as a function of the
(gm/ID)CS and (gm/ID)CG: (a) noise figure; (b) gain; (c) stability factor K.

The minimum NFCASCODE is 1.042 dB, found for a (gm/ID)CS of 6.792 V−1 and a (gm/ID)CG of
17.120 V−1 (P2 in Figure 14a). This polarization condition generates an available power gain of 11.02 dB
(see P2 in Figure 14b). As in the case of the maximum gain, the minimum noise figure is shifted with
respect to the polarization conditions set in the characterization of the individual stages (denoted as P1
in Figure 14) due to the internal impedance mismatch in the cascode connection. Figure 14c describes
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how stable the circuit is, depending on the bias condition of each stage. These graphs verify that the
stability factor K increases as the noise figure decreases.

3.4. Complete LNA Circuit

Once the physical parameters of the cascode amplifier have been established, the LNA design is
completed with the input and output matching networks and the bias network sections (see Figure 7).
The latter sets the gate-source voltage (Vgs) of the CS transistor, which determines the bias condition of
the entire cascode arrangement, while the former allows the LNA to achieve the maximum energy
transfer. Only the maximum power gain analysis is taken into consideration at this stage.

Table 4 summarizes the MOS physical parameters obtained for the maximum gain condition.
Using the gm/ID design methodology, choosing the M3 gm/ID ratio of 10.07 V−1 in order to obtain
700 mV at the M1 gate leads to a W/L of 20 for the bias network transistor.

Table 4. LNA MOS physical design parameters result for maximum gain.

Stage (Transistor) gm/ID Ratio [V−1] Vgs [mV] Vgg [mV] ID [uA] W/L L [nm] W [nm]

Common source (M1) 10.07 700 - 3300 1000 65 65,000
Common gate (M2) 12.12 - 1360 3300 3250 65 211,250
Bias network (M3) 11.83 - - 47.20 20 65 1300

The optimum power gain is obtained from a transistor when YIN and YOUT are conjugately
matched to YSOURCE and YLOAD, respectively. For an unconditionally stable transistor (or in this case,
an unstable one that has been stabilized for the conditions reported in Table 4), it is possible to find a
simultaneous conjugate match solution yielding an amplifier design for which the input and output
ports are perfectly and simultaneously matched to the load and source. This can be accomplished at
any frequency for which S-parameters of a stable transistor are available and provides the maximum
stable gain (MSG) at such a frequency. In this case, the conjugate impedance values for the MSG were
ascertained as (11.39 Ω + i 161.81 Ω) for the input and (22.15 Ω + i 504.23 Ω) for the output.

Both the input and the output matching networks comprise a series capacitor and a parallel
inductor. Figure 15 presents Smith’s chart used for calculating the values of these elements, starting from
the conjugate impedance value for the MSG to reach the real 50 Ω of both the source and the load.
The complete LNA schematic circuit, including matching and bias networks, designed for maximum
gain condition, is shown in Figure 16.
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Figure 16. Complete LNA schematic circuit.

The simulation results are presented in Figure 17, where the point of the maximum available
power gain of 29.71 dB is located at the working frequency (2.44 GHz) with a noise figure of 0.6257 dB
and a K factor of 1.228. It is worth noting that the plot shows a significant gain improvement and noise
figure decrease with respect to that reported in the analysis of the cascode stage because the output
and the input are now perfectly adapted. This can be verified from the values of S11 (−18.15 dB) and
S22 (−30.67 dB) obtained from simulation, reported in Figure 18. Since the K factor is still greater than
one, the amplifier maintains its unconditionally stable characteristic.
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4. Conclusions

This work describes a methodology for designing a cascode LNA combining the use of the
S-parameters and the gm/ID ratio of each involved MOS transistor. The latter is used as a free variable
to explore the design space while allowing designers to optimally bias and size the transistors. It is
possible to design the circuit for maximum power gain or for the minimum noise figure, but at the
same time, a trade-off can easily be achieved between them. The cascode LNA was chosen as a test
vehicle for demonstrating the usefulness of this methodology, and it can also be used with most RF
circuit topologies for which the use of S-parameters has been reported for verification purposes only.

The theoretical background behind this methodology was exposed at the beginning of this
paper. The link between scattering parameters and the universal gm/ID ratio of MOS transistors
was demonstrated starting with the hybrid ACM model, whose elements depend on the gm/ID
of the MOS transistor and using the matrix transformations. However, it is well-known that,
especially at high frequencies, S-parameters are more reliably measured than admittance or hybrid
parameters. Therefore, looking at more realistic results, designers could directly work with real
measured S-parameters as a function of the transistors’ gm/ID extracted from a test chip, instead of
using hand-calculated hybrid parameters and matrix transforms.
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