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Abstract: Nowadays, instrumentation involves remote control and test benches automation, because of the 

required accuracy or to guarantee the safety of the operators. In parallel, open source has known a fast expansion, 

and has helped scientific communities in industry and research to build strong collaborations to design effective 

and user-friendly software tools. This paper presents R-testbench, an open source Python library that offers high-

level programming capabilities for instrument remote control and test bench automation. Comparatively to well-
known off-the-shelf software solutions, it has been designed to be open source, reliable, adaptable and user-

friendly. It relies on the Virtual Instrumentation Software Architecture (VISA) standard, and enables high-level 

features, including automatic instrument recognition, thanks to the object-oriented paradigm. It works with 

PyVISA, a Python front end that calls the VISA libraries, and uses the popular NumPy and pandas packages to 

offer an optimized data management that is efficient regarding the execution time and the memory use. The 

proposed library has been validated thanks to continuous integration, performance characterization, and alpha 

tests in the frame of experiments with nuclear material. It has also been released publicly on the GitHub platform, 

under the Open Software License 3.0, to be shared with and reviewed by the community. 
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1. Introduction 
 

Over the past decades, instrumentation has become 

increasingly critical for both research and industry. It 

is a major task, necessary to be able to push the science 

forward by acquiring reliable experimental results or 

to characterize a device to gain market shares. 

Three aspects must be considered: the accuracy of 

the results, the physical and health safeties of the 
operators, and the rise of the open-source software 

community. 

Regarding the precision, it has become essential to 

develop an automated control of the instrumentation. 

This might be due to several factors, such as the size 

of the equipment [1], the number and the speed of 
specific test sequences that come one after another [2], 

or the period of time of the events to record, which can 

be either very long or very short [3]. 

Considering safety, some experiments require to 

operate in extreme, possibly hazardous conditions. For 

instance, the characterization of radiation-hardened 

electronics, which necessitates a generation of 

ionizing radiation in order to measure the aging of the 

circuits. This issue can be addressed by controlling the 

instrumentation remotely. 
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Finally, open source software tools are becoming 

more and more popular in both industry and academia. 

This can be explained by two main facts: on the one 

hand, the price of the proprietary tools; on the other 

hand, the benefits of faster development, expansion, 

and adoption generally observed when open source 

licensing is used [4]. 

This paper presents R-testbench [5], an open 

source Python library for instruments remote control 

and test bench automation. Section 2 provides an 
overview of the specifications, defined according to 

the current needs in instrumentation, and motivates the 

design of a new tool. Section 3 explains the adopted 

software architecture design that enables the desired 

features. Section 4 offers perspectives on the data 

management, alongside the instrumentation process. 

Section 5 demonstrates the chosen software validation 

strategy. Section 6 presents a discussion of the results, 

whereas section 7 draws the conclusions. 

 

 

2. An overview of the specifications 
 

The development of R-testbench has been driven 

by four main requirements: open source, reliability, 

adaptability, and user-friendliness. 

This section presents the reasons for which the 

aforementioned requirements are important, and why 
Python has been chosen to design the software. 

 

2.1. Open source 
 

The open source status has been obtained by 

licensing the software to the public with the Open 
Software License 3.0 (OSL-3.0) [6]. Moreover, the 

Python library related to the project is publicly 

available on the popular GitHub platform [7]. Also, it 

has to be noted that the source code of the Python 

language itself is open source [8]. 

 

2.2. Reliability 
 

The reliability of the software is a necessary 

condition for the reliability of the data measured from 

an experiment. In this respect, two important features 

are required: a standard, that rules the communication 

between the computer and the instruments, and an 

error management system. This is deployed to check 

that the process works as expected and, if not, raises 

an error that can be caught to fix the issue on the 

software level or to warn the user. 

A standard for instruments communication has 
been existing since 1995, known as Virtual Instrument 

Software Architecture (VISA). It offers an interface-

independent framework to control instruments by 

software [9], as shown in Fig. 1. There are several 

implementations of VISA, provided by the main 

manufacturers of measurement instruments [10]—

[12]. 

 

 

 
 

Fig. 1. Illustration of the VISA standard overseeing the 
communications between a computer and a tool, connected 
with one of the interfaces among GPIB, USB, and others. 

 

 

Considering the error management, it is 

implemented in many object-oriented programming 

languages, including C++ [13] and Python [14]. 

Therefore, any of them is suitable to design an 

instrument remote control software. 

In addition to the error management system, a 

programming language can also offer some 

standardization. A reliable programming language 

includes at least a robust standard library, which is the 
case of both Python and C++. A standard library 

provides a set of data containers, streams managers 

(such as terminal or file streams), and specific 

functions (e.g., mathematics or multithreading). 

C++ has been standardized by the International 

Organization for Standardization as ISO/IEC 

14882:2017 [15], for the most recent version. Python, 

in contrast, is standardized de facto by the developers 

through the Python Enhancement Proposals (PEPs) 

[16], which constitute a set of documents describing 

and tracking the design changes in the language. 

 

2.3. Adaptability 
 

The adaptability must take three different aspects 

into account: (1) the platforms on which the software 

is run, (2) the brand and model of the controlled 

instruments, and (3) the transmission protocols that 
can be used to communicate with the instruments. 

The last two aspects are managed thanks to the 

VISA standard. Consequently, the only prerequisite is 

to be able to use a VISA implementation, as discussed 

in section 2.2. 

The cross-platform ability is something slightly 

more complex. Firstly, the distinction between 

compiled languages and interpreted languages has to 

be done. A compiled language requires to be 

“converted” to machine-language instructions. 

Consequently, the compilation process must consider 

the target deployment platform, which can request 
stronger developer’s efforts when a cross-platform 

software is desired. Conversely, an interpreted 

language is run immediately, without compilation, by 

an interpreter, which makes deployment easier, but 

can, however, generate bugs that will have to be fixed 

late in the development process. 

The discussion about cross-platform leads to a 

small win of the interpreted languages, which is in fact 

the nature of Python, whereas C++ is a compiled 

language. 
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2.4. User-friendliness 
 

The last requirement for the design of R-testbench 

is the user-friendliness. Indeed, as VISA libraries 
already exist, there would be no interest to provide a 

tool that requires very low-level programming, 

difficult to use and demanding high programming 

skills. 

Regarding this feature, Python is currently the 

most suitable programming language for this project. 

Firstly, it allows to use the object-oriented paradigm, 

which offers the possibility to encapsulate operating 

details into objects, easy to implement and to use. 

Secondly, Python provides great scripting capabilities, 

making it very convenient to use in laboratories and 
test facilities. Finally, Python has been granted with 

powerful scientific computation libraries, such as the 

popular NumPy and pandas libraries. This allows the 

user to acquire and process data with only one 

programming language. 

 

2.5. Motivation of developing a new tool 
 

To the best of the authors’ knowledge, there are 
currently no tools for remote instrumentation that fit 

the four main specifications discussed herein above. 

Hence, the design of a new tool, R-testbench. 

LabVIEW [17] and MATLAB [18], [19] are the 

leaders in proprietary solutions for instrumentation. 

Graphical programming is possible, but generally not 

sufficient to control complex test benches. In such 

cases, the proprietary scripting languages that must be 

used, i.e., G and MATLAB, respectively, are specific 

to these tools. Consequently, the development 

communities and the number of related field experts 

are less important. In addition, no open source libraries 
are available. However, both companies offer a 

technical support for their customers. 

On the open source side, one can find two solutions 

based on scripting languages for numerical 

computing, i.e., Octave [20], [21] and Scilab [22], 

[23], and one Python package, namely PyMeasure 

[24]. Both Octave and Scilab require (very) low-level 

programming skills, and are built with their own 

scripting language. The PyMeasure Python package is 

the closest solution found that meets almost all 

specifications. It offers high-level programming and is 
based on Python, whose features have been discussed 

previously. However, it misses the support of common 

files formats to save the results, and other 

characteristics provided by R-testbench, such as the 

automatic instrument recognition (see section 3.2).  

 

 

3. A software architecture driven by the 

requirements 
 

The objective of R-testbench is to allow the user to 

control and automate a test bench, that involves 

several instruments used for data acquisition. This is 

done from a unique control interface, a computer, for 

example. Certainly, the connections between the 

control interface and the instruments that can be of 

different types, have to be considered. 

The emphasis is made on the user-friendliness. As 

described in section 2.4, this is partly achieved by 

using Python, but two major features had to be added. 

The first one consists in hiding the type of connection 

(e.g., GPIB or USB) used to control an instrument, 

from the software side. This is necessary to avoid 
script modification if the type of connection must 

change between two runs of experiments. The second 

feature is an automatic identification of the connected 

instrument, including the brand and the model. This is 

mandatory to offer simple and meaningful commands 

in Python, that will be automatically “translated” by 

R-testbench into the right instrument-compatible 

commands. 

This section presents the software architecture that 

has been designed to implement the aforementioned 

features and the specifications described in section 2. 

 

3.1. A front end to call the VISA libraries 
 

To ensure the reliability of the communication 

with the instruments, the VISA standard is used. As 

explained in section 2.2, several implementations of 

VISA are proposed by the different manufacturers 
[10]—[12]. In addition, the VISA libraries are 

operating systems (OS) dependent, which can quickly 

turn the creation of a generic call method into 

something hard to handle. 

Fortunately, PyVISA [25] is available. It is a 

Python package that works as a front end able to 

connect to multiple back ends implementing the VISA 

standard. This package starts to be recognized by 

instrumentation engineers and companies as a reliable 

way to control instruments, as proved by the donation 

of Keysight to the PyVISA’s developers for test 
purpose. 

PyVISA offers a hidden mechanism that makes the 

connection transparent from the software’s 

perspective. The user has to pass the instrument’s 

address, which will be parsed in order to identify the 

communication protocol. Then, the corresponding 

Resource object will be created, allowing the user to 

send commands to the instrument. The process is 

managed by a ResourceManager, responsible for 

calling the VISA libraries and opening the 

communication channels to the Resources. 

Of course, the future of PyVISA cannot be 
predicted. The library could be discontinued or not be 

maintained anymore. In such cases, R-testbench 

should be able to find another solution, almost 

transparent for the user. To enable this, R-testbench 

works in parallel with PyVISA, as shown in Fig. 2. 

Using the object-oriented paradigm, an encapsulated 

instance of ResourceManager is created and used to 

build a communication channel with an instrument. 

Therefore, no direct manipulation of PyVISA has to 

be done by the user. 

 



Sensors & Transducers, Vol. 0, Issue 0, Month 2020, pp. 

 4 

 

 
 

Fig. 2. R-testbench Unified Modeling Language 
(UML) class diagram: manager, tool interfaces mechanism, 

and interactions with PyVISA [5]. 
 

 

3.2. One way to recognize them all 
 

The major difficulties in software instrument 

control are the many ways used by the manufacturers 

to design their instruments and how they operate. It 

forces the user to spend a lot of time in reading the 
documentation to understand the internal behavior of 

the tools, which is not necessarily relevant to carry out 

the experiments. 

A first attempt of generalization was performed 

with the Standard Commands for Programmable 

Instruments (SCPI) [26]. This standard offers a 

common syntax to program all instruments in a unified 

style. However, it does not prevent the user from 

dealing with the specific features of each instrument, 

such as the data format. 

To fix this issue and enhance the user experience, 
the R-testbench software architecture takes advantage 

of the object-oriented paradigm to encapsulate the 

SCPI commands and specific features of a given 

model of instrument into a dedicated class. These 

classes inherit from generic abstract classes that will 

define the interface common to a family of 

instruments, e.g., oscilloscopes, multimeters, or 

electrometers. These abstract classes also inherit from 

an even more generic class, named Tool, which 

defines the attributes and methods common to all tools 

that can be controlled by software using the VISA and 

SCPI standards (Fig. 2). 
The proposed architecture offers three main 

advantages. Firstly, the development related to one 

specific model of instrument is fast, as it consists in 

embedding the SCPI commands into class methods 

and defining the invariants as class attributes. 

Secondly, a factory mechanism can be used to 

automatically identify the instrument and build the 

related object, by sending the “*IDN?” request. This 

method also ensures that the instrument answers 

properly. Finally, polymorphism can be used to make 

the real type of object transparent to the user and offer 
a unique interface per family of instrument (Fig. 3). Of 

course, the specific object can always be directly used, 

if necessary. 

 

 

 
 

Fig. 3. Example of unique interface taking advantage of 
the polymorphism and encapsulation mechanisms to hide 

the specific SCPI commands into a single Python function. 
 

 

In addition to the Tool inheritance system, a class 

named RTestBenchManager has been created. Its role 

consists in calling a VISA resource manager, which is 

currently provided by the PyVISA library, and 
creating all resources necessary to provide interactions 

and other functionalities to the user, such as a logger. 

All instruments instances are attached to the Manager 

object, for proper life cycle management. Finally, this 

class provides facilities for saving data. 
 

 

4. Data management considerations, from 

acquisition to post-processing 
 

Scientific research experiments and 

characterization for industrial purposes share the same 

problem: the number of data that are retrieved and 
must effectively be managed. Efficiency is mandatory 

for two main reasons: the data quality and the 

computational load. This is monitored using three 

parameters: the data integrity, the memory usage, and 

the execution speed. 

For this purpose, the data management has been 

divided in four steps: (1) fetch from instruments, (2) 

local temporary storage, at execution time, on the 

machine running R-testbench (e.g., a laptop), (3) 

permanent saving, i.e., dump data into a file, and (4) 

processing, for example to extract statistical 

information (Fig. 4).  
 

 

 
 

Fig. 4. Illustration of the four-step data management in the 
case of data acquired with one instrument controlled from a 

laptop or a personal computer. 
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This section reviews those four steps to highlight 

the strategies used for efficient data management. 

 

4.1. From the instruments to the computer: 

the fetch operation 
 

As data fetch is controlled by the PyVISA front 

end and the VISA libraries, there is no possibility to 

optimize the related data management. The only 

possible action consists in choosing the interface used 

to communicate with the instruments. 

The chosen interface must be compatible with 

VISA in order to be controlled by R-testbench. 

Another solution consists in choosing any standard 

suited for instrumentation [27], and, if not VISA-

compatible, to use a gateway whose communication 
protocol is supported, such as TCP/IP. 

 

4.2. From acquisition to temporary saving: the 

local storage 
 

Right after the fetch action, when data arrive to the 

hardware running R-testbench, a local storage in the 
RAM is necessary in order to process further the data 

or to save them in the permanent memory. According 

to the adaptability specification, the library offers the 

choice to store data in Python built-in containers, such 

as lists or dictionaries, as well as specialist objects 

provided by libraries optimized for scientific 

computations, e.g., NumPy or pandas. 

Nevertheless, despite the flexibility given to the 

user, the default data container used for temporary 

local storage is the NumPy’s N-dimensional array, 

ndarray [28]. It currently reaches the best compromise 
between memory management, execution speed, and 

user-friendly manipulation of huge arrays.  

 

4.3. From temporary to permanent saving: the 

dump action 
 

At this step, all acquired data are temporarily 
stored locally, for example in the RAM of a laptop. 

Afterwards, two actions are jointly performed: 

aggregation and permanent saving. 

On the one hand, it is generally required to 

aggregate related data for saving. For instance, the 

vector of timestamps corresponding to the 

measurement of a time-dependent parameter, such as 

the voltage on an oscilloscope. 

On the other hand, data must be permanently saved 

into files, for later processing or reading. Depending 

on the applications, the expected-file formats can be 
different. The common compromise comes on either 

the possibility to read immediately the data values by 

opening the file with a text editor, or an efficient 

storage that needs the minimum memory space for the 

maximum number of data, without jeopardizing the 

accuracy. 

Regarding both requirements, the pandas API 

offers a rich and easy-to-use interface that fits the 

needs [29]. Currently, R-testbench takes benefits of 

pandas to offers the possibility to save data in one text 

format, CSV, and in three binary formats, pickle, 

Feather, and HDF5. CSV (Comma Separated Values) 

has the advantage to be human readable and to be 

supported by a plethora of data processing tools. 

Pickle is a Python-specific module for object 

serialization, able to convert an object into a byte 

stream to write the corresponding data into a binary 

file [30]. Feather is a format based on the Apache 

Arrow columnar memory specification for data 
representation, that is very performant [31], [32]. 

HDF5 (Hierarchical Data Format) is available in 

several programming languages, and very popular for 

data science and artificial intelligence [33]. 

 

4.4. From raw data to refined information: the 

data (post-) processing 
 

Data processing can be performed in two ways: in 

real time during the acquisition, or in post-acquisition. 

The former has the advantage of freeing memory as it 

is not necessary to store raw data permanently, the 

interesting information being already extracted. 

However, a simultaneous processing requires either a 

fast and efficient computation tool (hardware or 

software) or a huge buffer to accumulate the acquired 

data while they are being processed. The latter 

method, post-processing, does not constrain the 
computation capabilities, but requires the storage of 

the raw data, which can be a problem from the memory 

perspective. 

Currently, R-testbench implements the post-

processing mechanism, in order to allow the user to 

run the Python library without hard constraints on the 

hardware. Moreover, because of the various data files 

formats available, many data processing tools can be 

used, including open-source ones. This is compliant 

with the adaptability specification. 

 
 

5. Software validation 
 

This section presents the four means that have been 

implemented to validate the proposed software, 

namely, continuous integration (CI), performance 

characterization, alpha test and public release on an 
open-source platform.  

 

5.1. Continuous integration and alpha tests 
 

Continuous integration (CI) is a software 

development methodology that consists in (1) 
committing, i.e., sending the modified code to a 

unique repository, (2) versioning, which means 

tracking the modification of the code, and (3) building 

and testing the code each time it is modified to ensure 

that no anterior functionalities have been broken by 

the new integration [34], [35]. 

In the case of R-testbench, a public repository has 

been created on GitHub (see section 5.4). The 

versioning tool used for modification tracking is Git. 
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Automated testing has been implemented by using 

PyTest, to develop the unit tests, and GitHub Actions 

and Travis CI, to create the test scenarios including 

different Python versions (3.6, 3.7, and 3.8) and 

operating systems, presented in Table 1. 

The R-testbench Python package has also been 

successfully tested by the developer in the so-called 

alpha tests. They were realized in the frame of 

experiments involving the characterization of 

semiconductors devices irradiated with ionizing 

radiation, e.g., -rays [36]. This use case requires 
remote instrumentation, for safety reasons. 

 

 
Table 1. List of the verified versions of operating systems 
distributions that are supported, and test methods that used 

to perform the verification. CI stands for continuous 
integration. 

 

Distributions Versions Test methods 

macOS 10.15 (Catalina) CI (GitHub) 

Ubuntu 

16.04  

(Xenial Xerus) 

CI (GitHub, 

Travis) 

18.04  
(Bionic Beaver) 

Alpha tests,  
CI (GitHub) 

Windows 10 N/A Alpha tests 

Windows Server 2019 CI (GitHub) 

 
 

5.2. Performance characterization 
 

All performance measurements were realized with 

the Keysight B2985A electrometer [37], the 

instrument which was involved in alpha tests (cf. 

section 5.3). All results were achieved by running the 

acquisitions and computing the properties seven times, 

and averaging the values. This has been determined 

empirically to minimize the standard deviation. 

The time required to fetch data from an instrument 

and store locally in a NumPy ndarray object evolves 

linearly with the number of data, as demonstrated in 

the case of a transfer by USB and LAN (TCP/IP) in 
Fig. 5. 

 

 

 
 

Fig. 5. Comparison of time required to fetch data from a 
Keysight B2985A electrometer to the computer [5]. Data 

are stored locally in a numpy. ndarray container.  

 

 

To evaluate the overhead time, the theoretical 

transfer time, 𝑡transf, must be computed. It depends on 

the theoretical transfer speed of the related interface, 

𝑣transf, the number of transmitted data, 𝑁, and the 

number of bits used to code one datum, 𝑛bit, as shown 
in eq. (1): 

 

 
𝑡transf =

𝑁 ∙ 𝑛bit

𝑣transf

 . (1) 

 

The instrument used for the test is equipped with a 

USB 2.0 interface, which means that the theoretical 

speed limit is 480 Mbit/s. If the protocol overhead for 

high-speed bulk transactions is taken into account, it 

leads to a speed limit of useful data of 425.984 Mbit/s 

[38]. Hence, using (1), a thousand 64-bit data should 

require 

 

 
𝑡transf =

1000 ∙ 64

425.984 × 106
 , (2) 

 

leading to a minimum transfer time of 150.24 µs. 

Compared with the results shown in Fig. 5, the 
minimum transfer time due to the interface is two 

orders of magnitude lower. Consequently, the 

overhead time necessary to (1) call the VISA libraries 

that allow to communicate with the instruments and 

(2) to store the data in a NumPy ndarray object, is a 

hundred times longer than the transfer time. 

Further measurements are necessary to determine 

the bottleneck of the fetch operation. This requires the 

possibility to monitor the low-level mechanisms of the 

VISA libraries, and to test several implementations. 

Another problem could arise from the data storage 

with NumPy, which is managed by the PyVISA 
package.  

The speed and size performances of the permanent 

storage have been characterized, for three different 

files formats: CSV, pickle, and HDF5. The 

corresponding results are presented in Fig. 6 and 

Fig. 7, for the saving time and the size of the generated 

files, respectively. The best performance is expected 

to come from binary formats, for both size and speed 

aspects. However, for a small amount of data, the CSV 

format generates smaller files, and generate files 

faster, than the HDF5 format. This can be explained 
by the fact that the latter has been designed for big 

data, which assumes the manipulation of huge 

datasets. On the studied range, which corresponds to a 

maximum of 300,000 data, the pickle format exhibits 

the best behavior. This is confirmed by other studies 

[39], [40]. Nevertheless, the range of data should be 

extended to draw definitive conclusions, as observed 

HDF5 and pickle formats tends to have the same 

performance for bigger datasets, as observed in Fig. 6. 
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Fig. 6. Comparison of the evolution of the time required to 

save data into CSV, pickle and HDF5 files formats with the 
number of data [5]. Data are saved to files using the pandas 

I/O API.  

 

 

 
 

Fig. 7. Comparison of the evolution of sizes of CSV, pickle 
and HDF5 files with the number of data. [5]. Data are 

saved to files using the pandas I/O API.  

 

5.3. Public release  
 

R-testbench has been made publicly available on 

GitHub [7], an open-source platform widely used by 

researchers and programmers, from both industry and 

academia, to share and contribute to open source 
projects. The project is licensed under the OSL-3.0.  

There is currently one contributor and maintainer: 

A. Quenon. As the package has been made publicly 

available for the SEIA’ 2020 conference [5], and 

because of the contributions to PyVISA due to the 

strong dependency, the interest for this project is 

expected to grow up. 

 

 

6. Results discussion 
 

The proposed library has been clearly 

characterized for the execution speed and the memory 

space required to save results. To the best of the 

authors’ knowledge, there is no available studies that 

offer the same type of characterization for the other 

available software solutions for remote instruments 

control. 
Nevertheless, R-testbench has several advantages, 

as shown in Table 2. Specifically, it is open-source, 

offers high-level programming capabilities, performs 

automatic instrument recognition and supports several 

types of files formats to save results. Currently, the 

main drawbacks are the few number of specific 

instruments that have been implemented and the small 

size of the development team. Of course, this is a 

matter of time. 

 
 

 

 
Table 2. Comparison of the main characteristics of software solutions for measurement instruments remote control and 

automation [5], [17]—[24]. 
 

Tool License 

Programming VISA 

compatible 

protocols 

Automatic 

recognition 

Supported 

results files 

types Level Language Graphical 

LabVIEW Proprietary high or low MathScript yes yes, and more no many 

MATLAB Proprietary low Matlab partial yes, and more no many 

Octave GPL low Octave no no (PXI) no 
bin, CSV, 

HDF5, mat, 
txt 

Scilab GPL low Scilab no yes no 
SOD 

(HDF5) 

PyMeasure MIT high Python no yes no CSV 

R-testbench OSL high Python no yes yes 

CSV, 

feather, 

HDF5, pkl 
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7. Conclusions 
 

This paper presents R-testbench, an open source 

Python library devoted to remote instrumentation and 

test bench automation. The library has been designed 
using the object-oriented paradigm, to encapsulate 

implementations details and offer user-friendly high-

level programming. It has been devised to be reliable, 

which is achieved by using the VISA standard for the 

communications with the controlled instruments. The 

solution is adaptable to several types of 

communication interfaces, e.g., GPIB or TCP/IP, as 

well as to several types of data processing tools, 

because of the support of different files formats for 

saving results. 

The library has been validated by implementing 
continuous integration, including code versioning and 

automated build and tests. It is proved to be cross-

platform. Alpha tests were successfully carried out by 

controlling remotely an experiment involving the 

characterization of semiconductors devices irradiated 

with ionizing radiation. The source code is publicly 

available on GitHub and is becoming mature. 

Future developments include the implementation 

of specific models of instruments, as well as the 

support of other files formats, such as the increasingly 

popular JSON text format. It would also be interesting 

to create bindings with database management tools, 
e.g., Mongo DB or MySQL. Finally, the possibility to 

run R-testbench on portable platforms, such as 

Raspberry Pi or FPGAs, together with hardware 

acceleration, can be explored. The latter is a clue for 

efficient real-time data processing. 
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