
Sensors & Transducers, Vol. 0, Issue 0, Month 2020, pp.

 1

Sensors & Transducers
Published by IFSA Publishing, S. L., 2020

http://www.sensorsportal.com

R-testbench: a journey in open source programming for

remote instrumentation with Python

1, * Alexandre QUENON, 2 Evelyne DAUBIE, 1 Véronique MOEYAERT,
1 Fortunato DUALIBE

1 University of Mons, Electrical Engineering Department, 31 Boulevard Dolez, 7000 Mons, Belgium
2 University of Mons, Physics Department, 6 Avenue du Champ de Mars, 7000 Mons, Belgium

1 Tel.: +32 65 37 42 33
* E-mail: alexandre.quenon@umons.ac.be

Received: 23/10/2020 Accepted: Published:

Abstract: Nowadays, instrumentation involves remote control and test benches automation, because of the

required accuracy or to guarantee the safety of the operators. In parallel, open source has known a fast expansion,

and has helped scientific communities in industry and research to build strong collaborations to design effective

and user-friendly software tools. This paper presents R-testbench, an open source Python library that offers high-

level programming capabilities for instrument remote control and test bench automation. Comparatively to well-
known off-the-shelf software solutions, it has been designed to be open source, reliable, adaptable and user-

friendly. It relies on the Virtual Instrumentation Software Architecture (VISA) standard, and enables high-level

features, including automatic instrument recognition, thanks to the object-oriented paradigm. It works with

PyVISA, a Python front end that calls the VISA libraries, and uses the popular NumPy and pandas packages to

offer an optimized data management that is efficient regarding the execution time and the memory use. The

proposed library has been validated thanks to continuous integration, performance characterization, and alpha

tests in the frame of experiments with nuclear material. It has also been released publicly on the GitHub platform,

under the Open Software License 3.0, to be shared with and reviewed by the community.

Keywords: automation, instrumentation, NumPy, pandas, Python, remote control, software, test bench, VISA.

1. Introduction

Over the past decades, instrumentation has become

increasingly critical for both research and industry. It

is a major task, necessary to be able to push the science

forward by acquiring reliable experimental results or

to characterize a device to gain market shares.

Three aspects must be considered: the accuracy of

the results, the physical and health safeties of the
operators, and the rise of the open-source software

community.

Regarding the precision, it has become essential to

develop an automated control of the instrumentation.

This might be due to several factors, such as the size

of the equipment [1], the number and the speed of
specific test sequences that come one after another [2],

or the period of time of the events to record, which can

be either very long or very short [3].

Considering safety, some experiments require to

operate in extreme, possibly hazardous conditions. For

instance, the characterization of radiation-hardened

electronics, which necessitates a generation of

ionizing radiation in order to measure the aging of the

circuits. This issue can be addressed by controlling the

instrumentation remotely.

Sensors & Transducers, Vol. 0, Issue 0, Month 2020, pp.

 2

Finally, open source software tools are becoming

more and more popular in both industry and academia.

This can be explained by two main facts: on the one

hand, the price of the proprietary tools; on the other

hand, the benefits of faster development, expansion,

and adoption generally observed when open source

licensing is used [4].

This paper presents R-testbench [5], an open

source Python library for instruments remote control

and test bench automation. Section 2 provides an
overview of the specifications, defined according to

the current needs in instrumentation, and motivates the

design of a new tool. Section 3 explains the adopted

software architecture design that enables the desired

features. Section 4 offers perspectives on the data

management, alongside the instrumentation process.

Section 5 demonstrates the chosen software validation

strategy. Section 6 presents a discussion of the results,

whereas section 7 draws the conclusions.

2. An overview of the specifications

The development of R-testbench has been driven

by four main requirements: open source, reliability,

adaptability, and user-friendliness.

This section presents the reasons for which the

aforementioned requirements are important, and why
Python has been chosen to design the software.

2.1. Open source

The open source status has been obtained by

licensing the software to the public with the Open
Software License 3.0 (OSL-3.0) [6]. Moreover, the

Python library related to the project is publicly

available on the popular GitHub platform [7]. Also, it

has to be noted that the source code of the Python

language itself is open source [8].

2.2. Reliability

The reliability of the software is a necessary

condition for the reliability of the data measured from

an experiment. In this respect, two important features

are required: a standard, that rules the communication

between the computer and the instruments, and an

error management system. This is deployed to check

that the process works as expected and, if not, raises

an error that can be caught to fix the issue on the

software level or to warn the user.

A standard for instruments communication has
been existing since 1995, known as Virtual Instrument

Software Architecture (VISA). It offers an interface-

independent framework to control instruments by

software [9], as shown in Fig. 1. There are several

implementations of VISA, provided by the main

manufacturers of measurement instruments [10]—

[12].

Fig. 1. Illustration of the VISA standard overseeing the
communications between a computer and a tool, connected
with one of the interfaces among GPIB, USB, and others.

Considering the error management, it is

implemented in many object-oriented programming

languages, including C++ [13] and Python [14].

Therefore, any of them is suitable to design an

instrument remote control software.

In addition to the error management system, a

programming language can also offer some

standardization. A reliable programming language

includes at least a robust standard library, which is the
case of both Python and C++. A standard library

provides a set of data containers, streams managers

(such as terminal or file streams), and specific

functions (e.g., mathematics or multithreading).

C++ has been standardized by the International

Organization for Standardization as ISO/IEC

14882:2017 [15], for the most recent version. Python,

in contrast, is standardized de facto by the developers

through the Python Enhancement Proposals (PEPs)

[16], which constitute a set of documents describing

and tracking the design changes in the language.

2.3. Adaptability

The adaptability must take three different aspects

into account: (1) the platforms on which the software

is run, (2) the brand and model of the controlled

instruments, and (3) the transmission protocols that
can be used to communicate with the instruments.

The last two aspects are managed thanks to the

VISA standard. Consequently, the only prerequisite is

to be able to use a VISA implementation, as discussed

in section 2.2.

The cross-platform ability is something slightly

more complex. Firstly, the distinction between

compiled languages and interpreted languages has to

be done. A compiled language requires to be

“converted” to machine-language instructions.

Consequently, the compilation process must consider

the target deployment platform, which can request
stronger developer’s efforts when a cross-platform

software is desired. Conversely, an interpreted

language is run immediately, without compilation, by

an interpreter, which makes deployment easier, but

can, however, generate bugs that will have to be fixed

late in the development process.

The discussion about cross-platform leads to a

small win of the interpreted languages, which is in fact

the nature of Python, whereas C++ is a compiled

language.

Sensors & Transducers, Vol. 0, Issue 0, Month 2020, pp.

 3

2.4. User-friendliness

The last requirement for the design of R-testbench

is the user-friendliness. Indeed, as VISA libraries
already exist, there would be no interest to provide a

tool that requires very low-level programming,

difficult to use and demanding high programming

skills.

Regarding this feature, Python is currently the

most suitable programming language for this project.

Firstly, it allows to use the object-oriented paradigm,

which offers the possibility to encapsulate operating

details into objects, easy to implement and to use.

Secondly, Python provides great scripting capabilities,

making it very convenient to use in laboratories and
test facilities. Finally, Python has been granted with

powerful scientific computation libraries, such as the

popular NumPy and pandas libraries. This allows the

user to acquire and process data with only one

programming language.

2.5. Motivation of developing a new tool

To the best of the authors’ knowledge, there are
currently no tools for remote instrumentation that fit

the four main specifications discussed herein above.

Hence, the design of a new tool, R-testbench.

LabVIEW [17] and MATLAB [18], [19] are the

leaders in proprietary solutions for instrumentation.

Graphical programming is possible, but generally not

sufficient to control complex test benches. In such

cases, the proprietary scripting languages that must be

used, i.e., G and MATLAB, respectively, are specific

to these tools. Consequently, the development

communities and the number of related field experts

are less important. In addition, no open source libraries
are available. However, both companies offer a

technical support for their customers.

On the open source side, one can find two solutions

based on scripting languages for numerical

computing, i.e., Octave [20], [21] and Scilab [22],

[23], and one Python package, namely PyMeasure

[24]. Both Octave and Scilab require (very) low-level

programming skills, and are built with their own

scripting language. The PyMeasure Python package is

the closest solution found that meets almost all

specifications. It offers high-level programming and is
based on Python, whose features have been discussed

previously. However, it misses the support of common

files formats to save the results, and other

characteristics provided by R-testbench, such as the

automatic instrument recognition (see section 3.2).

3. A software architecture driven by the

requirements

The objective of R-testbench is to allow the user to

control and automate a test bench, that involves

several instruments used for data acquisition. This is

done from a unique control interface, a computer, for

example. Certainly, the connections between the

control interface and the instruments that can be of

different types, have to be considered.

The emphasis is made on the user-friendliness. As

described in section 2.4, this is partly achieved by

using Python, but two major features had to be added.

The first one consists in hiding the type of connection

(e.g., GPIB or USB) used to control an instrument,

from the software side. This is necessary to avoid
script modification if the type of connection must

change between two runs of experiments. The second

feature is an automatic identification of the connected

instrument, including the brand and the model. This is

mandatory to offer simple and meaningful commands

in Python, that will be automatically “translated” by

R-testbench into the right instrument-compatible

commands.

This section presents the software architecture that

has been designed to implement the aforementioned

features and the specifications described in section 2.

3.1. A front end to call the VISA libraries

To ensure the reliability of the communication

with the instruments, the VISA standard is used. As

explained in section 2.2, several implementations of

VISA are proposed by the different manufacturers
[10]—[12]. In addition, the VISA libraries are

operating systems (OS) dependent, which can quickly

turn the creation of a generic call method into

something hard to handle.

Fortunately, PyVISA [25] is available. It is a

Python package that works as a front end able to

connect to multiple back ends implementing the VISA

standard. This package starts to be recognized by

instrumentation engineers and companies as a reliable

way to control instruments, as proved by the donation

of Keysight to the PyVISA’s developers for test
purpose.

PyVISA offers a hidden mechanism that makes the

connection transparent from the software’s

perspective. The user has to pass the instrument’s

address, which will be parsed in order to identify the

communication protocol. Then, the corresponding

Resource object will be created, allowing the user to

send commands to the instrument. The process is

managed by a ResourceManager, responsible for

calling the VISA libraries and opening the

communication channels to the Resources.

Of course, the future of PyVISA cannot be
predicted. The library could be discontinued or not be

maintained anymore. In such cases, R-testbench

should be able to find another solution, almost

transparent for the user. To enable this, R-testbench

works in parallel with PyVISA, as shown in Fig. 2.

Using the object-oriented paradigm, an encapsulated

instance of ResourceManager is created and used to

build a communication channel with an instrument.

Therefore, no direct manipulation of PyVISA has to

be done by the user.

Sensors & Transducers, Vol. 0, Issue 0, Month 2020, pp.

 4

Fig. 2. R-testbench Unified Modeling Language
(UML) class diagram: manager, tool interfaces mechanism,

and interactions with PyVISA [5].

3.2. One way to recognize them all

The major difficulties in software instrument

control are the many ways used by the manufacturers

to design their instruments and how they operate. It

forces the user to spend a lot of time in reading the
documentation to understand the internal behavior of

the tools, which is not necessarily relevant to carry out

the experiments.

A first attempt of generalization was performed

with the Standard Commands for Programmable

Instruments (SCPI) [26]. This standard offers a

common syntax to program all instruments in a unified

style. However, it does not prevent the user from

dealing with the specific features of each instrument,

such as the data format.

To fix this issue and enhance the user experience,
the R-testbench software architecture takes advantage

of the object-oriented paradigm to encapsulate the

SCPI commands and specific features of a given

model of instrument into a dedicated class. These

classes inherit from generic abstract classes that will

define the interface common to a family of

instruments, e.g., oscilloscopes, multimeters, or

electrometers. These abstract classes also inherit from

an even more generic class, named Tool, which

defines the attributes and methods common to all tools

that can be controlled by software using the VISA and

SCPI standards (Fig. 2).
The proposed architecture offers three main

advantages. Firstly, the development related to one

specific model of instrument is fast, as it consists in

embedding the SCPI commands into class methods

and defining the invariants as class attributes.

Secondly, a factory mechanism can be used to

automatically identify the instrument and build the

related object, by sending the “*IDN?” request. This

method also ensures that the instrument answers

properly. Finally, polymorphism can be used to make

the real type of object transparent to the user and offer
a unique interface per family of instrument (Fig. 3). Of

course, the specific object can always be directly used,

if necessary.

Fig. 3. Example of unique interface taking advantage of
the polymorphism and encapsulation mechanisms to hide

the specific SCPI commands into a single Python function.

In addition to the Tool inheritance system, a class

named RTestBenchManager has been created. Its role

consists in calling a VISA resource manager, which is

currently provided by the PyVISA library, and
creating all resources necessary to provide interactions

and other functionalities to the user, such as a logger.

All instruments instances are attached to the Manager

object, for proper life cycle management. Finally, this

class provides facilities for saving data.

4. Data management considerations, from

acquisition to post-processing

Scientific research experiments and

characterization for industrial purposes share the same

problem: the number of data that are retrieved and
must effectively be managed. Efficiency is mandatory

for two main reasons: the data quality and the

computational load. This is monitored using three

parameters: the data integrity, the memory usage, and

the execution speed.

For this purpose, the data management has been

divided in four steps: (1) fetch from instruments, (2)

local temporary storage, at execution time, on the

machine running R-testbench (e.g., a laptop), (3)

permanent saving, i.e., dump data into a file, and (4)

processing, for example to extract statistical

information (Fig. 4).

Fig. 4. Illustration of the four-step data management in the
case of data acquired with one instrument controlled from a

laptop or a personal computer.

Sensors & Transducers, Vol. 0, Issue 0, Month 2020, pp.

 5

This section reviews those four steps to highlight

the strategies used for efficient data management.

4.1. From the instruments to the computer:

the fetch operation

As data fetch is controlled by the PyVISA front

end and the VISA libraries, there is no possibility to

optimize the related data management. The only

possible action consists in choosing the interface used

to communicate with the instruments.

The chosen interface must be compatible with

VISA in order to be controlled by R-testbench.

Another solution consists in choosing any standard

suited for instrumentation [27], and, if not VISA-

compatible, to use a gateway whose communication
protocol is supported, such as TCP/IP.

4.2. From acquisition to temporary saving: the

local storage

Right after the fetch action, when data arrive to the

hardware running R-testbench, a local storage in the
RAM is necessary in order to process further the data

or to save them in the permanent memory. According

to the adaptability specification, the library offers the

choice to store data in Python built-in containers, such

as lists or dictionaries, as well as specialist objects

provided by libraries optimized for scientific

computations, e.g., NumPy or pandas.

Nevertheless, despite the flexibility given to the

user, the default data container used for temporary

local storage is the NumPy’s N-dimensional array,

ndarray [28]. It currently reaches the best compromise
between memory management, execution speed, and

user-friendly manipulation of huge arrays.

4.3. From temporary to permanent saving: the

dump action

At this step, all acquired data are temporarily
stored locally, for example in the RAM of a laptop.

Afterwards, two actions are jointly performed:

aggregation and permanent saving.

On the one hand, it is generally required to

aggregate related data for saving. For instance, the

vector of timestamps corresponding to the

measurement of a time-dependent parameter, such as

the voltage on an oscilloscope.

On the other hand, data must be permanently saved

into files, for later processing or reading. Depending

on the applications, the expected-file formats can be
different. The common compromise comes on either

the possibility to read immediately the data values by

opening the file with a text editor, or an efficient

storage that needs the minimum memory space for the

maximum number of data, without jeopardizing the

accuracy.

Regarding both requirements, the pandas API

offers a rich and easy-to-use interface that fits the

needs [29]. Currently, R-testbench takes benefits of

pandas to offers the possibility to save data in one text

format, CSV, and in three binary formats, pickle,

Feather, and HDF5. CSV (Comma Separated Values)

has the advantage to be human readable and to be

supported by a plethora of data processing tools.

Pickle is a Python-specific module for object

serialization, able to convert an object into a byte

stream to write the corresponding data into a binary

file [30]. Feather is a format based on the Apache

Arrow columnar memory specification for data
representation, that is very performant [31], [32].

HDF5 (Hierarchical Data Format) is available in

several programming languages, and very popular for

data science and artificial intelligence [33].

4.4. From raw data to refined information: the

data (post-) processing

Data processing can be performed in two ways: in

real time during the acquisition, or in post-acquisition.

The former has the advantage of freeing memory as it

is not necessary to store raw data permanently, the

interesting information being already extracted.

However, a simultaneous processing requires either a

fast and efficient computation tool (hardware or

software) or a huge buffer to accumulate the acquired

data while they are being processed. The latter

method, post-processing, does not constrain the
computation capabilities, but requires the storage of

the raw data, which can be a problem from the memory

perspective.

Currently, R-testbench implements the post-

processing mechanism, in order to allow the user to

run the Python library without hard constraints on the

hardware. Moreover, because of the various data files

formats available, many data processing tools can be

used, including open-source ones. This is compliant

with the adaptability specification.

5. Software validation

This section presents the four means that have been

implemented to validate the proposed software,

namely, continuous integration (CI), performance

characterization, alpha test and public release on an
open-source platform.

5.1. Continuous integration and alpha tests

Continuous integration (CI) is a software

development methodology that consists in (1)
committing, i.e., sending the modified code to a

unique repository, (2) versioning, which means

tracking the modification of the code, and (3) building

and testing the code each time it is modified to ensure

that no anterior functionalities have been broken by

the new integration [34], [35].

In the case of R-testbench, a public repository has

been created on GitHub (see section 5.4). The

versioning tool used for modification tracking is Git.

Sensors & Transducers, Vol. 0, Issue 0, Month 2020, pp.

 6

Automated testing has been implemented by using

PyTest, to develop the unit tests, and GitHub Actions

and Travis CI, to create the test scenarios including

different Python versions (3.6, 3.7, and 3.8) and

operating systems, presented in Table 1.

The R-testbench Python package has also been

successfully tested by the developer in the so-called

alpha tests. They were realized in the frame of

experiments involving the characterization of

semiconductors devices irradiated with ionizing

radiation, e.g., -rays [36]. This use case requires
remote instrumentation, for safety reasons.

Table 1. List of the verified versions of operating systems
distributions that are supported, and test methods that used

to perform the verification. CI stands for continuous
integration.

Distributions Versions Test methods

macOS 10.15 (Catalina) CI (GitHub)

Ubuntu

16.04

(Xenial Xerus)

CI (GitHub,

Travis)

18.04
(Bionic Beaver)

Alpha tests,
CI (GitHub)

Windows 10 N/A Alpha tests

Windows Server 2019 CI (GitHub)

5.2. Performance characterization

All performance measurements were realized with

the Keysight B2985A electrometer [37], the

instrument which was involved in alpha tests (cf.

section 5.3). All results were achieved by running the

acquisitions and computing the properties seven times,

and averaging the values. This has been determined

empirically to minimize the standard deviation.

The time required to fetch data from an instrument

and store locally in a NumPy ndarray object evolves

linearly with the number of data, as demonstrated in

the case of a transfer by USB and LAN (TCP/IP) in
Fig. 5.

Fig. 5. Comparison of time required to fetch data from a
Keysight B2985A electrometer to the computer [5]. Data

are stored locally in a numpy. ndarray container.

To evaluate the overhead time, the theoretical

transfer time, 𝑡transf, must be computed. It depends on

the theoretical transfer speed of the related interface,

𝑣transf, the number of transmitted data, 𝑁, and the

number of bits used to code one datum, 𝑛bit, as shown
in eq. (1):

𝑡transf =

𝑁 ∙ 𝑛bit

𝑣transf

 . (1)

The instrument used for the test is equipped with a

USB 2.0 interface, which means that the theoretical

speed limit is 480 Mbit/s. If the protocol overhead for

high-speed bulk transactions is taken into account, it

leads to a speed limit of useful data of 425.984 Mbit/s

[38]. Hence, using (1), a thousand 64-bit data should

require

𝑡transf =

1000 ∙ 64

425.984 × 106
 , (2)

leading to a minimum transfer time of 150.24 µs.

Compared with the results shown in Fig. 5, the
minimum transfer time due to the interface is two

orders of magnitude lower. Consequently, the

overhead time necessary to (1) call the VISA libraries

that allow to communicate with the instruments and

(2) to store the data in a NumPy ndarray object, is a

hundred times longer than the transfer time.

Further measurements are necessary to determine

the bottleneck of the fetch operation. This requires the

possibility to monitor the low-level mechanisms of the

VISA libraries, and to test several implementations.

Another problem could arise from the data storage

with NumPy, which is managed by the PyVISA
package.

The speed and size performances of the permanent

storage have been characterized, for three different

files formats: CSV, pickle, and HDF5. The

corresponding results are presented in Fig. 6 and

Fig. 7, for the saving time and the size of the generated

files, respectively. The best performance is expected

to come from binary formats, for both size and speed

aspects. However, for a small amount of data, the CSV

format generates smaller files, and generate files

faster, than the HDF5 format. This can be explained
by the fact that the latter has been designed for big

data, which assumes the manipulation of huge

datasets. On the studied range, which corresponds to a

maximum of 300,000 data, the pickle format exhibits

the best behavior. This is confirmed by other studies

[39], [40]. Nevertheless, the range of data should be

extended to draw definitive conclusions, as observed

HDF5 and pickle formats tends to have the same

performance for bigger datasets, as observed in Fig. 6.

Sensors & Transducers, Vol. 0, Issue 0, Month 2020, pp.

 7

Fig. 6. Comparison of the evolution of the time required to

save data into CSV, pickle and HDF5 files formats with the
number of data [5]. Data are saved to files using the pandas

I/O API.

Fig. 7. Comparison of the evolution of sizes of CSV, pickle
and HDF5 files with the number of data. [5]. Data are

saved to files using the pandas I/O API.

5.3. Public release

R-testbench has been made publicly available on

GitHub [7], an open-source platform widely used by

researchers and programmers, from both industry and

academia, to share and contribute to open source
projects. The project is licensed under the OSL-3.0.

There is currently one contributor and maintainer:

A. Quenon. As the package has been made publicly

available for the SEIA’ 2020 conference [5], and

because of the contributions to PyVISA due to the

strong dependency, the interest for this project is

expected to grow up.

6. Results discussion

The proposed library has been clearly

characterized for the execution speed and the memory

space required to save results. To the best of the

authors’ knowledge, there is no available studies that

offer the same type of characterization for the other

available software solutions for remote instruments

control.
Nevertheless, R-testbench has several advantages,

as shown in Table 2. Specifically, it is open-source,

offers high-level programming capabilities, performs

automatic instrument recognition and supports several

types of files formats to save results. Currently, the

main drawbacks are the few number of specific

instruments that have been implemented and the small

size of the development team. Of course, this is a

matter of time.

Table 2. Comparison of the main characteristics of software solutions for measurement instruments remote control and

automation [5], [17]—[24].

Tool License

Programming VISA

compatible

protocols

Automatic

recognition

Supported

results files

types Level Language Graphical

LabVIEW Proprietary high or low MathScript yes yes, and more no many

MATLAB Proprietary low Matlab partial yes, and more no many

Octave GPL low Octave no no (PXI) no
bin, CSV,

HDF5, mat,
txt

Scilab GPL low Scilab no yes no
SOD

(HDF5)

PyMeasure MIT high Python no yes no CSV

R-testbench OSL high Python no yes yes

CSV,

feather,

HDF5, pkl

Sensors & Transducers, Vol. 0, Issue 0, Month 2020, pp.

 8

7. Conclusions

This paper presents R-testbench, an open source

Python library devoted to remote instrumentation and

test bench automation. The library has been designed
using the object-oriented paradigm, to encapsulate

implementations details and offer user-friendly high-

level programming. It has been devised to be reliable,

which is achieved by using the VISA standard for the

communications with the controlled instruments. The

solution is adaptable to several types of

communication interfaces, e.g., GPIB or TCP/IP, as

well as to several types of data processing tools,

because of the support of different files formats for

saving results.

The library has been validated by implementing
continuous integration, including code versioning and

automated build and tests. It is proved to be cross-

platform. Alpha tests were successfully carried out by

controlling remotely an experiment involving the

characterization of semiconductors devices irradiated

with ionizing radiation. The source code is publicly

available on GitHub and is becoming mature.

Future developments include the implementation

of specific models of instruments, as well as the

support of other files formats, such as the increasingly

popular JSON text format. It would also be interesting

to create bindings with database management tools,
e.g., Mongo DB or MySQL. Finally, the possibility to

run R-testbench on portable platforms, such as

Raspberry Pi or FPGAs, together with hardware

acceleration, can be explored. The latter is a clue for

efficient real-time data processing.

Acknowledgements

The authors are grateful for D. Binon, for his

advices on instruments and test benches, and his help

with proprietary instrumentation software. They also

thank J. Hanton, for his help for solving IT issues, as

well as S. Devouge and F. Defontaines for their

support and kindness.

This work was supported by the Fonds de la

Recherche Scientifique — FNRS under Grant

n° 33678493.

References

[1] The CMS Collaboration et al., The CMS experiment

at the CERN LHC, Journal of Instrumentation,
Vol. 3, Issue 08, 2008.

[2] Z. J. Deng, N. Yoshikawa, S. R. Whiteley, and T. Van
Duzer, Data-driven self-timed RSFQ high-speed test
system, IEEE Transactions on Applied
Superconductivity, Vol. 7, Issue 4, 1997, pp. 3830–

3833.
[3] V. de Miguel Soto, J. Jason, D. Kurtoğlu, M. Lopez-

Amo, and M. Wuilpart, Spectral shadowing
suppression technique in phase-OTDR sensing based

on weak fiber Bragg grating array, Optics Letters,
Vol. 44, Issue 3, 2019, pp. 526–529.

[4] L. E. Hecht, L. Clark, and The Linux Foundation,
Survey: Open Source Programs Are a Best Practice
Among Large Companies, The New Stack, 2018
(https://thenewstack.io/survey-open-source-programs-
are-a-best-practice-among-large-companies/).

[5] A. Quenon, E. Daubie, V. Moeyaert, and F. C.
Dualibe, R-testbench: a Python library for instruments
remote control and electronic test bench automation,

in Sensors and Electronic Instrumentation Advances:
Proceedings of the 6th International Conference on
Sensors and Electronic Instrumentation Advances
(SEIA’ 2020) and the 2nd IFSA Frequency & Time
Conference (IFTC’ 2020), Porto, Portugal, 23–25
September 2020, pp. 47–50.

[6] Opensource.org, The Open Software License 3.0
(OSL-3.0) (https://opensource.org/licenses/OSL-3.0).

[7] A. Quenon, R-testbench, 2020
(https://github.com/Arkh42/rtestbench).

[8] Python Software Foundation, History and License,
2020 (https://docs.python.org/3/license.html).

[9] IVI Foundation, VPP-4.3: The VISA Library, 2018.
[10] National Instruments, NI-VISA Overview, 2020

(https://www.ni.com/en-
rs/support/documentation/supplemental/06/ni-visa-

overview.html).
[11] Rohde & Schwarz, R&S®VISA, 2020.

(https://www.rohde-schwarz.com/dk/applications/r-s-
visa-application-note_56280-148812.html).

[12] Keysight Technologies, Software I/O Layers - VISA,
VISA COM, SICL, Keysight 488 - Technical
Overview, 2009
(https://www.keysight.com/main/editorial.jspx?ckey=

1461160&id=1461160&nid=-
33002.0.00&lc=dut&cc=BE).

[13] B. Stroustrup, The C++ Programming Language, 4th
ed., Addison-Wesley, 2013.

[14] B. Slatkin, Effective Python: 90 Specific Ways to
Write Better Python, 2nd ed., Addison-Wesley
Professional, 2020.

[15] International Organization for Standardization,
ISO/IEC 14882:2017, 2017

(https://www.iso.org/standard/68564.html).
[16] Python Software Foundation, PEP 1—PEP Purpose

and Guidelines, 2013
(https://www.python.org/dev/peps/pep-0001/).

[17] National Instruments, What is LabVIEW?”
(https://www.ni.com/en-us/shop/labview.html).

[18] MathWorks, Instrument Control Toolbox
(https://www.mathworks.com/products/instrument.ht

ml).
[19] MathWorks, Supported File Formats for Import and

Export—MATLAB & Simulink, 2020.
(https://www.mathworks.com/help/matlab/import_exp
ort/supported-file-formats.html).

[20] Octave Wiki contributors, Instrument control
package, 2020
(https://wiki.octave.org/Instrument_control_package).

[21] J. W. Eaton and Octave developers, Simple File I/O,
2020 (https://octave.org/doc/v5.2.0/Simple-File-
I_002fO.html).

[22] Scilab team, Signal acquisition & instrument control
(https://www.scilab.org/software/atoms/signal-
acquisition-and-instrument-control).

[23] Scilab team, save format—Format of files produced
by ‘save.’

(https://help.scilab.org/docs/6.1.0/en_US/save_format
.html).

Sensors & Transducers, Vol. 0, Issue 0, Month 2020, pp.

 9

[24] PyMeasure Developers, PyMeasure scientific package
— PyMeasure 0.8.0 documentation, 2020

(https://pymeasure.readthedocs.io/en/latest/index.html
).

[25] G. Thalhammer, T. Bronger, F. Bauer, H. E. Grecco,
and M. Dartiailh, PyVISA: Control your instruments
with Python, 2020 (https://github.com/pyvisa/pyvisa).

[26] SCPI Consortium, Standard Commands for
Programmable Instruments (SCPI), 1999
(https://www.ivifoundation.org/specifications/default.

aspx).
[27] J. Park, S. Mackay, and E. Wright, Practical Data

Communications for Instrumentation and Control,
Newnes, 2003.

[28] S. van der Walt, S. C. Colbert, and G. Varoquaux,
The NumPy Array: A Structure for Efficient
Numerical Computation, in Computing in Science &
Engineering, Vol. 13, Issue 2, 2011, pp. 22–30.

[29] W. Mckinney, Data Structures for Statistical
Computing in Python, in Proceedings of the 9th
Python in Science Conference, Austin, Texas, 28
June-3 July 2010, pp. 56–61.

[30] Python Software Foundation, pickle — Python object
serialization, 2020
(https://docs.python.org/3/library/pickle.html).

[31] W. McKinney, Feather: fast, interoperable data frame

storage, 2019 (https://github.com/wesm/feather).
[32] The Apache Software Foundation, Apache Arrow

Overview (https://arrow.apache.org/overview/).
[33] The HDF Group, HDF5 File Format Specification,

2019.

[34] T. Durieux, R. Abreu, M. Monperrus, T. F.
Bissyandé, and L. Cruz, “An Analysis of 35+ Million

Jobs of Travis CI,” in 2019 IEEE International
Conference on Software Maintenance and Evolution
(ICSME), Cleveland, OH, USA, USA, 29 September-
4 October 2019, pp. 291–295.

[35] E. Laukkanen, J. Itkonen, and C. Lassenius, Problems,
causes and solutions when adopting continuous
delivery—A systematic literature review, Information
and Software Technology, Vol. 82, 2017, pp. 55–79.

[36] A. Quenon, E. Daubie, V. Moeyaert and F. C.
Dualibe, On the Possibility to Use Energy Harvesting
on Beta Radiation in Nuclear Environments, in
Proceedings of the 12th IEEE Latin American
Symposium on Circuits and Systems (LASCAS2021),
Arequipa, Peru, 20–24 February 2021, submitted.

[37] Keysight Technologies, Keysight B2980A Series Data
Sheet, 2019 (https://www.keysight.com/en/pc-

2444652/b2980a-series-femto-picoammeter-and-
electrometer-high-resistance-meter).

[38] Compaq Computer Corporation et al., Universal
Serial Bus Specification, 2000.

[39] pandas development team, IO tools (text, CSV,
HDF5, …) — pandas 1.1.3 documentation, 2020
(https://pandas.pydata.org/pandas-
docs/stable/user_guide/io.html).

[40] I. Zaitsev, The Best Format to Save Pandas Data,
2019 (https://towardsdatascience.com/the-best-
format-to-save-pandas-data-414dca023e0d).

Published by International Frequency Sensor Association, IFSA Publishing, S. L., 2020
(http://www.sensorsportal.com).

