
Deep Learning for
Skeleton-Based Human Action

Recognition

Sohaib Laraba

sohaib.laraba@umons.ac.be

Tuesday 20th October, 2020

A dissertation submitted to the Faculty of Engineering

of the University of Mons, for the degree of Doctor of Philosophy in Engineering Science

Supervisor: Prof. T. Dutoit

This thesis was supported by the ERDF DigiStorm Program

Jury members

Prof. Xavier Siebert - Université de Mons, President

Prof. Thierry Dutoit - Université de Mons, Supervisor

Dr. Jöelle Tilmanne - Hovertone, Co-Supervisor

Prof. Bernard Gosselin - Université de Mons

Prof. Hicham Sahli - Vrije Universiteit Brussel (VUB)

Prof. Abdelmalik Taleb-Ahmed - Université Polytechnique Hauts-

de-France

Prof. Hazem Wannous - Institut Mines-Telecom Lille-Douai

— iii —

”A candle loses none of its light by lighting another.”

Rumi

— v —

Abstract

H
uman action recognition from videos has a wide range of applica-

tions, including video surveillance and security, human-computer in-

teraction, robotics, health care, etc. Nowadays, 3D skeleton-based

action recognition has drawn increasing attention thanks to the availability

of low-cost motion capture devices, and accessibility of large-scale 3D skele-

ton datasets, in addition to real-time skeleton estimation algorithms. In the

first part of this thesis, we present a novel representation of motion capture

sequences for Three Dimensions (3D) skeleton-based action recognition. The

proposed approach consists of representing the 3D skeleton sequences into

RGB image-like data and leveraging recent convolutional neural networks

(CNNs) to model the long-term temporal and spatial structural information

for action recognition. Extensive experiments have shown the superiority of

the proposed approach over the state-of-the-art methods for 3D skeleton-based

action recognition.

In order to extract skeleton sequences, different devices extract first the depth

information using multiple technologies (stereo, time-of-flight, etc.), then 3D

skeleton poses are extracted using different algorithms. In the very late years,

new researches proposed to extract skeleton sequences directly from Red,

Green, and Blue (RGB) videos. The most precise methods extract Two Di-

mensions (2D) skeletons in real-time and with high accuracy.

— vii —

In the second part of this thesis, we leverage these tools to extend the use of

our proposed approach to RGB videos. We first extract 2D skeleton sequences

from RGB videos, and then, following approximately the same process as in

the first part, we use CNNs for human action recognition. Different experi-

ments showed that the proposed method outperforms different state-of-the-art

methods on a large benchmark dataset.

Another contribution of this thesis relates to the interpretability of deep learn-

ing models. Deep learning models are still considered alchemy due to the lack

of understanding of their internal operations. Interpretability is a crucial task

to understand and trust the decisions made by the machine learning model.

Thus, we propose in the third part of this thesis to use CNN interpretation

methods to understand the behavior of our classifier and extract the most

informative joints during the execution of a particular action. This method

allows us to see from the Convolutional Neural Network (CNN) point of view

the most important joints, and understand why certain actions are confused

by the proposed classifier.

— viii —

Acknowledgements

C
hère mère, cher père, je n’oublierai jamais les sacrifices par lequels vous

êtes passés pour moi. Vous avez goûté à l’amertume de cette vie afin que

nous, vos enfants, puissions nous délecter de son nectar. Qu’importe le nombre

de ”merci” que je peux vous adresser, il n’égalera jamais toute la gratitude

et la reconnaissance qu’éprouve à votre égard. Mon bonheur et ma joie ne se

traduisent que par les vôtres.

Abderrahman, Oussama, Maroua, vous avez été pour moi un soutien sans

pareil. Je me sens chanceux de vous avoir pour frères et sœur.

I
slem, ma bien-aimée, je ne pense pas pouvoir te remercier assez pour tout

ce que tu as fait pour moi. Tu es arrivée au moment où j’en avais le plus

besoin. Tu as comblé un vide qui s’est inscrit dans ma vie. Ton soutien, ta

motivation et ta patience sont les clés de ma réussite. Un ”merci” ne sera

jamais assez pour exprimer ma reconnaissance !

J
e ne peux évidemment pas faire sans remercier mes proches, familles et

amis, qui n’ont jamais cessé de me soutenir jusqu’au bout, et continueront

sans doute à le faire. Je cite en particulier mon oncle Salim et toute sa famille,

je n’oublierai jamais votre soutien et vos orientations depuis toujours. Je cite

également ma belle-famille, et particulièrement ma belle-mère, qui m’a soutenu

et m’a épaulé. Merci infiniment à tous ceux qui m’ont encouragé, qui ont eu

une pensée ou une prière pour moi. . .

— ix —

I
am also grateful for the time spent in the ISIA Lab (ex-TCTS Lab). I

believe I belong to the best lab with the best working environment. I would

like to thank all my colleagues who have contributed to this work in one way

or another. I feel very lucky to be a part of this team with whom I share too

many memories and had great human and technical exchanges.

L
ast but not least, I would like to express my deep and sincere gratitude

to my supervisor Thierry Dutoit, and my co-supervisor Jöelle Tilmanne.

Thank you for the opportunity you gave me to be a part this lab. You have

always showed your attention and have been patient with me, and your trust

made me who I am today. Your dynamism, vision, organization and manage-

ment have always inspired me.

— x —

Contents

Abstract vii

List of Figures xv

List of Tables xxi

List of Acronyms xxiii

Introduction 3

1 Background on Convolutional Neural Networks 19

1.1 Introduction . 20

1.2 Neural Networks Basics . 20

1.2.1 Multilayer Perceptrons 21

1.2.2 Parameter Learning . 22

1.3 Convolutional Neural Networks (CNNs) 24

1.3.1 CNN Layers . 25

1.3.2 Training the CNN . 32

1.3.3 Transfer Learning and Domain Adaptation 35

1.4 Six Comparative Classification Architectures 36

1.4.1 AlexNet . 36

1.4.2 Inception V3 . 37

1.4.3 VGGNet . 38

1.4.4 ResNet . 38

1.4.5 DenseNet . 39

— xi —

1.4.6 SqueezeNet . 40

2 Novel Representation of Skeleton Sequences for 3D Action Recog-

nition Using Convolutional Neural Networks 43

2.1 Introduction . 44

2.2 Related Works . 45

2.2.1 Classical Approaches of 3D Skeleton-Based Action Recog-

nition . 45

2.2.2 Deep Learning-Based Skeleton Action Recognition . . . 48

2.3 Proposed Approach: Using CNNs for 3D Skeleton-Based Action

Recognition . 52

2.3.1 Sequence to Image - Seq2Im: A Novel Representation of

3D Skeleton Sequences 53

2.3.2 Experimental Results 57

2.4 Conclusion . 67

3 Human Action Recognition From RGB Videos 69

3.1 Introduction . 70

3.2 Related Works . 71

3.3 OpenPose: Real-time Multi-Person Pose Estimation From RGB

Videos . 74

3.4 Proposed Approach for Human Action Recognition from RGB

Videos Using CNNs . 77

3.4.1 Skeleton Data Extraction and Processing 78

3.4.2 Experimental Results and Discussion 81

3.5 Conclusion . 86

4 Towards Human Interpretable Deep Learning Models for Human

Action Recognition 87

4.1 Introduction . 88

4.2 The Importance of Interpretability 90

— xii —

4.3 Visualization Methods for Model Interpretability 91

4.3.1 Activation Maximization 91

4.3.2 Deconvolution . 94

4.3.3 Guided Backpropagation 96

4.3.4 Class Activation Maps (CAM¸) 98

4.3.5 Gradient-Weighted Class Activation Mapping (Grad-CAM) 99

4.4 Proposed Approach of Interpretation of CNN Models Built for

Skeleton-Based Human Action Recognition 101

4.4.1 Proposed Approach . 101

4.4.2 Analysis of the miss-classifications 105

4.4.3 Evaluation . 110

4.5 Conclusion . 113

Conclusion 117

4.6 Contributions . 117

4.7 Future Works . 118

A Publications related to this thesis 121

A.1 Journals with Peer Review . 121

A.2 Journals without Peer Review 121

A.3 Papers in International Conference with Peer Review 122

Bibliography 125

— xiii —

List of Figures

0.1 ”Star” skeleton extraction. [1] 5

0.2 a. Reflective markers attached on a person’s body to be tracked

by the optical MoCap system. b. Illustration of the inertial

motion capture systems. 7

0.3 3D joints extraction from a single depth image. [2] 9

0.4 Relationship between different disciplines of artificial intelli-

gence (AI). 11

0.5 A diagram showing how different disciplines of AI work. [3] . . 12

1.1 MLP network example with an input layer, an output layer and

3 hidden layers. 21

1.2 Feature visualization of convolutional net trained on ImageNet. [4] 25

1.3 The components of a typical convolutional neural network layer. 26

1.4 Example of a 2× 2 CNN filter. 27

1.5 Example showing the convolution operation of a input feature

map of 4× 4 and a filter of 2× 2. 28

1.6 Illustration of the convolution operation with a stride of 1: a)

without zero padding. b) with zero-padding. 29

1.7 Illustration of the max-pooling layer with a size of 2× 2 and a

stride of 1. 30

— xv —

1.8 Three common activation functions that are used in deep learning. 31

1.9 Graph representation of two fully connected layers, l(k−1) and

l(k), connected by the weight matrix w(k). 33

1.10 Illustration of the convergence behavior of the SGD without

(a.) and with (b.) momentum. [5] 35

1.11 Illustration of AlexNet architecture. [6] 37

1.12 Illustration of Inception V3 architecture. [7] 38

1.13 Illustration of VGGNet (with 16 weight layers). [8] 39

1.14 Illustration of the ResNet architecture with 34 parameter layers

(up). For a comparison, a plain network with 34 parameter

layers without shortcut connections (down). [9] 39

1.15 Illustration of a 5-layer dense block from DenseNet architecture.

Each layer takes all preceding feature-maps as input. [10] . . . 40

1.16 Illustration of SqueezeNet architecture. Each fire block consists

of two layers: Squeeze Layer (with 1×1 filters) and Expand layer

(with 1× 1 and 3× 3 filters). [11] 41

2.1 Illustration of the proposed sequence-to-image (Seq2Im) ap-

proach. A skeleton sequence is first normalized to a central

joint, then each array of the 3D Cartesian coordinates is trans-

formed into a grayscale image. By merging these images we

obtain a RGB color image that is resized to fit the input of the

CNN model. 53

— xvi —

2.2 Examples showing multiple sequences from the NTU RGB+D

dataset after transformation using the proposed Sequence to

Image (Seq2Im) approach. The colored triangle on the bottom

right of the figure can be considered as a dictionary to interpret

these images. 56

2.3 Examples showing multiple sequences from the NTU RGB+D

dataset transformed into images using the proposed Seq2Im ap-

proach after normalization to the joint ”SpineBase”. The nor-

malization allows the skeleton to be invariant to global position. 56

2.4 Overview of the proposed end-to-end architecture for skeleton-

based human action recognition. 57

2.5 Configuration of the 25 joints skeleton captured by the Mi-

crosoft Kinect V2. 59

2.6 Accuracy vs. training time for different models in cross-subject

protocol, following the three training strategies: from scratch,

shallow retraining, and deep retraining. 62

2.7 Accuracy vs. training time for different models in cross-view

protocol, following the three training strategies: from scratch,

shallow retraining, and deep retraining. 63

3.1 Overall pipeline of the OpenPose framework. a. The entire

image is taken as the input for a CNN to jointly predict con-

fidence maps for body part detection (a.) and Part Affinity

Fields (PAFs) for part association (c.). d. The parsing step

performs a set of bipartite matchings to associate body part

candidates. e. Finally, they are assembled into full body poses

for all people in the image. [12] 76

3.2 Architecture of the two-branch multi-stage CNN. [12] 76

— xvii —

3.3 Overview of the proposed end-to-end architecture for the clas-

sification of human actions from RGB videos. 78

3.4 Illustration of the body skeleton extracted by the OpenPose

framework. To validate the proposed approach, we test the use

of all joints (18) vs. only the 14 joints highlighted in blue (all

the joints except 14, 15, 16 and 17). 79

3.5 Examples showing two sequences transformed into images using

Seq2Im method. In the first column (left), all the joints are used

for the transformation. In the second column (right), only 14

joints are used (highlighted in blue in Figure 3.4). 80

4.1 Activation Maximization Results on the MNIST Dataset. [13] . 93

4.2 A DeconvNet layer (right) attached to a ConvNet layer (left). [4] 95

4.3 Illustration of the unpooling operation in the DeconvNet. The

unpooling uses switches that record the local max in each pool-

ing region during pooling in the ConvNet. [4] 95

4.4 Evolution of a randomly chosen subset of model features through

training. [4] . 96

4.5 Illustration of the forward and backward passes. [14] 96

4.6 Comparison of different methods of backward passes through a

ReLU nonlinearity. [14] . 98

4.7 Class Activation Mapping: the predicted class score is mapped

back to the previous convolutional layer to generate the class

activation maps (CAMs). The CAM highlights the class-specific

discriminative regions. [15] . 99

4.8 Illustration of the Grad-CAM visualization method. [16] 100

— xviii —

4.9 Overview of Grad-CAM visualization algorithm for human ac-

tion recognition. 102

4.10 Examples of Grad-CAM visualizations of four different actions

(throw, clap, cheer up and kick something). 1st row: original

images generated using Seq2Im. 2nd and 3rd rows: generated

heatmaps using DenseNet201 following the cross-subject and

the cross-view protocols consecutively. 5th and 6th rows: gen-

erated heatmaps using SqueezeNet following the cross-subject

and the cross-view protocols consecutively. 4th and 7th rows:

mapping of the obtained heatmaps on the original skeleton se-

quences. 104

4.11 Examples of situations where the model correctly performs clas-

sification even when the data is noisy. 1st row: generated

heatmaps using Grad-CAM. 2nd row: mapping of the obtained

heatmaps on the original skeleton sequences. 105

4.12 Confusion matrix of test results on the NTU RGB+D dataset

(cross-subject evaluation). 106

4.13 Attention visualization of the top 5 recognized actions using

Grad-CAM. 1st column: original images. 2nd column: gener-

ated heatmaps. 3rd column: one frame with the highlighted

joints by mapping the heatmaps on the original skeleton se-

quences. 108

— xix —

4.14 Attention visualization of the top 5 confused pairs of gestures

using Grad-CAM. 1st column: heatmaps applied on images cor-

responding to correctly classified skeleton sequences. 2nd col-

umn: one frame with the highlighted joints using the inverse

transformation of the heatmaps on the original skeleton se-

quences. 3rd column: heatmaps applied on images correspond-

ing to miss-classified skeleton sequences. 4th column: one frame

with the highlighted joints using the inverse transformation of

the heatmaps on the original skeleton sequences. 109

4.15 Interface of the manual annotation tool for the selection of the

most important joints. 111

4.16 Examples showing the generated images for the evaluation of

heatmaps (action: ’cheer up’). a) generated heatmap by the

model DenseNet201. b) corresponding filtered image. c) gen-

erated heatmap by the model SqueezeNet. d) corresponding

filtered image. e) ground truth annotation. f) ground truth

annotation excluding the head and spine joints. 112

4.17 Results obtained for the evaluation of heatmaps generated for

both DenseNet201 and SqueezeNet models, with and without

the head and spine joints. 114

— xx —

List of Tables

2.1 Specifications of the machine used for our experiments. 60

2.2 Obtained results for the cross-subject evaluation. 61

2.3 Obtained results for the cross-view evaluation. 63

2.4 Comparison of our proposed approach with the state-of-the-art

results. 64

2.5 The results of different methods designed for 3D Skeleton-based

human activity recognition using the NTU RGB+D 120 dataset. 65

2.6 The results of other methods combining different modalities

(RGB, depth and 3D Skeleton data) for human action recogni-

tion using the NTU RGB+D 120 dataset. [17] 65

2.7 The results of different methods designed for 3D Skeleton-based

human activity recognition using the MSR Action 3D dataset. . 66

2.8 The results of different methods designed for 3D Skeleton-based

human activity recognition using the HDM05 dataset. 67

3.1 Comparison between different configurations to select the best

representation of OpenPose skeleton sequences. 81

3.2 Results obtained by deep retraining of different models using

18 joints and 14 joints in cross-subject protocol. 82

— xxi —

3.3 Training from scratch vs. deep retraining vs. shallow retraining. 84

3.4 Comparison with the state-of-the-art results. 85

4.1 Top 5 accurate actions and 5 confused pairs for the proposed

model, including the recognition accuracy per class. 107

— xxii —

List of acronyms

2D Two Dimensions

HMM Hidden Markov Model

RGB Red, Green, and Blue

Hz Hertz

CNN Convolutional Neural Network

Seq2Im Sequence to Image

PCA Principal Component Analysis

FTP Fourier Temporal Pyramid

HOJ3D Histogram Of 3D Joints Locations

DTW Dynamic Time Warping

— xxiii —

Introduction

In the 1960s, artificial intelligence has known its first steps and became an
academic discipline. Some researchers were extremely optimistic about the
future of this field, and they believed that it would take no more than 25 years
to develop a machine that is as intelligent as a human being. MIT professor
Seymour Papert believed that a group of MIT students could solve the ma-
chine vision problem in a few months, and he launched the Summer Vision
Project [18]. Almost 60 years later, we are still very far from solving computer
vision. Computer Vision tasks are difficult due to huge variations of appear-
ance, motion patterns, viewpoint angles, lighting conditions, etc. Computers
were primarily designed to perform fast and well defined computational tasks,
and not complicated tasks requiring “reasoning”. Thus, the main goal of com-
puter vision is to improve computer abilities in the interpretation of image
and video information. Such abilities will play a key role in future intelligent
machines such as robots and vehicles. Analyzing human activities, and par-
ticularly from videos, was one of the challenges of the Summer Vision Project,
and it is crucial in a wide range of applications such as video surveillance,
human-computer interaction, entertainment, etc. In recent years, action anal-
ysis has become more and more popular thanks to the availability of video
and motion capture data. Action recognition is one of the most important
components of intelligent systems. The ability to interpret such information
will ultimately bring computers one step closer to human skills. This thesis
focuses particularly on the recognition of human actions from skeleton data.
In this chapter, we first introduce some definitions of action recognition, in
addition to an introduction of deep learning (DĻ). Furthermore, we follow by
defining the problem to be solved in this thesis and the challenges that we
face. We close this chapter by listing the contributions.

— 3 —

4 Introduction

Definitions of Action Recognition

Human activities can be categorized into four different levels: gestures, actions,
interactions, and group activities, depending on their complexity [19].

Gesture: A gesture is an elementary movement of a body part such as ‘raising
a leg’.

Action: An action is composed of several gestures of one person that are
organized in time, such as ‘walking’ or ‘waving’.

Interactions: An interaction involves two or more persons and/or objects.
For example, ‘a person pushing another person’ is an interaction between two
people, and ‘a person lifting a box’ is a human-object interaction. Finally, a
group activity is an activity performed by multiple persons, such as ‘a group
of people is running’. Some action datasets contain both one-person actions
and two-persons interactions. In this thesis, we focus on the analysis of single
person actions.

Action recognition: One of the most important tasks in human activity
analysis is action recognition. Action recognition can be defined as the pro-
cess of automatically decoding and recognizing the action happening in a given
sequence of images. In other words, if we assume that we have a set of se-
quences S and a set of corresponding action labels L, and we assume that
each sequence S ∈ S contains only one action lS . Thus the goal of action
recognition is to predict the label lS based on the sequence representation S.

Action detection: Action detection problem can be considered as an exten-
sion of action recognition. In this problem, we assume that a sequence S can
contain more than one action. Thus, each sequence S ∈ S has a corresponding
set of labels LS . The goal then is to predict all labels for a given sequence S,
as well as the time when a given action starts and ends.

In this thesis, we focus on the action recognition challenge, as we claim that
to solve the action detection problem, we need to get an action recognition
system that is able to achieve high accuracy.

Introduction 5

Figure 0.1. ”Star” skeleton extraction. [1]

Background on 3D Skeleton Data

The human body is an articulated system that is formed by rigid segments
connected by joints. A human action is considered as a continuous evolution
of the spatial configuration of these segments. Back in 1975, G. Johansson
[20] conducted some experiments and showed that humans could recognize
activities with only seeing the light spors attached at the person’s main joints.
Multiple researchers tried then to extract body joints or to detect body parts
and track them in the temporal domain. Fujiyoshi and Lipton [1] attempted
to extract a human body skeleton from video streams by first extracting the
silhouettes. They produced then a ”star” skeleton by detecting extremal points
on the boundary of the target, as shown in Figure 0.1. Ben-Arie et al. [21]
labeled main body parts, such as arms, legs, torso, and head, based on a
pattern matching technique, for activity recognition.

Due to the additional 3D geometric information that depth imagery can pro-
vide, many methods are developed to build a 3D human skeleton model. 3D
skeleton-based representations demonstrate promising performances in real-
world applications, including Kinect-based gaming, as well as in computer
vision research [22–27]. 3D skeleton-based representations can model the re-
lationship of human joints and encode whole body configuration. They are
robust to scale and illumination changes, and can be invariant to camera view
as well as human body rotation and motion speed.

6 Introduction

Acquisition of 3D Skeleton Data

While several commercial devices, including motion capture systems, time-
of-flight sensors, and structured-light cameras, allow for direct retrieval of
3D skeleton data, multiple approaches have been designed to automatically
construct a skeleton model from perception data through pose recognition
and joint estimation. Some of these methods are based on RGB imagery,
while others leverage the extra-information available in the depth images. The
majority of these methods are based on body part recognition, and then fit a
flexible model to the ’known’ body part locations. An alternative methodology
is starting from the ’known’ prior, and fitting the silhouette or point cloud to
the prior after the person is localized [28, 29]. This section provides a brief
overview of technologies allowing direct acquisition of 3D skeletal data and
autonomous skeleton construction methods based on visual data.

High-precision motion capture systems
Most of high-precision motion capture systems identify and track markers that
are attached to a human subject’s joints or body parts to obtain 3D skeleton
information. For simplicity matters, we note these marker-based motion cap-
ture systems as ”MoCap¸ systems”. There are two main categories of MoCap
systems, based on either visual cameras or inertial sensors. Optical-based
systems, like Qualisys1, Vicon2 or OptiTrack3, employ multiple cameras that
track, in 3D space, reflective markers attached to the human body (Figure 0.2,
a.). These are generally high-speed cameras that can track with high accu-
racy the locations of the markers. Qualisys Oqus systems4 for example feature
high-speed digital cameras with a rate of 180-500 frames per second (FPS¸) at
full resolution and 360-1750 FPS at reduced resolution, and a precision of less
than 1m̧m. In MoCap systems based on inertial sensors, each 3-axis inertial
sensor estimates the rotation of a body part with respect to a fixed point.
This information is collected to obtain the skeleton data without any optical
device around the subject (Figure 0.2, b.).

1Qualisys Motion Capture System: https://www.qualisys.com/
2Vicon Motion Capture System: https://www.vicon.com/
3OptiTrack Motion Capture System: http://optitrack.com/
4Qualisys Oqus systems: https://www.qualisys.com/cameras/oqus/

Introduction 7

Figure 0.2. a. Reflective markers attached on a person’s body to be tracked by the
optical MoCap system. b. Illustration of the inertial motion capture
systems.

Although MoCap systems, especially based on multiple cameras, can provide
very accurate 3D skeleton information at a very high speed, they are typically
expensive and can only be used in well-controlled indoor environments.

Structured-light cameras
A typical structured-light stereo color-depth (RGB-D) system such as the
Microsoft Kinect V1̧ [30] and ASUS Xtion [31], consists of a projector and
two camera sensors (color and infrared cameras). The projector consists of
an infra-red (IR) light source that emits a known pattern that is captured by
the IR camera sensor. Depth information of the sensing environment can then
be inferred based on how the light patterns are distorted in the IR images
[32]. The RGB camera captures the color information and can be aligned
with the IR camera by estimating the extrinsic parameters between them,
thereby providing color-depth information at each pixel of a frame or 3D color
point clouds. Several drivers are available to provide access to the RGB-D
data acquired by the sensor, including the Microsoft Kinect SDK¸ [33], the
OpenKinect Library [34], etc.

8 Introduction

The Kinect SDK also provides 3D human skeletal data using the method de-
scribed by Shotton et al. [2]. These sensors are not expensive and can provide
3D skeleton information in real-time. On the other hand, since structured
light cameras are based on infrared light, they can only work in an indoor en-
vironment. The frame rate (30Hz) and resolution of depth images (320× 240)
are also relatively low. The skeletal data provided is generally noisy and can
be obtained correctly only when the subject is facing the camera.

Time-of-Flight (ToF¸) sensors
Time-of-Flight sensors are able to acquire accurate depth data at a high fram-
erate, by emitting light and measuring the time it takes for light to return.
The light is given a modulation envelope by rapidly turning the light source
on and off. Distance measurement is achieved by measuring the phase of
the modulation envelope of the transmitted light as received at the pixel ar-
ray [35]. Compared to other ToF sensors, the Microsoft Kinect V2̧ camera
offers an affordable alternative to acquire depth data using this technology.
Furthermore, a color camera is integrated into the Kinect V2 sensor to pro-
vide registered color data. The color and depth data can be accessed using
the Kinect SDK 2.0 [33]. The Kinect V2 camera provides depth images at
a resolution of (512 × 424) at 30Hz. Moreover, the camera can provide 3D
skeleton data by estimating positions of 25 human joints, with better tracking
accuracy than the Kinect V1 camera. However, similarly to the Kinect V1
sensor, the skeletal data provided is noisy and cannot be used if the subject is
not facing the camera.

3D skeleton estimation from depth imagery
In 2011, and with the development of depth sensors, Shotton et al. [2] pro-
posed an extremely effective method to extract 3D body joint locations from
a single depth image (independent of previous frames). The human body is
labeled as body parts based on the per-pixel classification results using a ran-
domized decision forest classifier. The parts include LU/RU/LW/RW head,
neck, L/R shoulder, LU/RU/LW/RW arm, L/R elbow, L/R wrist, L/R hand,
LU/RU/LW/RW torso, LU/RU/LW/RW leg, L/R knee, L/R ankle, and L/R
foot (L: Left, R: Right, U: Upper, W: Lower) (Figure 0.3). Each branch in the
forest is determined by a simple relation between the target pixel and various
others. The pixels that are classified into the same category form the body
part and the joint is inferred by the mean-shift method from a certain body
part, using the depth data to ’push’ them into the silhouette.

Introduction 9

Figure 0.3. 3D joints extraction from a single depth image. [2]

While training the decision forests takes a large number of images (around 1
million) as well as a considerable amount of computing power, the fact that
the branches in the forest are very simple allows this algorithm to generate
3D human skeleton models within about 5m̧s. Girshick et al. [36] published
later an extended work with both accuracy and speed improved.

Plagemann et al. [37] built a 3D mesh to find geodesic extrema interest points,
which are classified into three parts: head, hand, and foot. Their method
provides both a location and orientation estimate of these parts. Holt et al. [38]
proposed Connected Poselets for 3D human pose estimation from depth data.
This approach uses the idea of poselets [39], are parts that are tightly clustered
in both appearance and configuration space. This approach is widely applied
for pose estimation from RGB data. For each depth image, a multi-scale
sliding window is applied, and a decision forest is used to detect poselets and
estimate human joint locations. Using a skeleton prior inspired by pictorial
structures [40], the method begins with a torso point and connects outwards
to body parts. By applying kinematic inference to eliminate impossible poses,
they were able to reject incorrect body part classifications and improve their
accuracy.

Another widely used methodology for the construction of 3D human skeletons
from depth images is based on nearest neighbor matching [41–44].

10 Introduction

Using the point clouds of a person with known poses as a model, several
approaches [41, 45] apply Iterative Closest Point (ICP) method to fit the un-
known poses by estimating the translation and rotation to fit the unknown
body parts to the known model. While these approaches are relatively accu-
rate, they suffer from several drawbacks. ICP is computationally expensive
for a model with as many degrees of freedom as a human body. Additionally,
it can be difficult to recover from tracking loss. Typically, the previous pose is
used as the known pose to fit to; if tracking loss occurs and this pose becomes
inaccurate, then further fitting can be difficult or impossible. Finally, skeleton
construction methods based on the ICP algorithm generally require an initial
T-pose to start the iterative process.

RGB Videos vs. Skeleton Sequences

In the past decades, researchers have focused mainly on recognizing human
actions from RGB videos. The same action class can be found in different RGB
videos containing different backgrounds, different viewpoints, and different
illumination conditions. These conditions make RGB-based action recognition
very challenging.

Nowadays, 3D skeleton-based action recognition has attracted increasing at-
tention from the computer vision community, due to the development of ac-
curate motion capture systems and real-time skeleton estimation algorithms.
Skeleton sequences provide more comprehensive information on the actions.
Back in 1975, Johansson G. [20] conducted some experiments and showed that
humans could recognize activities with only seeing the light spots attached at
the person’s main joints. With additional 3D geometric information that depth
imagery can provide, 3D skeleton-based representations are able to model the
relationship of human joints and encode whole body configuration. They are
robust to scale, illumination changes and clustered backgrounds, and can be
invariant to camera view as well as human body rotation and motion speed.
Besides, skeleton sequences are very attractive for real-time applications since
the dimensionality of skeleton sequences are much lower than those of RGB
videos. On this basis, this thesis mainly focuses and skeleton-based action
recognition.

Introduction 11

Figure 0.4. Relationship between different disciplines of artificial intelligence (AI).

Deep Learning

Deep Learning is an approach to Artificial Intelligence (AI). Specifically, it is
a type of machine learning (ML¸), a technique that allows computer systems to
learn and improve with experience and data [46]. Deep Learning can achieve
great power and flexibility by learning to represent the world as a nested
hierarchy of concepts, where each concept is defined in relation to simpler and
more abstract ones. Figure 0.4 and Figure 0.5 show the relationship between
different AI disciplines and give a high-level diagram of how they work.

Deep learning methods have been receiving a lot of attention in the last few
years due to the high performances they achieve in a variety of problems such
as image classification, object detection, speech recognition, natural language
processing, and action recognition. The particularity of deep learning architec-
tures is the fact that they can learn representations straight from data, which
results in better performances than other methods that use hand-crafted fea-
tures.

12 Introduction

Figure 0.5. A diagram showing how different disciplines of AI work. [3]

The increase of dataset sizes and the rise of the age of “Big Data” has made
machine learning and particularly deep learning, much easier, and their per-
formances outperformed previous approaches. Moreover, the improvement
of computational power played a crucial role in the development of this do-
main, allowing the machines to process extremely large datasets in a short
time. A dramatic moment in the meteoric rise of deep learning came when a
model called Convolutional Neural Network (CNN), designed for computer vi-
sion problems, won the largest yearly contest in object recognition (ImageNet
Large Scale Visual Recognition Challenge - ILSVRC) for the first time and by
a wide margin, bringing down the state-of-the-art top-5 error from 26.1% to
15.3% [6]. This means that the proposed network produces a ranked list of
possible categories for each image, and the correct category appeared in the
first five entries of this list for all the evaluation dataset except for 15.3% of
it.

Introduction 13

Since then, these competitions are consistently won by deep convolutional
networks, and as of this writing, advances in deep learning have brought the
latest top-5 error rate down to 1.3% [47]. Pursuing these advances, this thesis
naturally follows this trend and imports its impact on the development of deep
learning for action recognition.

Problem Definition

The main problem we wish to solve in this thesis is the recognition of human
actions from sequences of skeleton data. In other words, given an ordered
sequence of human joint coordinates, representing a person performing an
action, the goal is to classify this sequence into one of the possible action
categories. A model is developed and trained using multiple examples of each
action category, and the sequence to be decoded is unknown to this model,
i.e. it has not been used to train the model. Moreover, the motion capture
sequences are captured using low-cost sensors (Microsoft Kinect). This means
that the data provided can be very noisy.

The second addressed problem is the lack of understanding of deep learning
models, and particularly Convolutional Neural Networks (CNNs), that are
used in this thesis. CNN models are highly successful in solving complex vision
problems. However, they are perceived as “black box” methods, considering
the lack of understanding of their internal functioning. Consequently, when
today’s intelligent systems fail, they fail spectacularly without warning or
explanation, leaving the user with an incoherent output. Therefore, we want to
generate a visual explanation from the proposed model for action recognition
in order to increase the transparency of deep learning models and get more
insights into the performance of different actions.

Research Challenges

The main challenges of the problems we are trying to solve are the following.
First, the sequences that we want to classify are not of fixed length. However,
their length can only be in a range of a few seconds. Usually, the sequences
have a length of less than ten seconds.

14 Introduction

Our first goal is then to propose a skeleton data representation that takes
into account the length of the sequences. The representation should be able
to deal with the temporal and spatial variations of motion capture sequences.
Moreover, the models we wish to use in this thesis, namely Convolutional
Neural Networks (CNNs), take generally as input 2D images. To this end,
we propose a novel spatio-temporal representation that transforms 3D mo-
tion capture sequences into 2D images. This representation allows us to use
different state-of-the-art image classifiers for our task of action recognition.
Furthermore, this representation should be able to deal with the present noise
in the data, as we use mainly low-cost sensors (like the Microsoft Kinect).

Many sequences of people performing actions from the same class can look
very different when compared to each other. This can also be the case for one
person performing the same action multiple times. That is because there are
a lot of intra-class variations present in the data we deal with. The methods
we use to learn representations from the motion capture sequences should deal
with intra-class variations and focus on learning discriminative representations
to distinguish between different action classes. We try to achieve this by
proposing an architecture that can be trained in an end-to-end supervised
way and can learn high-level discriminative features. To achieve this last
challenge, we need first to face another challenge that is related to data. The
dataset that we need to use should be large enough to train deep learning
models. Moreover, this dataset should include different variations of action
representations from different subjects and different view angles. The current
state-of-the-art dataset that contains all of these aspects is the NTU RGB+D
dataset, which contains more than 56,000 action sequences. It includes 60
action classes performed by 40 subjects and captured using three Kinect V2
sensors at the same time covering three views (-45◦, 0◦, 45◦). An extension
of this data was proposed recently, which doubled the size of the data, and
provided more action classes.

Another challenge that we want to tackle is the recognition of human actions
from RGB videos. While 3D skeleton datasets require special devices to be
captured, RGB videos can be captured using standard cameras which are
widely available and are very cheap compared to motion capture devices. The
main problem that we face using video datasets is the detection of people in
the video and processing the obtained data, then before training the classifier.

Introduction 15

We try to handle this by using the state-of-the-art real-time people detection
from 2D videos and process the obtained 2D skeletons before applying the
proposed representation for action recognition. The proposed approach should
be able to deal effectively with 2D data and noise.

Finally, the networks we are aiming to use are considered as black boxes due
to the lack of understanding of their internal operations. For this reason, we
use model interpretation algorithms in order to debug our models. Model
interpretation algorithms can help the designers to analyze the models behav-
iors to improve their performances by extracting insights from the classifiers.
In action recognition, interpretation algorithms may help, for example, in the
localization of the most important joints that a person uses during the perfor-
mance of a particular action. This information can give the designers insights
on how to orient their classification algorithms by selecting the appropriate
features, for instance.

Original Contributions of This thesis

The original contributions of this thesis are listed below:

1. A novel representation of skeleton sequences into RGB images, namely
Sequence To Image (Seq2Im) is proposed. The new representation al-
lows to capture the spatial and temporal information of the skeleton
sequences. It is also translation, scale, and rotation invariant.

2. We propose to fine-tune state-of-the-art image classification models on
our generated dataset. The fine-tuning process allows the transfer of
knowledge from one task to another and is very effective when the dataset
of the new task is not big enough to train new CNN models. The pro-
posed method achieves state-of-the-art performance on different bench-
mark datasets captured using different motion capture devices, including
the large scale NTU RGB+D dataset.

3. We propose a new method of human action recognition from RGB videos.
We extract 2D poses from different videos in the dataset and propose a
skeleton configuration that allows to apply the Seq2Im method. We fine-
tune state-of-the-art image classification models on our new generated
dataset.

16 Introduction

The proposed method achieves state-of-the-art performance on the large
scale NTU RGB+D dataset.

4. We propose a novel method for debugging our CNN classifiers, which
allows to make our models more transparent, and to explain their be-
havior for skeleton-based human action recognition. The proposed ap-
proach allows to explain why some actions are confused by the classifier.
Moreover, it allows to highlight the most important joints during the
performance of a specific action.

Introduction 17

Organization of This Dissertation

This dissertation is organized in three main chapters as follows:

Chapter 1: Background on Convolutional Neural Networks
In this chapter, we cover the relevant concepts that are necessary for
the next chapters. We start by introducing neural networks, their basic
terminology, and show some examples. Then, we introduce the principals
of convolutional neural networks, their different components, and related
concepts. We finish by defining six state-of-the-art CNN architectures
that are used in this thesis.

Chapter 2: Novel Representation of Skeleton Sequences for 3D Ac-
tion Recognition Using Convolutional Neural Networks
In this chapter, we tackle the problem of 3D skeleton-based human ac-
tion recognition. We start by briefly introducing the literature of 3D
skeleton-based action recognition methods using hand-crafted features
and deep learning networks. Then, we propose a new representation of
skeleton sequences, namely Sequence To Image (Seq2Im), for human ac-
tion recognition. Each motion capture sequence is first pre-processed to
be invariant to the environment, body orientation, and pose size, then
transformed into an image by normalizing different values in the range
of [0, 255]. The obtained images are then used to train CNN models.
We leverage different state-of-the-art image classifiers and use transfer
learning methods for better performances. The proposed method is ex-
tensively tested on four challenging benchmark datasets. Experimental
results consistently demonstrate the superiority of the proposed Seq2Im
representation and classification using pre-trained CNNs for 3D action
recognition compared to existing techniques.

Chapter 3 Human Action Recognition From RGB Videos
In this chapter, we tackle the problem of human action recognition from
RGB videos. We start first by briefly introducing related works. We
propose then to use a state-of-the-art people detection framework to
extract 2D human poses accurately. These poses are pre-processed to be
invariant to the environment, body orientation, and pose size. We also
process the data to add a third dimension, which allows us to generate
RGB images using the proposed Seq2Im method.

18 Introduction

Then following the same process as in the previous chapter, we train dif-
ferent state-of-the-art CNN models for action classification. This method
is extensively tested on a large benchmark dataset. Experimental results
demonstrate the superiority of the proposed approach for human action
recognition from RGB videos compared to existing techniques.

Chapter 4 Towards Human Interpretable Deep Learning Models for
Human Action Recognition
In the third chapter, we tackle the problem of transparency of deep learn-
ing models. We start by defining this challenging task, then introduce
some related methods used for the interpretation of CNN models. We
use a visualization method to extract insights and understand the behav-
ior of our deep classifier. More specifically, the Grad-CAM visualization
method is used to generate a heatmap on the image that corresponds
to the zones that are the most salient to the CNN classifier. Moreover,
we can benefit from the transparency provided by such algorithms to
understand the classification process. With an inverse mapping of the
generated heatmap into the skeleton sequence, we can highlight the joints
that are used for the performance of a specific action.

Conclusion This chapter discusses the contributions of this thesis and gives
directions for future work.

Chapter 1

Background on Convolutional Neural
Networks

Contents

1.1 Introduction . 20

1.2 Neural Networks Basics 20

1.2.1 Multilayer Perceptrons 21

1.2.2 Parameter Learning 22

1.3 Convolutional Neural Networks (CNNs) 24

1.3.1 CNN Layers . 25

1.3.2 Training the CNN 32

1.3.3 Transfer Learning and Domain Adaptation 35

1.4 Six Comparative Classification Architectures . . . 36

1.4.1 AlexNet . 36

1.4.2 Inception V3 . 37

1.4.3 VGGNet . 38

1.4.4 ResNet . 38

1.4.5 DenseNet . 39

1.4.6 SqueezeNet . 40

— 19 —

20 Background on Convolutional Neural Networks

1.1 Introduction

The main problem we wish to solve in this thesis is the recognition of human
actions from sequences of skeleton data. Our proposed approach consists of
representing these sequences into RGB images that can take into account the
spatial structure of the skeleton, and the long-term temporal dependency. The
obtained images are then fed into pre-trained convolutional neural networks
(CNNs) that are retrained using transfer learning and fine-tuning process.

In this chapter, we cover the relevant concepts that are necessary for the
rest of this manuscript. In the first section, we introduce the basics of neu-
ral networks and different related components. Neural networks (NNs) are
the elementary blocks of CNNs, and they share the same principal building
blocks. In the second section, we go deeper into the principals of convolutional
neural networks, and we introduce different components and related concepts.
In the last section, we define six state-of-the-art CNN architectures that are
extensively used for different experiments of this thesis.

1.2 Neural Networks Basics

Neural networks can be considered as a set of basic processing units, which are
tightly interconnected. These units operate on the given inputs to generate
the desired outputs. They can be grouped into two generic categories: feed-
forward networks and feed-back networks [48]. In the feed-forward networks,
the information flow only in one direction (such as multilayer perceptron -
MLP and CNNs), while in the feed-back networks, the information flow in
cycles (or loops) (such as Recurrent Neural Networks - RNNs and Long-Short
Term Memory - LSTM¸). Feed-back network architecture allows us to have
memorization ability and can store information and sequence relationships
in their internal memory. Since our main focus in this thesis is on CNNs for
action recognition, RNNs, and feed-back networks, in general, are out of scope,
and we refer interested readers to [49].

Background on Convolutional Neural Networks 21

Figure 1.1. MLP network example with an input layer, an output layer and 3 hidden
layers.

1.2.1 Multilayer Perceptrons

The simplest architecture of feed-forward networks is the multilayer perceptron
(MLP¸). Figure 1.1 shows an example of a MLP network that consists of
an input layer, an output layer, and three hidden layers in between. This
network can be considered as a black box that operates on the input data and
generates some outputs [50]. We highlight the most interesting aspects of this
architecture below.

Layered architecture: Neural networks comprise a hierarchy of processing
levels. Each level, called a “network layer”, consists of a number of processing
units called “nodes” or “neurons”. Typically, the input layer is fed with
the input data, and the final layer, called “output layer”, makes predictions.
The intermediate layers process the information in a hierarchical way and are
referred to as “hidden layers”.

Nodes: are the individual processing units in each layer. For each given node,
its output value is computed by applying a function (ψ) to the outputs of the
nodes belonging to the previous layers.

Therefore, the structure of a neural network (NŅ) is determined by the number
of layers and the functions that determine the outputs of layers.

22 Background on Convolutional Neural Networks

Dense connections: The nodes in a neural network are interconnected. The
connections between different nodes are referred to as weights. The weights
express the strength of these connections. As in feed-forward networks, the
information flow in one direction from the input to the output layers, each
node in one layer (k) is directly connected to all the nodes in the immediate
previous layer (k − 1).

1.2.2 Parameter Learning

As mentioned in the previous section, the weights of the neural network define
the connections between nodes. In order to obtain the desired output, these
weights need to be set appropriately. In practice, the number of weights is
huge (millions), which requires an automatic procedure to tune their values
appropriately for a given task. This procedure is called “learning” and is
accomplished during the training process. This process involves showing the
network examples of the data with the desired output so that it learns to
identify the relationships between the input and the output. This is the case
for the supervised learning, for example. In the unsupervised learning, the
network learns to find previously unknown patterns in the data without pre-
existing labels.

The training of the network is generally achieved using the back-propagation
algorithm, also known as the generalized delta rule. The basic delta rule,
proposed by Widrow et al. [51], updates the network parameters based on the
difference between the target output and the predicted output. This difference
is computed in terms of the Least Mean Square (LMS¸) error. The output units
are a linear function of the inputs, i.e.,

ŷi =
∑
j

wijxj . (1.1)

If ŷn and yn denote the predicted and the target outputs respectively, then
the error can be calculated as follows:

E =
1

2

∑
n

(yn − ŷn)2, (1.2)

Background on Convolutional Neural Networks 23

The delta rule calculates the gradient of this error function with respect to
the parameters of the network δE

δwij
. Thus, the weights are updated iteratively

using the following learning rule:

wt+1
ij = wtij + η

δE

δwij
= wtij + η(yi − ŷi)xj . (1.3)

where t denotes the previous iteration of the learning process, and η denotes
the step size of the parameter update. The parameters are updated so that
the predicted outputs get closer to the target outputs. In other words, af-
ter a number of iterations, the training process is said to converge when the
parameters do not change any longer after updating.

The delta rule only computes linear combinations between the input and the
output pairs. This limits its use to only linear networks with single layers,
while neural networks generally use nonlinear activation functions at each
processing unit. To overcome this limitation, the generalized delta rule (back-
propagation algorithm) is proposed, which is an extension of the delta rule.
The backpropagation algorithm makes use of the nonlinear activation functions
to model nonlinear relationships between the input and the output pairs. The
parameters of the multi-layered neural network are updated similarly as the
delta rule, i.e.,

wt+1
ij = wtij + η

δE

δwij
(1.4)

However, the errors using the generalized delta rule are recursively sent back-
ward through the layers. This is the reason why it is also called ‘back-
propagation algorithm’.

Given the error function 1.2, its gradient with respect to the parameters in
the output layer l(o) for each node i can be computed as follows:

24 Background on Convolutional Neural Networks

δE

δwlij
= θl

(o)

i xj , (1.5)

θl
(o)

i = (yi − ŷi)f ′(σi), (1.6)

where, σi =
∑

j wijxj + bi is the activation which is the input to the neuron
(prior to the activation function), xj ’s are the output from the previous layer,
ŷi = fi(σi) is the output from the neuron, f(.) denotes the nonlinear activation
function and f ′(.) is its derivative.
Similarly, we can compute the error for the intermediate hidden layers by
back-propagation of the errors as follows:

θl
(k)

i = f ′(σl
(k)

i)wl
(k+1)

ij θl
(k+1)

j (1.7)

where k ∈ {1...L−1}, and L is the total number of layers in the network. The
overall update equation for the MLP parameters can written as:

wt+1
ij = wtij + ηθl

(k)

i xl
(k−1)

j , (1.8)

where xl
(k−1)

j is the output from the previous layer, and t denotes the number
of previous training iteration.

1.3 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks or CNNs, also known as Convolutional
Networks [52], are a specialized kind of neural networks for processing high-
dimensional data that has a known, grid-like topology such as image data that
has a 3D grid of pixels. CNNs operate in a way that is similar to the standard
neural networks. A key difference, however, is that each unit in a CNN layer
is a filter of at least two dimensions. This filter is convolved with the input of
that layer using the mathematical operation “convolution”.

Background on Convolutional Neural Networks 25

Figure 1.2. Feature visualization of convolutional net trained on ImageNet. [4]

CNN filters incorporate spatial context and use parameter sharing to signifi-
cantly reduce the number of learned variables.

CNNs are useful for both supervised and unsupervised learning paradigms. An
example of supervised learning is “image classification”, as shown in Figure 1.2.
The CNN learns to map a given image to its corresponding class by learning a
number of abstract feature representation from simple to more complex ones.
These features are then used to predict the correct category of an input image.
Compared to classical machine learning algorithms, CNNs automatically learn
a hierarchy of useful feature representations. Moreover, feature extraction and
classification stages are trainable in one single pipeline in an end-to-end way.
This reduces the need for manual design and expert human intervention.

1.3.1 CNN Layers

A typical layer of a CNN consists of three main stages, that can be considered
themselves as building layers, as shown in Figure 1.3.

26 Background on Convolutional Neural Networks

Figure 1.3. The components of a typical convolutional neural network layer.

In the first stage, the layer performs one or multiple convolutions in paral-
lel between the filters and the input of the layer to produce a set of linear
activations. In the second stage, each linear activation is run through a non-
linear activation function, such as the Sigmoid or a rectified linear activation
function. It is also called sometimes the detector stage. In the third stage, a
pooling function is used to modify the output of the layer further.

Convolutional layers
The convolutional layer is the most important component of a CNN. It com-
prises a set of filters, also called kernels. Each filter in a convolutional layer
is a grid of discrete numbers. If we consider, for example, a 2 × 2 filter, as
shown in Figure 1.4, the weights of each filter (the numbers in the grid) are
learned during the training process of the CNN. The filters are convolved with
the given input to generate an output that is referred to as a feature map.

- What is a convolution?: We mentioned earlier that in a convolutional
layer, one or multiple convolution operations are performed between the filters
and the input of the layer.

Background on Convolutional Neural Networks 27

Figure 1.4. Example of a 2× 2 CNN filter.

The convolution is performed by applying the filter sliding it over the image,
and for each position computing the element-wise multiplication of the two
matrices and then summing up the result. To illustrate this with an example,
given an input feature map of 4× 4 and a convolution filter of 2× 2, as shown
in Figure 1.5, the convolution layer multiplies the filter with the highlighted
patch (of 2×2) of the input feature map and sums up all the values to generate
one value in the output feature map. The filter slides along the width and the
height of the feature map until the end.

It is important to note that, in signal processing literature, this operation
is called “correlation” and not “convolution”. During the convolution, the
difference is that the filter rotated by 180◦, which means that it is flipped
along its width and the height before multiplication. In machine learning, we
rarely make a distinction between the two, and we consider both operations
as equivalent. In this thesis, we follow the machine learning convention and
do not make a distinction between the two operations, i.e., a convolution layer
performs the correlation operation.

In the above example, the filter is slid with a step of 1 pixel along the horizontal
or vertical position. This step is called the stride and can be different than 1 if
required. The stride can have a value between 1 and the size of the filter, so all
the feature map is covered. For example, if the filter has a size if 3x3, the stride
value can be 1, 2, or 3 pixels. A bigger stride results in a smaller output feature
map. Such a reduction in dimensions provides a moderate invariance to scale
and pose of the objects and can be referred to as sub-sampling. However, in
some applications, we want to keep the same spatial size after the convolution.
This is important for applications that require more dense predictions at the
pixel level. Moreover, it allows to design deeper networks by avoiding a quick
collapse of the feature maps dimensions. This can be achieved by applying a
zero-padding around the input feature map.

28 Background on Convolutional Neural Networks

Figure 1.5. Example showing the convolution operation of a input feature map of
4× 4 and a filter of 2× 2.

This process allows to increase the dimensions of the input feature map by
adding zeros along the horizontal and vertical dimensions and, thus, increase
the dimensions of the output feature maps, as shown in Figure 1.6.

- Hyper-parameters: Hyper-parameters are the parameters of the convolu-
tion layer which need to be set by the user prior to the filter learning (such as
the stride and padding).

Background on Convolutional Neural Networks 29

Figure 1.6. Illustration of the convolution operation with a stride of 1: a) without
zero padding. b) with zero-padding.

They can be interpreted as the design choices of our network architecture
based on a given application.

Pooling layers
A pooling layer operation allows to down-sample the input feature map to
obtain a compact feature representation that is invariant to moderate changes
in object scale, pose, and translation in an image [46]. The pooling layer
combines the feature activations of blocks in the input feature map using a
pooling function such as the average or the max function. Similar to the
convolution operation, we need to specify the size of the pooled region and
the stride. Figure 1.7 shows an example of the max pooling operation where
the size of the pooling region is 2 × 2, and the stride is 1. The max-pooling
operation selects the maximum activation within the selected region. The
window is then slid across the input feature map with a step size of 1.

30 Background on Convolutional Neural Networks

Figure 1.7. Illustration of the max-pooling layer with a size of 2× 2 and a stride of
1.

The mean-pooling operation has the same process as the max-pooling, except
that it calculates the mean of the activations of the selected region instead of
the maximum.

Nonlinearity
The weight layers in a CNN are followed by a nonlinear activation function.
This function takes a real-valued input and squashes it within a small range
(generally [0, 1] or [-1, 1]). This nonlinear function allows the network to
learn nonlinear mappings between the input and the output. Certain functions
arise often such as the logistic sigmoid, the Hyperbolic Tangent (Tanh¸) or the
Rectified Linear Unit (ReLU¸).

- Sigmoid (Figure 1.8 a.): The sigmoid takes in a real number and outputs
a number in the range of [0, 1]. It is defined as follows:

Background on Convolutional Neural Networks 31

Figure 1.8. Three common activation functions that are used in deep learning.

fsigm(x) =
1

1 + e−x
(1.9)

The sigmoid function saturates when its argument is very positive or very
negative, meaning that the function becomes very flat and insensitive to small
changes in its input. It saturates to a high value when x is very positive, satu-
rates to a low value when x is very negative and is only strongly sensitive to its
input when x is near to 0. The widespread saturation of the sigmoid function
can make gradient-based learning very difficult. For this reason, its use as a
hidden unit for nonlinearity in feed-forward networks is now discouraged.

- Tanh (Figure 1.8 b.): The hyperbolic function (eq. tanh) is also very used
to produce the nonlinearity. It takes in a real number and outputs a number
in the range of [-1, 1]. It is defined as follows:

ftanh(x) =
ex − e−x

ex + e−x
(1.10)

The sigmoid and the hyperbolic tangent functions are closely related because
ftanh(x) = 2fsigm(2x)−1. However, when a sigmoidal activation function must
be used, the hyperbolic tangent activation function typically performs better
than the logistic sigmoid. It resembles the identity function more closely, in
the sense that ftanh(0) = 0 while fsigm(0) = 1

2 . This makes training of the
tanh network easier.

32 Background on Convolutional Neural Networks

- Rectified linear unit (ReLU) (Figure 1.8 c.): A ReLU function maps the
input to 0 if it is negative and keeps its value unchanged if it is positive. This
can be represented as follows:

frelu(x) = max(0, x), (1.11)

ReLUs are easy to optimize because they are very similar to linear units. The
only difference between the linear unit and the rectified linear unit is that a
rectified linear unit outputs zero across half of its domain. This makes the
derivatives through a rectified linear unit remain large whenever the unit is
active.

Fully connected (FÇ) layers:
As the name suggests, two consecutive layers are fully connected when all the
nodes in the previous layer are connected to all the nodes to the next layer
(Figure 1.9). Fully connected layers can be considered as convolutional layers
with filters of size 1×1. Typically, fully connected layers are placed at the end
of the architecture. Note that a fully connected layer is identical to layers that
we studied previously in the case of Multi-Layer Perceptrons (Section 1.2.1).
Its operation can be represented as simple matrix multiplication and addition,
and applying an element-wise nonlinear function f :

y = f(W Tx+ b), (1.12)

where x and y are the input and output vectors, respectively, W represents
the weights matrix, and b is the bias vector.

1.3.2 Training the CNN

Now that we have discussed different architecture blocks of the CNN, we will
briefly describe the mechanisms that are used to set the weights in deep neural
networks. Most of the CNN layers involve parameters which require to be
tuned appropriately for a given task.

Background on Convolutional Neural Networks 33

Figure 1.9. Graph representation of two fully connected layers, l(k−1) and l(k), con-
nected by the weight matrix w(k).

The CNN learning process aims to tune the parameters of the network so that
the input and the output spaces are correctly tuned [53]. As discussed earlier,
at each training step, the estimate of the output variable is matched with
the desired output (also called the ground-truth). The training of the CNN
involves to minimize this matching function called the “loss function” or the
“error function”. Different variants of CNN optimizers can be found in the
literature:

Gradient-based learning: CNNs are nonlinear models that are hard to
optimize due to a large number of tunable parameters. Intuitively, instead of
searching for a global optimal solution, the optimization is performed so that
the loss function is progressively reduced to a minimum value by searching
for a local optimal solution at each step. The gradient-based methods are a
natural choice [52]. The size of the update step is called the learning rate, and
the iteration in which the update of the parameters uses the complete training
set is called a training epoch. Each training iteration at the time t can be
written as follows:

θt = θt−1 − ηδt, (1.13)

δt = ∇θF(θt) (1.14)

34 Background on Convolutional Neural Networks

where F(.) denotes the function represented by the neural network with pa-
rameters θ, ∇ represents the gradient, and η represents the learning rate.

Batch gradient descent: The gradient descent algorithms, as discussed in
the previous paragraph, compute the objective function with respect to the
neural network parameters, which are updated in the direction of the steepest
descent. The basic version of the gradient descent algorithms is the batch
gradient descent, which computes the gradient on the entire training set [54].
However, the training sets can be very large in computer vision problems,
which can make the learning very slow.

Stochastic gradient descent (SGD¸): The SGD updates the parameters
for each set of input and output that are present in the training dataset. This
allows a much faster convergence compared to the batch gradient descent [54].
The problem with this algorithm is that its convergence behavior is usually
unstable, especially when the learning rate is relatively high.

Mini-batch gradient descent: The mini-batch gradient descent method is
an improved version of the SGD, which provides a trade-off between conver-
gence efficiency and convergence stability [54]. The training dataset is divided
into a number of mini-batches, each consisting of a relatively small number
of examples. The parameter update is then performed after computing the
gradients on each mini-batch.

Momentum-based optimization: SGD can be improved with better con-
vergence properties using a momentum optimization [55]. The SGD can oscil-
late close to a local minima resulting in an unnecessarily delayed convergence
as illustrated in Figure 1.10 a. The momentum adds the gradient computed
at the previous step at−1, weighted by a parameter γ to the weight update
equation as follows:

θt = θt−1 − at, (1.15)

at = η∇θF(θt) + γat−1, (1.16)

where F(.) denotes the function represents by the network with parameters θ,
∇ represents the gradient, and η represents the learning rate.

Background on Convolutional Neural Networks 35

Figure 1.10. Illustration of the convergence behavior of the SGD without (a.) and
with (b.) momentum. [5]

Figure 1.10, (b). illustrates how the addition of the momentum can help
to speed up the convergence because unnecessary oscillations are avoided.
Physically speaking, the momentum quickly magnifies the dimensions whose
gradients point in the same direction, while it suppresses the dimensions whose
gradients keep on changing directions. Typically, the momentum is set to 0.9
during SGD-based learning.

1.3.3 Transfer Learning and Domain Adaptation

Machine Learning models have been traditionally developed under the assump-
tion that a model works well when the training and the test data are from the
same feature space and the same distribution. If the feature space or the dis-
tribution of data changes, we would need to build a new model. Developing a
new model every time from scratch and collecting a new set of training data is
expensive. A very successful practice in such cases is to first train the neural
network on a related but different problem, where a large amount of training
data is already available. Afterward, the learned model can be “adapted”
to the new task by initializing with weights pre-trained on the larger dataset.
This process is called “fine-tuning” and is a simple, yet effective, way to trans-
fer learning from one task to another (sometimes interchangeably referred to
as domain transfer or domain adaptation) [56]. In summary, transfer learn-
ing and domain adaptation refer to the situation where the knowledge that
has been leaned for one task (i.e., distribution P1) is exploited to improve
generalization on another task (say distribution P2).

36 Background on Convolutional Neural Networks

Transfer learning can be performed using off-the-shelf pre-trained models (e.g.,
AlexNet, DenseNet, SqueezeNet). These models are publically available on the
internet and are trained on huge datasets such as the famous ImageNet dataset
(with 1.2 million images) [57]. The pre-trained model can be adapted for a
given task by changing the dimensions of the output neurons to fit the new
dataset.
If the dataset for the end-task is similar to the original one on which the
model has been pre-trained, the learning implies to freeze all the parameters
of different layers and to train the final few layers from scratch (2 or 3 layers
are enough for most cases). This can be referred to in some cases as shallow
retraining. On the other hand, if the end-task dataset is different, more layers
are retrained. The complete model can be fine-tuned on the new dataset
if this one is very different from the original dataset, or if it is sufficiently
large. For this purpose, a small learning rate is used so that the learning
previously acquired is not lost. This can be referred to as deep retraining.
If one opts for a customized CNN architecture, transfer learning can still be
helpful. The architecture can be first trained using a large annotated dataset
and the resulting model be retrained in the same manner as described above.

1.4 Six Comparative Classification Architectures

In this work, six state-of-the-art image classification architectures are used
with their other varieties. In total, 12 pre-trained models are modified to fit
our classification problem (i.e., changing the last fully connected layer and
the classification layer to fit the number of action classes). We compare both
strategies (shallow and deep retaining) in addition to training the models from
scratch (i.e., with random values).

1.4.1 AlexNet

The AlexNet architecture [6] achieved significantly improved performance over
the other non-deep learning methods for ImageNet Large Scale Visual Recog-
nition Challenge (ILSVRC) 2012. This success has revived the interest in
CNNs in computer vision.

Background on Convolutional Neural Networks 37

Figure 1.11. Illustration of AlexNet architecture. [6]

AlexNet has a very similar architecture to LeNet by LeCun et al. [52] with
more filters per layer, and with stacked convolutional layers. As shown in
Figure 1.11, it has five convolutional layers, three pooling layers, and two
fully-connected layers. Each one of these layers is followed by a nonlinear
function called ReLU (Rectified Linear Unit) to enable faster training. This
gives in total approximately 62 million parameters. The input layer of AlexNet
accepts images of 227× 227 pixels.

1.4.2 Inception V3

Inception V3 [7] is a variant of GoogleNet architecture [58]. GoogleNet was
the winner of the ImageNet ILSVRC challenge in 2014. It includes a new
module called “Inception”, which is a sub-network consisting of parallel con-
volutional filters whose outputs are concatenated. This makes the networks
deeper with fewer parameters to be inferred. Original GoogleNet is composed
of 22 layers (27 layers if we count the pooling layers), but has 12 times fewer
parameters than AlexNet). Inception V3 has 42 (Figure 1.12) layers, but the
computation cost is only 2.5 higher than the original GoogleNet. This input
layer of Inception V3 accepts images of 299× 299 pixels.

38 Background on Convolutional Neural Networks

Figure 1.12. Illustration of Inception V3 architecture. [7]

1.4.3 VGGNet

VGGNet [8] was placed second in ILSVRC 2014. It is a very deep network
with respect to GoogleNet. It includes at least 16 convolutional and FC layers.
Each convolutional layer uses small 3×3 convolution filters, and a pooling layer
is placed between each group of 2 or 3 convolutional layers (Figure 1.13). In
our experiments, we consider three VGG models (i.e., VGG11, VGG16, and
VGG19), with 11, 16, and 19 weight layers, that are available as pre-trained
models. The input layers of these models accept images of 224× 224 pixels.

1.4.4 ResNet

ResNet [9] was the winner of ILSVRC2015. It is about 20 times deeper than
AlexNet and eight times deeper than VGGNet. ResNet introduces a new
kind of layers, called “Residual layers”, considered as a kind of “network-in-
network” architectures [59]. The residual layers include shortcut connections
as shown in (Figure 1.14, up) which is the main different compared to a clas-
sical plain network (Figure 1.14, down). Another novelty is the use of global
average pooling layers instead of FC layers at the end of the network. The
input layer of ResNet accepts images of 224× 224 pixels.

Background on Convolutional Neural Networks 39

Figure 1.13. Illustration of VGGNet (with 16 weight layers). [8]

Figure 1.14. Illustration of the ResNet architecture with 34 parameter layers (up).
For a comparison, a plain network with 34 parameter layers without
shortcut connections (down). [9]

1.4.5 DenseNet

DenseNet [10] is an evolution of ResNet which connects each layer to every
other layer in a feed-forward way. This increases the number of connections

from L layers to L
L+ 1

2
layers.

40 Background on Convolutional Neural Networks

Figure 1.15. Illustration of a 5-layer dense block from DenseNet architecture. Each
layer takes all preceding feature-maps as input. [10]

DenseNet obtained significant improvements over other state-of-the-art models
at the cost of an increased computation requirement. The input layer of
DenseNet accepts images of 224× 224 pixels (Figure 1.15).

1.4.6 SqueezeNet

SqueezeNet [11] is a very compact model made of only 18 layers and is able
to gain performance similar to AlexNet with 50 times fewer parameters, and
a total size of around 0.5MB̧. New modules are introduced called “Fire”
modules, which consist of two layers: A Squeeze layer, containing 1× 1 filters,
followed by an Expand layer containing a mix of 1× 1 and 3× 3 filters. The
input layer of SqueezeNet accepts images of 227× 227 pixels (Figure 1.16).

Background on Convolutional Neural Networks 41

Figure 1.16. Illustration of SqueezeNet architecture. Each fire block consists of two
layers: Squeeze Layer (with 1× 1 filters) and Expand layer (with 1× 1
and 3× 3 filters). [11]

Chapter 2

Novel Representation of Skeleton
Sequences for 3D Action Recognition
Using Convolutional Neural Networks

Contents

2.1 Introduction . 44

2.2 Related Works 45

2.2.1 Classical Approaches of 3D Skeleton-Based Action
Recognition . 45

2.2.2 Deep Learning-Based Skeleton Action Recognition 48

2.3 Proposed Approach: Using CNNs for 3D Skeleton-
Based Action Recognition 52

2.3.1 Sequence to Image - Seq2Im: A Novel Representa-
tion of 3D Skeleton Sequences 53

2.3.2 Experimental Results 57

2.4 Conclusion . 67

This chapter is based on the following publications:

• 3D skeleton-based action recognition by representing motion capture se-
quences as 2D-RGB images. Computer Animation and Virtual Worlds.
2017. [60]

• Leveraging Pre-trained CNN Models for Skeleton-Based Action Recogni-
tion. In International Conference on Computer Vision Systems. Springer,
Cham. 2019. [61]

— 43 —

44
Novel Representation of Skeleton Sequences for 3D Action

Recognition Using Convolutional Neural Networks

2.1 Introduction

3D skeleton data capture the trajectories of human skeleton joints and are view
and illumination invariant [62]. As the motion capture devices got democra-
tized, in addition to the high accuracy provided, action recognition based on
3D skeleton sequences has attracted increasing attention [23,62–64].

Recognizing human actions from videos requires managing the temporal in-
formation of the sequences to understand the dynamics of the human pos-
tures [65–67]. In skeleton action recognition, the spatial structure of joints is
an important clue to exploit. A skeleton sequence provides only trajectories
of different joints.

One of the recent approaches that was designed to deal with temporal se-
quences is called Recurrent Neural Network (RNN¸). RNNs have been success-
fully used for many tasks involving sequential data such as machine transla-
tion, sentiment analysis, image captioning, time-series prediction etc. In our
context, Recurrent Neural Networks (RNNs) can be used to deal with the
trajectories of skeleton joints as time series with improved RNN models called
Long-Short Term Memory (LSTM) neurons [68] to explore the temporal struc-
ture of the skeleton sequences for action recognition [69–72]. LSTMs enable
training on long sequences overcoming the recurring problems of RNNs like
vanishing gradients. However, it is difficult for LSTM networks to memorize
the information of the entire sequence with many timestamps even if they
are designed to explore long-term dependencies [73, 74]. Moreover, it is also
difficult for LSTM networks to extract high-level features [75,76].

On the other hand, Convolutional Neural Networks (CNNs) have shown their
great power in learning patterns from images [6,9,58,77,78]. However, for video
action recognition, it still lacks the capacity to model the long-term temporal
dependency of the entire video [79]. In this chapter, we use CNNs for skeleton-
based action recognition, but instead of dealing with each frame alone, we
represent the whole skeleton sequence as one image. The generated image takes
into account the spatial and temporal information. With the generated image,
the spatial and the long-term temporal structure of the skeleton sequence can
be effectively learned using deep CNNs. More specifically, for each skeleton
sequence, we generate three gray images corresponding to the three channels
of the 3D coordinates of the sequence using a normalization process.

Novel Representation of Skeleton Sequences for 3D Action
Recognition Using Convolutional Neural Networks 45

By merging these three images, we obtain one RGB image-like representation.
Each pixel in the generated image represents one joint in one frame. The
generated images can be further resized to fit the developed CNN architecture
(see Figures 2.1 and 2.4). Since the temporal information of the skeleton
sequence is incorporated in the generated image, the CNN will extract features
to learn the temporal and the spatial structure. The generated feature vector
is fed in a fully connected neural network for action recognition.

The main contributions of this chapter are summarized as follows: (1) We
propose to transform each skeleton sequence to a new representation to allow
a global long-term temporal and spatial modeling of the skeleton sequences
using deep CNNs to learn features from images. (2) We propose to use transfer
learning and fine-tune existing CNN architectures that achieve state-of-the-
art results in image classification to our task of human action recognition.
The fine-tuning process allows the transfer of knowledge from one task to
another and is very effective when the dataset of the new task is not big
enough to train new CNN models. (3) The proposed method is validated on
multiple challenging benchmark datasets (such as the large scale NTU RGB+D
dataset [17,72]), and achieves state-of-the-art performances.

The rest of this chapter is organized as follows: In Section 2.2, we review the
works related to skeleton-based human action recognition. In Section 2.3, we
present our proposed skeleton sequence representation, the methodology used
to train action classification models, in addition to different experiments and
analysis. We follow by a conclusion of this chapter in Section 2.4.

2.2 Related Works

In this section, we cover the relevant literature of 3D skeleton-based action
recognition methods using hand-crafted features and deep learning networks.

2.2.1 Classical Approaches of 3D Skeleton-Based Action
Recognition

Classical approaches in skeleton-based action recognition involve hand crafting
features from the time-series data and training machine learning models.

46
Novel Representation of Skeleton Sequences for 3D Action

Recognition Using Convolutional Neural Networks

The 3D representations of human actions provide more complete information
than 2D RGB videos [71, 80–83]. Many works have investigated 3D skeleton-
based action recognition due to the availability of 3D data acquisition devices
and real-time skeleton estimation algorithms, as shown in the previous section.
A skeleton sequence is formed by a series of frames containing 3D coordinates
of the skeleton joints.

To recognize an action class from the skeleton sequence, the most important
factor in classical approaches is to design robust features that describe the
spatial structure of the skeleton joints in each frame. Another important factor
is to extract temporal information among multiple frames of the sequence.

As mentioned in the introduction, Shotton et al. [2] proposed a pose estimation
and detection framework for extracting three-dimensional body joint locations
from single depth map images. A total of 20 3D joint positions are extracted.
The success of the tracking algorithms resulted in the development of the
Microsoft Kinect sensor, which offers the ability to easily access skeletal data.

Lv and Nevatia [84] designed a set of spatially local features based on single
joints, or a combination of joints. The developed framework is able to encode
features in real-time. The authors first applied a normalization for invariance
to the environment, body orientation, pose size, and viewpoint. They suggest
that only pose vectors may cause a loss of relevant information, and thus,
the encoded features are less discriminative. The authors generated a set of
features corresponding to the motion of a single joint or combination of related
multiple joints. This results in a high dimensional 141 vector. To efficiently
represent each feature and action class, a Hidden Markov Model (HMM) [85]
is constructed to model the temporal dynamics, where each action class is
learned with one HMM. A set of HMMs is combined into a weak classifier,
namely AdaBoost [86], to improve the feature discriminative power. This
method, like others using raw joints or a combination of joints, is view-variant
and struggles more when the subjects are not facing the camera.

Numerous view-invariant skeleton-based approaches have been proposed. One
of the pioneering works has been introduced by Xia et al. [87]. The authors
proposed to encode the 3D joints locations in a different way. They presented a
new method called Histogram Of 3D Joints Locations (HOJ3D), which encodes
the spatial occupancy information relative to a predefined joint, ideally the hip
center or the skeletal root as they are the most stable ones.

Novel Representation of Skeleton Sequences for 3D Action
Recognition Using Convolutional Neural Networks 47

The 3D space is partitioned into n bins in a modified spherical coordinate
system. The authors also used HMMs to model action classes and achieved
good classification results. However, since the absolute position of joints is
used, these features are sensitive to anthropometric variability. To resolve
this issue and preserve view-invariance, some approaches proposed to describe
actions using the distance between joints. For instance, J. Wang et al. [19]
computed the pairwise relative positions of each joint with other joints to
represent each frame of the skeleton sequences. The temporal patterns are
modeled using Fourier Temporal Pyramid (FTP). Similarly, X. Yang and Y.
L. Tian [88] used the pairwise relative positions of the joints to characterize
posture features, motion features, and offset features of the skeleton sequences.
They applied Principal Component Analysis (PCA) to normalize the features
and compute a novel descriptor called EigenJoints.

Zhang et al. [89] used instead the angles between every pair of selected joints
in addition to head–floor distance (the distance between the head joint and the
floor plane) as features to train a set of SVM-based classifiers. Sempena et al.
[90] built a feature vector from joint orientations along time series and applied
Dynamic Time Warping (DTW) to recognize some daily human actions.

To deal with viewpoint variability and increase accuracy, other approaches
have modeled human actions using more sophisticated geometric tools. Evan-
gelidis et al. [91] proposed a novel view-invariant representation by introducing
a descriptor based on the relative position of joint quadruples. Also, Vemu-
lapalli et al. [63] suggested a new representation called Lie Algebra Repre-
sentation of body-Parts (LARP¸) by computing the geometric transformation
between each pair of skeleton body-parts. These descriptors are implicitly
unaffected by the viewpoint variability as they are defined using invariant fea-
tures such as the distance between joints, angles, transformation matrices, etc.
However, an alignment pre-processing can be simply applied before undertak-
ing the descriptor computation. For example, we cite the work of Ghorbel et
al. [92], where the motion has been modeled by computing and interpolating
kinematic features of joints. In this case, the Kinematic Spline Curves (KSC¸)
descriptor is not view-invariant by nature; thus, the skeletons are initially
transferred to a canonical pose.

Although these representations have shown their effectiveness in terms of com-
putation time and accuracy, it has been demonstrated that hand-crafted fea-
tures could only perform well on specific datasets [93].

48
Novel Representation of Skeleton Sequences for 3D Action

Recognition Using Convolutional Neural Networks

This means that features that have been hand-crafted to work on a specific
dataset may not be used on other datasets. This makes it difficult for action
recognition to be generalized into wider applications. Moreover, as hand-
crafted methods can prevent overfitting well, they may lack the ability to learn
from bigger datasets. With the availability of larger benchmark datasets lately,
future research trend is more likely to shift to using deep learning features.

2.2.2 Deep Learning-Based Skeleton Action Recognition

Deep learning has enabled the replacement of hand-crafted features by learned
features, and the learning of whole tasks in an end-to-end way. Several ap-
proaches of deep learning have been proposed for skeleton-based human action
recognition. They can be categorized into two main categories: Recurrent Neu-
ral Networks (RNNs) methods and Convolutional Neural Networks (CNNs)
methods.

RNN-Based Methods

RNNs are adopted to capture temporal information from spatial sequences.
Basic RNN architectures are notoriously difficult to train [94, 95], and more
elaborate architectures are commonly used instead, such as the LSTM (Long
Short-Term Memory) [96] and the GRU¸ (Gated Recurrent Unit) [97]. Ap-
plications of these networks have shown promising results in skeleton-based
action recognition. Du et al. [23,69] designed an end-to-end hierarchical RNN
architecture for skeleton-based action recognition. They divided the human
skeleton into five main parts in terms of physical body structure and fed them
into five independent bidirectional RNNs/LSTMs for local feature extraction
in the first layer. In the following layers, the outputs of the RNNs were con-
catenated to represent the upper body and lower body, and then each was
further fed into another set of RNNs. The global body representation was
obtained and fed to the next RNN layer. These features are fed into a fully
connected layer, followed by a softmax layer for classification. This method
explicitly encodes the spatio-temporal structural information into high-level
representation.

Novel Representation of Skeleton Sequences for 3D Action
Recognition Using Convolutional Neural Networks 49

Veeriah et al. [70] presented a differential RNN that extends the LSTM struc-
ture by modeling the dynamics of states evolving over time. They proposed
to add a new gating mechanism for LSTM to model the derivatives of the
memory states and explore the salient action patterns.

In this method, all of the input features were concatenated at each frame
and were fed to the differential LSTM at each step. This work is one of
the first aimed at demonstrating the potential of learning complex time-series
representations via high-order derivatives of states. Zhu et al. [71] designed
two types of regularizations to learn effective features and motion dynamics. In
the fully connected layers, they introduced regularization to learning effective
features of the joints at different layers. Moreover, the authors derived a new
dropout and applied it to the LSTM neurons in the last LSTM layer. This
helps the network to learn complex motion dynamics.

Instead of keeping a long memory of the entire body’s motion, Shahroudy et
al. [72] proposed a part-aware extension of LSTM to exploit the physical struc-
ture of the human body. They split the LSTM memory cell to sub-cells to
push the network towards learning the context representations for each body
part separately. It is argued that keeping the context of each body part inde-
pendent and representing the output of the sub-cells as a combination of in-
dependent body part context information is more efficient. These RNN-based
3D-action recognition methods only model the long-term contextual informa-
tion in the temporal domain. However, they neglect the spatial configurations
of articulated skeletons where the joints are strongly dependent. To exploit
this dependency, Liu et al. [98] proposed a spatio-temporal LSTM (ST-LSTM¸)
network, which extends the traditional LSTM-based learning to both tempo-
ral and spatial domains. They explicitly modeled the dependencies between
the joints and applied recurrent analyses over spatial and temporal domains
concurrently instead of concatenating the joint-based input features. Further-
more, they introduced a trust gate mechanism to make the LSTM robust to
noisy input data. Song et al. [99] also proposed an approach that exploits
both the spatial and the temporal domain. The proposed a spatio-temporal
attention model with LSTM to automatically mine the discriminative joints
and learn the respective and different attentions of each frame along the tem-
poral domain.

50
Novel Representation of Skeleton Sequences for 3D Action

Recognition Using Convolutional Neural Networks

Motivated by the need to distinguish fine-grained action classes that are in-
tractable using only one network, Li et al. [100] proposed an adaptive and
hierarchical framework for fine-grained and large-scale skeleton-based action
recognition. In their framework, multiple RNNs are incorporated in a tree-
like hierarchy to mitigate the discriminative challenge and use a divide-and-
conquer strategy.

CNN-Based Methods

RNN architectures are generally used for modeling sequential data. However,
one of their major drawbacks is the exploding and vanishing gradient problem
and the difficulty of parallelizing their training. Bai et al. [101] shows that
convolutional networks can perform as well as or even better than recurrent
networks in many tasks such as speech recognition [102], some tasks of Natural
Language Processing (NLP¸) like neural machine translation [103,104], classifi-
cation of long sentences [105], etc. Convolution Neural Networks (CNNs) were
successfully introduced for image and video classification. Inspired by this suc-
cess, particularly for RGB image-based action recognition [66,106,107], there
is a growing trend of using deep neural networks for skeleton-based gesture
recognition.

The challenge for CNN-based methods is to effectively capture the spatio-
temporal information of a skeleton sequence using image-based representation.
The main step is then to convert the skeleton sequences into images where
the spatio-temporal information is reflected in the image properties, including
color and texture. In fact, it is inevitable to lose temporal information during
the conversion of 3D information into 2D information.

Wang et al. [108] proposed to encode the skeleton sequences into multiple
texture images, namely, Joint Trajectory Map (JTM¸), by mapping the tra-
jectories into HSV¸ (Hue, Saturation, Value) space. Pre-trained models over
ImageNet dataset were fine-tuned over the JTMs to extract features and rec-
ognize actions. Similarly, Hou et al. [109] drew the skeleton joints with a pen
of a specific size and colors to three orthogonal planes. Each resulting image
serves as an input to a CNN for classification. Li et al. [110] proposed to
encode the pairwise distances of skeleton joints into texture images, namely,
Joint Distance Maps (JDM).

Novel Representation of Skeleton Sequences for 3D Action
Recognition Using Convolutional Neural Networks 51

They encoded the pairwise distances between joints over skeleton motion se-
quences into color variations to capture temporal information. These images
were fed into a CNN for action recognition. Compared to the first two meth-
ods, JDM is less sensitive to view variations. Liu et al. [111] introduced an
enhanced skeleton visualization method to represent a skeleton sequence as
a series of visual and motion enhanced color images, which implicitly encode
the spatio-temporal information of skeleton joints. Their method allows for
dealing with the problem of view variation. A multi-stream CNN fusion model
is then designed to extract and fuse deep features from enhanced color images,
and conduct recognition. Ke et al. [112] represented each skeleton sequence as
a clip with several gray images for each channel of the 3D coordinates, which
reflects multiple spatial structure information of the joints. The generated
images are fed to a CNN to learn high-level features. The features of the three
clips at each timestamp are concatenated in a feature vector, which represents
the temporal information of the entire sequence. A Multi-Task Learning Net-
work (MTLN) is then adopted to jointly process the feature vectors of all the
time-steps in parallel to conduct action recognition. Wang et al. [108] encoded
spatio-temporal information carried in 3D skeleton sequences into multiple 2D
images, referred to as Joint Trajectory Maps (JTM). Each joint trajectory is
projected to the three orthogonal planes, i.e. three Cartesian planes, to form
three JTMs. Authors proposed to use the hue, saturation and brightness
of color components to encode motion direction and magnitude. CNNs are
then adopted to train a classification model. Liu et al. [113] encoded skele-
ton sequences into spatial and temporal volumes and used 3DCNNs to learn
features.

Another form of Convolutional Neural Networks are called Graph Convolu-
tional Networks (GCNs). GCNs generalize the convolutional operation beyond
the grid like representation and deal with graph constructions. There are two
main ways of construction a GCN: spatial perspective and spectral perspec-
tive. Spatial perspective approach directly perform the convolution filters on
the graph vertexes and their neighbors. On the other hand, the spectral per-
spective methods consider the graph as a form of spectral analysis by using
the eigenvalues and eigenvectors of the graph Laplacian matrices. In human
action recognition using GCNs, it is common to find the spatial perspective-
based methods. The first work that used GCNs was done by Yan et al. [114]
in 2018.

52
Novel Representation of Skeleton Sequences for 3D Action

Recognition Using Convolutional Neural Networks

Authors constructed a spatial graph based on the natural connections between
different body joints and added temporal edges between these joints in con-
secutive frames. A distance-based sampling function is proposed to construct
the graph convolutional layer, which is used as a basic block to construct the
final spatio-temporal GCN (ST-GCN). Based on ST-GCN, Shi et al. [115] pro-
posed a two-stream adaptive graph convolutional network (2S-AGCN), which
can exploit the second-order information of the skeleton to improve the perfor-
mance of action recognition. Li et al. [116] proposed the Actional-Structural
Graph Convolution Network (AS-GCN) which generates the skeleton graph
with actional and structural links.

Conventional GCNs though are all feed-forward networks in which it is not
possible for low-level layers to access the semantic information in high-level
layers.

2.3 Proposed Approach: Using CNNs for 3D
Skeleton-Based Action Recognition

Convolutional Neural Networks are used effectively in image classification and
have achieved great success in related fields. However, two problems can be
addressed:

• how can we apply these models for the recognition of human actions
from the trajectories of skeleton joints?

• how can we tackle the temporal dependency of the motion capture se-
quence?

To answer these two questions, we want to use one method that addresses
them both. Instead of having an architecture that deals with each aspect,
spatial and temporal, separately, we propose a spatio-temporal representation
of motion capture data that allows us to use CNNs for skeleton-based action
recognition. We first represent the skeleton sequences as images of all the
frames. With the generated images, CNNs are trained to model different
actions in the dataset.

Novel Representation of Skeleton Sequences for 3D Action
Recognition Using Convolutional Neural Networks 53

Figure 2.1. Illustration of the proposed sequence-to-image (Seq2Im) approach. A
skeleton sequence is first normalized to a central joint, then each array
of the 3D Cartesian coordinates is transformed into a grayscale image.
By merging these images we obtain a RGB color image that is resized
to fit the input of the CNN model.

2.3.1 Sequence to Image - Seq2Im: A Novel Representation of 3D
Skeleton Sequences

Skeleton sequences only provide the trajectories of the 3D coordinates of joints.
The proposed approach allows us to transform the original skeleton sequences
of a dataset to a collection of images, thus allows spatial and temporal feature
learning using CNNs. Intuitively, one can represent each joint coordinates in
each frame as a color pixel in the image. The generated values are obtained
by normalizing the X, Y , and Z values between 0 and 255.

As shown in Figure 2.1, the skeleton joint coordinates at each frame are first
normalized. Considering that the relative positions of joints provide more use-
ful information than their absolute locations, a reference joint (SpineBase in
the case of the Kinect, for example) is used to compute the relative positions
of the other joints. This joint is selected as a reference joint since it is stable
in most actions. The relative positions of joints are described with the 3D
Cartesian coordinates. Three 2D arrays corresponding to X, Y , and Z coor-
dinates, with dimension J ×F are generated, where J is the number of joints,
and F is the number of frames in the sequence.

54
Novel Representation of Skeleton Sequences for 3D Action

Recognition Using Convolutional Neural Networks

Each array is transformed into a gray image by scaling the coordinate values
between 0 to 255 using a linear transformation (eq. 2.1).


ri(f) = 255 ∗ xi(f)−min(X)

max(X)−min(X)

gi(f) = 255 ∗ yi(f)−min(Y)
max(Y)−min(Y)

bi(f) = 255 ∗ zi(f)−min(Z)
max(Z)−min(Z)

(2.1)

where: (xi(f), yi(f), zi(f)) are the relative coordinates of the joint i to the
joint SpineBase, at the frame f . min(X),min(Y),min(Z) are the minimum
values for all joints on the 3 axes. max(X),max(Y),max(Z) are the maximum
values for all joints on the 3 axes.

(ri(f), gi(f), bi(f)) are hence the normalized values of every joint i at the
frame f , where each value corresponds to the format of one channel of the
RGB space (eq. 2.2, 2.3, and 2.4)

R =
(r1(1) · · · r1(F)

...
. . .

...

rN (1) · · · rN (F)

)
(2.2)

G =
(g1(1) · · · g1(F)

...
. . .

...

gN (1) · · · gN (F)

)
(2.3)

B =
(b1(1) · · · b1(F)

...
. . .

...

bN (1) · · · bN (F)

)
(2.4)

Thus, by merging the three generated images we obtain one RGB image,
considering each image as a channel in the new one (X corresponds to the red
channel R, Y corresponds to the green channel G, and Z corresponds to the
blue channel B).

Novel Representation of Skeleton Sequences for 3D Action
Recognition Using Convolutional Neural Networks 55

Depending on the number of frames of the transformed sequence, the generated
image-like representation has a very long width compared to its height. If we
consider a skeleton sequence of 3 seconds, captured using the Kinect sensor
at a framerate of 30 fps, the generated image will have a height of 25 pixels
(relative to 25 joints) and a width of 90 pixels. To deal with this problem, we
resize this generated image-like representation into a square (128 × 128, for
example) using a bicubic interpolation [117,118]. This makes it possible to use
the generated images to fine-tune existing CNN architectures. The generated
images are resized to fit the input of the CNN architecture to be trained.

Figure 2.2 shows some results from the NTU RGB+D dataset before the nor-
malization process. The colored triangle on the bottom right of the figure
can be considered as a dictionary to interpret these images. The red color
represents the X coordinate, the green color represents the Y coordinate, and
the blue color represents the Z coordinate. For example, the greener the part
of an image is from left to right means that the Y value is getting higher. We
can see for example at the images corresponding to the action “Throw” the
lines on the top and in the middle (corresponding to the right and left arms
joints) are getting, in particular, more of the green color at a certain part of
the image then it comes back to the original color. This is the translation
of the arms moving up to throw the object before going down again. In the
images corresponding to “Falling”, we can see, starting from the middle, that
the images are getting more red, to purple. This can be explained by the fact
that, when the person falls, all the joints Y values are getting smaller (hence
less green).

In order to be invariant to the global position, all 3D joint coordinates are
normalized with respect to the “SpineBase” joint (the most stable joint from
the Kinect 2). 3D joint coordinates are hence relative coordinates. The order
of the joints is also modified in order to have more present visual patterns, and
four very noisy joints have been discarded (thumbs and hand tips joints). The
final order of joints is the following: 3- Head, 2- Neck, 20- SpineShoulder, 1-
SpineMid, 8- ShoulderRight, 9- ElbowRight, 10- Wrist-Right, 11- HandRight,
4- ShoulderLeft, 5- Elbow-Left, 6- WristLeft, 7- HandLeft, 16- HipRight, 17-
KneeRight, 18- AnkleRight, 19- FootRight, 12- HipLeft, 13- KneeLeft, 14-
AnkleLeft, 15- FootLeft. Figure 2.3 shows some examples of the final repre-
sentation.

56
Novel Representation of Skeleton Sequences for 3D Action

Recognition Using Convolutional Neural Networks

Figure 2.2. Examples showing multiple sequences from the NTU RGB+D dataset
after transformation using the proposed Seq2Im approach. The colored
triangle on the bottom right of the figure can be considered as a dictio-
nary to interpret these images.

Figure 2.3. Examples showing multiple sequences from the NTU RGB+D dataset
transformed into images using the proposed Seq2Im approach after nor-
malization to the joint ”SpineBase”. The normalization allows the skele-
ton to be invariant to global position.

Novel Representation of Skeleton Sequences for 3D Action
Recognition Using Convolutional Neural Networks 57

Figure 2.4. Overview of the proposed end-to-end architecture for skeleton-based
human action recognition.

The generated images are fed into different models (defined in section 1.4)
pre-trained over the ImageNet dataset, and using fine-tuning, we retrain these
models to perfom action recognition.

2.3.2 Experimental Results

In this section, the proposed method is first evaluated on the NTU RGB+D
[72] dataset and its extension NTU RGB+D 120 [17]. We evaluate different
state-of-the-art CNN architectures using different training strategies.

An overview of the end-to-end CNN system used in this work is illustrated in
Figure 2.4. After the skeletons are pre-processed, motion capture sequences
are transformed into image data representations. These images are fed into
different CNN architectures to be trained using different strategies. The CNN
part of our models generates automatically features (feature maps) that are
fed into a fully connected network for classification.

Data Structure

NTU RGB+D dataset
In order to compare our results with existing works, we evaluate our method
mainly on the NTU RGB+D [72].

58
Novel Representation of Skeleton Sequences for 3D Action

Recognition Using Convolutional Neural Networks

This dataset was collected using three Kinect V2 sensors at the same time
covering three views (-45◦, 0◦, 45◦) and contains more than 56,000 action
sequences. A total of 60 different action classes are performed by 40 subjects
aged from 10 to 35 years. Among these action classes, 49 are performed by
single persons, and 11 are interactions between two people. Only the 49 single
person actions were used in our tests (around 47,000 sequences). In addition to
depth maps, RGB frames, and infrared (IR) sequences, information of 25 3D
joints are available. This dataset is challenging because of the large intraclass
and viewpoint variations; however, due to its large scale, it is highly suitable
for deep learning.

NTU RGB+D 120 dataset
The NTU RGB+D dataset has been extended later and published under the
name NTU RGB+D 120 dataset [17]. This dataset is recorded using the
same setups (three Kinect V2 sensors covering three views, -45◦, 0◦, and 45◦).
Compared to the first version, this one contains many more action classes.
120 action categories in total are recorded, which are divided into three ma-
jor groups, including 82 daily actions (eating, writing, sitting down, moving
objects, etc.), 12 health-related actions (blowing nose, vomiting, staggering,
falling, etc.), and 26 mutual actions (handshaking, pushing, hitting, hugging,
etc.). These actions are recorded by 106 subjects aged between 10 and 57
years. Again, only single person actions were used in our experiments (around
110,000 sequences into 94 classes).

The captured Kinect V2 skeletons of both of these datasets have 25 joints in
total. The configuration and the given order of joints are shown in Figure 2.5.

Training the Deep Network

In this experiment, 12 state-of-the-art architectures (AlexNet, Inception V3,
VGG11, VGG16, VGG19, ResNet34, ResNet50, ResNet152, DenseNet121,
DenseNet169, DenseNet201 and SqueezeNet) (see Section 1.4 for more de-
tails about these architectures) are trained on the dataset described in the
previous section. The numbers after the architectures’ names represent the
number of layers. This will allow us to analyze the effect of the depth of the
models as well. We trained these architectures using three different strategies.

Novel Representation of Skeleton Sequences for 3D Action
Recognition Using Convolutional Neural Networks 59

Figure 2.5. Configuration of the 25 joints skeleton captured by the Microsoft Kinect
V2.

The first strategy consists in training the CNN from scratch starting from
random weights. The other two strategies are based on transfer learning using
pre-trained networks. The first transfer learning approach, called shallow re-
training approach, consists in fine-tuning only the last added fully connected
layer, while the rest of the network is used as a feature extractor. The second
approach, called deep retraining approach, fine-tunes all the network layers.

All the 36 training configurations use the same hyperparameters (momentum
0.9, learning rate 0.001, batch size 30, and a number of epochs of 15). The
dataset is divided following two evaluation protocols:

• Cross-subject evaluation: the 40 subjects are split into training and
testing groups. Each group consists of 20 subjects.

• Cross-view evaluation: the samples of one camera (corresponding to one
viewpoint) are used for testing, and samples of the two other cameras
are used for training.

All experiments are performed on a machine having the specifications summa-
rized in Table 2.1.

60
Novel Representation of Skeleton Sequences for 3D Action

Recognition Using Convolutional Neural Networks

Table 2.1. Specifications of the machine used for our experiments.

Characteristics

Memory (RAM) 32GB

Processor (CPU) Intel® CoreTM i7-7800X CPU @ 3.50GHertz (Hz) x 12

Graphics (GPU) 2 * GeForce GTX 1080 Ti/PCIe/SSE2 (11GB)

Operating system Linux Ubuntu 16.04 64 bits

Models Evaluation: Results and Discussion

NTU RGB+D dataset
In this section, we discuss the results obtained for different experiments. We
first make an extensive analysis using the first NTU RGB+D dataset. The
accuracy and the training time for all the 12 models are shown in Table 2.2 and
Table 2.3 for cross-subject and cross-view evaluation protocols respectively.

- Cross-subject evaluation protocol
From Table 2.2, we get the highest scores of accuracy with the models ResNet50
and DenseNet201, around 82%. This accuracy is obtained using the deep re-
training approach. Analyzing this table, we notice that the lowest scores are
obtained using the shallow retraining approach. Such low scores are linked to
the fact that we retrain only the last added layer, and we keep the rest of the
model untouched. The convolutional layers in this situation are used as feature
extractors. This can work and give good results in cases where we have images
that are similar to the original dataset that was used to pre-train the model
(ImageNet). However, our images are more abstract and completely different
from the original dataset. The features extracted are hence meaningless in
regard to our data.

We can notice relatively higher scores, compared to the shallow retraining,
in the case of the retraining from scratch (from random weights). Retraining
the whole model allowed it to develop features that are adapted to our data.
Nevertheless, the scores are not as high as the deep retraining approached be-
cause retraining from scratch may need more data and more time to converge.
Transfer learning using deep retraining allowed a quicker convergence.

Novel Representation of Skeleton Sequences for 3D Action
Recognition Using Convolutional Neural Networks 61

Table 2.2. Obtained results for the cross-subject evaluation.

From Scratch Retrain Shallow Retrain Deep
Model

Time (h) Accuracy (%) Time (h) Acc Time (h) Accuracy (%)

AlexNet 1.17 65.44 1.09 23.71 1.76 73.19

InceptionV3 1.78 66.07 0.61 25.24 1.68 79.53

VGG11 2.33 68.41 1.95 26.27 3.29 76.91

VGG16 2.82 66.74 2.15 26.96 3.87 77.60

VGG19 3.07 64.90 2.27 22.00 3.70 75.14

ResNet34 1.05 72.02 0.85 37.68 1.05 80.20

ResNet50 1.31 68.09 0.97 38.35 1.30 82.07

ResNet152 2.45 67.56 2.09 39.10 2.43 81.18

DensNet121 1.29 74.68 1.53 42.28 1.28 80.96

DensNet169 1.56 76.10 1.49 43.80 1.53 81.72

DeseNet201 1.86 76.22 1.84 44.22 1.82 82.00

SqueezeNet 0.61 65.73 0.55 31.45 0.62 72.09

We can also conclude that the use of more layers does not automatically imply
a higher accuracy. It can be the opposite in many cases, like VGG and ResNet.
VGG architecture with 19 layers, for example, gives lower accuracy than the
one with 11 and 16 layers in a deep retraining approach. This can be explained
by the fact that the more layers we have, the more risk we have of overfitting.
We can finally notice that SqueezeNet gives relatively high scores, particularly
in a deep retraining approach. SqueezeNet is a very small network with few
parameters. It has a total size of less than 0.5MB. Compared to AlexNet, for
example, that has a total size of 240Mb, it makes it easy and practical to fit
into embedded systems and smartphones. Evaluation of models’ performances
comparing training time and accuracy is presented in Figure 2.6.

- Cross-view evaluation protocol
From Table 2.3, we get the highest scores in the “Cross-View” evaluation
protocol with the models ResNet34, ResNet152, and DenseNet201 of about
86%. The same conclusions as in the “Cross-Subject” evaluation can be
drawn.

62
Novel Representation of Skeleton Sequences for 3D Action

Recognition Using Convolutional Neural Networks

Figure 2.6. Accuracy vs. training time for different models in cross-subject protocol,
following the three training strategies: from scratch, shallow retraining,
and deep retraining.

Evaluation of the models’ performances by comparing training time and accu-
racy, is also displayed in Figure 2.7, which is similar to the previous evaluation
scenario (cross-subject).

The obtained results can be compared to several works in the state of the
art that used the same dataset (Table 2.4). The highest score we obtained is
82,07% using ResNet50 in the cross-subject evaluation protocol and 86,54%
using DenseNet201 in the cross-view evaluation protocol. Our results outper-
form most of the state-of-the-art methods in both cross-subject and cross-view
protocols. Our results are obtained by transforming motion sequences into
images and using pre-trained models without developing new architectures.
Specifically, we improve accuracy by 3 to 8% compared to other techniques
using CNNs with the image-like transformation of motion sequences. This
proves that adapting the weights from pre-trained models for a new task im-
proves the performance of deep learning networks and gives high scores even
if the original task is very different.

Novel Representation of Skeleton Sequences for 3D Action
Recognition Using Convolutional Neural Networks 63

Table 2.3. Obtained results for the cross-view evaluation.

From Scratch Retrain Shallow Retrain Deep
Model

Time (h) Accuracy (%) Time (h) Accuracy (%) Time (h) Accuracy (%)

AlexNet 0.92 64.00 1.18 22.67 1.15 74.86

InceptionV3 1.73 64.82 0.61 25.73 1.54 80.46

VGG11 1.75 75.73 2.13 26.93 2.27 81.44

VGG16 2.23 76.35 2.18 25.30 2.75 82.69

VGG19 2.50 76.43 2.25 21.60 2.99 80.01

ResNet34 1.01 69.97 0.83 36.72 1.03 86.00

ResNet50 1.27 64.57 0.96 37.74 1.29 85.92

ResNet152 2.67 73.75 1.61 39.06 2.38 86.11

DensNet121 1.30 78.77 0.94 41.04 1.27 85.50

DensNet169 1.64 77.67 1.10 43.02 1.51 84.89

DeseNet201 1.95 79.24 1.27 44.22 1.80 86.54

SqueezeNet 0.4 70.21 0.57 30.65 0.62 77.60

Figure 2.7. Accuracy vs. training time for different models in cross-view protocol,
following the three training strategies: from scratch, shallow retraining,
and deep retraining.

64
Novel Representation of Skeleton Sequences for 3D Action

Recognition Using Convolutional Neural Networks

Table 2.4. Comparison of our proposed approach with the state-of-the-art results.

Method Cross-Subject Accuracy (%) Cross-View Accuracy (%)

Using CNNs

Two streams 3DCNN [113] 66.85 72.58

CNN + MTLN [112] 79.57 84.83

Trajectory maps + CNN [108] 76.32 81.08

Conversion into image + CNN [119] 75.20 82.10

Using other DL methods

HBRNN [23] 59.07 63.97

Deep RNN [72] 56.29 64.09

Deep LSTM [72] 60.69 67.29

PA-LSTM [72] 62.93 70.27

LieNet [120] 61.37 66.95

ST-LSTM [98] 69.20 77.70

Our Method 82.07 86.54

NTU RGB+D 120 dataset
We have followed the same evaluation procedures as for the first NTU RGB+D
dataset. In order to gain time, we only made a deep retraining of the 12 models,
and we followed the two training evaluation protocols: cross-subject and cross-
view (or cross-setup). The highest accuracy was obtained with DenseNet161:
73.7% for the cross-subject evaluation, and 76.6% for the cross-setup eval-
uation. Compared to the state-of-the-art results (Tables 2.5 and 2.6), our
method outperforms all the other approaches, even when other modalities are
used (RGB, Depth and 3D skeletons). This proves that our approach is highly
effective for skeleton-based action recognition, despite its simplicity to realize.

Other Experiments

The above experiments performed on the NTU RGB+D datasets take into
account only Kinect V2 skeleton sequences.

Novel Representation of Skeleton Sequences for 3D Action
Recognition Using Convolutional Neural Networks 65

Table 2.5. The results of different methods designed for 3D Skeleton-based human
activity recognition using the NTU RGB+D 120 dataset.

Method Cross-Subject Accuracy (%) Cross-Setup Accuracy (%)

Part-Aware LSTM [72] 25.5 26.3

Soft RNN [121] 36.3 44.9

Dynamic Skeleton [122] 50.8 54.7

Spatio-Temporal LSTM [98] 55.7 57.9

Internal Feature Fusion [123] 58.2 60.9

GCA-LSTM [124] 58.3 59.2

Multi-Task Learning Network [112] 58.4 57.9

FSNet [125] 59.9 62.4

Skeleton Visualization (Single Stream) [111] 60.3 63.2

Two-Stream Attention LSTM [123] 61.2 63.3

Multi-Task CNN with RotClips [126] 62.2 61.8

Body Pose Evolution Map [127] 64.6 66.9

Our method 73.3 76.6

Table 2.6. The results of other methods combining different modalities (RGB, depth
and 3D Skeleton data) for human action recognition using the NTU
RGB+D 120 dataset. [17]

Data Modality Cross-Subject Accuracy (%) Cross-Setup Accuracy (%)

RGB Video 58.5 54.8

Depth Video 48.7 40.1

RGB Video + Depth Video 61.9 59.2

RGB Video + 3D Skeleton Sequence 61.2 63.1

Depth Video + 3D Skeleton Sequence 59.2 61.2

RGB Video + Depth Video + 3D Skeleton Sequence 64.0 66.1

We wanted to make similar experiments on other sources of data with other
qualities and skeleton configurations in order to validate the proposed ap-
proach.

MSR action 3D dataset
MSR Action 3D [128] is one of the earliest datasets recorded using a depth
sensor. The samples of this dataset were limited to depth sequences. Later,
body joints information was added. There are 20 action classes performed by
ten subjects.

66
Novel Representation of Skeleton Sequences for 3D Action

Recognition Using Convolutional Neural Networks

Table 2.7. The results of different methods designed for 3D Skeleton-based human
activity recognition using the MSR Action 3D dataset.

Method Accuracy (%)

Sequence of Most Informative Joints [129] 29.41

Recurrent neural network [130] 42.50

Dynamic time warping [131] 54.00

Hidden Markov models [84] 63.00

Multiple instance learning [132] 65.70

EigenJoints + NBNN [88] 72.00

Structured Streaming Skeletons [133] 81.70

DBN + HMM [134] 82.00

Conceptors of Skeleton Joint Trajectories [135] 83.40

Our method 92.18

Each action was performed twice to three times by each subject. In our ex-
periment, we focused only on the skeletal data. There are in total 557 skeletal
sequences, where each sequence has 20 joint positions. In this dataset, we use
the cross-subject experiment, where the sequences of five subjects are used in
training, and the rest are used for testing. Table 2.7 compares our results with
some of the state-of-the-art skeleton-based action recognition approaches. Our
proposed approach shows its superiority over other techniques with an accu-
racy of 92.18%. This proves that our method can deal with noisy data provided
by the Kinect V1 sensor.

HDM05 dataset
HDM05 [136] contains 2,343 sequences of 130 classes executed by various ac-
tors. Each action was performed 10 to 50 times by each actor. The dataset was
recorded using a Vicon mocap system, where 31 reflective markers were placed
on the actors’ bodies. The 3D positions of these markers are provided. Fol-
lowing Huang et al. [137], we conducted ten evaluations, each of which selects
randomly half of the sequences for training and the other half for testing.

Novel Representation of Skeleton Sequences for 3D Action
Recognition Using Convolutional Neural Networks 67

Table 2.8. The results of different methods designed for 3D Skeleton-based human
activity recognition using the HDM05 dataset.

Method Accuracy (%)

SPDNet [137] 61.45

SE [63] 70.26

SO [138] 71.31

LieNet [120] 75.78

Our method 83.33

However, due to the long time it takes to train CNNs, we only ran one experi-
ment for this case. Table 2.8 lists the average accuracy of the proposed method
and the results obtained in the previous works. Our approach achieved the
highest accuracy scores with 83.33%, compared to other methods.

From these last experiments, we can conclude that our approach can be eas-
ily adapted to different types of skeleton data, even when they are provided
with low-cost sensors that generally provide noisy and low-quality skeleton
sequences.

2.4 Conclusion

In this chapter, we addressed the problem of 3D skeleton-based human action
recognition. An effective yet simple method is proposed to represent skeleton
sequences into 2D RGB images. Such a representation allows us to use pow-
erful image classifiers to recognize human actions, particularly CNNs, using
fine-tuning techniques. The experimental results on different public datasets
provided by different sensors showed the efficiency of the representation even
without extracting complex features. The NTU RGB+D dataset was recorded
using three Microsoft Kinect sensors at the same time. These sensors were
placed on different angles in order to test the view-invariance of the proposed
method.

68
Novel Representation of Skeleton Sequences for 3D Action

Recognition Using Convolutional Neural Networks

In our approach, we pre-processed our skeleton sequences and then normal-
ized each coordinate between 0 and 255 in order to generate RGB image-like
representations. The action classification was conducted using multiple state-
of-the-art image classification architectures and the process of fine-tuning. Our
method outperformed most of the state-of-the-art results on this dataset and
was able to prove its view-invariance character.

Moreover, our approach was tested on other action classification datasets pro-
vided by different sensors from low-cost (Kinect V1) to high-precision mocap
system (Vicon), and with different skeleton configurations, and achieved the
highest scores. This proves that our method is independent of the quality of
data, and the number of joints forming the skeleton.

Chapter 3

Human Action Recognition From RGB
Videos

Contents

3.1 Introduction . 70

3.2 Related Works 71

3.3 OpenPose: Real-time Multi-Person Pose Estima-
tion From RGB Videos 74

3.4 Proposed Approach for Human Action Recogni-
tion from RGB Videos Using CNNs 77

3.4.1 Skeleton Data Extraction and Processing 78

3.4.2 Experimental Results and Discussion 81

3.5 Conclusion . 86

This chapter is based on the following publication:

• Action recognition based on 2D skeletons extracted from RGB videos.
In MATEC Web of Conferences. 2018. [139]

— 69 —

70 Human Action Recognition From RGB Videos

3.1 Introduction

In the previous chapter, we developed a novel method to represent the 3D
motion capture sequences into color images. We proved that pre-trained CNN
classifiers could be retrained for our task of action classification, and the results
were very promising.

In this chapter, we want to go a step further where another problem was raised.
How can we get cheaper devices than a Kinect? And how can we get more
motion capture data?

To develop the first question, the cheapest devices that we can get in the
market are RGB cameras (webcams, for example). So if we find a way to get
skeleton data from RGB videos and succeed in using our approach on these
data, we can answer this problem. YouTube CEO Susan Wojcicki reported
in 2015 at the VidCon conference [140] that more than 400 hours of videos
are being uploaded on YouTube alone every single minute. This means that a
huge amount of video data is already available online, and it increases contin-
uously. This can answer our second question: how to get more data? This is
a great motivation to try to develop methods that can learn from video data.
As a matter of fact, developing such a method can open access to a new area
of research where any kind of video capturing devices can be used for mo-
tion capture. It also allows to benefit from the huge amount of data already
available on the internet. Therefore, human action recognition systems can be
improved, and the access to data for this domain can be democratized.

The solution to these questions lies in the development of precise and effective
tools to capture human poses from RGB videos. With the advances of deep
learning, many attempts have been made to develop such tools. In 2017, a
real-time approach to detect the 2D pose of multiple people in an image has
been published by Zhe et al. from Carnegie Mellon University [12] and a
tool has been developed called OpenPose. OpenPose is publicly available and
free for non-commercial use. It is considered as the state-of-the-art approach
for real-time human pose estimation, which attracted the research community
thanks to its great results and performances. This was the opportunity for us
to address our problem of human action recognition from videos.

In this chapter, we propose to follow the same process as in the previous
chapter for action recognition.

Human Action Recognition From RGB Videos 71

But first, we use the OpenPose framework to extract a skeleton pose from
each frame of the RGB videos to generate skeleton sequences. Then, using
the Seq2Im method proposed in the previous chapter, we transform these
sequences into images where each pixel in the generated image represents one
joint in one frame. Pre-trained CNNs are then used to train new models for
human action recognition.

The main contributions of this chapter are summarized as follows: 1) We
propose to perform human action recognition from videos by extracting skele-
ton sequences using the OpenPose framework. 2) We propose to transform
these skeleton sequences into RGB images and then fine-tune existing CNN
architectures to perform human action recognition. The generated skeletons
extracted by the OpenPose framework having only two coordinates, we ana-
lyze different ways to replace the third coordinate in order to generate a RGB
image. 3) The proposed method is validated on the large scale NTU RGB+D
benchmark dataset and achieves state-of-the-art performances.

The rest of this chapter is organized as follows: In Section 3.2, we review
the works related to human action recognition from videos. In Section 3.3, we
present the OpenPose framework for human pose estimation from RGB videos.
We follow by presenting our proposed approach of human action recognition
from videos in Section 3.4, and conclude our work in Section 3.5.

3.2 Related Works

In video-based human activity recognition, a system takes as input a video
clip (a sequence of video frames) and outputs the corresponding class. Human
activity recognition from videos is a challenging task due to multiple factors.
Human actions are complex and have many different degrees of freedom. As
it is intuitive for a human to classify actions, it is not evident for a machine to
extract this knowledge. Besides, different people may perform the same action
in different ways, and this can be true even for one person performing the
same actions multiple times, it can be different at each repetition. Moreover,
and similarly to image datasets, different videos from one action class may
have varying light-conditions, different sizes, and shapes of objects, occlusions,
cluttered background, different camera viewpoints, etc. These elements can
be found in the same video from one frame to another.

72 Human Action Recognition From RGB Videos

For this reason, developing a successful model requires to have a good feature
representation that is robust to different variations in the data, discrimina-
tive for different action classes, and can be generalized to different datasets.
Furthermore, the extracted features must include both spatial and temporal
information for robust classification. The spatial information indicates where
the action is happening, while the temporal information concerns the motion
clues of different objects, in addition to the changes in the background.

Multiple human action recognition systems have been proposed in literature
which attempted to solve these challenges. In early works, researchers de-
veloped hand-crafted features for human activity recognition from videos.
Davis and Bobick [141] computed the differences between binary silhouettes
and accumulated them over the spatial and temporal domain constructing
Motion Energy Image (MEI) and Motion History Image (MHI) to generate
action templates. The statistical model of moments (mean and covariance)
is used to match unknown sequences to the closest templates. Gorelick et
al. [142] stacked the 2D silhouettes in spatio-temporal volume to form 3D
shapes. They exploited the properties of the solution to the Poisson equation
to extract space-time features like local space-time saliency, action dynamics,
shape structure, and orientation. For classification, they used the template
matching method by comparing the target sequence to all the sequences of
the dataset using the nearest neighbor procedure (with Euclidean distance).
Yu and Aggarwal [143] detected first the extremities of the human body, such
as the head, the hands, and the feet, from the body contour. They built then
feature vectors out of these detected extremities to train a Hidden Markov
Model (HMM) for human action recognition. These approaches, in addition
to others [143], are holistic methods that rely on people detection (as regions
of interest ROI).

Other hand-crafted methods require neither human segmentation nor peo-
ple detection in order to perform action recognition. A large number of ap-
proaches extract local spatio-temporal features in videos. Laptov [144] intro-
duced spatio-temporal interest points, which are an extension of the image
Harris detector to video. These interest points are local maxima of a cor-
nerness criterion based on the spatio-temporal second-moment matrix at each
video point. Dollár et al. [145] combined a 2D Gaussian filter in space and a
1D Gabor filter in one cornerness function.

Human Action Recognition From RGB Videos 73

In a similar work, Bregonzio et al. [146] proposed to use instead 2D Gabor
filters of different orientations. Another successful hand-crafted representation
uses Dense Trajectories, as proposed by Wang et al. [147]. Authors densely
sampled feature points in each video frame, then they tracked them in the
video using optical flow. They computed several descriptors along the trajec-
tories of feature points to capture the shape, the appearance and the motion
information. Action classification is then performed with a bag-of-features
representation and a SVM classifier.

Encouraged by the great success of deep learning, there have been multiple
attempts to use, especially CNNs for action recognition from videos. One of
the main advantages of CNNs is that they learn both features and classification
boundaries in an end-to-end process. Simonyan and Zisserman [66] proposed
a two-stream convolutional network to learn spatio-temporal features. Their
network uses visual frames and optical flows between frames as two separate
inputs and fuses the obtained scores to obtain the final prediction. This work
has been further extended in many other works [148–150].

With the growing computation power of GPUs and the availability of large-
scale datasets, 3D CNNs have attracted increasing attention. Tran et al. [151]
designed a 3D CNN with 11 layers to learn spatio-temporal features on the
Sports-1M dataset [107]. Qiu et al. [152] proposed a Pseudo-3D Residual Net
(P3D) to build a deeper 3D CNN model. They decomposed a 3D convolu-
tion into a 2D convolution, followed by a 1D one. In another work, Tran et
al. [153] proposed a similar architecture that is referred to as 2+1 D. Car-
reira and Zisserman [143] proposed a method called Two-Stream Inflated 3D
ConvNet (I3D) which aims to enlarge the perception field along the temporal
direction. This is based on the approach proposed by Tran et al. [143], where
the parameters are initialized by inflating the weights of pre-trained 2D CNNs.

Recurrent Neural Networks (RNNs) have also been used in order to model
the temporal relationships among video frames. Wu et al. [154] trained two
CNNs to extract the spatial and short-term motion features separately. These
features are combined in a regularized feature fusion network for classification.
On top of these features, RNNs, and particularly Long Short Term Memory
(LSTM) networks, are applied to further model longer-term temporal features.
Similarly, Yue-Hei Ng et al. [155] used CNNs to learn spatial features for each
frame, then LSTMs to model the temporal dynamics.

74 Human Action Recognition From RGB Videos

Luo et al. [156] proposed to use a RNN-based Encoder-Decoder framework to
effectively learn a representation that predicts the sequence of basic motions.
Similar to previous approaches, they first extract high-level features from each
input frame using CNNs.

These methods analyze the whole video sequences and ignore the semantic
meaning of human actions, which are structured body movements. Multiple
recent studies [157–161] extract first the whole human body or body parts and
use them for further analysis.

In non-deep learning methods, we can find the work of Wang et al. [162],
where they improved an existing pose estimation method and then designed
pose features to represent both spatial and temporal configurations of body
parts. Cheron et al. [163] proposed a Pose-based Convolutional Neural Net-
work descriptor (P-CNN) for action recognition. They first use a pose estima-
tion method to extract different body joints, and then they combine motion
and appearance-based CNN features computed for each track of body parts.

Zolfaghari et al. [164] estimated poses and video frames and encoded them
directly by a multi-stream 3D CNN. Their proposed network architecture in-
tegrates multiple cues (raw images, optical flows, and body poses) sequentially
via a Markov chain model.

The above methods estimate first the human body pose in one network and do
not use the relative positions of different body joints over time. Our proposed
method takes advantage of the state-of-the-art human body pose estimation
(OpenPose) in order to extract body joints, then a spatio-temporal repre-
sentation is used to train CNN models for human action classification. Our
proposed method achieves state-of-the-art performances on the NTU RGB+D
dataset, which is currently the biggest challenging benchmark dataset for ac-
tion classification.

3.3 OpenPose: Real-time Multi-Person Pose
Estimation From RGB Videos

In this section, we will briefly introduce the OpenPose framework. We refer
interested readers to [12] for more details.

Human Action Recognition From RGB Videos 75

OpenPose, proposed by researchers at Carnegie Mellon University (CMU) in
2017, is a library for real-time multi-person pose estimation. It is based on a
bottom-up approach instead of detection-based approaches in other works. In
this approach, the body parts are detected by the model, and a final parsing
is used to extract the pose estimation results. OpenPose can jointly detect,
and in real-time, the human body, hands, and facial keypoints. In total, 130
keypoints per person and on a single image. Moreover, the computational per-
formance on body keypoints estimation is invariant to the number of detected
people in the image. OpenPose framework works following three main steps,
which are summarized in Figure 3.1.

1. First, an input RGB image is fed into a two-brunch multi-stage CNN that
produces two different outputs. In fact, the image is first analyzed by a
pre-trained convolutional neural network such as the first ten layers of
VGG-19 (see Section 1.4, VGGNet), to produce a set of feature maps F ,
which are then passed to the mentioned two-brunch multi-stage CNN.
The architecture of this CNN is illustrated in Figure 3.2. It consists
of two branches: the top branch (beige) predicts the confidence maps
(Figure 3.1, b.) of different body parts locations such as the right eye,
left eye, right elbow, etc. The bottom branch (blue) predicts the affinity
fields (Figure 3.1, c.), which represent the degree of association between
different body parts. The CNN is also composed of multiple stages. At
the first stage (first beige and blue blocks on the left part of Figure
3.2), the network produces an initial set of detection confidence maps S
and a set of Part Affinity Fields (PAFs) L. Then, in each subsequent
stage (second block on the right part of Figure 3.2), the predictions
from both branches in the previous stage are concatenated, along with
the image Features F and used to produce more refined predictions. In
the OpenPose implementation, the number of stages T = 6.

2. The second step of the OpenPose pipeline is processing the confidence
maps and part affinity fields by a greedy inference (by performing a set
of bipartite matchings) to associate body part candidates (Figure 3.1,
d).

3. Finally, they are assembled into full-body poses for all the people in
the input image (Figure 3.1, d). OpenPose provides a total of 18 body

76 Human Action Recognition From RGB Videos

Figure 3.1. Overall pipeline of the OpenPose framework. a. The entire image is
taken as the input for a CNN to jointly predict confidence maps for body
part detection (a.) and Part Affinity Fields (PAFs) for part association
(c.). d. The parsing step performs a set of bipartite matchings to
associate body part candidates. e. Finally, they are assembled into full
body poses for all people in the image. [12]

Figure 3.2. Architecture of the two-branch multi-stage CNN. [12]

joints locations for each person in each frame, and the corresponding
confidence scores.

OpenPose has many advantages; it can estimate the human body poses in
real-time, and it requires only RGB cameras to extract skeletons from a video.
Moreover, it allows partial skeleton detection, i.e., unlike the Kinect sensor,
which always fits all the joints to the body even if it is partially viewed,
OpenPose ignores the joints that are not seen.

Human Action Recognition From RGB Videos 77

However, some disadvantages can also be highlighted, such as the lack of depth
information since only 2D coordinates are given. Furthermore, OpenPose
coordinates locate each detected landmark into the processed frame according
to a global coordinate system, where the origin of the axis is on the upper left
frame corner. Therefore, the data are location and size-dependent.

In the next section, we will present our proposed approach in details. First,
we will detail the extraction of skeleton sequences, their processing, and how
to use them to train our action recognition models.

3.4 Proposed Approach for Human Action Recognition
from RGB Videos Using CNNs

In the previous chapter, we proposed a novel spatio-temporal representation
of 3D skeleton sequences into RGB images. The X, Y , and Z coordinates
were normalized and mapped into the color domain where the red color (R)
represents the X coordinate, the green color (G) represents the Y coordinate
and the blue color (B) represents the Z coordinate. However, in this new
situation, we only have two coordinates (X and Y), and as mentioned earlier,
the depth information is not provided. In fact, even if the depth information
is not provided directly, the information is included within the given X and Y
coordinates. The zoom effect, when a person is moving forward and backward,
for example, includes itself the depth information. This because the given
joints’ coordinates are given in pixels and not in real-world coordinates like
the Kinect sensor data. This is similar to the situation where a person can
still get the depth information and can estimate the location of an object or
another person even if (s)he looks with only one eye.

In order to adapt our proposed approach presented in Chapter 2 to this new
kind of skeleton data, and to generate a RGB image, we need to find additional
information that replaces the third channel. In the following experiments, we
try and analyze different configurations to find the best representation for our
data. We use the NTU RGB+D dataset as a reference where the RGB videos
were provided as well. This dataset has been described in Section 2.3.2.

Figure 3.3 summarizes the different steps of our proposed approach for action
recognition from videos.

78 Human Action Recognition From RGB Videos

Figure 3.3. Overview of the proposed end-to-end architecture for the classification
of human actions from RGB videos.

We can notice that it is very similar to the architecture proposed in Chapter 2,
except that we proceed first with the extraction of skeleton sequences directly
from videos. Furthermore, we apply the same skeleton transformation by nor-
malizing different joint coordinates to the virtual landmark situated between
the two hip joints (the mean of the two joints), as they are among the most
stable joints. This allows the joint coordinates to be invariant to the global
position. After choosing the final configuration of our data, we transform our
sequences into RGB images that are fed into a pre-trained CNN for feature
extraction, and then the classification is performed using a fully connected
layer, followed by a Softmax layer.

3.4.1 Skeleton Data Extraction and Processing

OpenPose provides the positions of 18 body joints (Figure 3.4) in real-time
(Section 3.3). The data is obtained in JSON format containing the 2D body
part locations (X,Y) in addition to the detection confidence C of each joint.
We extract the skeleton sequences from the videos of the NTU RGB+D
dataset [72]. The NTU RGB+D dataset was collected using three Kinect
V2 sensors at the same time covering three views (-45◦, 0◦, 45◦) and contains
more than 56,000 action sequences as described in Section 2.3.2. In addition
to 3D skeleton sequences, this dataset also contains the corresponding RGB
videos from the Kinect sensors. We recall that this benchmark dataset is
evaluated using two protocols: 1) cross-subject, where the data of a group of
subjects is used for training, and the rest is used for validation.

Human Action Recognition From RGB Videos 79

Figure 3.4. Illustration of the body skeleton extracted by the OpenPose framework.
To validate the proposed approach, we test the use of all joints (18) vs.
only the 14 joints highlighted in blue (all the joints except 14, 15, 16
and 17).

2) cross-view, where the data provided by two cameras is used for training,
and the rest is used for validation.

As mentioned earlier, one dimension is missing in order to generate a color
image with the three channels red, green, and blue. We empirically test two
different configurations in order to replace the third coordinate Z. 1) In the
first setup, we use the mean of X and Y coordinates (X+Y

2). 2) In the second
setup, we take advantage of the confidence score C of each joint provided and
use them as a third dimension. For both configurations, we first compute
relative positions of different joints to the mean of right and left joints. Then
we apply the Seq2Im method described in Section 2.3.1 and follow the steps
described in Figure 3.3. Moreover, as OpenPose ignores the hidden joints
and sets their corresponding values to unexpected, i.e., -1, we analyze different
joints frame by frame to find those who are the most unstable. We found that
the joints corresponding to the ears and eyes are missing in almost 40% of the
time. We decide to add a second set of tests where we discard these four joints
(see Figure 3.4, where we take into account only the joints that are highlighted
in blue). Figure 3.5 shows two examples of sequences transformed into images
using Seq2Im method.

80 Human Action Recognition From RGB Videos

Figure 3.5. Examples showing two sequences transformed into images using Seq2Im
method. In the first column (left), all the joints are used for the trans-
formation. In the second column (right), only 14 joints are used (high-
lighted in blue in Figure 3.4).

The first column corresponds to the actions with 18 joints, while the second
column, the four joints corresponding to the eyes and ears are ignored. We can
notice black lines in the left images in the upper zone. These lines correspond
to the joints that were not detected by OpenPose. These joints have been
eliminated in the second set of tests and are not seen on the images on the
second column any more. We can also notice that we do not have the same
range of colors between both kinds of images. This is because by eliminating
joints, the range of values after transformation to RGB channels changes.

In order to evaluate these representations, we train the DenseNet201 model
(see Section 1.4) for different setups using transfer learning (deep retraining),
where the model was pre-trained on the ImageNet dataset [57], as it gave
the highest scores in the previous chapter. We only follow the cross-subject
protocol for these experiments, and we compare the obtained accuracy scores.

Table 3.1 shows the obtained results for different configurations. First, we
notice that in different configurations, the obtained scores are over 80%, which
is considered as high compared to the state-of-the-art results from the previous
chapter.

Human Action Recognition From RGB Videos 81

Table 3.1. Comparison between different configurations to select the best represen-
tation of OpenPose skeleton sequences.

Setup 18 joints 14 joints

(X,Y, X+Y
2) 80.34% 80.98%

(X,Y,C) 82.72% 82.71%

We also notice that there is a very small difference between the 18 joints and
14 joints configurations, which makes us believe that the network may ignore
the four additional joints. Finally, we notice that the use of the confidence
score of joints adds around 2% from using the mean of X and Y coordinates.
This may be explained by the fact that the mean of the coordinates is con-
sidered redundant information, while the confidence score provides additional
information that can help the decision made by the model. For the next ex-
periments, we only focus on the second configuration, where the confidence
score is used as a third channel.

3.4.2 Experimental Results and Discussion

In this section, we validate our proposed approach using multiple experiments.
These experiments are inspired by Chapter 2, and we follow the same steps.
First, we compare different state-of-the-art image classifiers. Then, we study
the effect of transfer learning (see Section 2.3.2) for our proposed approach.
Finally, we compare the obtained scores with the state-of-the-art results on
the same benchmark dataset. All the experiments are performed on the same
machine as in the previous chapter, with the specifications summarized in
Table 2.1.

CNN Models Comparison

In this section, we compare different models of image classification in terms of
accuracy scores. All these models are tested with both data representations
(18 and 14 joints), encoding (X,Y) and C as RGB channels.

82 Human Action Recognition From RGB Videos

Table 3.2. Results obtained by deep retraining of different models using 18 joints
and 14 joints in cross-subject protocol.

Model (retraining deep) Accuracy using 18 joints (%) Accuracy using 14 joints (%)

SqueezeNet 75.79 75.80

AlexNet 74.54 74.05

Inception V3 81.98 81.53

DenseNet169 81.94 82.65

DenseNet201 82.72 82.71

ResNet34 82.59 81.36

ResNet50 83.35 81.72

VGG13 79.10 78.87

VGG19 78.50 78.98

We evaluate the following models: AlexNet [6], Inception V3 [7], VGGNet [8]
(with 13 and 19 layers), ResNet [9] (with 34 and 50 layers), DenseNet [10]
(with 169 and 201 layers), and finally SqueezeNet [11], which are described in
Section 1.4. These models are trained using transfer learning (the models are
pre-trained on the ImageNet dataset first).

The obtained results are summarized in Table 3.2. First, we can confirm our
conclusion of the previous section, where the elimination of the four joints
corresponding to the ears and eyes do not affect a lot the accuracy of the
models. This because these landmarks may not be very important for the
decision process. The results obtained with 18 joints are though slightly higher
than 14 joints. We can also notice that the highest results were obtained using
ResNet50 and DenseNet201 with 83.35% and 82.72% of accuracy, respectively.
These two models gave the highest scores for action classification from 3D
skeleton sequences as well.

Human Action Recognition From RGB Videos 83

Transfer Learning: Deep Retraining vs. Shallow Retraining vs. Training
from Scratch

In this section, we evaluate our models using the three different training strate-
gies: 1) Training from scratch. 2) Transfer learning from pre-trained models
and retraining all the weights (deep retraining). 3) Transfer learning from
pre-trained models and retraining only the last added fully connected layer
(shallow retraining). The same hyperparameters are used for different config-
urations and are the same as in the previous chapter (momentum 0.9, learning
rate 0.001, batch size 30, and a number of epochs of 15). Again, we only focus
here on the cross-subject protocol to evaluate the different training strategies.

Table 3.3 summarizes the obtained results. As expected, the deep retraining
is by far the best strategy for all the evaluated models. It is also worth
noticing that the models were pre-trained on the ImageNet dataset, which
is completely different from our dataset, and the obtained results are still
very high. Compared to the training from scratch, where the weights are
initialized to random values, the pre-trained weights from ImageNet helped to
learn knowledge from the image, and thus helped to have a faster convergence
and to better avoid local minima. Shallow retraining is the worst strategy
as the convolutional parts of the networks are left untouched (weights are
frozen during the training). Because the initial dataset (ImageNet) is very
different from ours, the learned features by the CNN from the pre-trained
model are not relevant for our task. Only retraining the last fully-connected
layer cannot help the classifier and do not provide good results. The highest
scores are obtained using DenseNet and ResNet models (more than 82%). This
shows that the connections between different layers improve the performances
even despite the low amount of parameters to learn, compared to the other
architectures. SqueezeNet, on the other hand, has very few layers compared
to the other architectures (i.e., very few parameters), which explains the low
accuracy obtained. It is yet higher than the accuracy obtained by AlexNet
that has 50 times more parameters. This is mainly due to the fire modules
that are introduced in SqueezeNet [11].

84 Human Action Recognition From RGB Videos

Table 3.3. Training from scratch vs. deep retraining vs. shallow retraining.

Model (retraining deep) From scratch Deep retraining Shallow retraining

SqueezeNet 65.40 75.80 36.39

AlexNet 68.92 74.54 30.15

Inception V3 75.19 81.98 30.04

DenseNet201 77.64 82.72 47.02

ResNet34 77.78 82.59 41.10

ResNet50 73.44 83.35 41.29

VGG13 72.85 79.10 33.37

VGG19 72.34 78.98 26.71

Comparison With the state-of-the-srt Results

In this section, we compared the obtained results with state-of-the-art works
done on the same dataset (NTU RGB+D). This dataset, as mentioned earlier,
is captured using three different cameras from different angles, and the actions
were performed by 40 different subjects. The proposed benchmark protocol
suggests two different setups. 1) Cross-subject: the data of 20 subjects are
used for training, and the data of the other 20 subjects are used for validation.
2) Cross-view: the data provided by two cameras (viewpoints) is used for
training, and the data provided by the third camera is used for validation.
These two setups allow us to test our classifier performances to deal with
large variations of action representations from different subjects and different
view angles.

The results are shown in Table 3.4, where we also compare with the results
obtained for skeleton-based human action recognition in the previous chapter.
It can be seen that our proposed method performs better than the proposed
methods in literature in both cross-subject and cross-view evaluation proto-
cols. The obtained accuracies are 83.32% and 88.78% for cross-subject and
cross-view protocols, respectively.

The superiority of performances of the proposed method is due to our novel
spatio-temporal representation of skeleton data.

Human Action Recognition From RGB Videos 85

Table 3.4. Comparison with the state-of-the-art results.

Cross-subject accuracy (%) Cross-view accuracy (%)

Skeleton-based methods

Two streams 3DCNN [113] 66.85 72.58

CNN + MTLN [112] 79.57 84.83

Trajectory maps + CNN [108] 76.32 81.08

HBRNN [23] 59.07 63.97

Deep RNN [72] 56.29 64.09

Deep LSTM [72] 60.69 67.29

PA-LSTM [72] 62.93 70.27

LieNet [120] 61.37 66.95

ST-LSTM [98] 69.20 77.70

Our Skeleton-based approach (Chapter 2) 82.07 86.54

Video-based methods

RNN Encode-Decoder + CNN [156] / 56.00

C3D [151] 63.5 70.3

ResNet50+LSTM [165] 71.3 80.2

Pose-Driven Attention (RGB) [165] 75.6 80.5

Pose-Driven Attention (Pose+RGB) [165] 84.8 90.6

Multi-Stream 3D CNN [164] 80.80 /

Our approach 83.32 88.78

Compared to different methods that model the temporal information sepa-
rately using RNNs (or LSTMs), the use of CNNs to learn both spatial and
temporal features of 2D skeleton sequences from the generated RGB images
is more robust to noise and temporal variations. This is mainly due to the
convolution and pooling operations, which results in better performances.

There is a very clear gap between our approach and other approaches using
RGB data such as C3D [151] (+19.82% in cross-subject and +18.48% in cross-
view), or Pose-Driven Attention (using only RGB) [165] (+7.72% in cross-
subject and +8.28% in cross-view). By conditioning the spatial attention
model to the 3D pose features, the authors of this last work [165] obtained
84.8% in cross-subject protocol and 90.6% in cross-view protocol. This shows
that the use of poses improves the performances of the classifier.

In a future work, we will attempt to add a layer to our approach, taking into
account the RGB frames in parallel to see how it can improve our results.

86 Human Action Recognition From RGB Videos

Compared to the results obtained for the 3D skeleton-based method proposed
in Chapter 2, the performance is improved by 1.25% for cross-subject protocol
and 2.24% for cross-view protocol. The two representations are different, but
the improvement is may be due to the use of the joints’ confidence scores for
the transformation of our motion sequences.

3.5 Conclusion

In this chapter, we proposed a method that allows us to classify human actions
from RGB videos. We propose to use a tool, namely OpenPose, to extract 2D
skeletons from video sequences, then using our Seq2Im (Sequence To Image)
method, we transform the obtained sequences into RGB image-like representa-
tions. As the obtained skeletons are in two dimensions, we use the confidence
score of each joint as a third information to be added to our representation.
We propose then to use pre-trained CNN models to learn features from these
images and perform action classification. In order to validate our approach,
we have tested it on the NTU RGB+D dataset which includes two benchmark
protocols, cross-subject, and cross-view . Experimental results have shown the
effectiveness of the proposed approach for human action recognition and its
superiority over most of the state-of-the-art approaches. This method allows
us to perform human action recognition from videos that can be captured us-
ing any camera, which makes it effective to have low-cost systems. Moreover,
our method is flexible and can use any skeleton extraction tool from videos
that can be developed in the future.

Chapter 4

Towards Human Interpretable Deep
Learning Models for Human Action
Recognition

Contents

4.1 Introduction . 88

4.2 The Importance of Interpretability 90

4.3 Visualization Methods for Model Interpretability 91

4.3.1 Activation Maximization 91

4.3.2 Deconvolution 94

4.3.3 Guided Backpropagation 96

4.3.4 Class Activation Maps (CAM¸) 98

4.3.5 Gradient-Weighted Class Activation Mapping (Grad-
CAM) . 99

4.4 Proposed Approach of Interpretation of CNN Mod-
els Built for Skeleton-Based Human Action Recog-
nition . 101

4.4.1 Proposed Approach 101

4.4.2 Analysis of the miss-classifications 105

4.4.3 Evaluation . 110

4.5 Conclusion . 113

— 87 —

88
Towards Human Interpretable Deep Learning Models for Human

Action Recognition

4.1 Introduction

Over the years, machine learning (ML) and particularly deep learning (DL) has
come a long way, from its existence as experimental research in an academic
setting to wide industry adoption as a way of automating solutions to real-
world problems. Businesses and organizations across diverse domains in the
industry are building large-scale applications powered by artificial intelligence
(AI¸). Nevertheless, these algorithms are still considered as alchemy due to
the lack of understanding of the inner operations of these models. A few
questions are raised to think about here: “Do we trust decisions made by such
models?” and “How does machine learning or deep learning models make their
decisions?” When a model predicts our insights, it takes certain decisions and
choices. Model interpretation tries to understand and explain these decisions
by the response function, i.e., the what, why, and how.

• What drives model predictions? We should have the ability to find out
latent feature interactions to get an insight into which features might be
important in the decision-making process. This ensures the fairness of
the model.

• Why did the model takes a certain decision? We should be able to vali-
date and justify why certain features were responsible for driving certain
decisions during the predictions. This ensures the accountability and
reliability of the model.

• How can we trust the model predictions? We should also be able to
evaluate and validate any data point, and a model takes decisions on it.
This ensure the transparency of the model.

A successful model interpretation method requires transparency that allows
humans to question the model’s decisions and to easily understand them. This
can also be referred to as human-interpretable interpretations (HII) of machine
learning/deep learning models. Its simplistic definition is the extent to which a
human (including non-experts in machine learning) can understand the choices
taken by models in their decision-making process (the what, the how, and the
why).

Towards Human Interpretable Deep Learning Models for Human
Action Recognition 89

Existing works on deep learning-based action recognition have shown superior
performances. Nevertheless, as these models are considered as black boxes,
they lack of interpretation and clarity on how they work. Model interpre-
tation algorithms can help the designers to analyze the models’ behaviors in
order to improve their performances by extracting insights from the classifiers.
In action recognition, interpretation algorithms may help, for example, in the
localization of the most important joints that a person uses during the exe-
cution of a particular action. This information can give the designers insights
on how to orient their classification algorithms by selecting the appropriate
features, for instance. In a domain where physical expertise is required, such
as martial arts, this information can help both experts and beginners to ana-
lyze their actions and define the joints on which they should focus in order to
improve their performances.

In literature, many algorithms are proposed for the interpretation of deep
learning classifiers [4, 15, 166–168]. In our work, we focus on a particular
algorithm called “Gradient-weighted Class Activation Mapping” (Grad-CAM¸)
[16]. This method can be applied to our RGB image-like representations of
skeleton sequences to get, from the models’ point of view, the regions that
are the most important for classification. By an inverse transformation to the
3D coordinates domain, we can obtain the most important joints at a specific
temporal interval.

The main contributions of this chapter are summarized as follows: 1) We
propose a novel method for debugging our CNN classifiers, which allows us to
make our models more transparent, and to explain their behavior for skeleton-
based human action recognition. 2) The proposed approach allows us to ex-
plain why some actions are confused by the classifier. 3) The proposed ap-
proach allows us to highlight the most important joints during the performance
of a specific action.

The rest of this chapter is organized as follows: In Section 4.2, we discuss the
importance of interpretability in machine learning. In Section 4.3, we present
some visualization methods that are used in ML, and particularly DL, for
interpretability. We follow by presenting our proposed approach and different
experiments for the interpretation of CNN models in Section 4.4, and we finish
by concluding our chapter in Section 4.5.

90
Towards Human Interpretable Deep Learning Models for Human

Action Recognition

4.2 The Importance of Interpretability

If a machine learning model performs well enough, why don’t we just trust
it and ignore why it made certain decisions? The problem is that only one
metric, like classification accuracy, is not enough to evaluate a model in most
real-world tasks [169]. When it comes to predictive modeling, we have to
make a trade-off : do we just want to know what is predicted? Or do we want
to know why the prediction was made? In some cases, it is not important
to know why the decision was made; it is enough to know that the perfor-
mance on the test dataset is good. This because they are generally used in
a low-risk environment, which means that a mistake will not have important
consequences. However, in other cases, knowing the ‘why’ can help us learn
more about the problem, the data, and the reason why the model might fail.

This means that for certain problems, it is not enough to get the prediction
(the what). The model must also explain how it came to the prediction (the
why) because a correct prediction only partially solves the original problem.
Machine learning models take on real-world problems that require safety mea-
sures and testing. Imagine a self-driving car that automatically detects cyclists
using deep learning models. We want to be sure that the system learns the
abstraction with the smallest possible error, ideally 0%. If the detection is
quite bad, using model interpretation methods can reveal why there are er-
rors. An explanation might be that the most important learned feature is to
recognize the two wheels of a bicycle, and this leads to thinking about ex-
ceptions like bicycles with side bags covering partially the wheels. Moreover,
machine learning models pick up biases from the training data. This can turn
these models into racists, as it has been reported many times. A relevant
example that we can cite is the website “Imagenet Roulette” . The web-
site’s algorithm was trained to identify faces and then label them using the
2833 subcategories of people within the ImageNet’s taxonomy (“adult male”,
“pilot”, “widower”, etc.). However, in many situations, the website was going
racist, misogynist, and cruel. A man can be classified as “rape suspect”, a
person with a black skin as “negro”, an Asian person as “chink”, etc. The
main reason for such behavior is due to the fact that the ImageNet dataset
was created from images scraped from the internet, then categorized by the
Amazon Mechanical Turk [170]. The dataset was very badly labeled by fallible
and underpaid humans.

Towards Human Interpretable Deep Learning Models for Human
Action Recognition 91

The prejudices and biases of these crowdsourced laborers are inevitably re-
flected in the AI system that they helped create. In this situation, inter-
pretability is a useful debugging tool for detecting biases in machine learning
models. In fact, the website was actually developed for this reason, to show
the biases on the ImageNet dataset, and is now offline.

In summary, model interpretability gives explanations to ensure that the ef-
fects of gaps in the formalization of the problems are visible to us. [169]

4.3 Visualization Methods for Model Interpretability

As mentioned earlier, interpretability is an important task to understand and
trust the decisions made by the machine learning model. Visualizing the
learned features by making them explicit is one of the approaches that is
widely used for this aim.

One of the biggest advantages of deep learning models is their ability to au-
tomatically learn high-level features without the need for feature engineering.
The first layers learn low-level features that can be understood by a human
and can be directly projected into the pixel space, such as colors, edges, etc.
However, the learned features are increasingly complex and abstract the deeper
we go into the network. The correlation between these features and the input
image pixels is also complex. In this chapter, we will study the use of one
particular method to visualize and understand the behavior of our human ac-
tion classifier, namely Grad-CAM, which stands for ”Gradient-weighted Class
Activation Mapping”. However, we will first introduce some visualization
methods that can benefit the reader to have a global idea of the state of the
art. These approaches are applied mainly to higher layers of convolutional
neural networks.

4.3.1 Activation Maximization

Activation Maximization (AM) method [13] is proposed to synthesize an input
image that maximizes the activation of a given hidden unit (or a neuron).

92
Towards Human Interpretable Deep Learning Models for Human

Action Recognition

This generated image represents the input pattern that certain neurons prefer
most. To synthesize such an image, each pixel of the CNN input is iteratively
changed in order to maximize the activation of the neuron.

The fundamental algorithm was proposed by Erhan et al. in 2009 [13], where
they visualized the preferred input patterns for the hidden layers of the Deep
Belief Network [171] and the Stacked Denoising Auto-Encoder [172] learned
from the MNIST digit dataset [173]. In 2013, Simonyan et al. applied this
method on convolutional neural networks [166].
In order to synthesize an input image x∗ that maximizes the activation ali of
the ith neuron of the lth layer, Activation Maximization approach proceeds
three sequential steps:

x∗ = argmaxx(ali(x)) (4.1)

1. Initialize the input with an image x = x0 with random pixel values.

2. Compute the gradients
δali
δx using the backpropagation algorithm, while

the parameters of the CNN are fixed.

3. Change each pixel of the input image iteratively following the direction

of the gradient
δali
δx to maximize each activation with a step η.

x← x+ η
δali
δx

(4.2)

Steps 2 and 3 are repeated until the generated images x no longer changes
(the change is less than a certain threshold). This image x maximizes then
the activation of the ith neuron and represents the preferred input pattern
for this neuron. Typically, ali is the unnormalized activation rather than the
probability returned by the SoftMax function, because the SoftMax normalizes
the final layer output to values between zero and one.

In Figure 4.1, we can see some examples from the work done by Erhan et
al. [13]. 36 neurons from the different layers of the Deep Belief Network,
trained on the MNIST dataset, are shown. We can clearly notice the increase
of complexity from the first layer (left) to the last layer (right).

Towards Human Interpretable Deep Learning Models for Human
Action Recognition 93

Figure 4.1. Activation Maximization Results on the MNIST Dataset. [13]

In the first layer, we can notice only rough patterns. In the second layer, we
can already see some shapes that look like digits, while in the last layer, we
can clearly notice the shapes of different digits. This means that the neurons
in this layer have been correctly trained to recognize hand-written digits.

Modern CNNs though are more complex and can deal with input images of
higher dimensions. The MNIST dataset contains only gray-scale images of
28×28 pixels while recent CNNs can have as inputs RGB images of higher sizes
(For instance: Inception V3 [7] - 299× 299 pixels, DenseNet [10] - 224× 224,
etc.). These recent CNNs are also very deep, which makes the visualized
patterns in higher layers unrealistic and uninterpretable. To overcome this
issue, a regularization method can be applied to improve the interpretability of
the patterns. As proposed by Yosinski et al. [174], the regularization function
can be applied in step 3 of the AM process:

x← rθ

(
x+ η

δali
δx

)
(4.3)

where rθ denotes the regularization function. Different regularization methods
are adopted, such as L2 decay, which tends to penalize large values and pre-
vent a small number of extreme pixel values from dominating the visualized
patterns [166]. Another regularization technique is Gaussian Blur [174], where
the high-frequency information in the visualized patterns are penalized. The
contribution of a pixel is measured by setting to zero and checking how much
the activation increases or decreases.

94
Towards Human Interpretable Deep Learning Models for Human

Action Recognition

These regularization methods, in addition to others that we did not cite here,
can be applied to the Activation Maximization individually or cooperatively.

4.3.2 Deconvolution

The Deconvolution method was introduced by Zeiler and Fergus in 2014 and
allowed, unlike the Activation Maximization method that interprets the CNNs
from the neurons perspective, to explain the CNNs from the input image
perspective [4, 175]. The deconvolution method finds the selective patterns
from the input image that activate a specific neuron in the convolutional layers
[176]. The patterns are reconstructed by projecting the low dimension feature
maps back to the image dimension. This projection process is implemented by
a DeconvNet structure, which contains deconvolutional layers and unpooling
layers, performing the inverse computation of the convolutional and pooling
layers. The DeconvNet based visualization demonstrates a straightforward
feature analysis in an image level instead of analyzing directly the interests of
the neurons.

The first proposed DeconvNet structure by Zeiler et al. [175] aims to capture
certain features to reconstructing the natural image by projecting a set of low-
dimensional feature maps to high dimension. Later in [177], the authors used
the DeconvNet structure to decompose an image in a hierarchical way. This
allows to capture multi-scale information from edges (low-level) to object parts
(high-level). The DeconvNet method became an effective approach to visualize
the convolutional neural networks when applied to interpret the hidden layers.

Figure 4.2 shows the architecture of a DeconvNet with a forward pass on the
right (a standard ConvNet) and a backward pass on the left. The results of
one layer are passed to the convolution operation of the next layer to produce
features maps. These feature maps are passed through a ReLU function,
followed by a max-pooling layer. The max-pooling layer decreases the size
of the feature maps removing in each step all the values except one (that
corresponds to the maximum), which makes this operation non-reversible. To
deal with this issue, Zeiler and Fergus [4] proposed to use a set of switches that
save the positions of the maximum values during the max-pooling operation.

Towards Human Interpretable Deep Learning Models for Human
Action Recognition 95

Figure 4.2. A DeconvNet layer (right) attached to a ConvNet layer (left). [4]

Figure 4.3. Illustration of the unpooling operation in the DeconvNet. The unpool-
ing uses switches that record the local max in each pooling region during
pooling in the ConvNet. [4]

These switches are used in the backward pass of the DeconvNet during the
unpooling layer by restoring the maximum values in their saved positions and
filling the rest of the values with zeros, as illustrated in Figure 4.3.

Finally, the ”unpooled” maps are passed through a ReLU to obtain the final
reconstruction.

Figure 4.4 shows Randomly chosen features from several convolutional layers
obtained by the Deconvolution method during training. In the first layer, we
can see basic features like lines, gradients, etc.

96
Towards Human Interpretable Deep Learning Models for Human

Action Recognition

Figure 4.4. Evolution of a randomly chosen subset of model features through train-
ing. [4]

Figure 4.5. Illustration of the forward and backward passes. [14]

The features become more and more complex in higher layers and can have
objects like eyes, faces, car wheels, etc.

4.3.3 Guided Backpropagation

Guided Backpropagation was introduced in 2014 by Springenberg et al. [14].
This is a modified Deconvolution approach that can be applied to a wider
range of neural network structures. Moreover, it provides more accurate re-
constructions of features, especially from higher layers. The authors proposed
to replace the max-pooling layer with a convolutional layer with a bigger stride
without losing accuracy.

To reconstruct a feature from a higher layer using DeconvNet or Guided Back-
propagation, the input images are passed to the network up to the given layer.
Only one value of the desired neuron from the obtained feature map is left
non-zero and then passed backwards through the network to obtain a re-
construction showing the part of the image that is strongly activating this
particular neuron.

Towards Human Interpretable Deep Learning Models for Human
Action Recognition 97

In fact, the ”deconvolution” in a DeconvNet is similar to the backpropagation
approach, and they mainly differ in the way they handle the ReLU nonlinearity
[166].

In the backpropagation algorithm, the gradients are computed based on the
bottom input data, i.e., the values that are set to zero correspond to negative
values positions in the forward pass (Figure 4.6, second row).

If we denote the gradient of feature i in the layer l as Rli then:

Rli = σ(zli).R
l+1
i (4.4)

where σ(zli) is the forward ReLU function.

In DeconvNet (Section 4.3.2), the ReLU nonlinearity is applied in the back-
ward pass using the top gradients for the backpropagation. This zeros the
negative values in the top gradients (4.6, third row), where the resulting gra-
dient is computed as follows:

Rli = σ(Rl+1
i).Rl+1

i (4.5)

The Guided Backpropagation combines the standard Backpropagation algo-
rithm with the Deconvolution approach by using both bottom input and top
gradients to compute the propagation through the ReLU nonlinearity in the
backward pass (Figure 4.6, second row).

The gradient is therefore computed as follows:

Rli = σ(zli).σ(Rl+1
i).Rl+1

i (4.6)

98
Towards Human Interpretable Deep Learning Models for Human

Action Recognition

Figure 4.6. Comparison of different methods of backward passes through a ReLU
nonlinearity. [14]

4.3.4 Class Activation Maps (CAM¸)

Class Activation Maps (CAM) method was introduced by Zhou et al. [15].
It allows producing heatmaps that indicate the discriminative regions in the
input images that motivated the decision of the network for a given class.
CAM can be obtained from fully-convolutional neural networks, in addition
to a Global Average Pooling (GAP) layer at the end of the network. The
GAP outputs the spatial average of the feature map of each unit at the last
convolutional layer, as illustrated in Figure 4.7.

A weighted sum of these values is used to generate the final output. Similarly,
a weighted sum of the feature maps of the last convolutional layer is computed
to obtain the class activation maps.

Towards Human Interpretable Deep Learning Models for Human
Action Recognition 99

Figure 4.7. Class Activation Mapping: the predicted class score is mapped back to
the previous convolutional layer to generate the class activation maps
(CAMs). The CAM highlights the class-specific discriminative regions.
[15]

4.3.5 Gradient-Weighted Class Activation Mapping (Grad-CAM)

Gradient-weighted Class Activation Mapping (Grad-CAM) is an extension
of the CAM method that allows to avoid the limitation of using only fully-
convolutional networks. Grad-CAM was proposed by Selvaraju et al. [16] who
modified the CAM method to be applied to a wider range of networks, includ-
ing common convolutional neural networks with fully-connected layers at the
end. It uses the gradients of any target to produce a coarse localization map
highlighting the discriminative regions in the input image for the prediction
of this target.

Grad-CAM can be applied to any task-specific network (image classification,
image captioning, visual questioning-answering, etc.). For the image clas-
sification task, in order to obtain the class-discriminative localization map
Grad-CAM Lc for any class c as shown in Figure 4.8, we need first to compute
the gradient of the score for this class, yc (before the Softmax) with respect
to the feature maps Ak of a convolutional layer, i.e., δyc

δAk .

From these gradients we compute the global average pooling (GAP) layer to
obtain the neuron importance weights αck:

100
Towards Human Interpretable Deep Learning Models for Human

Action Recognition

Figure 4.8. Illustration of the Grad-CAM visualization method. [16]

αck =
1

Z

∑
i

∑
j

δyc

δAkij
(4.7)

A weighted combination of forward activation maps is then performed, fol-
lowed by a ReLU to obtain only the features that have a positive influence on
the class of interest as follows:

LcGrad−CAM = ReLU(
∑
k

αckA
k) (4.8)

Negative pixels are likely to belong to other categories in the image. This
results in a coarse heatmap of the same size as the convolutional feature maps
that can be resized the fit the size of the input image.

Towards Human Interpretable Deep Learning Models for Human
Action Recognition 101

4.4 Proposed Approach of Interpretation of CNN
Models Built for Skeleton-Based Human Action
Recognition

In the previous chapters, skeleton sequences were transformed into RGB im-
ages, and then CNNs we used for deep feature extraction. In this section, we
use a visualization method in order to extract insights and understand the
behavior of our deep classifier. More specifically, the Grad-CAM visualization
method (Section 4.3.5) is used in order to generate a heatmap on the image
that corresponds to the zones that are the most salient to the CNN classifier.
Moreover, we can benefit from the transparency provided by such algorithms
to understand the classification process. With an inverse mapping of the gen-
erated heatmap into the skeleton sequence, we can highlight the joints that
are used for the execution of a specific action.

In this chapter, we will only focus on the 3D skeleton-based action recog-
nition, which is related to Chapter 2. To the best of our knowledge, visual
interpretability methods have not been used before to deal with skeleton-based
human action recognition.

4.4.1 Proposed Approach

Saliency (or attention) maps generation using Grad-CAM is an analytic method
that allows the estimation of the importance of each pixel of an image, using
only a forward, then a backward pass through the network [16]. The intuition
behind this method is that, if one pixel is important in respect to the node
corresponding to the ground truth y, then changing the value of this pixel
leads to a big change in that node. In other words, the higher the absolute
value of the gradient in a pixel, the more important this pixel is. Grad-CAM
uses the gradients of any target, flowing into the final convolutional layer to
produce a coarse localization map highlighting the important regions in the
image for predicting this target. Unlike other approaches, it is applicable in a
wide variety of CNN models without architectural changes or retraining.

Figure 4.9 shows an overview of the Grad-CAM approach for the extraction
of a visual explanation from the human action recognition process.

102
Towards Human Interpretable Deep Learning Models for Human

Action Recognition

Figure 4.9. Overview of Grad-CAM visualization algorithm for human action recog-
nition.

Given an input skeleton sequence and a target class (for example, ’kicking
something’) as input, we first transform the sequence into a RGB image us-
ing the Seq2Im approach. Then, the generated image is forward propagated
through the CNN layers of our model, followed by the fully-connected layer
to obtain a raw score of the category. All the gradients are set to zero for all
classes except the target class (’kicking something’), which is set to 1. This in-
formation is then backpropagated to the rectified convolutional feature maps,
which are combined to compute a coarse localization (heatmap). The blue
values in the generated heatmap correspond to pixels with low impact (values
near to zero) where the red regions correspond to pixels with high impact (val-
ues near to 1). By applying a Seq2Im (Section 2.3.1) inverse transformation
of these heatmaps, we can obtain values for each skeleton joint at each frame.
The higher the value, the more important the joint is at a specific frame during
the performance of the action.

Figure 4.10 shows Grad-CAM saliency maps visualizations for ’throw’, ’clap’,
’cheer up’ and ’kick something’ actions from the NTU RGB+D dataset. The
models DenseNet and SqueezeNet (Section 1.4) have been tested for both pro-
tocols, cross-subject, and cross-view. The first row in Figure 4.10 corresponds
to examples of original images for four actions.

Towards Human Interpretable Deep Learning Models for Human
Action Recognition 103

The next two rows correspond to Grad-CAM heatmaps in cross-subject and
cross-view configurations using DenseNet201. The fourth row corresponds to
the mapping of the obtained heatmaps on original mocap sequences, and the
next three rows correspond to the same experiences using the SqueezeNet
model. We can notice that for each action, specific zones are highlighted by
the models corresponding to specific patterns in the images. These zones
correspond to specific joints, as shown in the fourth and the last rows. For an
intuitive understanding of these zones, each joint in the skeleton is represented
with a red sphere where the radius is relative to the generated values from the
mapping of the heatmaps to the original mocap sequences.

We can notice that there is not a big change in the heatmaps from cross-
subject and cross-view configurations. However, different models give different
results. SqueezeNet model heatmaps have narrower and localized results, while
DenseNet ones are wider.

By analyzing the mapping on the original sequences, we can notice that the
SqueezeNet model focuses only on a few joints to make the classification. Fur-
thermore, it shows that the decision is taken by only focusing at the beginning
of the execution of the action. Conversely, DenseNet models tend to make a
decision on a bigger window (longer sequence) and use more joints for classifi-
cation. The classification results in the previous chapters show that DenseNet
gives higher accuracy compared to SqueezeNet, and the information used by
both models, analyzed by the Grad-CAM approach, may explain the reason
behind that. We conclude that for each action sequence, there is only a set of
informative joints, which are the most important as they contribute to action
analysis and classification, while the other joints are irrelevant to this action.

Furthermore, as we take into account that the columns in the generated images
using Seq2Im correspond to time (or frames), we notice that the highlighted
zones start at a specific frame and end at a specific frame. Analyzing the
corresponding skeleton sequence, we can clearly see that the interval of activa-
tion corresponds to the time where the person concretely executes the action,
especially for the DenseNet model. This allows us to generalize our proposed
approach of human action classification for online action segmentation, which
needs to be confirmed in future works. One way to do this is by using a slid-
ing window of a few frames and apply the classification process defined in the
previous sections.

104
Towards Human Interpretable Deep Learning Models for Human

Action Recognition

Figure 4.10. Examples of Grad-CAM visualizations of four different actions (throw,
clap, cheer up and kick something). 1st row: original images gen-
erated using Seq2Im. 2nd and 3rd rows: generated heatmaps using
DenseNet201 following the cross-subject and the cross-view protocols
consecutively. 5th and 6th rows: generated heatmaps using SqueezeNet
following the cross-subject and the cross-view protocols consecutively.
4th and 7th rows: mapping of the obtained heatmaps on the original
skeleton sequences.

Towards Human Interpretable Deep Learning Models for Human
Action Recognition 105

Figure 4.11. Examples of situations where the model correctly performs classifica-
tion even when the data is noisy. 1st row: generated heatmaps using
Grad-CAM. 2nd row: mapping of the obtained heatmaps on the origi-
nal skeleton sequences.

Another interesting thing to notice, and the assumption was made in Chapter
2 is that the used CNN models can give high accuracy scores independently
from the quality of the data. Figure 4.11 shows examples of three different
actions where they present noises, particularly on the legs. Grad-CAM only
highlights the zones that are related to the upper body joints (which are the
most important joints, from the human perspective, that are responsible for
the execution of the related actions). This proves that the CNN models learn
patterns from the data even if an important noise is present.

4.4.2 Analysis of the miss-classifications

The proposed approach in Chapter 2 has achieved an accuracy on the NTU
RGB+D dataset of 82.00% for cross-subject evaluation and 86.54% for cross-
view evaluation using the model DenseNet201. The confusion matrix obtained
for the cross-subject evaluation is shown in Figure 4.12. It shows that the
model provides overall a good classification performance for different action
classes.

Table 4.1 shows the five best recognized actions and the five most confused
pairs of actions using DenseNet201 model.

106
Towards Human Interpretable Deep Learning Models for Human

Action Recognition

Figure 4.12. Confusion matrix of test results on the NTU RGB+D dataset (cross-
subject evaluation).

We can notice that the model is not perfect and confuses multiple actions.
The first four actions are generally confused with each others and are very
similar, like reading (mostly confused with ’writing ’), ’writing ’ (with ’typing
on keyboard ’), ’playing with phone/tablet ’ (with ’writing ’). The fifth action
(’clapping ’) is also confused with a very similar action that is ’rubbing two
hands together ’.

Figure 4.13 and Figure 4.14 show the heatmaps generated by Grad-CAM
method for the ten actions mentioned in Table 4.1. Figure 4.13 presents three
columns corresponding, from left to right, to the original images generated
from the mocap sequences, the generated heatmaps, and the highlighted joints
by mapping the heatmaps on the original skeletons sequences. As mentioned in
the previous section, the model takes into account only a set of joints to make
the decision. For the first action ’jumping up’, all the joints are considered as
important except the head.

Towards Human Interpretable Deep Learning Models for Human
Action Recognition 107

Table 4.1. Top 5 accurate actions and 5 confused pairs for the proposed model,
including the recognition accuracy per class.

Top 5 recognized actions Top 5 confused actions

1) A027: Jumping Up 99.26% 1) A011: Reading → A012: Writing (23.75%) 50.19%

2) A043: Falling 99.25% % 2) A029: Playing with phone/tablet → A012: Writing (16.36%) 50.93%

3) A009: Standing Up 98.53 3) A012: Writing → A030: Typing on keyboard (18.22%) 52.63%

4) A026: Hopping 97.43% 4) A030: Typing on keyboard → A012: Writing (20.99%) 53.05%

5) A014: Wearing jacket 96.99% 5) A010: Clapping → A034: Rubbing two hands together (20.82%) 58.36%

Average accuracy = 98.29% Average accuracy = 52.40%

Taking into account the time, we can notice from the generated pattern that
the arms are first highlighted, then the legs. This is a natural behavior when
jumping as a person naturally moves first the arms up before jumping for
stability. We can also notice that the model considers the left arm and the
right leg more important than the other limbs for this specific sequence.

For the action ’falling’, the model considers the lower body as more important
than the upper body. For this specific sequence, the left arm is also important,
as in the original sequence, the person tries to use his left arm to find support
on the ground. Contrariwise, the model focuses on the upper body joints to
classify the action ’standing up’. For the action ’hopping’, the model takes
into account almost all of the joints except the leg with the bent knee. Also,
the pattern of this specific sequence shows that the model takes into account
the right leg joints only at the beginning. Finally, the action ’wearing jacket’,
and as expected, the most important joints are those related to the arms. We
can notice that left arms joints are more important than the right arms joints,
as the person starts by wearing the jacket from the left arm then the right.

These examples demonstrate that the CNN models do not take into account
all the joints to make the decision, and only a few joints contribute to action
classification, from the CNN viewpoint. They also show how CNNs behave
for different actions.

Figure 4.14, on the other hand, visualizes the top five confused pairs of actions.
The first and the second columns show the heatmaps combined with original
images and corresponding visualization on the skeleton sequence consecutively
for correctly classified actions.

108
Towards Human Interpretable Deep Learning Models for Human

Action Recognition

Figure 4.13. Attention visualization of the top 5 recognized actions using Grad-
CAM. 1st column: original images. 2nd column: generated heatmaps.
3rd column: one frame with the highlighted joints by mapping the
heatmaps on the original skeleton sequences.

The third and the fourth columns, on the other hand, show the same visual-
izations but with confused actions. The first row, for example, shows visual-
izations of the action ’reading’. The first heatmap corresponds to a correctly
classified sequence, whereas the second one corresponds to a sequence that is
confused with the action ’writing’. 23.75% of ’reading’ sequences are confused
with the action ’writing’ (Table 4.1). These two actions are very similar, es-
pecially when we do not take into account the objects the person interacts
with.

Towards Human Interpretable Deep Learning Models for Human
Action Recognition 109

Figure 4.14. Attention visualization of the top 5 confused pairs of gestures using
Grad-CAM. 1st column: heatmaps applied on images corresponding to
correctly classified skeleton sequences. 2nd column: one frame with the
highlighted joints using the inverse transformation of the heatmaps on
the original skeleton sequences. 3rd column: heatmaps applied on im-
ages corresponding to miss-classified skeleton sequences. 4th column:
one frame with the highlighted joints using the inverse transformation
of the heatmaps on the original skeleton sequences.

Moreover, the same joints (upper body) are used for both actions, as confirmed
by the Grad-CAM visualization. We can notice that for the confused action,
the joints corresponding to the head and neck are also highlighted, and the
detection is made earlier. By analyzing the video sequences, we can notice
that for the correctly classified ones, the persons do not move a lot, while for
the miss-classified ones, the person makes small additional movements, like
taking the notebook or turning the page and bowing the head. These small
movements confuse the model, which ”thinks” that the person is writing.

110
Towards Human Interpretable Deep Learning Models for Human

Action Recognition

In fact, in a lot of sequences of the class ’writing’, the person moves the hand
toward the notebook in order to write. A similar pattern can be found in the
third row of Figure 4.14. The same conclusions can be made for the second
and the fourth actions ’playing with phone/tablet’ and ’typing on keyboard’
as they are confused with ’writing’ for the same reasons. The action ’writing’
is generally confused with ’typing on the keyboard’, and the main reason is
that the person moves his hand with the pen toward the notebook, which
is confused with the person moving his hand(s) toward the keyboard to type.
The last example corresponds to the action ’clapping’ that is confused in many
cases with the action ’rubbing two hands together’.

Logically, these two actions have very good chances to be confused as they
have the same process of moving the arm in front and then bring them close
to each other. The DenseNet model can classify though both actions with
58.36% and 77.27% of accuracy consecutively. By analyzing the highlighted
zones in the confused sequences, we notice two main movements that are done
just before and can be the reason of the miss-classification: 1) the person moves
a little bit forward before/while clapping the hands, 2) the person changes the
frequency of clapping. These two movements can represent biases that make
the classification failing.

4.4.3 Evaluation

In this section, we attempt to give a numerical evaluation of our visualizations,
to see if the zones highlighted by the CNN model correspond to the human
viewpoint. As mentioned earlier, and to the best of our knowledge, visual-
ization methods have never been used before for the interpretation of CNN
models for action classification. This makes it complicated to objectively eval-
uate our method. Instead, we make a subjective evaluation by asking people
to annotate manually what are, in their opinion, the most important joints
that are responsible for the execution of an action. Annotators have also been
asked to specify the beginning and the end time for every annotated joint.

Figure 4.15 shows the interface of the annotation tool that has been developed
on top of the MotionMachine framework [178]. The annotators can move
the cursor using the mouse and click to select the beginning of the selected
sequence and then move and click again to select the end time.

Towards Human Interpretable Deep Learning Models for Human
Action Recognition 111

Figure 4.15. Interface of the manual annotation tool for the selection of the most
important joints.

In the left panel on the interface, the annotators can select the most impor-
tant joints, and also the corresponding X,Y and Z trajectories if necessary.
In summary, 980 random sequences have been manually annotated (20 anno-
tations by class) by three people. Due to the limited time, we only use these
annotated sequences, and we will make more annotations by multiple other
people in future works.

From these annotations, we generate black and white images, resized to have
the same size as the original images, where black corresponds to 0 (not impor-
tant), and white corresponds to 1 (important). To proceed to our evaluation,
we convert our heatmaps into grayscale images, and then we filter out the less
important regions (threshold = 100, empirically chosen).

Figure 4.16 shows an example of heatmaps and their processing for a sequence
of the class ’cheer up’. a) and c) are the heatmaps generated by Grad-CAM
from the models DenseNet201 and SqueezeNet. b) and d) are the correspond-
ing filtered images. e) is the manual annotation (ground truth), and f is the
same as e excluding the joints corresponding to the head and the spine.

112
Towards Human Interpretable Deep Learning Models for Human

Action Recognition

Figure 4.16. Examples showing the generated images for the evaluation of heatmaps
(action: ’cheer up’). a) generated heatmap by the model DenseNet201.
b) corresponding filtered image. c) generated heatmap by the model
SqueezeNet. d) corresponding filtered image. e) ground truth an-
notation. f) ground truth annotation excluding the head and spine
joints.

We choose four metrics to evaluate our results: precision, recall, F1 score and
the intersection-over-union (IOU¸), that are defined by the following equations:

precision =
TP

TP + FP
(4.9)

recall =
TP

TP + FN
(4.10)

F1 = 2× precision× recall
precision+ recall

(4.11)

IOU =
TP

TP + FP + FN
(4.12)

where, TP , FP , and FN denote the true positive, false positive, and false
negative counts (pixel-wise), respectively.

We compute different metrics for both cross-subject and cross-view protocols
of the NTU RGB+D dataset.

Towards Human Interpretable Deep Learning Models for Human
Action Recognition 113

Furthermore, while analyzing the obtained results and manual annotations,
we noticed that people (annotators) generally consider the head and the spine
joints as important for many actions (such as ’making a phone call’, ’taking a
selfie’, some sequences of ’cheering up’, etc.).

The obtained heatmaps, on the other hand, show that the CNN models gener-
ally focus on arms and legs joints and do not consider head joints as important
except in a few situations. For this reason, we decided to add another set of
tests where we exclude the head and spine joints from the ground truth anno-
tations (Figure 4.16, f.).

Figure 4.17 shows the results obtained for different tests. In the first set of
tests, we take into account all joints from the manual annotations (blue bars).
We notice that we generally have high precision and low recall, and we have
almost no difference between cross-subject and cross-view configurations. Us-
ing DenseNet201, we obtain a F1 score of 0.57 and an IOU of 0.37, which
are considered relatively high for a pixel-to-pixel correspondence between au-
tomatic and manual annotation from images. SqueezeNet obviously has very
high precision, but very low recall, and by consequence, low F1 score and IOU
because, as explained earlier, it makes generalization on small observations.

By removing the head and the spine joints from manual annotations and com-
puting different metrics, we obtain the results shown in orange bars in Figure
4.17.

We notice a small drop in precision but a higher recall in all configurations, and
by consequence, a higher F1 score and IOU . SqueezeNet results are still very
low while we get an increase of F1 score and IOU of 7% using DenseNet201,
for both cross-subject and cross-view configurations. These scores motivate
the investigation of the extension of the proposed approach of skeleton-based
action classification for online use, as the CNN models can focus on the most
informative joints.

4.5 Conclusion

In this chapter, we addressed the problem of the ”black-boxiness” of the CNN
models and how to use interpretability methods to explain the behavior of
these models for skeleton-based human action recognition.

114
Towards Human Interpretable Deep Learning Models for Human

Action Recognition

Figure 4.17. Results obtained for the evaluation of heatmaps generated for both
DenseNet201 and SqueezeNet models, with and without the head and
spine joints.

Investigations of the state of the art show that there is no similar work that
addressed the same subject. After recalling the importance of interpretability
and visualization methods to improve the transparency of deep learning mod-
els, we proposed an approach that helps to understand the decisions made by
our models. This approach consists of using a saliency map visualization tech-
nique, namely Gradient-weighted Class Activation Mapping (Grad-CAM), for
the estimation of the most important joints, from the CNN point of view, that
are responsible for the decisions made. Grad-CAM is a technique used for vi-
sual explanations of CNN models by making them more transparent. It allows
us to visualize, using heatmaps, the regions of the input images that are ”im-
portant” for predictions. We map the heatmaps generated by the Grad-CAM
on the original skeleton sequences to visualize the most informative joints.
This mapping allows us to give a score for each joint of the skeleton and on
every frame. The higher the score, the more important the joint is at a specific
frame. By analyzing these results, we found some biases that were responsible
for the miss-classification of some actions.

Moreover, we proposed an evaluation method to compare the generated heatmaps
from the subjective perspective of the human.

Towards Human Interpretable Deep Learning Models for Human
Action Recognition 115

We asked people to manually annotate a list of sequences where they had to
specify, in their opinion, the most important joints that are responsible for
the execution of the action, in addition to the time interval. Comparing these
annotations to the generated heatmaps, especially those corresponding to the
DenseNet201 model, we obtained interesting results. We obtained almost 80%
of precision and 50% of recall, in addition to around 40% of IOU (Intersection
Over Union) score, which are considered as relatively good results as we make
the comparison in a pixel-wise manner. Furthermore, as the CNN model
focuses on specific joints at a certain time interval and ignores the other joints,
it motivates the investigation of extending our approach of skeleton-based
human action recognition to real-time. This is one of the axis that will be
investigated in future works.

To conclude, this proposed approach allowed us to partially answer the three
interpretability questions: 1) ”What” drives model predictions? We found
that the model focuses on specific regions and ignores others in order to make
the decision. 2) ”Why” did the model takes a certain decision? We could un-
derstand why the model correctly classifies some sequences and why it fails in
some cases. 3) How can we trust the model predictions? Using the Grad-CAM
method, we could debug our model and get some insights into its behavior.

Conclusion

This dissertation has presented a number of novel research in human action
recognition. In each of the topics that were addresses, significant contributions
materialized by international publications have been brought to the state-of-
the-art, or being under submission. In this chapter, we summarize the main
contribution and future research directions.

4.6 Contributions

This thesis focuses particularly on human action recognition from skeleton se-
quences. Skeleton sequences provide 3D coordinates of human skeletal joints.
Compared to RGB videos, skeleton sequences are robust to illumination changes
and clustered backgrounds. Early approaches of skeleton-based human action
recognition are mainly based on hand-crafted features, which requires a lot of
processing and feature engineering. Other approaches focus on recurrent neu-
ral networks. Following these categories, it is difficult to capture the complex
spatial structure and long-term temporal information of skeleton sequences.
In this thesis, we present a series of approaches to improve action recognition.

• We present a new representation of 3D skeleton sequences called ”Se-
quence to Image” (Seq2Im) that allows to generate RGB images that
model both of the spatial and temporal information. This representa-
tion allows to leverage the state-of-the-art image classification models,
and particularly Convolutional Neural Networks (CNNs), to extract deep
features and model human actions using the process of transfer learn-
ing. The proposed approach showed that fine-tuning pre-trained models
for our task of action recognition provides high accuracy scores even if
the original task is very different. Extensive experiments on multiple
benchmark datasets showed the superiority of our approach over other
literature methods despite its simplicity. (Chapter 2)

— 117 —

118
Towards Human Interpretable Deep Learning Models for Human

Action Recognition

• As human pose detection from single images got a lot of advances due
mainly to the development of deep learning and compute power, we pro-
pose to extended our approach into the RGB videos domain. We propose
to extract 2D skeletons from video sequences, and then pre-process this
data to be adapted to our Seq2Im method. Following the same steps as
in 3D skeleton action recognition, we train CNN models using transfer
learning process on the generated image dataset. The obtained results
on a challenging benchmark dataset showed the superiority of our ap-
proach over other video-based action recognition methods, and even 3D
skeleton-based approaches on the same dataset. (Chapter 3)

• We present a new method to interpret the behaviour of CNN models
used for skeleton-based human action recognition. Deep learning mod-
els, and especially CNNs are considered generally as black boxes where
they lack in understanding of their inner operations. The proposed ap-
proach allows to highlight the most important regions in the generated
image (using Seq2Im method) that influence the decision of the classifier.
By applying an inverse transformation and mapping to the original skele-
ton sequences, we can obtain the most important joints that are used
during the performance of a specific action. This method allowed us to
conclude that the CNN models focus only on specific patterns on the
input images and ignores the rest of the pixels. These spatio-temporal
pattern contains information of a few informative joints at a specific time
interval. (Chapter 4)

4.7 Future Works

This thesis focused on action recognition using 3D skeleton sequences. The
proposed approach consists of transforming the skeleton sequences into RGB
images and use state-of-the-art pre-trained models in order to perform the
classification using transfer learning technique. The generated images are
resized to fit the input of the desired architecture. One of the first works to do
in future is to study the effect of the resizing on the model performance. We
will also try different resizing methods to obtain the best results. Moreover,
we will try different configurations to transform our skeleton sequences into
images.

Towards Human Interpretable Deep Learning Models for Human
Action Recognition 119

Instead of using only three coordinates, including the joint orientations may
improve the performances. Also, instead of using the red, green and blue
channels, we will test other color representations (ex: HSV, or HSB for hue,
saturation, and value, or brightness) to transform our sequences.

For some actions, and particularly those involving interactions with objects,
RGB videos provide more useful information, which can be explored to rec-
ognize the action more accurately. Future research directions could be to
design models for action recognition based on both RGB videos and skeleton
sequences. This includes how to learn features from RGB videos and how to
combine the information of the RGB and skeleton sequences for better action
recognition.

In Chapter 4, we showed that the CNN models focus on only few joints at
a specific time interval in order to make a decision. This means that, for a
longer sequence, the CNN model can still ignore non-important information
and focuses on meaningful visual patterns. In the future, we will exploit
this valuable information to extend our proposed approach to real-time. One
possible way would be to use a sliding time window and apply the proposed
approach on each obtain sub-sequence, then merge the obtained decisions.
We may also exploit 3D CNNs on the generated clips to take into account the
relationship between successive Seq2Im frames.

Appendix A

Publications related to this thesis

A.1 Journals with Peer Review

1. S. LARABA, T. DUTOIT. “Towards Human Interpretable Deep Learn-
ing Models for Human Action Recognition”. [to be submitted]

2. A. GRAMMATIKOPOULOU, S. LARABA, O. SAHBENDEROGLU,
K. DIMITROPOULOS, S. DOUKA, N GRAMMALIDIS. “An adaptive
framework for the creation of exergames for intangible cultural heritage
(ICH) education”. Journal of Computers in Education. (2019)

3. S. LARABA, M. BRAHIMI, J. TILMANNE, T. DUTOIT. “3D skeleton-
based action recognition by representing motion capture sequences as 2D-
RGB images”. Computer Animation and Virtual Worlds 28 (3-4), e1782.
(2017)

4. S. LARABA, J. TILMANNE. “Dance performance evaluation using
hidden Markov models”. Computer Animation and Virtual Worlds 27
(3-4), 321-329. (2016)

A.2 Journals without Peer Review

1. M. Tits, S. LARABA, E. CAULIER, J. TILMANNE, T. DUTOIT.
“UMONS-TAICHI: A multimodal motion capture dataset of expertise in
Taijiquan gestures”. Data in brief journal. (2018)

— 121 —

122 Publications related to this thesis

A.3 Papers in International Conference with Peer
Review

1. S. LARABA, J. TILMANNE and T. DUTOIT. “Leveraging Pre-trained
CNN Models for Skeleton-Based Action Recognition”. International Con-
ference on Computer Vision Systems, 1, 612-626. (2019)

2. S. AUBRY, S. LARABA, J. TILMANNE, T. DUTOIT. “Action recog-
nition based on 2D skeletons extracted from RGB videos”. MATEC Web
of Conferences 277, 02034. (2019)

3. M. MANCAS, S. LARABA, A. BANDRABUR, P-H. DE DEKEN, K.
HAGIHARA, N. LEBLANC, SB. Y. TASDEMIR, B. MACQ, T. DU-
TOIT. “People Groups Analysis for AR Applications”. International
Conference on 3D Immersion (IC3D). (2018)

4. A. GRAMMATIKOPOULOU, S. LARABA, O. SAHBENDEROGLU,
K. DIMITROPOULOS, N. GRAMMALIDIS. “An adaptive framework
for the creation of bodymotion-based games”. International Conference
on Virtual Worlds and Games for Serious Applications (VS-Games).
(2017)

5. S. LARABA, J. TILMANNE and T. DUTOIT. “Adaptation proce-
dure for HMM-based sensor-dependent gesture recognition”. ACM SIG-
GRAPH Conference on Motion in Games. (2015)

Publications related to this thesis 123

Bibliography

[1] H. Fujiyoshi, A. J. Lipton, and T. Kanade, “Real-time human motion

analysis by image skeletonization”, IEICE TRANSACTIONS on Infor-

mation and Systems, vol. 87, no. 1, pp. 113–120, 2004.

[2] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore,

A. Kipman, and A. Blake, “Real-time human pose recognition in parts

from single depth images”, in CVPR 2011. Ieee, 2011, pp. 1297–1304.

[3] S. Khan, H. Rahmani, S. A. A. Shah, and M. Bennamoun, “A guide to

convolutional neural networks for computer vision”, Synthesis Lectures

on Computer Vision, vol. 8, no. 1, pp. 1–207, 2018.

[4] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-

tional networks”, in European conference on computer vision. Springer,

2014, pp. 818–833.

[5] “Momentum and learning rate adaptation”, https://www.willamette.

edu/∼gorr/classes/cs449/momrate.html, accessed: 2020-07-13.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification

with deep convolutional neural networks”, in Advances in neural infor-

mation processing systems, 2012, pp. 1097–1105.

[7] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking

the inception architecture for computer vision”, in Proceedings of the

IEEE conference on computer vision and pattern recognition, 2016, pp.

2818–2826.

— 125 —

https://www.willamette.edu/~gorr/classes/cs449/momrate.html
https://www.willamette.edu/~gorr/classes/cs449/momrate.html

126 BIBLIOGRAPHY

[8] K. Simonyan and A. Zisserman, “Very deep convolutional networks for

large-scale image recognition”, arXiv preprint arXiv:1409.1556, 2014.

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition”, in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2016, pp. 770–778.

[10] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely

connected convolutional networks”, in Proceedings of the IEEE confer-

ence on computer vision and pattern recognition, 2017, pp. 4700–4708.

[11] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and

K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer param-

eters and¡ 0.5 mb model size”, arXiv preprint arXiv:1602.07360, 2016.

[12] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime multi-person 2d

pose estimation using part affinity fields”, in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2017, pp. 7291–

7299.

[13] D. Erhan, Y. Bengio, A. Courville, and P. Vincent, “Visualizing higher-

layer features of a deep network”, University of Montreal, vol. 1341,

no. 3, p. 1, 2009.

[14] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller,

“Striving for simplicity: The all convolutional net”, arXiv preprint

arXiv:1412.6806, 2014.

[15] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learn-

ing deep features for discriminative localization”, in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 2016,

pp. 2921–2929.

[16] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra

et al., “Grad-cam: Visual explanations from deep networks via gradient-

based localization.” in ICCV, 2017, pp. 618–626.

BIBLIOGRAPHY 127

[17] J. Liu, A. Shahroudy, M. L. Perez, G. Wang, L.-Y. Duan, and A. K.

Chichung, “Ntu rgb+ d 120: A large-scale benchmark for 3d human ac-

tivity understanding”, IEEE transactions on pattern analysis and ma-

chine intelligence, 2019.

[18] S. A. Papert, “The summer vision project”, 1966.

[19] J. Wang, Z. Liu, Y. Wu, and J. Yuan, “Mining actionlet ensemble for

action recognition with depth cameras”, in 2012 IEEE Conference on

Computer Vision and Pattern Recognition. IEEE, 2012, pp. 1290–1297.

[20] G. Johansson, “Visual motion perception”, Scientific American, vol. 232,

no. 6, pp. 76–89, 1975.

[21] J. Ben-Arie, Z. Wang, P. Pandit, and S. Rajaram, “Human activity

recognition using multidimensional indexing”, IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 24, no. 8, pp. 1091–

1104, 2002.

[22] A. Yao, J. Gall, G. Fanelli, and L. Van Gool, “Does human action recog-

nition benefit from pose estimation?” in BMVC 2011-Proceedings of the

British Machine Vision Conference 2011, 2011.

[23] Y. Du, W. Wang, and L. Wang, “Hierarchical recurrent neural network

for skeleton based action recognition”, in Proceedings of the IEEE con-

ference on computer vision and pattern recognition, 2015, pp. 1110–1118.

[24] M. Brahimi, M. Arsenovic, S. Laraba, S. Sladojevic, K. Boukhalfa, and

A. Moussaoui, “Deep learning for plant diseases: detection and saliency

map visualisation”, in Human and machine learning. Springer, 2018,

pp. 93–117.

[25] S. Laraba and J. Tilmanne, “Dance performance evaluation using hidden

markov models”, Computer Animation and Virtual Worlds, vol. 27, no.

3-4, pp. 321–329, 2016.

128 BIBLIOGRAPHY

[26] A. P. Twinanda, E. O. Alkan, A. Gangi, M. de Mathelin, and N. Padoy,

“Data-driven spatio-temporal rgbd feature encoding for action recog-

nition in operating rooms”, International journal of computer assisted

radiology and surgery, vol. 10, no. 6, pp. 737–747, 2015.

[27] G. Stavropoulos, D. Giakoumis, K. Moustakas, and D. Tzovaras, “Auto-

matic action recognition for assistive robots to support mci patients at

home”, in Proceedings of the 10th international conference on pervasive

technologies related to assistive environments, 2017, pp. 366–371.

[28] S. Ikemura and H. Fujiyoshi, “Real-time human detection using rela-

tional depth similarity features”, in Asian Conference on Computer Vi-

sion. Springer, 2010, pp. 25–38.

[29] L. Spinello and K. O. Arras, “People detection in rgb-d data”, in 2011

IEEE/RSJ International Conference on Intelligent Robots and Systems.

IEEE, 2011, pp. 3838–3843.

[30] Z. Zhang, “Microsoft kinect sensor and its effect”, IEEE multimedia,

vol. 19, no. 2, pp. 4–10, 2012.

[31] “Xtion rgb and depth sensor”, https://www.asus.com/3D-Sensor/, ac-

cessed: 2020-07-13.

[32] B. Freedman, A. Shpunt, M. Machline, and Y. Arieli, “Depth mapping

using projected patterns”, Apr. 3 2012, uS Patent 8,150,142.

[33] “The microsoft kinect sdk”, https://developer.microsoft.com/windows/

kinect/, accessed: 2020-07-13.

[34] “Openkinect project”, https://openkinect.org/, accessed: 2020-07-13.

[35] S. B. Gokturk, H. Yalcin, and C. Bamji, “A time-of-flight depth sensor-

system description, issues and solutions”, in 2004 conference on com-

puter vision and pattern recognition workshop. IEEE, 2004, pp. 35–35.

[36] R. Girshick, J. Shotton, P. Kohli, A. Criminisi, and A. Fitzgibbon, “Ef-

https://www.asus.com/3D-Sensor/
https://developer.microsoft.com/windows/kinect/
https://developer.microsoft.com/windows/kinect/
https://openkinect.org/

BIBLIOGRAPHY 129

ficient regression of general-activity human poses from depth images”,

in 2011 International Conference on Computer Vision. IEEE, 2011,

pp. 415–422.

[37] C. Plagemann, V. Ganapathi, D. Koller, and S. Thrun, “Real-time iden-

tification and localization of body parts from depth images”, in 2010

IEEE International Conference on Robotics and Automation. IEEE,

2010, pp. 3108–3113.

[38] B. Holt, E.-J. Ong, H. Cooper, and R. Bowden, “Putting the pieces to-

gether: Connected poselets for human pose estimation”, in 2011 IEEE

international conference on computer vision workshops (ICCV work-

shops). IEEE, 2011, pp. 1196–1201.

[39] L. Bourdev and J. Malik, “Poselets: Body part detectors trained using

3d human pose annotations”, in 2009 IEEE 12th International Confer-

ence on Computer Vision. IEEE, 2009, pp. 1365–1372.

[40] M. Andriluka, S. Roth, and B. Schiele, “Pictorial structures revisited:

People detection and articulated pose estimation”, in 2009 IEEE con-

ference on computer vision and pattern recognition. IEEE, 2009, pp.

1014–1021.

[41] D. Grest, J. Woetzel, and R. Koch, “Nonlinear body pose estimation

from depth images”, in Joint Pattern Recognition Symposium. Springer,

2005, pp. 285–292.

[42] M. Ye, X. Wang, R. Yang, L. Ren, and M. Pollefeys, “Accurate 3d pose

estimation from a single depth image”, in 2011 International Conference

on Computer Vision. IEEE, 2011, pp. 731–738.

[43] Q. Zhang, X. Song, X. Shao, R. Shibasaki, and H. Zhao, “Unsupervised

skeleton extraction and motion capture from 3d deformable matching”,

Neurocomputing, vol. 100, pp. 170–182, 2013.

[44] A. Baak, M. Müller, G. Bharaj, H.-P. Seidel, and C. Theobalt, “A data-

130 BIBLIOGRAPHY

driven approach for real-time full body pose reconstruction from a depth

camera”, in Consumer Depth Cameras for Computer Vision. Springer,

2013, pp. 71–98.

[45] Y. Zhu, B. Dariush, and K. Fujimura, “Controlled human pose esti-

mation from depth image streams”, in 2008 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition Workshops.

IEEE, 2008, pp. 1–8.

[46] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,

2016.

[47] H. Touvron, A. Vedaldi, M. Douze, and H. Jégou, “Fixing the

train-test resolution discrepancy: Fixefficientnet”, arXiv preprint

arXiv:2003.08237, 2020.

[48] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed,

and H. Arshad, “State-of-the-art in artificial neural network applica-

tions: A survey”, Heliyon, vol. 4, no. 11, p. e00938, 2018.

[49] A. Graves, “Supervised sequence labelling”, in Supervised sequence la-

belling with recurrent neural networks. Springer, 2012, pp. 5–13.

[50] J. E. Dayhoff and J. M. DeLeo, “Artificial neural networks: opening

the black box”, Cancer: Interdisciplinary International Journal of the

American Cancer Society, vol. 91, no. S8, pp. 1615–1635, 2001.

[51] B. Widrow and M. E. Hoff, “Adaptive switching circuits”, Stanford Univ

Ca Stanford Electronics Labs, Tech. Rep., 1960.

[52] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-

ing applied to document recognition”, Proceedings of the IEEE, vol. 86,

no. 11, pp. 2278–2324, 1998.

[53] R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, “Convolutional

neural networks: an overview and application in radiology”, Insights

BIBLIOGRAPHY 131

into imaging, vol. 9, no. 4, pp. 611–629, 2018.

[54] S. Ruder, “An overview of gradient descent optimization algorithms”,

arXiv preprint arXiv:1609.04747, 2016.

[55] N. Qian, “On the momentum term in gradient descent learning algo-

rithms”, Neural networks, vol. 12, no. 1, pp. 145–151, 1999.

[56] S. J. Pan and Q. Yang, “A survey on transfer learning”, IEEE Transac-

tions on knowledge and data engineering, vol. 22, no. 10, pp. 1345–1359,

2009.

[57] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:

A large-scale hierarchical image database”, in 2009 IEEE conference on

computer vision and pattern recognition. Ieee, 2009, pp. 248–255.

[58] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Er-

han, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolu-

tions”, in Proceedings of the IEEE conference on computer vision and

pattern recognition, 2015, pp. 1–9.

[59] M. Lin, Q. Chen, and S. Yan, “Network in network”, arXiv preprint

arXiv:1312.4400, 2013.

[60] S. Laraba, M. Brahimi, J. Tilmanne, and T. Dutoit, “3d skeleton-based

action recognition by representing motion capture sequences as 2d-rgb

images”, Computer Animation and Virtual Worlds, vol. 28, no. 3-4, p.

e1782, 2017.

[61] S. Laraba, J. Tilmanne, and T. Dutoit, “Leveraging pre-trained cnn

models for skeleton-based action recognition”, in International Confer-

ence on Computer Vision Systems. Springer, 2019, pp. 612–626.

[62] F. Han, B. Reily, W. Hoff, and H. Zhang, “Space-time representation

of people based on 3d skeletal data: A review”, Computer Vision and

Image Understanding, vol. 158, pp. 85–105, 2017.

132 BIBLIOGRAPHY

[63] R. Vemulapalli, F. Arrate, and R. Chellappa, “Human action recognition

by representing 3d skeletons as points in a lie group”, in Proceedings of

the IEEE conference on computer vision and pattern recognition, 2014,

pp. 588–595.

[64] L. L. Presti and M. La Cascia, “3d skeleton-based human action classi-

fication: A survey”, Pattern Recognition, vol. 53, pp. 130–147, 2016.

[65] A. Kar, N. Rai, K. Sikka, and G. Sharma, “Adascan: Adaptive scan

pooling in deep convolutional neural networks for human action recog-

nition in videos”, in Proceedings of the IEEE conference on computer

vision and pattern recognition, 2017, pp. 3376–3385.

[66] K. Simonyan and A. Zisserman, “Two-stream convolutional networks for

action recognition in videos”, in Advances in neural information process-

ing systems, 2014, pp. 568–576.

[67] A. Ullah, J. Ahmad, K. Muhammad, M. Sajjad, and S. W. Baik, “Action

recognition in video sequences using deep bi-directional lstm with cnn

features”, IEEE Access, vol. 6, pp. 1155–1166, 2017.

[68] A. Graves, “Neural networks”, in Supervised sequence labelling with re-

current neural networks. Springer, 2012, pp. 15–33.

[69] Y. Du, Y. Fu, and L. Wang, “Representation learning of temporal dy-

namics for skeleton-based action recognition”, IEEE Transactions on

Image Processing, vol. 25, no. 7, pp. 3010–3022, 2016.

[70] V. Veeriah, N. Zhuang, and G.-J. Qi, “Differential recurrent neural net-

works for action recognition”, in Proceedings of the IEEE international

conference on computer vision, 2015, pp. 4041–4049.

[71] W. Zhu, C. Lan, J. Xing, W. Zeng, Y. Li, L. Shen, and X. Xie, “Co-

occurrence feature learning for skeleton based action recognition using

regularized deep lstm networks”, in Thirtieth AAAI Conference on Ar-

tificial Intelligence, 2016.

BIBLIOGRAPHY 133

[72] A. Shahroudy, J. Liu, T.-T. Ng, and G. Wang, “Ntu rgb+ d: A large

scale dataset for 3d human activity analysis”, in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2016, pp. 1010–

1019.

[73] J. Gu, G. Wang, and T. Chen, “Recurrent highway networks with lan-

guage cnn for image captioning”, arXiv preprint arXiv:1612.07086, 2016.

[74] J. Weston, S. Chopra, and A. Bordes, “Memory networks”, arXiv

preprint arXiv:1410.3916, 2014.

[75] R. Pascanu, C. Gulcehre, K. Cho, and Y. Bengio, “How to construct

deep recurrent neural networks”, arXiv preprint arXiv:1312.6026, 2013.

[76] T. N. Sainath, O. Vinyals, A. Senior, and H. Sak, “Convolutional, long

short-term memory, fully connected deep neural networks”, in 2015

IEEE International Conference on Acoustics, Speech and Signal Pro-

cessing (ICASSP). IEEE, 2015, pp. 4580–4584.

[77] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing the

gap to human-level performance in face verification”, in Proceedings of

the IEEE conference on computer vision and pattern recognition, 2014,

pp. 1701–1708.

[78] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning”, nature, vol. 521,

no. 7553, pp. 436–444, 2015.

[79] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Van Gool,

“Temporal segment networks: Towards good practices for deep action

recognition”, in European conference on computer vision. Springer,

2016, pp. 20–36.

[80] J. Liu, G. Zhang, Y. Liu, L. Tian, and Y. Q. Chen, “An ultra-fast

human detection method for color-depth camera”, Journal of Visual

Communication and Image Representation, vol. 31, pp. 177–185, 2015.

134 BIBLIOGRAPHY

[81] J. Liu, Y. Liu, G. Zhang, P. Zhu, and Y. Q. Chen, “Detecting and

tracking people in real time with rgb-d camera”, Pattern Recognition

Letters, vol. 53, pp. 16–23, 2015.

[82] J. Liu, Y. Liu, Y. Cui, and Y. Q. Chen, “Real-time human detection and

tracking in complex environments using single rgbd camera”, in 2013

IEEE International Conference on Image Processing. IEEE, 2013, pp.

3088–3092.

[83] G. Zhang, L. Tian, Y. Liu, J. Liu, X. A. Liu, Y. Liu, and Y. Q. Chen,

“Robust real-time human perception with depth camera.” in ECAI,

2016, pp. 304–310.

[84] F. Lv and R. Nevatia, “Recognition and segmentation of 3-d human

action using hmm and multi-class adaboost”, in European conference on

computer vision. Springer, 2006, pp. 359–372.

[85] L. Rabiner and B. Juang, “An introduction to hidden markov models”,

ieee assp magazine, vol. 3, no. 1, pp. 4–16, 1986.

[86] Y. Freund and R. E. Schapire, “A desicion-theoretic generalization of on-

line learning and an application to boosting”, in European conference on

computational learning theory. Springer, 1995, pp. 23–37.

[87] L. Xia, C.-C. Chen, and J. K. Aggarwal, “View invariant human ac-

tion recognition using histograms of 3d joints”, in 2012 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition Work-

shops. IEEE, 2012, pp. 20–27.

[88] X. Yang and Y. L. Tian, “Eigenjoints-based action recognition using

naive-bayes-nearest-neighbor”, in 2012 IEEE computer society confer-

ence on computer vision and pattern recognition workshops. IEEE,

2012, pp. 14–19.

[89] C. Zhang and Y. Tian, “Rgb-d camera-based daily living activity recog-

nition”, Journal of computer vision and image processing, vol. 2, no. 4,

BIBLIOGRAPHY 135

p. 12, 2012.

[90] S. Sempena, N. U. Maulidevi, and P. R. Aryan, “Human action recog-

nition using dynamic time warping”, in Proceedings of the 2011 Inter-

national Conference on Electrical Engineering and Informatics. IEEE,

2011, pp. 1–5.

[91] G. Evangelidis, G. Singh, and R. Horaud, “Skeletal quads: Human ac-

tion recognition using joint quadruples”, in 2014 22nd International

Conference on Pattern Recognition. IEEE, 2014, pp. 4513–4518.

[92] E. Ghorbel, R. Boutteau, J. Boonaert, X. Savatier, and S. Lecoeuche,

“Kinematic spline curves: A temporal invariant descriptor for fast action

recognition”, Image and Vision Computing, vol. 77, pp. 60–71, 2018.

[93] L. Wang, D. Q. Huynh, and P. Koniusz, “A comparative review of re-

cent kinect-based action recognition algorithms”, IEEE Transactions on

Image Processing, vol. 29, pp. 15–28, 2019.

[94] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependen-

cies with gradient descent is difficult”, IEEE transactions on neural net-

works, vol. 5, no. 2, pp. 157–166, 1994.

[95] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of train-

ing recurrent neural networks”, in International Conference on Machine

Learning, 2013, pp. 1310–1318.

[96] S. Hochreiter and J. Schmidhuber, “Long short-term memory”, Neural

computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[97] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio, “On the

properties of neural machine translation: Encoder-decoder approaches”,

arXiv preprint arXiv:1409.1259, 2014.

[98] J. Liu, A. Shahroudy, D. Xu, and G. Wang, “Spatio-temporal lstm with

trust gates for 3d human action recognition”, in European conference on

136 BIBLIOGRAPHY

computer vision. Springer, 2016, pp. 816–833.

[99] S. Song, C. Lan, J. Xing, W. Zeng, and J. Liu, “An end-to-end spatio-

temporal attention model for human action recognition from skeleton

data”, in Thirty-first AAAI conference on artificial intelligence, 2017.

[100] W. Li, L. Wen, M.-C. Chang, S. Nam Lim, and S. Lyu, “Adaptive

rnn tree for large-scale human action recognition”, in Proceedings of the

IEEE International Conference on Computer Vision, 2017, pp. 1444–

1452.

[101] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic

convolutional and recurrent networks for sequence modeling”, arXiv

preprint arXiv:1803.01271, 2018.

[102] Y. Zhang, M. Pezeshki, P. Brakel, S. Zhang, C. L. Y. Bengio, and

A. Courville, “Towards end-to-end speech recognition with deep con-

volutional neural networks”, arXiv preprint arXiv:1701.02720, 2017.

[103] J. Gehring, M. Auli, D. Grangier, and Y. N. Dauphin, “A convolu-

tional encoder model for neural machine translation”, arXiv preprint

arXiv:1611.02344, 2016.

[104] N. Kalchbrenner, L. Espeholt, K. Simonyan, A. v. d. Oord, A. Graves,

and K. Kavukcuoglu, “Neural machine translation in linear time”, arXiv

preprint arXiv:1610.10099, 2016.

[105] H. Adel and H. Schütze, “Exploring different dimensions of attention for

uncertainty detection”, arXiv preprint arXiv:1612.06549, 2016.

[106] S. Ji, W. Xu, M. Yang, and K. Yu, “3d convolutional neural networks

for human action recognition”, IEEE transactions on pattern analysis

and machine intelligence, vol. 35, no. 1, pp. 221–231, 2013.

[107] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and

L. Fei-Fei, “Large-scale video classification with convolutional neural

BIBLIOGRAPHY 137

networks”, in Proceedings of the IEEE conference on Computer Vision

and Pattern Recognition, 2014, pp. 1725–1732.

[108] P. Wang, Z. Li, Y. Hou, and W. Li, “Action recognition based on joint

trajectory maps using convolutional neural networks”, in Proceedings of

the 2016 ACM on Multimedia Conference. ACM, 2016, pp. 102–106.

[109] Y. Hou, Z. Li, P. Wang, and W. Li, “Skeleton optical spectra-based

action recognition using convolutional neural networks”, IEEE Transac-

tions on Circuits and Systems for Video Technology, vol. 28, no. 3, pp.

807–811, 2016.

[110] C. Li, Y. Hou, P. Wang, and W. Li, “Joint distance maps based action

recognition with convolutional neural networks”, IEEE Signal Processing

Letters, vol. 24, no. 5, pp. 624–628, 2017.

[111] M. Liu, H. Liu, and C. Chen, “Enhanced skeleton visualization for view

invariant human action recognition”, Pattern Recognition, vol. 68, pp.

346–362, 2017.

[112] Q. Ke, M. Bennamoun, S. An, F. Sohel, and F. Boussaid, “A new repre-

sentation of skeleton sequences for 3d action recognition”, in Proceedings

of the IEEE conference on computer vision and pattern recognition, 2017,

pp. 3288–3297.

[113] H. Liu, J. Tu, and M. Liu, “Two-stream 3d convolutional neural network

for skeleton-based action recognition”, arXiv preprint arXiv:1705.08106,

2017.

[114] S. Yan, Y. Xiong, and D. Lin, “Spatial temporal graph convolu-

tional networks for skeleton-based action recognition”, arXiv preprint

arXiv:1801.07455, 2018.

[115] L. Shi, Y. Zhang, J. Cheng, and H. Lu, “Two-stream adaptive graph con-

volutional networks for skeleton-based action recognition”, in Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recogni-

138 BIBLIOGRAPHY

tion, 2019, pp. 12 026–12 035.

[116] M. Li, S. Chen, X. Chen, Y. Zhang, Y. Wang, and Q. Tian, “Actional-

structural graph convolutional networks for skeleton-based action recog-

nition”, in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2019, pp. 3595–3603.

[117] H. Prashanth, H. Shashidhara, and B. M. KN, “Image scaling compari-

son using universal image quality index”, in 2009 International Confer-

ence on Advances in Computing, Control, and Telecommunication Tech-

nologies. IEEE, 2009, pp. 859–863.

[118] J. Titus and S. Geroge, “A comparison study on different interpolation

methods based on satellite images”, International Journal of Engineer-

ing Research & Technology, vol. 2, no. 6, pp. 82–85, 2013.

[119] C. Li, S. Sun, X. Min, W. Lin, B. Nie, and X. Zhang, “End-to-end learn-

ing of deep convolutional neural network for 3d human action recogni-

tion”, in 2017 IEEE International Conference on Multimedia & Expo

Workshops (ICMEW). IEEE, 2017, pp. 609–612.

[120] Z. Huang, C. Wan, T. Probst, and L. Van Gool, “Deep learning on

lie groups for skeleton-based action recognition”, in Proceedings of the

IEEE conference on computer vision and pattern recognition, 2017, pp.

6099–6108.

[121] J.-F. Hu, W.-S. Zheng, L. Ma, G. Wang, J. Lai, and J. Zhang, “Early

action prediction by soft regression”, IEEE transactions on pattern anal-

ysis and machine intelligence, vol. 41, no. 11, pp. 2568–2583, 2018.

[122] J.-F. Hu, W.-S. Zheng, J. Lai, and J. Zhang, “Jointly learning hetero-

geneous features for rgb-d activity recognition”, in Proceedings of the

IEEE conference on computer vision and pattern recognition, 2015, pp.

5344–5352.

[123] J. Liu, A. Shahroudy, D. Xu, A. C. Kot, and G. Wang, “Skeleton-based

BIBLIOGRAPHY 139

action recognition using spatio-temporal lstm network with trust gates”,

IEEE transactions on pattern analysis and machine intelligence, vol. 40,

no. 12, pp. 3007–3021, 2017.

[124] J. Liu, G. Wang, P. Hu, L.-Y. Duan, and A. C. Kot, “Global context-

aware attention lstm networks for 3d action recognition”, in Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition,

2017, pp. 1647–1656.

[125] J. Liu, A. Shahroudy, G. Wang, L.-Y. Duan, and A. C. Kot, “Skeleton-

based online action prediction using scale selection network”, IEEE

transactions on pattern analysis and machine intelligence, vol. 42, no. 6,

pp. 1453–1467, 2019.

[126] Q. Ke, M. Bennamoun, S. An, F. Sohel, and F. Boussaid, “Learning clip

representations for skeleton-based 3d action recognition”, IEEE Trans-

actions on Image Processing, vol. 27, no. 6, pp. 2842–2855, 2018.

[127] M. Liu and J. Yuan, “Recognizing human actions as the evolution of pose

estimation maps”, in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2018, pp. 1159–1168.

[128] W. Li, Z. Zhang, and Z. Liu, “Action recognition based on a bag of

3d points”, in 2010 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition-Workshops. IEEE, 2010, pp. 9–14.

[129] F. Ofli, R. Chaudhry, G. Kurillo, R. Vidal, and R. Bajcsy, “Sequence

of the most informative joints (smij): A new representation for human

skeletal action recognition”, Journal of Visual Communication and Im-

age Representation, vol. 25, no. 1, pp. 24–38, 2014.

[130] J. Martens and I. Sutskever, “Learning recurrent neural networks with

hessian-free optimization”, in Proceedings of the 28th international con-

ference on machine learning (ICML-11). Citeseer, 2011, pp. 1033–1040.

[131] M. Müller and T. Röder, “Motion templates for automatic classification

140 BIBLIOGRAPHY

and retrieval of motion capture data”, in Proceedings of the 2006 ACM

SIGGRAPH/Eurographics symposium on Computer animation, 2006,

pp. 137–146.

[132] C. Ellis, S. Z. Masood, M. F. Tappen, J. J. LaViola, and R. Sukthankar,

“Exploring the trade-off between accuracy and observational latency in

action recognition”, International Journal of Computer Vision, vol. 101,

no. 3, pp. 420–436, 2013.

[133] X. Zhao, X. Li, C. Pang, X. Zhu, and Q. Z. Sheng, “Online human

gesture recognition from motion data streams”, in Proceedings of the

21st ACM international conference on Multimedia, 2013, pp. 23–32.

[134] D. Wu and L. Shao, “Leveraging hierarchical parametric networks for

skeletal joints based action segmentation and recognition”, in Proceed-

ings of the IEEE conference on computer vision and pattern recognition,

2014, pp. 724–731.

[135] J. Bao, L. Pei, and X. Zhao, “Action recognition based on conceptors

of skeleton joint trajectories”, in Revista de la Facultad de Ingenieŕıa

U.C.V, 2014, pp. 11–22.

[136] M. Müller, T. Röder, M. Clausen, B. Eberhardt, B. Krüger, and A. We-

ber, “Documentation mocap database hdm05”, Universität Bonn, Tech.

Rep. CG-2007-2, June 2007.

[137] Z. Huang and L. Van Gool, “A riemannian network for spd matrix learn-

ing”, in Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[138] R. Vemulapalli and R. Chellapa, “Rolling rotations for recognizing hu-

man actions from 3d skeletal data”, in Proceedings of the IEEE confer-

ence on computer vision and pattern recognition, 2016, pp. 4471–4479.

[139] S. Aubry, S. Laraba, J. Tilmanne, and T. Dutoit, “Action recognition

based on 2d skeletons extracted from rgb videos”, in MATEC Web of

Conferences, vol. 277. EDP Sciences, 2019, p. 02034.

BIBLIOGRAPHY 141

[140] “Vidcon conference for and about online video”, https://www.vidcon.

com/, accessed: 2020-07-15.

[141] J. W. Davis and A. F. Bobick, “The representation and recognition of

human movement using temporal templates”, in Proceedings of IEEE

Computer Society Conference on Computer Vision and Pattern Recog-

nition. IEEE, 1997, pp. 928–934.

[142] L. Gorelick, M. Blank, E. Shechtman, M. Irani, and R. Basri, “Actions as

space-time shapes”, IEEE transactions on pattern analysis and machine

intelligence, vol. 29, no. 12, pp. 2247–2253, 2007.

[143] E. Yu and J. K. Aggarwal, “Human action recognition with extremities

as semantic posture representation”, in 2009 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition Workshops.

IEEE, 2009, pp. 1–8.

[144] I. Laptev, “On space-time interest points”, International journal of com-

puter vision, vol. 64, no. 2-3, pp. 107–123, 2005.

[145] P. Dollár, V. Rabaud, G. Cottrell, and S. Belongie, “Behavior recog-

nition via sparse spatio-temporal features”, in 2005 IEEE International

Workshop on Visual Surveillance and Performance Evaluation of Track-

ing and Surveillance. IEEE, 2005, pp. 65–72.

[146] M. Bregonzio, S. Gong, and T. Xiang, “Recognising action as clouds of

space-time interest points”, in 2009 IEEE conference on computer vision

and pattern recognition. IEEE, 2009, pp. 1948–1955.

[147] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu, “Dense trajectories and

motion boundary descriptors for action recognition”, International jour-

nal of computer vision, vol. 103, no. 1, pp. 60–79, 2013.

[148] R. Christoph and F. A. Pinz, “Spatiotemporal residual networks for

video action recognition”, Advances in Neural Information Processing

Systems, pp. 3468–3476, 2016.

https://www.vidcon.com/
https://www.vidcon.com/

142 BIBLIOGRAPHY

[149] C. Feichtenhofer, A. Pinz, and R. P. Wildes, “Spatiotemporal multiplier

networks for video action recognition”, in Proceedings of the IEEE con-

ference on computer vision and pattern recognition, 2017, pp. 4768–4777.

[150] Y. Zhu, Z. Lan, S. Newsam, and A. Hauptmann, “Hidden two-stream

convolutional networks for action recognition”, in Asian Conference on

Computer Vision. Springer, 2018, pp. 363–378.

[151] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning

spatiotemporal features with 3d convolutional networks”, in Proceed-

ings of the IEEE international conference on computer vision, 2015, pp.

4489–4497.

[152] Z. Qiu, T. Yao, and T. Mei, “Learning spatio-temporal representation

with pseudo-3d residual networks”, in proceedings of the IEEE Interna-

tional Conference on Computer Vision, 2017, pp. 5533–5541.

[153] D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and M. Paluri, “A

closer look at spatiotemporal convolutions for action recognition”, in

Proceedings of the IEEE conference on Computer Vision and Pattern

Recognition, 2018, pp. 6450–6459.

[154] Z. Wu, X. Wang, Y.-G. Jiang, H. Ye, and X. Xue, “Modeling spatial-

temporal clues in a hybrid deep learning framework for video classifi-

cation”, in Proceedings of the 23rd ACM international conference on

Multimedia, 2015, pp. 461–470.

[155] J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals,

R. Monga, and G. Toderici, “Beyond short snippets: Deep networks for

video classification”, in Proceedings of the IEEE conference on computer

vision and pattern recognition, 2015, pp. 4694–4702.

[156] Z. Luo, B. Peng, D.-A. Huang, A. Alahi, and L. Fei-Fei, “Unsupervised

learning of long-term motion dynamics for videos”, in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 2017,

BIBLIOGRAPHY 143

pp. 2203–2212.

[157] W. Zhu, J. Hu, G. Sun, X. Cao, and Y. Qiao, “A key volume mining deep

framework for action recognition”, in Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, 2016, pp. 1991–1999.

[158] S. Ma, L. Sigal, and S. Sclaroff, “Space-time tree ensemble for action

recognition”, in Proceedings of the IEEE Conference on Computer Vi-

sion and Pattern Recognition, 2015, pp. 5024–5032.

[159] G. Gkioxari and J. Malik, “Finding action tubes”, in Proceedings of the

IEEE conference on computer vision and pattern recognition, 2015, pp.

759–768.

[160] S. Singh, C. Arora, and C. Jawahar, “First person action recognition

using deep learned descriptors”, in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2016, pp. 2620–2628.

[161] M. Ma, H. Fan, and K. M. Kitani, “Going deeper into first-person ac-

tivity recognition”, in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2016, pp. 1894–1903.

[162] C. Wang, Y. Wang, and A. L. Yuille, “An approach to pose-based action

recognition”, in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2013, pp. 915–922.

[163] G. Chéron, I. Laptev, and C. Schmid, “P-cnn: Pose-based cnn features

for action recognition”, in Proceedings of the IEEE international confer-

ence on computer vision, 2015, pp. 3218–3226.

[164] M. Zolfaghari, G. L. Oliveira, N. Sedaghat, and T. Brox, “Chained multi-

stream networks exploiting pose, motion, and appearance for action clas-

sification and detection”, in Proceedings of the IEEE International Con-

ference on Computer Vision, 2017, pp. 2904–2913.

[165] F. Baradel, C. Wolf, and J. Mille, “Human activity recognition with

144 BIBLIOGRAPHY

pose-driven attention to rgb”, in Proceedings of the 29th British Machine

Vision Conference, 2018.

[166] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional

networks: Visualising image classification models and saliency maps”,

arXiv preprint arXiv:1312.6034, 2013.

[167] A. Mahendran and A. Vedaldi, “Understanding deep image represen-

tations by inverting them”, in Proceedings of the IEEE conference on

computer vision and pattern recognition, 2015, pp. 5188–5196.

[168] A. Dosovitskiy and T. Brox, “Inverting visual representations with con-

volutional networks”, in Proceedings of the IEEE conference on computer

vision and pattern recognition, 2016, pp. 4829–4837.

[169] F. Doshi-Velez and B. Kim, “Towards a rigorous science of interpretable

machine learning”, arXiv preprint arXiv:1702.08608, 2017.

[170] “Amazon mechanical turk”, https://www.mturk.com/, accessed: 2020-

07-13.

[171] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm

for deep belief nets”, Neural computation, vol. 18, no. 7, pp. 1527–1554,

2006.

[172] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,

“Stacked denoising autoencoders: Learning useful representations in a

deep network with a local denoising criterion”, Journal of machine learn-

ing research, vol. 11, no. Dec, pp. 3371–3408, 2010.

[173] Y. LeCun and C. Cortes, The MNIST Database of Handwritten Digits,

1998.

[174] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson, “Under-

standing neural networks through deep visualization”, arXiv preprint

arXiv:1506.06579, 2015.

https://www.mturk.com/

BIBLIOGRAPHY 145

[175] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus, “Deconvolu-

tional networks”, in 2010 IEEE Computer Society Conference on com-

puter vision and pattern recognition. IEEE, 2010, pp. 2528–2535.

[176] Z. Qin, F. Yu, C. Liu, and X. Chen, “How convolutional neural net-

work see the world-a survey of convolutional neural network visualization

methods”, arXiv preprint arXiv:1804.11191, 2018.

[177] M. D. Zeiler, G. W. Taylor, and R. Fergus, “Adaptive deconvolutional

networks for mid and high level feature learning”, in 2011 International

Conference on Computer Vision. IEEE, 2011, pp. 2018–2025.

[178] J. Tilmanne and N. d’Alessandro, “Motion machine: A new framework

for motion capture signal feature prototyping”, in 2015 23rd European

Signal Processing Conference (EUSIPCO). IEEE, 2015, pp. 2401–2405.

