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Preface

Identifying the underlying structure of a data set and extracting meaningful information is a key
problem in data analysis. Simple and powerful methods to achieve this goal are linear dimen-
sionality reduction (LDR) techniques, which are equivalent to low-rank matrix approximations
(LRMA). Examples of LDR techniques are principal component analysis (PCA), independent
component analysis, sparse PCA, robust PCA, low-rank matrix completion, and sparse compo-
nent analysis. The reason for the success of this type of methods is that, although simple, they are
applicable in a wide range of applications such as recommender systems, model-order reduction
and system identification, clustering, image analysis, and blind source separation, to cite a few.

Among LRMA techniques, nonnegative matrix factorization (NMF) requires the factors of
the low-rank approximation to be componentwise nonnegative. This makes it possible to inter-
pret them meaningfully, for example when they correspond to nonnegative physical quantities.
Applications of NMF include extracting parts of faces (such as eyes, noses, and lips) in a set of
facial images, identifying topics in a set of documents, learning hidden Markov models, extract-
ing materials and their abundances in hyperspectral images, separating audio sources from their
mixture, detecting communities in large networks, analyzing medical images, and decomposing
gene expression microarrays.

Aim of the book The aim of this book is to provide a comprehensive account of the most
important aspects of the NMF problem:

• Theoretical aspects: the nonnegative rank, the nonuniqueness/identifiability of NMF solu-
tions, the geometric interpretation of NMF, and computational complexity issues.

• Models: choice of the objective function and regularizations, link with well-known tech-
niques such as k-means, and use of additional constraints such as orthogonality or sym-
metry.

• Algorithms: heuristic algorithms using standard nonlinear optimization schemes such as
block coordinate descent methods, and provably correct algorithms under appropriate as-
sumptions.

• Applications: they include image analysis, document classification, hyperspectral unmix-
ing, audio source separation, topic modeling, and community detection.

This book is accessible to a wide audience. In particular it is intended for people who want
to know about the workings of NMF. It also aims to give more insights to practitioners so that
they can use NMF meaningfully. To read this book, basic knowledge of linear algebra and
optimization is needed.

xi



xii Preface

Why is this book important? Although NMF has been studied extensively for the last
20 years, there is currently only one book on the topic, by Cichocki et al. [98] (2009) which is
already more than 10 years old. It focuses on iterative algorithms and applications, and many
aspects of NMF are not covered in that book—especially since many important results have been
obtained in the last 10 years.1

The aim of this book is to fill in this gap by providing more insights into the theoretical
aspects of NMF. These are key to be able to use NMF effectively and meaningfully in practice.
This will allow the reader to make better use of NMF as a computational tool. This book is aimed
at researchers who want to understand the NMF problem; for example,

• You do not know (much) NMF and want to discover this problem, why and how it works,
and what it can be used for. This book would be ideal for example for a master’s or Ph.D.
student starting to work on NMF.

• You are using NMF for applications but you would like to understand better its subtly
difficult aspects such as its computational complexity, its geometric interpretation, or its
nonuniqueness/identifiability issues. Also, you would like to know about the state-of-the-
art algorithms.

• You are already rather familiar with NMF but have not yet studied all of its aspects (for
example you would like to know more about the nonnegative rank, or the nonuniqueness
of NMF solutions). This book will allow you to delve into different aspects of the NMF
problem and will give you useful references.

Moreover, this book contains a few new results not present in the literature (as far as I know):
bounds on the nonnegative rank under rank-one perturbations (Theorem 3.3), the study of the
generic value of the nonnegative rank (Section 3.3.2), the identifiability of orthogonal NMF
(Section 4.3.2), and a necessary condition for the sufficiently scattered condition, a crucial notion
when studying the uniqueness of NMF solutions (see Theorem 4.28).

MATLAB code All algorithms and numerical experiments presented in this book are avail-
able from bookstore.siam.org/di02/bonus. When we discuss an algorithm, or display re-
sults from a numerical experiment, the corresponding MATLAB file will be indicated using

[Matlab file: Name of file]

It can be found in the folder of the corresponding chapter. Hence the interested reader can
easily find the corresponding MATLAB file. To provide a better view of all the NMF algorithms
available with this book, there is an exception for NMF algorithms: they can all be found in the
folder [algorithms]. For example, the separable NMF algorithms presented in Chapter 7 can be
found in the folder [algorithms/separable NMF], although the numerical experiments presented
in Chapter 7 can be found in the folder [Chapter 7 - Separable NMF].

All tests in this book are performed using MATLAB R2019b on a laptop Intel Core i7-7500U
CPU @2.9GHz, 24GB RAM.

How to use this book The book is organized so that it is possible to read only subsets of
the chapters depending on the reader’s interests. The book was written so that each chapter is

1Such as the identifiability results based on the sufficiently scattered condition (Chapter 4), and the polynomial-time
algorithms for separable NMF (Chapter 7).

https://bookstore.siam.org/di02/bonus


Preface xiii

as self-contained as possible. Each chapter can be thought of as a survey on the corresponding
topic. Moreover, each chapter ends with take-home messages that summarize and highlight the
important results covered in the chapter. The book is organized as follows.

Chapter 1 serves as an introduction and the problem definition. It contains the description
of four key applications of NMF that will be used throughout the book as illustrations. It also
contain a historical account of the problem explaining when, why, and how the NMF problem
came about. Then the book is divided into two parts.

Part I. Exact factorizations The first part considers the Exact NMF problem: given the non-
negative input matrix X and a factorization rank r, find nonnegative factors W with r columns
and H with r rows such that X = WH . Chapter 2 discusses theoretical aspects of Exact NMF
and in particular its geometric interpretation; this is crucial to design algorithms but also to use
NMF meaningfully in practice. Section 2.1 on the geometric interpretation of NMF is useful to
understand Chapters 4 and 7. The second part of this chapter discusses a more constrained NMF
problem where the first factor W is required to have the same rank as the input matrix, which is
referred to as restricted Exact NMF, and its link with a geometric problem, namely, the nested
polytope problem. The third part of the chapter discusses the computational complexity of these
problems. Chapter 3 digs into theoretical aspects of the nonnegative rank (the smallest r such
that an Exact NMF exists): its properties, its lower and upper bounds, and its link with extended
formulations of polytopes and with communication complexity. Chapter 4 discusses the iden-
tifiability issues when using NMF in practice. In fact, NMF decompositions are in general not
unique, while most applications are looking for the unique ground truth underlying factors. This
chapter explains how to recover the true factors, and under which conditions it is possible. Sec-
tion 4.2 focuses on uniqueness conditions for the plain NMF model, while Section 4.3 discusses
regularized NMF models, namely, orthogonal, separable, minimum-volume, and sparse NMF,
that lead to unique decompositions under milder conditions.

Part II. Approximate factorizations The second part of the book considers approximate NMF
decompositions, where WH ≈ X , which we refer to as NMF for short as it is the standard in
the literature. Chapter 5 discusses several important variants of the NMF model that use ad-
ditional constraints, regularizations, and different objective functions; for example symmetric
NMF which requires W = H⊤. As discussed in Chapter 4, considering such variants in practice
is key to obtain unique solutions. This chapter also discusses different models that are closely re-
lated to NMF such as k-means and probabilistic latent semantic analysis/indexing (PLSA/PLSI).
Chapter 6 discusses the computational complexity of NMF, which is NP-hard2 in general. Chap-
ter 7 considers NMF under the separability assumption, referred to as separable NMF, where the
columns of the first factor W can be found among the columns of X . Although it is a strong as-
sumption, it makes sense in several applications. Moreover, it allows us to provably solve NMF
efficiently, that is, in polynomial time, and renders the solution unique, hence resolving two key
issues of NMF (NP-hardness and identifiability). This chapter presents the main algorithms for
separable NMF, discusses their robustness to noise, and compares them on several synthetic data
sets. Chapter 8 focuses on iterative heuristic algorithms to compute NMF solutions. The state-of-
the-art algorithms for NMF are presented; they are based on standard optimization techniques.
We also discuss convergence guarantees and provide some numerical comparisons. Chapter 9
presents three more applications of NMF, as well as pointers to more applications.

2NP-hardness of a problem implies that unless P=NP, there exists no algorithm running in a number of operations
polynomial in the size of the input that solves the problem.
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Disclaimer The book presents the NMF problem from my own perspective and is clearly
biased toward my own work and research interests. I apologize for not discussing or referring to
many relevant works (that I am either unfamiliar with or unaware of). This book is a summary
of my current knowledge about NMF and is by no means comprehensive. Any feedback on the
book is more than welcome and is highly encouraged.

Tensors The NMF model can be directly generalized to tensors, in which case it is referred
to as nonnegative tensor factorization (NTF) or nonnegative canonical polyadic decomposition
(nonnegative CPD). It is out of the scope of this book to discuss this important extension, and
we stick to the matrix case. However, one should keep this connection in mind as results from
the matrix case can be used in the tensor case. For example, NP-hardness results for NMF (see
Chapter 6) directly apply to NTF since NTF is a generalization of NMF, and NMF algorithms
based on the block coordinate descent framework described in Chapter 8 directly extend to NTF.
We refer the interested reader to [283, 98, 418] and the references therein for more details on
tensor factorizations.
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Notation

Sets of scalars, vectors, matrices

R set of real numbers
R+ set of nonnegative real numbers
R++ set of positive real numbers
Rn set of real column vectors of dimension n
Rm×n set of real m-by-n matrices
Rn

+ set of nonnegative real column vectors of dimension n
Rm×n

+ set of m-by-n nonnegative real matrices
Sn set of n-by-n symmetric matrices
Sn+ set of n-by-n positive semidefinite matrices
Sn++ set of n-by-n positive definite matrices
Cn set of n-by-n copositive matrices
Cn
+ set of n-by-n completely positive matrices
C second-order cone

{
x ∈ Rr | e⊤x ≥

√
r − 1∥x∥2

}
C∗ second-order cone

{
x ∈ Rr | e⊤x ≥ ∥x∥2

}
, the dual of C (p. 113)

∆n unit simplex of dimension n, that is,
∆n = {x ∈ Rn | x ≥ 0,

∑n
i=1 xi = 1}

Sn convex hull of the unit simplex and the origin, that is,
Sn = {x ∈ Rn | x ≥ 0,

∑n
i=1 xi ≤ 1}

Submatrices, transpose and inverse

xi of x(i) ith entry of the vector x
Ai: or A(i, :) ith row of A
A:j or A(:, j) jth column of A
Aij or A(i, j) entry at position (i, j) of A
A(I, J) submatrix of A with row (resp. column) indices in I (resp. J)

[A B;C D] We use Matlab notation: [A B;C D] =
(

A B
C D

)
A⊤ transpose of the matrix A, (A⊤)ij = Aji

A−1 inverse of the square matrix A, A−1A = AA−1 = I
A−⊤ inverse of the transpose of the square matrix A, that is,

A−⊤A⊤ = A⊤A−⊤ = I

xv



xvi Notation

Special vectors and matrices

0 matrix of zeros of appropriate dimension
0m×n m-by-n matrix of zeros
In identity matrix of dimension n
I identity matrix of appropriate dimension
e vector of all ones of appropriate dimension
ek kth unit vector with ek(k) = 1 and ek(i) = 0 for all i ̸= k, that is,

ek = I(:, k)

Norms

∥.∥1 ℓ1 norm, ∥x∥1 =
∑n

i=1 |xi|, x ∈ Rn

componentwise matrix ℓ1 norm, ∥A∥1 =
∑

i,j |Ai,j |, A ∈ Rm×n

∥.∥2 vector ℓ2 norm, ∥x∥2 =
√∑n

i=1 x
2
i , x ∈ Rn

matrix ℓ2 norm, ∥A∥2 = maxx∈Rn,∥x∥2=1 ∥Ax∥2, A ∈ Rm×n

∥.∥F Frobenius norm, ∥A∥F =
√∑m

i=1

∑n
j=1A

2
ij , A ∈ Rm×n

∥.∥∞ vector ℓ∞ norm, ∥x∥∞ = max1≤i≤n |xi|, x ∈ Rn

componentwise matrix ℓ∞ norm, ∥A∥∞ = maxi,j |Ai,j |, A ∈ Rm×n

∥.∥0 ℓ0 “norm,” ∥x∥0 =
∣∣{i|xi ̸= 0}

∣∣, x ∈ Rm

∥.∥1,q matrix ℓ1,q norm, ∥A∥1,q =
∑m

i=1 ∥A(i, :)∥q , A ∈ Rm×n

Inequalities

A ≥ 0 A is a nonnegative matrix, that is, A(i, j) ≥ 0 for all i, j
A ≥ B This means A−B ≥ 0
A ⪰ 0 A is a PSD matrix
A ⪰ B A−B is a PSD matrix
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Functions and sets on matrices

⟨., .⟩ Euclidean scalar product, that is,
for A,B ∈ Rm×n, ⟨A,B⟩ =

∑m
i=1

∑n
j=1AijBij ,

σi(A) ith singular values of matrix A, in nondecreasing order
σmax(A) largest singular value of A, that is, σ1(A)
σmin(A) smallest singular value of A ∈ Rm×n, that is, σmin(m,n)(A)

κ(A) condition number of A, κ(A) = σmax(A)
σmin(A)

det(A) determinant of A
tr(A) trace of A, that is, sum of its diagonal entries
diag(.) For a ∈ Rn, A = diag(a) ∈ Rn×n is a diagonal matrix such that

Aii = ai for all i
For A ∈ Rn×n, a = diag(A) ∈ Rn is the vector containing
the diagonal entries of A

A A is the matrix A without the last row
rank(A) rank of A
rank+(A) nonnegative rank of A (p. 55)
rank∗+(A) restricted nonnegative rank of A (p. 35)
cp-rank(A) completely positive rank of A (p. 79)
k-rank(A) Kruskal rank of A (p. 151)
cone(A) conical hull of the columns of A (p. 20)
conv(A) convex hull of the columns of A (p. 21)
col(A) column space of A (p. 21)
aff(A) affine hull of the columns of A (p. 21)
A ◦B componentwise multiplication between A and B, that is,

(A ◦B)ij = AijBij

[A]
[B] componentwise division between A and B,

(
[A]
[B]

)
ij
=

Aij

Bij

A◦a componentwise exponent of matrix A by the scalar a, that is,
A◦a(i, j) = A(i, j)a for all i, j

supp(A) support (index set of nonzero entries) of matrix A, that is,
supp(A) = {(i, j) | A(i, j) ̸= 0}

ω(A) fooling set bound for A (p. 64)
bin(A) bin(A) is the binarization of A, that is,

the nonzero entries of A are set to 1 (p. 70)
rank01(A) this is the Boolean rank of bin(A) (p. 70)
rc(A) rectangle covering bound for A (p. 72)
rrc(A) refined rectangle covering bound for A (p. 73)



xviii Notation

Miscellaneous

a:b set {a, a+ 1, . . . , b− 1, b} (for a and b integers with a ≤ b)
[a, b] closed interval for reals a ≤ b
(a, b) open interval for reals a ≤ b
∇f gradient of the function f
∇2f Hessian of the function f
⌈.⌉ ⌈x⌉ is the smallest integer greater or equal to x ∈ R
⌊.⌋ ⌊x⌋ is the largest integer smaller or equal to x ∈ R
\ subtraction of two sets, that is,

R\S is the set of elements that are in R but not in S
|.| cardinality of a set, |S| is the number of elements in S
k-sparse the vector x is k-sparse if it has k nonzero entries, that is,

| supp(x)| = k
P(x) probability of the event X = x
E(X) expected value of a random variable X
N (µ, σ) normal distribution of mean µ and standard deviation σ
U(a, b) uniform distribution in the interval [a, b]
f(x) = O(g(x)) Big O notation: there exists K and x0 such that f(x) ≤ Kg(x) for all

x ≥ x0
f(x) = o(g(x)) small o notation: limx→+∞

f(x)
g(x) = 0

f(x) = Ω(g(x)) Big Omega notation, equivalent to g(x) = O(f(x))
f(x) = Θ(g(x)) Big Theta notation, equivalent to f(x) = O(g(x)) and f(x) = Ω(g(x))
minx∈X f(x) minimum value of f(x) over the feasible set X
argminx∈X f(x) set of minimizers of f(x) over the feasible set X

Abbreviations

w.l.o.g. without loss of generality
i.i.d. independently and identically distributed
w.r.t. with respect to

Acronyms

Page number indicates where the acronym is first defined.

2-BCD two-block coordinate descent (p. 261)
ADMM alternating direction method of multipliers (p. 289)
ANLS alternating nonnegative least squares (p. 281)
BCD block coordinate descent (p. 266)
BSUM block successive upper-bound minimization (p. 268)
EDM Euclidean distance matrix (p. 64)
Exact NMF exact nonnegative matrix factorization (p. 19)
FAW fast anchor words (p. 230)
FPGM fast projected gradient method (p. 288)
HALS hierarchical alternating least squares (p. 283)
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Acronyms (continued)

HU hyperspectral unmixing (p. 7)
IS Itakura–Saito (p. 162)
KKT Karush–Kuhn–Tucker (p. 264)
KL Kullback–Leibler (p. 161)
k-sparse MF k-sparse matrix factorization (p. 151)
LDR linear dimensionality reduction (p. 1)
LP linear programming (p. 249)
LRMA low-rank matrix approximation (p. 1)
min-vol minimum-volume (p. 138)
MLP multiple linear programs (p. 249)
MM majorization-minimization (p. 265)
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Chapter 1

Introduction

In this chapter, we elaborate on the main reason why nonnegative matrix factorization (NMF) be-
came a popular and standard tool in data analysis, namely because NMF is an easily interpretable
linear dimensionality reduction technique for nonnegative data (Section 1.1). After providing a
formal definition of NMF, the notation, and the terminology (Section 1.2), we illustrate the abil-
ity of NMF to extract meaningful components in nonnegative data sets with four applications:
feature extraction in images, hyperspectral unmixing, text mining, and audio source separation3

(Section 1.3). The last part of the chapter provides a historical overview of how NMF came
about (Section 1.4). In each chapter of this book, we conclude with some take-home messages
(Section 1.5).

1.1 Linear dimensionality reduction techniques for data
analysis

Most works on NMF are motivated by its applicability in data analysis, more precisely, by the
capability of NMF to automatically extract meaningful information in a data set. Extracting the
underlying structure within data sets is one of the central problems in data science, and numerous
techniques exist to perform this task. One of the oldest approaches is linear dimensionality
reduction (LDR). LDR represents each data point as a linear combination of a small number of
basis elements. Mathematically, given a data set of n data points xj ∈ Rm (1 ≤ j ≤ n), LDR
looks for a small number r of basis vectors wk ∈ Rm (1 ≤ k ≤ r) such that each data point is
well-approximated by a linear combination of these basis vectors, that is,

xj ≈
r∑

k=1

wkhkj for all j,

where the hkj’s are scalars; see Figure 1.1 for an illustration in three dimensions with m = 3,
r = 2, and n = 50.

LDR is equivalent to low-rank matrix approximation (LRMA):

[x1, x2, . . . , xn]︸ ︷︷ ︸
X∈Rm×n

≈ [w1, w2, . . . , wr]︸ ︷︷ ︸
W∈Rm×r

[h1, h2, . . . , hn]︸ ︷︷ ︸
H∈Rr×n

,

3Sections 1.1 and 1.3 follow closely the introductions from [189, 190, 191].
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2 Chapter 1. Introduction

Figure 1.1. Illustration of LDR: approximation of three-dimensional data points with a
two-dimensional subspace generated by w1 and w2.

where

• each column of the matrix X ∈ Rm×n is a data point, that is, X(:, j) = xj for 1 ≤ j ≤ n;

• each column of the matrix W ∈ Rm×r is a basis element, that is, W (:, k) = wk for
1 ≤ k ≤ r; and

• each column of H ∈ Rr×n contains the coordinates of a data point X(:, j) in the basis W ,
that is, H(:, j) = hj for 1 ≤ j ≤ n.

Hence LDR provides a rank-r approximation WH of X , and each data point is mapped into the
basis W using the corresponding column of H:

xj ≈Whj for all j.

Typically, the number of basis vectors is much smaller than the ambient dimension m and the
number of data points n, that is, r ≪ min(m,n). This allows LDR and LRMA to compress
the data, which is achieved for r < mn

m+n since X contains mn entries, while W and H contain
only mr + nr entries.4 Note that if the input matrix is sparse, with nnz(X) nonzero entries,
compression requires r < nnz(X)

m+n .
In order to compute W and H given X and r, one needs to define an error measure. For

example, when the solution (W,H) minimizes the sum of the squares of the entries of the residual
X−WH , that is, the squared Frobenius norm of the residual ∥X−WH∥2F =

∑
i,j(X−WH)2ij ,

LRMA is equivalent to principal component analysis (PCA) [266] which can be computed via the
singular value decomposition (SVD) [216]. LRMA is a workhorse in numerical linear algebra,
with the SVD being a central technique, and is closely related to the eigenvalue decomposition
and factorizations such as Cholesky, QR, and LU, to cite a few. LRMA is at the heart of many
fields in applied mathematics and computer science, for example in

• statistics, data analysis, and machine learning to perform regression, prediction, clustering,
classification, and noise filtering [266, 144];

• numerical linear algebra to solve linear systems of equations [216];
4The factorization WH only has (m + n − 1)r degrees of freedom due to the scaling degree of freedom of the

columns of W and rows of H , that is, W (:, k)H(k, :) = (αW (:, k))(H(k, :)/α) for any α ̸= 0 and any k; see
Chapter 4.
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• signal and image processing to perform blind source separation [104, 87];

• graph theory to cluster the vertices of a graph [94];

• optimization to gain computational efficiency [68]; and

• systems theory and control to perform model-order reduction and system identification
[341].

Although PCA has been around for more than 100 years, LRMA models have gained mo-
mentum in the last 20 years. The reason is mostly twofold: (i) data analysis has become more
and more important due to the recent deluge of data in many different areas (the big data era),
and (ii) despite a simple model, LRMA is very powerful since many high-dimensional data sets
are well-approximated by low-rank matrices [458]. LRMA models are used to compress the
data, filter the noise, reduce the computational effort for further manipulation of the data, or to
directly identify hidden structure in a data set; see for example the survey [457]. Many variants
of LRMA have been developed over the last few years [422]. They differ in two key aspects:

1. The error measure can vary and should be chosen depending on the noise statistic assumed
on the data. For example, PCA uses least squares, that is, it minimizes ∥X − WH∥2F ,
which implicitly assumes independently and identically distributed (i.i.d.) Gaussian noise.

If data is missing or if weights are assigned to the entries of X (for example because
the noise is not identically distributed over the entries of X), the problem can be
cast as a weighted low-rank matrix approximation (WLRA) problem that minimizes∑

i,j Pi,j(X − WH)2i,j for some nonnegative weight matrix P , where Pi,j = 0 when
the entry at position (i, j) is missing [434]. Note that if P contains entries only in {0, 1},
then the problem is also referred to as PCA with missing data or low-rank matrix comple-
tion with noise. WLRA is widely used in recommender systems [31, 287] for predicting
the preferences of users for a given product based on the product’s attributes and user
preferences, such as in the Netflix prize competition; see [34] and Section 9.5.

If the sum of the absolute values of the entries of the error
∑

i,j |X −WH|i,j is used as
the error measure, we obtain yet another variant more tolerant to outliers; this is closely
related to robust PCA [73, 212]. It can be used, for example, for background subtraction
in video sequences where the noise (the moving objects) is assumed to be sparse while
the background has low rank (the background does not change much between consecutive
images in video sequences).

2. Different constraints can be imposed on the factors W and H . These constraints depend
on the application at hand and allow, for example, for meaningful interpretation of the
factors.

For example, the k-means problem, which is the problem of finding a set of r centroids
wk (1 ≤ k ≤ r) such that the sum of the distances between each data point and the closest
centroid is minimized, is equivalent to LRMA where the factor H is required to have a
single nonzero entry in each column that is equal to one, so that the columns of W are the
cluster centroids.

If instead one wants to explain each data point using as few basis vectors as possible,
each column of the matrixH should contain as many zero entries as possible. This LRMA
variant is referred to as sparse component analysis [221] and is closely related to dictionary
learning [4, 455] and sparse PCA [115]. It yields a more compact and easily interpretable
decomposition.
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NMF, an LDR technique for nonnegative data Among LRMA models, nonneg-
ative matrix factorization (NMF) requires the factor matrices W and H to be componentwise
nonnegative, which we denote W ≥ 0 and H ≥ 0. These nonnegativity constraints play an in-
strumental role in various applications as they allow one to extract meaningful and interpretable
components in nonnegative data sets. For example, in some applications, the entries in W and H
can be interpreted as physical quantities. Before presenting four such applications in Section 1.3,
let us first define the NMF problem rigorously.

1.2 Problem definition
Let us formally define the NMF problem and discuss some of its aspects.

Problem 1.1 (Nonnegative matrix factorization). Given a nonnegative matrix
X ∈ Rm×n

+ , a factorization rank r, and a distance measure D(., .) between two ma-
trices, compute two nonnegative matrices W ∈ Rm×r

+ and H ∈ Rr×n
+ such that

D(X,WH) is minimized, that is, solve

min
W∈Rm×r

+ ,H∈Rr×n
+

D(X,WH). (1.1)

Terminology NMF in its modern form was first referred to as positive matrix factorization
(PMF) by Paatero and Tapper [371] in 1994, but this name has not been used much, most likely
because “positive” means strictly larger than zero, while NMF usually generates a factor with
many zeros entries; see the discussion below in the paragraph Sparsity. The name NMF became
standard after the paper of Lee and Seung published in 1999 [303]; see Section 1.4 for the
historical overview of NMF. In most data analysis applications (see Section 1.3 and Chapter 9),
the solution (W,H) is only an approximation of the data matrix X; hence X ̸= WH as with
most applications using LRMA mentioned in Section 1.1. This is due to the presence of noise
and the linear model being, in most cases, only an approximate model (“All models are wrong
but some are useful” as mentioned by George Box5 in 1976). Therefore, the use of the term
“factorization” might be misleading since it usually refers to an exact decomposition X =WH .
Hence some authors have argued that it would, for example, make more sense to refer to (1.1)
as nonnegative matrix approximation [433]. However, in this book we subscribe to the widely
accepted standard that the name NMF refers to the associated approximation problem, and we
will further specify when we are considering the exact factorization, WH = X , by calling it
Exact NMF. Exact NMF is important in linear algebra as it allows us to compute the nonnegative
rank of a matrix X , denoted rank+(X), which is the smallest r such that an Exact NMF of X
exists; see Chapters 2 and 3.

Objective function The objective function of the NMF problem is defined as

D : Rm×n
+ × Rm×n

+ 7→ R+ given by (A,B) 7→ D(A,B)

and is also referred to as the error measure. The choice of this function is crucial when designing
LRMA models and often depends on the assumptions made about the noise statistics. It may
greatly influence the solution (W,H) and leads to rather different optimization problems; see

5https://en.wikipedia.org/wiki/All_models_are_wrong (consulted May 27, 2020).

https://en.wikipedia.org/wiki/All_models_are_wrong
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Chapter 8. Most error measures give the same importance to each entry of the data matrix X and
hence have the form

D(A,B) =
∑
i,j

d(Aij , Bij)

for some function d : R+ × R+ 7→ R+ such that d(x, y) = 0 if and only if x = y. A standard
choice is d(x, y) = (x− y)2 which leads to D(X,WH) = ∥X −WH∥2F . There are two main
reasons for this choice: (1) it corresponds to the assumption of i.i.d. Gaussian noise which is
reasonable for many data sets, and (2) it leads to a smooth optimization, which is easier to handle
(see Chapter 8 for a discussion). We refer the reader to Section 5.1 for a discussion on the choice
of D in the context of NMF.

Choice of the symbols In the linear algebra community, authors consistently use the
symbols A = UΣV ⊤ to represent the SVD of matrix A. However, in the NMF literature,
there is no consensus on the choice of the symbols used for the data matrix X and the factor
matrices (W,H), and many combinations of symbols exist; examples include V ≈ WH [303],
X ≈ CS⊤ [263], A ≈ BC [433], X ≈ UV [478], Y ≈ AX [98], X ≈ WH [189], or
X ≈WH⊤ [170]. In this book we choose the notation X ≈WH .

Transpose: WH vs. WH⊤ In the numerical linear algebra community, most authors
would likely prefer the use of X ≈ WH⊤, similarly as for the SVD that uses UΣV ⊤ (see
Section 6.1.1), as it preserves the symmetry by transposition, that is, X ≈ WH⊤ if and only
if X⊤ ≈ HW⊤. However, we choose X ≈ WH for the following reason. When interpreting
NMF as an LDR technique, which is the main motivation behind NMF, the columns of H play
the role of the coefficients of the columns of X in the subspace spanned by the columns of W
sinceX(:, j) ≈WH(:, j) for all j. In other words, there is a one-to-one correspondence between
the high-dimensional columns of X and their low-dimensional representations as the columns of
H . We believe this is the reason why it is the most common choice in the NMF literature.

NMF variants The problem (1.1) is the formulation of the standard NMF problem. How-
ever, it is important to keep in mind that there exist many variants of this problem. Moreover,
as we will argue in Chapter 4, it is in general crucial to consider such variants in practice to
obtain unique decompositions and be able to identify the true underlying factors that generated
the data. Some variants use regularization in order to obtain solutions with some structure, such
as sparsity; see Sections 4.3.4 and 5.3. Other variants use additional constraints; for example
symmetric NMF (symNMF) requires H = W⊤, and orthogonal NMF (ONMF) requires H to
have orthogonal rows (see Section 5.4).

Sparsity Because of the nonnegativity constraints, NMF solutions (W,H) are expected to
contain zero entries and hence to naturally have some degree of sparsity; see for example Fig-
ures 1.2, 1.4, 1.6, and 1.8 in the next section. Mathematically, this is explained by the first-order
optimality conditions of a smooth optimization problem with nonnegativity constraints

min
x∈Rn

f(x) such that x ≥ 0,

which are given by

x ≥ 0, ∇f(x) ≥ 0, and xi(∇f(x))i = 0 for all i.

This enforces xi = 0 whenever (∇f(x))i > 0; see Section 8.1.2 for more details. In some
applications, one might need to obtain even sparser solutions, which requires the use of additional
constraints or regularization; see Chapters 4 and 5.
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Applications In the next section, we describe four important applications of NMF in data
analysis (see Chapter 9 for other NMF applications). However, it is important to stress that
NMF is not motivated only by its use as an LDR technique for data analysis; see in particular
the historical overview in Section 1.4. Another important motivation is exact factorizations. In
particular, the nonnegative rank of a nonnegative matrix X , denoted rank+(X), is the smallest
r such that there exists an Exact NMF X = WH where W has r columns and H has r rows;
see Chapters 2 and 3 for more details. An application where the nonnegative rank has had
tremendous impact is in the study of the extension complexity of polytopes; see Section 3.6.

1.3 Four applications of NMF in data analysis
In this section, we describe four important applications of NMF that will be used throughout the
book as illustrative examples. They show that NMF is a particularly meaningful LRMA model
as it leads to interpretable decompositions. In Chapter 9, we review other applications of NMF.

1.3.1 Feature extraction in a set of images

Given a set of gray-scale images of the same dimensions, let us construct the matrix X such
that each column of X corresponds to a vectorized gray-level image. Vectorization means that
the two-dimensional images are transformed into a long one-dimensional vector, for example,
by stacking the columns of the image on top of each other.6 This means that each row of X
corresponds to the same pixel location among the images. The entry of X at position (i, j), that
is, X(i, j), is equal to the intensity of the ith pixel within the jth image, which is nonnegative.
As explained in Section 1.1, factorizing X with NMF as X ≈ WH where W ≥ 0 and H ≥ 0
provides an LDR where the columns of W form a basis for the columns of X . Because W is
nonnegative, its columns can be interpreted as basis images: the columns of W are vectors of
pixel intensities whose linear combinations allow us to approximate each input image. Moreover,
because of the nonnegativity constraints on the weight matrix H , no cancellation is possible
between the basis images to reconstruct all the input images. Hence these basis images typically
correspond to localized features that are shared among the input images, and the entries of H
indicate which input image contains which feature. For example, if the columns of X are facial
images, the columns of W correspond to facial features such as eyes, noses, mustaches, and lips.
Figure 1.2 illustrates such a decomposition and shows that NMF is able to extract a part-based
representation of a set of facial images. Note that to obtain such decompositions, the images
need to be well-registered/aligned (for example, pixels corresponding to noses should be located
at the same position in the input images).

Another example is the synthetic swimmer data set [138], where the columns of X are vec-
torized images of a swimmer whose four limbs take four different positions for a total of n = 256
images; see Figure 1.3. For an NMF of rank 17, the columns of W correspond to the body and
the limbs in the 16 different positions; see Figure 1.4.

Remark 1.1 (Uniqueness, minimality, and sparsity). The decomposition shown in Figure 1.4
is not minimal, that is, there exists an Exact NMF with fewer basis elements. In particular,
there exist several Exact NMFs with factorization rank 16: for example the body can be put
together with the limbs in all positions with an intensity of 1/4 (since each image in the data
set contains four limbs), or the body can be put together with one limb in its four positions
with an intensity of 1 (since each image in the data set contains each limb in one position).
Hence the Exact NMF of rank 16 of this data set is not unique; see Chapter 4 for a discussion

6In MATLAB, this is achieved via the function vec.
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Figure 1.2. NMF applied on the CBCL face data set with r = 49 (2429 images with
19×19 pixels each), as in the seminal paper of Lee and Seung [303]. On the left is a column of
X reshaped as an image. In the middle are the 49 columns of the basis W reshaped as images
and displayed in a 7×7 grid and the reshaped column of H in the same 7×7 grid that shows
which features are present in that particular face. On the right is the reshaped approximation
WH(:, j) of X(:, j) as an image. [Matlab file: CBCL.m].

Figure 1.3. Sample images of the swimmer data set.

Figure 1.4. NMF basis images for the swimmer data set. [Matlab file: Swimmer.m].

on this important issue. However, additional constraints on the decomposition may make it
unique. For example, the decomposition of rank 17 from Figure 1.4 can be obtained as the unique
decomposition using sparse NMF; see Section 4.3.4. It can also be obtained with separable
NMF (Chapter 7), minimum-volume NMF (Section 4.3.3), ONMF (Section 4.3.2), or nonnegative
matrix underapproximation (NMU; Section 5.4.5).

1.3.2 Blind hyperspectral unmixing

A hyperspectral image measures the intensity of the light within a scene for many different
wavelengths, typically between 100 and 200 wavelengths; see for example [427] for a gentle
introduction to hyperspectral imaging. Hence, for each pixel, a vector of intensities is recorded
that is equal to the fraction of light reflected by that pixel depending on the wavelength; this is
referred to as the spectral signature of the pixel. Given a hyperspectral image, the goal of blind
hyperspectral unmixing (blind HU) is to recover the materials present in an image, referred to
as the endmembers, and their proportions in each pixel, referred to as abundances. Under the
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Figure 1.5. Linear mixing model for hyperspectral imaging.

Figure 1.6. Blind HU of an urban image taken above the Walmart in Copperas Cove,
Texas, using NMF with r = 6 (162 spectral bands, 307 × 307 pixels). This is the so-called
Urban data set. Each factor corresponds to the spectral signature of an endmember (a column
of W ) with its abundance map (a row of H , reshaped as an image on the figure), where light
tones represent high abundances. The Urban hyperspectral image is mostly made up of six
materials, namely road, grass, trees, dirt, and roof tops 1 and 2. In particular, the rank-6 NMF
above explains more than 95% of the data, that is, ∥X −WH∥F ≤ 0.05∥X∥F . Image adapted
from [191]. [Matlab file: Urban.m].
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linear mixing model, the spectral signature of a pixel is equal to the linear combination of the
spectral signatures of the materials it contains. For example, if a pixel contains 30% grass and
70% road surface, its spectral signature is equal to 0.3 times the spectral signature of the grass
plus 0.7 times the spectral signature of the road surface; see Figure 1.5 for an illustration. Hence
letting each column of the matrix X be the spectral signature of a pixel, blind HU boils down to
the NMF of matrix X . In fact, NMF decomposes X as

X(:, j) ≈
r∑

k=1

W (:, k)H(k, j),

where the columns of W are the spectral signatures of the endmembers, while the entries of H
give the abundance of each endmember in each pixel; see Figure 1.6 for an illustration of NMF
on the widely used Urban data set.

1.3.3 Text mining: topic recovery and document classification

Let each column of the matrix X correspond to a document, that is, a nonnegative vector of
word counts. For example, the entry of X at position (i, j) can be the number of times word i
appears in document j. The matrix X can also be constructed in different, more sophisticated
ways, for example, with the term frequency-inverse document frequency (tf-idf) [389]. This is
the so-called bag of words model where the positions of the words in a document are not taken
into account. The NMF of X provides the model

X(:, j) ≈
r∑

k=1

W (:, k)H(k, j),

where the nonnegative columns of W can also be interpreted as bags of words, that is, as vectors
of word count. Since the number of columns of W is much smaller than the number of columns
of X (r ≪ n), each column of W must be used to reconstruct many documents. Moreover,
because of the nonnegativity ofH , no cancellation is possible, and hence each column ofW must
contain words that appear simultaneously in these documents. In practice, it has been observed
that the columns of W correspond to different topics; see Figure 1.7 for an illustration, and
[Matlab file: tdt2_top30.m] for a numerical example on a real-world data set. Moreover,
the columns of the factor H indicate the importance of the topics discussed in the corresponding
documents.

Remark 1.2. We will provide more details on topic modeling and its link with NMF later in
the book. In Section 5.5.4, we will show the equivalence between NMF and probabilistic latent
semantic analysis/indexing (PLSA/PLSI) which is a simple probabilistic topic model. In Sec-
tion 5.4.9.1, we will discuss the limitations of NMF for topic modeling and describe a better
suited NMF model for this task.

1.3.4 Audio source separation

Given an audio signal recorded from a single microphone, its magnitude spectrogram can be
constructed as follows. The signal is split into small time frames with some overlap (usually
50%), and each frame is multiplied by some window function (such as the Hamming window)
to avoid artifacts due to the truncation of the signal. Each column of X is obtained by taking the
short-time Fourier transform of each time frame. More precisely, the entry of X at position (i, j)
is the magnitude of the Fourier coefficient for the jth time frame at the ith frequency. Given such
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Figure 1.7. Illustration of NMF for text mining: extraction of topics, and classification
of each document with respect to these topics. The columns of X are sets of words, with X(i, j)
being the importance of word i in document j. Because H is nonnegative, these sets are approx-
imated as the union of a smaller number of sets defined by the columns of W that correspond to
topics.

a signal, the goal is to blindly separate the sources that compose the signal, for example, separate
the voice and the instruments in a song. Under the two following assumptions, this separation
problem is yet another NMF problem:

1. The spectrogram of the mixture is a nonnegative linear combination of the spectrogram
of the sources. Nonnegativity means that sound cancellation is neglected. Linearity is a
natural model; nonlinear effects, such as the saturation of the microphone or reverberations
of the sound, are not taken into account.

2. The spectrograms of the sources have low rank. This has been validated on many ex-
periments and makes sense physically. For example, the spectrogram of an instrument is
composed of rank-one factors made of the signature of each note in the frequency domain
along with its activation over time.

We refer the interested reader to [158] and the references therein for more information on this
model.

Let us use a simple monophonic signal for illustrative purposes, namely a piano recording of
“Mary Had a Little Lamb,” whose musical score is shown below.

The sequence is composed of three notes, C4, D4, and E4, that activate as follows: E4, D4, C4,
D4, E4, E4, E4. For this data set, the three main sources are the piano notes whose spectrograms
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Figure 1.8. Decomposition of the piano recording “Mary Had a Little Lamb” using
NMF: (top) amplitude spectrogram X in dB; (bottom left) basis matrix W corresponding
to the three notes C4, D4, and E4, and the hammer noise; (bottom right) activation ma-
trix H that indicates when each note is active. Image adapted from [191]. [Matlab file:
Mary_piano.m].

have rank one: each column of W is the signature of each note in the frequency domain, while
the entries of H indicate when a note is active. However, there is a fourth source in this data
set: it captures the common mechanism that triggers a note; in particular the hammer within the
piano. Figure 1.8 shows the NMF decomposition of the magnitude spectrogram using r = 4.
As expected, the three notes and the hammer noise are extracted as the columns of W , while
the rows of H provide the activation of each note in the time domain. NMF is able to blindly
separate the different sources and identify which source is active at which moment in time. NMF
has been used, for example, for automatic music transcription; see the survey [33].

NMF shows its full potential for polyphonic music analysis when several notes, and even
several instruments, are played at once. However, for such complicated scenarios, refined NMF
models should be used, such as sparse NMF [471] or convolutive NMF [424]; see Chapter 5.
Moreover sources usually have rank higher than one (for example, the voice of a person), and a
postprocessing step is necessary to assign each rank-one factor to its corresponding source. Note
that the phase information is missing when reconstructing the sound signal from the spectrogram
of the sources. This is an important issue, and in practice one often uses the phase of the input
signal; see [337, 468, 338] for more information on this topic.



12 Chapter 1. Introduction

1.4 History
The first use of the NMF model can be traced back to the fields of analytical chemistry and of
geoscience and remote sensing. In both these fields, NMF corresponds to a meaningful physical
model. In both cases,

• the columns of the matrix X correspond to nonnegative spectra of samples (also known as
the spectral signature),

• the columns of W correspond to the pure component spectra, and

• the columns of matrix H provide the concentration of the pure components within each
sample.

This linear mixing model makes sense physically as the spectrum of a sample is, in ideal con-
ditions, proportional to the spectra of the pure components it contains; this is the so-called
Lambert–Beer law [297, 29]; see Figure 1.5 (page 8). This model, which is equivalent to NMF,
was discovered and used independently in the early 1960s in these two fields.

1.4.1 Analytical chemistry

The columns of X ∈ Rm×n
+ are the spectra of a chemical reaction measured over time, so that

m is the number of measured spectral bands and n is the number of time steps for which the
reaction is measured. These spectra can be obtained in different ways, for example using Raman
spectroscopy; see Section 9.3 for a numerical example. Given these nonnegative spectra, the goal
is to recover the pure spectra of the chemical compounds present in the reaction (the columns of
W ) along with their proportions in each sample (the rows of H). This is an NMF problem which
is referred to as self-modeling curve resolution (SMCR); see Section 9.3 for more details.

To the best of our knowledge, Wallace in 1960 [473] was the first to describe the model. He
then discussed a way to estimate the number of sources (that is, r). Later in 1971, Lawton and
Sylvestre [301] focused on the case r = 2 which can be solved easily; see Sections 2.1.3 and 4.1.
In 1985, Borgen and Kowalski focused on the case r = 3, and, in 1986, Borgen et al. studied
the general case [53]. The literature on the topic has grown rapidly since then, and we refer the
reader to [263, 390, 366] and the references therein for more information on SMCR. Note that
the problem of multivariate curve resolution (MCR) is more general than SMCR as it does not
necessarily assume nonnegativity [119, 403].

Interestingly, in the SMCR literature, most works have analyzed the noiseless case, that is,
X =WH , with the additional assumption that rank(X) = rank(W ) = r. Under these assump-
tions, Exact NMF is equivalent to finding a transformation of an unconstrained factorization
(such as the SVD) to make it nonnegative; see Section 5.5.1. A unique feature within the SMCR
literature is that, in most works, the goal is to recover all possible factorizations, that is, all possi-
ble nonnegative (W,H) such thatX =WH , referred to as the set of feasible solutions. The task
of choosing the “right” factorization is left to the expert analyzing such chemical reactions. This
is a particularly challenging problem, which may explain why an important part of the literature
has focused on the exact case, as pointed out in [366].

1.4.2 Geoscience and remote sensing

The columns ofX are the spectra of pixels within a hyperspectral image. The spectrum of a pixel
records the fraction of light reflected by that pixel for many wavelengths. The goal is to recover
the pure materials present in the image (the columns of W ) and the abundance of the materials
in each pixel (the columns of H). This is referred to as blind HU; see Section 1.3.2. This model
was first used in 1964 by Imbrie and Van Andel for analyzing the mixture of heavy mineral
data [254]. Early findings in this field include the works by Craig in the early 1990s [108, 109],
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by Boardman [48] (1993), and by Winter [482] (1999). The main contribution of these authors is
they have shed light on the geometric interpretation of NMF (Section 2.1) and devised algorithms
based on this intuition; see Chapters 4 and 7.

The literature on blind HU has grown considerably since the 1990s, motivated by the devel-
opment of hyperspectral cameras that are becoming higher performing and more affordable as
the years go by. We refer the reader to [276, 377, 45, 334] and the references therein for more
information on blind HU.

1.4.3 Stochastic sequential machines

Another very early account of the NMF model appears in the study of stochastic finite state
systems, also known as stochastic sequential machines (SSMs). An important problem in this
context is to obtain a minimal state representation of the given system. The SSM can be repre-
sented with a nonnegative matrix that contains the transition probabilities between the different
states. To the best of our knowledge, Ott [369] (1966) was the first to show that computing an
Exact NMF of this matrix is equivalent to finding the minimal state representation of the SSM.
Moreover, Ott discovered the connection between Exact NMF and the nested polytope problem
(NPP), an important problem in computational geometry. Recall that a polytope is a bounded set
defined via affine inequalities, that is, a bounded polyhedron. In two dimensions, polytopes are
convex polygons. The NPP requires finding a polytope with the minimum number of vertices
nested between two given nested polytopes. As we will discuss in length in Chapter 2, the Exact
NMF problem with r = rank(X) is equivalent to the NPP where the sought solution is required
to have r vertices. Follow-up works investigating this connection and providing new insights in-
clude the papers of Paz [378] (1968) and Bancilhon [21] (1974); see also the first chapter of the
book of Paz [379] (1971). The problem of minimal state representation of an SSM is equivalent
to the minimal covering of a labeled Markov chain. We refer the reader to [88] for more details
and for the proof of the equivalence between Exact NMF and minimal covering of a labeled
Markov chain.

1.4.4 Computational geometry

As explained in the previous section, Exact NMF is equivalent to the NPP. In two dimensions,
the NPP requires finding a convex polygon with a minimum number of vertices nested between
two given convex polygons. Motivated by its applicability for stochastic sequential machines,
Silio [420] (1979) solved this problem by proposing a practical polynomial-time algorithm.
However, his paper seems to have been overlooked in the computational geometry literature.
The problem was later solved independently in a very similar way by Aggarwal et al. [3] (1989).
However, the algorithm of Aggarwal et al. has a lower computational cost; see Section 2.3.1.1. In
dimension higher than two, the NPP was shown to be NP-hard by Das and Joseph [114] (1990).

1.4.5 Linear algebra

The Exact NMF problem, with X =WH , is closely related to the notion of nonnegative rank. It
started to draw attention after a question of Berman and Plemmons [37] in SIAM Review in 1973
(Problem 73-14):

It is well known that an m × n matrix A of rank r can be factored (in a variety of
ways) in the form A = BG where B is of order m × r and G is of order r × n.
Show by counterexample, that when A is nonnegative there need not exist such
a “rank factorization” with both B and G nonnegative. If possible, find a simple
characterization of the class of nonnegative matrices A for which a nonnegative
rank factorization exists.
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In other words, this question asks us to characterize when the rank and the nonnegative rank of a
matrix coincide, that is, when rank(X) = rank+(X).

Thomas [450] answered the first part of the question in SIAM Review in 1974: he showed that
rank(X) = rank+(X) always holds when rank(X) ≤ 2 and gave a counterexample to show
that this is not necessarily true when rank(X) ≥ 3:

X =


1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1

 , (1.2)

for which rank+(X) = 4 while rank(X) = 3; see Section 2.1 for the proofs and more details.
It turns out that it is NP-hard to check whether rank(X) = rank+(X) [465]; see Section 2.3,
which discusses the computational complexity of Exact NMF.

Early works on the nonnegative rank include the papers of Wall [472] (1979), Jeter and
Pye [261] (1981), Campbell and Poole [72] (1981), and Chen [84] (1984). The first comprehen-
sive account of the properties of the nonnegative rank was written by Cohen and Rothblum [100]
in 1993; see Section 3.1 for more details.

1.4.6 Probability

NMF can be used to unravel a particular probabilistic model. Let Y (k) ∈ {1, . . . ,m} and Z(k) ∈
{1, . . . , n} be two independent random variables for 1 ≤ k ≤ r, and let P (k) be the joint
distribution with

P
(k)
ij = P

(
Y (k) = i, Z(k) = j

)
= P

(
Y (k) = i

)
P
(
Z(k) = j

)
for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Each distribution P (k) corresponds to a nonnegative rank-one
matrix. Let us define the joint distribution of two random variables Y and Z as follows:

• Choose the distribution P (k) with probability αk, where
∑r

k=1 αk = 1.

• Draw Y and Z from the distribution P (k).

Equivalently, (Y,Z) has the following probability distribution: for 1 ≤ i ≤ m and 1 ≤ j ≤ n,

P(Y = i, Z = j) =

r∑
k=1

αkP
(k)
i,j = Pi,j ,

where the matrix P is the sum of r rank-one nonnegative matrices. In other words, P is the mix-
ture of r independent distributions. In practice, only P is observed and is referred to as a con-
tingency table, and computing its nonnegative rank and a corresponding factorization amounts
to explaining the distribution P with as few independent variables as possible. Early work using
this connection includes De Leeuw and Van der Heijden [120] (1991) and Ritov and Gilula [398]
(1993); see Cohen and Rothblum [100] (1993) and Kubjas, Robeva, and Sturmfels [292] (2015)
for more details. However, the first to discuss the above decomposition were Suppes and Zan-
otti [443] (1981), although without linking it explicitly with the nonnegative rank. In their terms,
the nonnegative rank of P is the smallest support of a hidden random variable, which explains
the correlation of the two-valued random variable whose joint distribution is represented by P .

Motivated by this application, Mond, Smith, and Van Straten [353] (2003) also discovered
the link between Exact NMF and the NPP (which they call the sandwiched simplices problem)
and studied the set of feasible solutions of Exact NMF.
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1.4.7 Extended formulations

A standard approach in combinatorial optimization is to model the convex hull of the set of fea-
sible solutions using affine inequalities, and then solve the problem using linear optimization.
These linear formulations are referred to as extended formulations, and their size is defined as
the number of inequalities; see Section 3.6 for more details. In the 1980s, some researchers were
trying to prove P=NP by constructing such formulations of polynomial size for NP-complete
combinatorial optimization problems, such as the traveling salesman problem (TSP).7 If such
formulations have polynomial size, then linear optimization can be used to solve them in poly-
nomial time, which would imply P=NP.

In 1988, Yannakakis proved that this was not possible for the matching and TSP polytopes
using extended formulations that are symmetric (for the TSP, this means that they are invariant
under permutations of the cities in the input) [492, 493]; see also the discussion by Yannakakis
in [494]. To do this, Yannakakis unraveled a key result: the minimum-size extended formulation
of a polytope, referred to as its extension complexity, is equal to the nonnegative rank of its slack
matrix. Given a polytope

P =
{
x ∈ Rd | a⊤i x ≤ bi for i = 1, 2, . . . ,m

}
,

whose vertices are vj for j = 1, 2, . . . , n, its slack matrix S ∈ Rm×n
+ is an inequality-by-vertex

matrix where
S(i, j) = bi − a⊤i vj ≥ 0

is the slack of the jth vertex for the ith inequality.
Many results were obtained 20 years later (starting around 2010) to provide bounds on the

extended formulations of combinatorial problems using bounds for the nonnegative rank. Several
long-standing open questions were addressed via the nonnegative rank. For example, Fiorini
et al. [163, 164] proved that the extension complexity of the TSP polytope is exponential in
the number of cities (the difference with Yannakakis’ result is that here asymmetric extended
formulations are allowed, and asymmetry may reduce the size of extended formulations [270]).
This is not surprising if you believe that P ̸= NP . Rothvoss proved that the perfect matching
polytope8 has exponential extension complexity so that any extended formulation for the perfect
matching polytope must have exponential size [400, 401]. This is somewhat surprising since
optimizing a linear function over the perfect matching polytope can be performed in polynomial
time [142]. Moreover, Braun and Pokutta [60] later established that for all fixed 0 < ϵ < 1,
even every linear program approximating the matching polytope by a factor (1+ ϵ/n) must have
exponential size, where n is the number of nodes in the graph. We refer the reader to Section 3.6
for more details and examples.

1.4.8 The first appearance of NMF in its modern form

As far as we know, the first time the NMF problem was explicitly stated as in (1.1) is in the
paper by Paatero and Tapper in 1994 [371]. As discussed above, the models previously studied
in the literature either considered exact factorizations, assumed rank(X) = rank(W ) = r, or
were only based on geometric representations. In their paper, Paatero and Tapper referred to this
problem as positive matrix factorization (PMF), proposed an algorithm based on alternatively

7Given a set of cities, the TSP requires finding the shortest possible route that visits each city and returns to the origin
city.

8The perfect matching polytope is the convex hull of the set of all perfect matchings of a complete graph (a perfect
matching decomposes the set of vertices into pairs of vertices).
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updating W and H (see Section 8.3.1), and explained how it can be used to analyze environmen-
tal data, for example, for air emission control. However, until 1999, PMF remained a specialized
physical/chemical model confined within the field of chemometrics.

1.4.9 The “big bang” of NMF: data analysis and machine learning

NMF gained momentum with the seminal paper “Learning the Parts of Objects by Non-negative
Matrix Factorization” by Lee and Seung published in Nature in 1999 [303]. It explained why
NMF is a powerful tool for the analysis of nonnegative data sets. They illustrate their findings on
two examples: the extraction of facial features in a set of facial images (see Figure 1.2, page 7)
and the identification of topics within a set of documents (see Figure 1.7, page 10). Note that
Lee and Seung also proposed algorithms based on multiplicative updates (MU) that became the
workhorse in the NMF literature [304]; see Section 8.2.

Let us point out the difference in spirit of Lee and Seung compared to the previous literature
by quoting Pentti Paatero:9

The original concept of NMF, as presented in the Nature paper, was essentially dif-
ferent from our PMF: they did not search for the (hopefully unique) model of a
data set that describes a physical/chemical situation. Instead, their goal could be
described as “data compression.” Such compressed version of data is normally not
unique, it is not “THE solution.”

In fact, prior to the paper of Lee and Seung, most works using NMF for data analysis focused on
the physical model behind NMF and were hoping that NMF would produce the true underlying
sources (such as pure spectra; see Sections 1.4.1 and 1.4.2). In their paper, Lee and Seung did not
discuss this issue, and their goal was rather to compute one possible NMF decomposition that
compresses the data and can be meaningfully interpreted. We will discuss this key identifiability
question for NMF in Chapter 4.

1.5 Take-home messages
NMF is a linear dimensionality reduction technique with nonnegativity constraints on the factors
and is able to extract meaningful components in various applications. From our account of the
early literature on the NMF model, we observe that, before the paper of Lee and Seung, the study
of NMF was motivated by either specific applications or theoretical questions. Lee and Seung
were able to popularize NMF for the analysis of nonnegative data sets via the extraction of sparse
and part-based components. They showed that NMF is very versatile and can be used in many
different settings. This has been confirmed since then as NMF has been used successfully in
many applications; see Chapter 9. In summary, the paper of Lee and Seung set a spark on NMF
that has ignited a fire that has been growing steadily since then.

9Private communication.



Part I

Exact factorizations

The next three chapters of the book make up Part I: Exact factorizations, where the theoretical
foundations behind NMF are presented.

Chapter 2 provides the geometric interpretation of NMF, introduces the restricted Exact NMF
problem which requires rank(W ) = rank(X), describes its connection with the NPP, and dis-
cusses the computational complexity of Exact NMF and restricted Exact NMF.

Chapter 3 discusses the nonnegative rank (the smallest r such that an Exact NMF exists), its
properties, lower and upper bounds and its applications, with a focus on the extension complexity
of polytopes.

Chapter 4 focuses on the identifiability of Exact NMF and studies the conditions under which
an Exact NMF X = WH is essentially unique, that is, unique up to permutation and scaling of
the columns ofW and rows ofH . It also considers regularized NMF models, namely orthogonal,
separable, minimum-volume, and sparse NMF, that require weaker conditions for identifiability.

Following Chapter 4, Part II: Approximate factorizations will shift the focus from Exact
NMF to NMF, that is, to the approximation problem as defined in Problem 1.1 (page 4).





Chapter 2

Exact NMF

In this section, we consider the Exact NMF problem defined as follows.

Problem 2.1 (Exact NMF). Given a nonnegative matrix X ∈ Rm×n
+ and a factoriza-

tion rank r, compute, if possible, two nonnegative matricesW ∈ Rm×r
+ andH ∈ Rr×n

+

such that
X =WH.

We refer to WH as an Exact NMF of X of size r.

Exact NMF is closely related to the quantity referred to as the nonnegative rank of X which
is the smallest r such that X admits an Exact NMF size r, and it is denoted rank+(X). The
nonnegative rank is the topic of Chapter 3.

Organization of the chapter In Section 2.1, we discuss the geometric interpretation of
Exact NMF. In Section 2.2, we study Exact NMF with the additional constraint that rank(W ) =
rank(X), which is referred to as restricted Exact NMF (RE-NMF). The main result of Section 2.2
and, in fact, of this chapter, is the equivalence between RE-NMF and the NPP (Theorem 2.11).
In Section 2.3, we elaborate on the computational complexity of solving RE-NMF and Exact
NMF. The chapter is concluded with take-home messages (Section 2.4).

The two main objectives of this chapter are the following:

1. Introduce the geometric interpretation of Exact NMF. This gives crucial insight into the
NMF problem, and it is key to understanding the identifiability/nonuniqueness issues of
NMF (Chapter 4). It is also key to designing algorithms for NMF, in particular for separa-
ble NMF (Section 4.3.1 and Chapter 7) and for minimum-volume NMF (Section 4.3.3).

2. Discuss the computational complexity of Exact NMF, which has direct implications for
NMF. The computational complexity of NMF will be discussed further in Chapter 6.

2.1 Geometric interpretation
The geometric interpretation is a key aspect of NMF. It provides insight into this numerical prob-
lem and is, for example, extremely useful in designing models and algorithms; see Chapters 4, 5,
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and 7. This interpretation dates from the early works on NMF in the fields of analytical chemistry
and of geoscience and remote sensing; see Section 1.4.

This section is organized as follows. We describe the geometric interpretation of Exact
NMF in terms of nested convex cones in Section 2.1.1 and in terms of nested convex hulls in
Section 2.1.2. Based on these geometric interpretations, we prove in Section 2.1.3 the two re-
sults of Thomas, namely that rank+(X) = rank(X) for any nonnegative matrix X such that
rank(X) ≤ 2 (Theorem 2.6) and that the 4-by-4 matrix X from (1.2) satisfies rank(X) = 3
while rank+(X) = 4 (Theorem 2.10). Finally, we provide in Section 2.1.4 an important exam-
ple that shows that in an Exact NMF X = WH of size rank+(X), we may need the matrix W
to satisfy rank(W ) > rank(X), which is never the case for the usual rank. This example is also
analyzed using the geometric interpretation of Exact NMF.

2.1.1 Interpretation with nested convex cones

Given a matrix A ∈ Rm×n, cone(A) is the convex cone generated by the columns of A, that is,

cone(A) = {x | x = Ay for some y ∈ Rn, y ≥ 0}.

The set cone(A) is referred to as the conical hull of the columns of A, or the conical hull of
A for short. All elements of cone(A) are conic combinations of the columns of A, that is,
linear combinations with nonnegative weights. The dimension of cone(A) is the dimension of
the subspace spanned by A and is equal to rank(A). Let us consider the Exact NMF of matrix
X =WH . Since X(:, j) =WH(:, j), W ≥ 0, and H ≥ 0,

X(:, j) ∈ cone(W ) ⊆ Rm
+

for all j. Equivalently,
cone(X) ⊆ cone(W ) ⊆ Rm

+ ,

which is a nested cone problem: given two cones nested in each other, namely cone(X) ⊆ Rm
+ ,

find a cone nested between them, namely cone(W ). Hence, Exact NMF can be formulated as
the problem of finding, if possible, r vectors W (:, k) (1 ≤ k ≤ r) within the nonnegative orthant
whose conical hull, cone(W ), contains a given cone generated by the columns of X , namely
cone(X). Figure 2.1 (left) provides such a geometric interpretation for m = r = 3 and n = 25.

2.1.2 Interpretation with nested convex hulls

The geometric interpretation of Exact NMF in terms of nested cones can be reformulated into an
equivalent interpretation using nested convex hulls, that is, nested polytopes. This nested convex
hull interpretation will be the one used in this chapter, rather than the, perhaps more natural,
nested convex cone interpretation, for the following reasons:

1. Intuition. It is easier to visualize nested convex hulls than nested cones.

2. Related literature. The problem of nested convex hulls has a long history in computational
geometry, where it is referred to as the NPP [114, 112, 135]. We will discuss this problem
in detail in Section 2.2.

3. Illustration. Using convex hulls allows us to represent the geometric problems in one
dimension lower. We will see that, after normalization, the convex hull of the columns of
X has dimension rank(X)−1 (Lemma 2.5), while the dimension of cone(X) is rank(X).
For example, looking at Figure 2.1 (right), we observe that after normalization the columns
of X and W all belong to the same two-dimensional plane.
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Figure 2.1. Geometric illustration of Exact NMF for m = r = 3 and n = 25. Both
figures represent the same data set, up to scaling. On the left, we observe that cone(X) ⊆
cone(W ) ⊆ R3

+. The figure on the right is the normalization to unit ℓ1 norm of the columns of
X and W from the figure on the left, and we observe conv(X) ⊆ conv(W ) ⊆ ∆3.

In Chapter 4, however, we will return to the nested cone interpretation to characterize the unique-
ness of NMF solutions.

Before going further, let us define a few useful notions about convex hulls and polytopes;
see [517] for more on this topic. Let us define the convex hull of the columns of a matrix
A ∈ Rm×n as

conv(A) =
{
x
∣∣∣ x = Ay for y ∈ Rn, y ≥ 0, and e⊤y = 1

}
,

where e is the vector of all ones of appropriate dimension, so that e⊤y =
∑n

i=1 yi. All elements
of conv(A) are convex combinations of the columns of A, that is, linear combinations with
nonnegative weights summing to one. The vertices of conv(A) are the columns of A that are not
contained in the convex hull of the other columns of A. That is, A(:, j) is a vertex of conv(A)
if and only if A(:, j) /∈ conv(A(:,J )) where J = {1, 2, . . . , n} \{j}. Note that all the vertices
of conv(A) are contained in the set of the columns of A since, by definition, any other point
in conv(A) is a nonnegative linear combination of these columns. Let us also define the unit
simplex in dimension r as

∆r =
{
x ∈ Rr

∣∣∣ x ≥ 0, e⊤x = 1
}

= conv(Ir), (2.1)

where Ir is the identity matrix of dimension r. In fact, the vertices of ∆r are the unit vectors,
and Ir = (e1, e2, . . . , er).

A polytope is a bounded polyhedron which is the intersection of half spaces. Hence a poly-
tope can be characterized via a set of equalities and inequalities (half-space representation), but
it can also be represented via its vertices (vertex representation). For example, ∆r is a polytope,
and (2.1) provides the half-space and vertex representations.

Given a matrix A ∈ Rm×n, let us define its column space as

col(A) = {x | x = Ay for y ∈ Rn}

and its affine hull as

aff(A) = {x | x = Ay for y ∈ Rn and e⊤y = 1}. (2.2)
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Note that conv(A) ⊆ aff(A) ⊆ col(A). The dimension of the set col(A) is the number of
linearly independent columns of A, that is, the dimension of col(A) is equal to rank(A). The set
aff(A) has dimension d if and only if it contains d+ 1 columns which are affinely independent,
that is, none of these d + 1 columns is contained in the affine hull of the other d columns. In
other words, the dimension of an affine hull is the dimension of the linear space obtained after
any translation of the affine hull onto the origin, for example, translating aff(A) using −A(:, 1).
Note that if aff(A) contains the origin, then aff(A) = col(A).

The dimension of a polytope is the dimension of the affine hull of its vertices (which is the
smallest affine set containing it). For example, the dimension of ∆r is the dimension of the affine
hull of ∆r which is given by aff(Ir). The dimension of aff(Ir) is r − 1, since all columns of Ir
are affinely independent, and aff(Ir) =

{
x ∈ Rr|e⊤x = 1

}
. Another important example is the

dimension of conv(A) which is equal to the dimension of aff(A) since the set of the columns of
A contains all the vertices of conv(A).

The face of a polytope P is a subset {x ∈ P | w⊤x = δ} for some (w, δ) such that w⊤y ≤ δ
for all y ∈ P . A face is also a polytope (and can be the empty set). A k-face is a face of
dimension k. A facet of P is a face whose dimension is one less than that of P . For example,
∆r has r facets, corresponding to each nonnegativity constraint xi ≥ 0 (1 ≤ i ≤ r): the ith facet
of ∆r is {x ∈ ∆r | xi = 0}. The 0-faces of a polytope are its vertices. For example, ∆r has
r vertices, namely the unit vectors, as mentioned above. A class of polytopes we will encounter
throughout this book are n-gons, that is, two-dimensional polytopes, which have n vertices and
n facets (the segments of the n-gons).

Let us describe the geometric interpretation of Exact NMF in terms of nested convex hulls.
Given an Exact NMF of X = WH , the following two assumptions can be made without loss of
generality (w.l.o.g.):

A1 The matrices X and W do not contain columns equal to the zero vector. If this is the case,
they can simply be removed as they do not play any role in the factorization. If a column
of W is equal to the zero vector, it can be removed along with the corresponding row of
H , and r is reduced by one. If a column of X is equal to the zero vector, it can be removed
along with the corresponding column of H . Note that this assumption implies that H also
does not contain any column equal to the zero vector since X(:, j) =WH(:, j) for all j.

A2 The columns of X and W have ℓ1 norm equal to one, that is,

∥X(:, j)∥1 = ∥W (:, k)∥1 = 1 for all j, k.

Given a matrix A with nonzero columns, let DA be the diagonal matrix whose entries are
specified by

DA(i, j) =

{ 1
∥A(:,i)∥1

if i = j,

0 if i ̸= j.

Let us also denote θ(A) = ADA as the matrix A whose columns have been normalized
to have ℓ1 norm equal to one. (This was referred to as the pullback map in [93].) For any
Exact NMF X =WH where the columns of X and W are nonzero, we obtain

X =WH ⇐⇒ XDX︸ ︷︷ ︸
θ(X)

= (WDW )︸ ︷︷ ︸
θ(W )

(D−1
W HDX)︸ ︷︷ ︸

H′

⇐⇒ θ(X) = θ(W )H ′. (2.3)

If the columns of X and W have unit ℓ1 norm and X = WH , then the columns of H also
have unit ℓ1 norm. Let us prove this well-known result; see Figure 2.1 (right) for an illustration.
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Lemma 2.1. [100, Theorem 3.2] Let (W,H) be any factorization of X . If the entries in each
column of X and W sum to one, then the entries in each column of H sum to one.

Proof. The entries in each column of W and X sum to one if and only if e⊤X = e⊤ and
e⊤W = e⊤. (Note that the e’s on both sides of these equalities do not have the same size.) This
implies

e⊤ = e⊤X = e⊤WH = e⊤H,

hence e⊤ = e⊤H , that is, the entries in each column of H sum to one.

Lemma 2.1 implies that if the columns of X and W are different from the zero vector, then

cone(X) ⊆ cone(W ) ⊆ Rm
+ ⇐⇒ conv (θ(X)) ⊆ conv (θ(W )) ⊆ ∆m,

which leads to the following theorem.

Theorem 2.2. Computing an Exact NMF of X of size r is equivalent to finding r vertices (the
columns of θ(W )) within the unit simplex ∆m whose convex hull contains the columns of θ(X)
(discarding the zero columns of X).

Proof. This follows directly from (2.3) and Lemma 2.1, which shows that the columns of H ′

in (2.3) have unit ℓ1 norm.

Figure 2.2 illustrates Theorem 2.2 on the data set from Figure 2.1.

Figure 2.2. Geometric illustration of Theorem 2.2 with conv (X) ⊆ conv (W ) ⊆ ∆m

where the columns ofX andW have unit ℓ1 norm. This is the same data set as the one displayed
in Figure 2.1 (right).

Remark 2.1. In the simple illustrative examples of Figures 2.1 and 2.2, the dimension of
conv (θ(X)) is two (= rank(X) − 1; see Lemma 2.5 below) and hence is equal to the di-
mension of ∆3. However, it is crucial to note that this is usually not the case: the dimension of
conv (θ(X)) is typically (much) smaller thanm−1, that is, rank(X) is typically (much) smaller
than m. When rank(X) = m, preforming NMF does not make much sense because the trivial
factorization X = ImX provides an Exact NMF of minimum size, and the factorization does not
reduce the dimensionality, which is one of the main purposes of NMF (see Chapter 1). We will
encounter several more interesting examples later in this chapter.
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2.1.2.1 Reducing the dimension by one

A point within the unit simplex contains redundant information, namely, any entry can be de-
duced from the others: for x ∈ ∆m, xi = 1 −

∑
j ̸=i xj for all i. Hence, when considering

the interpretation of Exact NMF in terms of nested convex hulls, it is possible to reduce the di-
mension of the problem by one and represent it in a lower dimensional subspace (in dimension
m− 1). Let us define

Sr =
{
x ∈ Rr

∣∣∣ x ≥ 0, e⊤x ≤ 1
}
,

which is the convex hull of the unit simplex and the origin, that is, Sr = conv([Ir, 0]). Given
a matrix A such that A(:, j) ∈ ∆m for all j, let us denote A = A(1 : m − 1, :) such that
A(:, j) ∈ Sm−1 for all j. Note that we arbitrarily get rid of the last coordinate, w.l.o.g. We have
the following lemma.

Lemma 2.3. For x ∈ ∆m, W ∈ Rm×r such that W (:, j) ∈ ∆m for all j, and h ∈ ∆r,

x =Wh ⇐⇒ x =Wh.

Proof. Let x =
( x
xm

)
and W =

(
W

w⊤
m

)
. Since x ∈ ∆m and W (:, j) ∈ ∆m for all j,

xm = 1 − e⊤x and wm = e −W⊤e. The direction ⇒ is straightforward since x = Wh is

equivalent to
( x
xm

)
=
(Wh
w⊤

mh

)
. For the direction⇐, we need to show that xm = w⊤

mh given that

x =Wh,

xm = 1− e⊤x = 1− e⊤Wh = 1− (W⊤e)⊤h = 1− (e− wm)⊤h = w⊤
mh,

since e⊤h = 1.

Lemma 2.3 implies that for X ≥ 0 and W ≥ 0 whose columns have unit ℓ1 norm, we have

conv(X) ⊆ conv(W ) ⊆ ∆m ⇐⇒ conv
(
X
)
⊆ conv

(
W
)
⊆ Sm−1.

This will be particularly useful to represent graphically problems with m = 4 in three dimen-
sions; see the next subsection for an example, and in particular Figure 2.4. Figure 2.3 illustrates
Lemma 2.3 on the data set from Figure 2.2.

2.1.3 Deriving the result of Thomas

Section 1.4.5 introduced the early results of Thomas [450] (1974) regarding the relationship
between the rank and the nonnegative rank of a matrix. The geometric interpretation of Exact
NMF in terms of convex hulls leads to illuminating proofs of these results, but first we need some
additional tools in the form of the following two lemmas.

Lemma 2.4. Let X ∈ Rm×n
+ be a matrix whose columns have unit ℓ1 norm, that is, X⊤e = e.

We have
aff(X) = col(X) ∩

{
x | e⊤x = 1

}
and

conv(X) ⊆ col(X) ∩∆m.
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Figure 2.3. Geometric illustration of Lemma 2.3 on the data set from Figure 2.2.
This figure is obtained by looking at Figure 2.2 from the top, so that the vertical axis corre-
sponds to the first coordinate and the horizontal axis to the second coordinate.

Proof. We have

aff(X) =
{
x | x = Xα for α ∈ Rn and e⊤α = 1

}
=
{
x | x = Xα for α ∈ Rn and e⊤x = 1

}
= col(X) ∩

{
x | e⊤x = 1

}
,

where

• the first equality follows by definition of the affine hull (2.2),

• the second equality follows from the equality e⊤x = e⊤Xα = e⊤α since e⊤X = e⊤ (by
assumption), and

• the third equality follows from the definition of the column space.

Since X ≥ 0 and conv(X) ⊆ aff(X),

conv(X) ⊆ aff(X) ∩ Rm
+ = col(X) ∩

{
x | e⊤x = 1

}
∩ Rm

+ = col(X) ∩∆m,

where we used ∆m = Rm
+ ∩

{
x | e⊤x = 1

}
.

Lemma 2.5. Let X ∈ Rm×n be a nonnegative matrix with no column equal to the zero vector.
Then, conv (θ(X)) and col(X) ∩∆m are polytopes of dimension rank(X)− 1.

Proof. The dimension of conv (θ(X)) is equal to the dimension of aff(θ(X)); see Section 2.1.2.
Multiplication by a positive diagonal matrix does not change the column space of X , there-

fore col(X) = col(XDX) = col(θ(X)), and Lemma 2.4 implies that

aff(θ(X)) = col(X) ∩
{
x | e⊤x = 1

}
.

Moreover,
col(X) ∩∆m = col(X) ∩ Rm

+ ∩
{
x | e⊤x = 1

}
.
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Thus col(X) ∩∆m has the same affine hull as conv
(
θ(X)

)
, namely col(X) ∩

{
x | e⊤x = 1

}
,

and hence the dimension of the polytopes col(X)∩∆m and conv
(
θ(X)

)
coincide by definition.

Geometrically, the affine hull of θ(X) can be characterized as the intersection of the linear
subspace defined by col(X) and the affine subspace

{
x | e⊤x = 1

}
. The dimension of col(X)

is equal to rank(X), and intersecting it with
{
x | e⊤x = 1

}
removes one degree of freedom, so

we can see that the affine hull of θ(X) has dimension rank(X)− 1.
Let us show this rigorously using algebraic arguments. Let Y = θ(X). We have

aff(Y ) =
{ n∑

i=1

αiY (:, i)
∣∣ α ∈ Rn,

n∑
i=1

αi = 1
}

=
{
Y (:, n) +

n−1∑
i=1

αi

(
Y (:, i)− Y (:, n)

) ∣∣ αi ∈ R for i = 1, 2, . . . , n− 1
}

= Y (:, n) + col(Y ′),

where we use αn = 1−
∑n−1

i=1 αi, and denote Y ′(:, i) = Y (:, i)−Y (:, n) for i = 1, 2, . . . , n−1.
The dimension of the affine hull of Y is equal to the dimension of col(Y ′) which is equal to the
rank of Y ′. We have to show that rank(Y ′) = r−1. As rank(X) = r and Y = XDX whereDX

is a diagonal matrix with positive diagonal elements, rank(Y ) = r. W.l.o.g. assume the vectors
Y (:, 1), Y (:, 2), . . . , Y (:, r − 1), Y (:, n) are maximally linearly independent (that is, all other
columns of Y are linear combinations of these r columns). This implies that the r − 1 vectors
{Y (:, i)− Y (:, n)}r−1

i=1={Y ′(:, i)}r−1
i=1 are linearly independent; hence rank(Y ′) ≥ r − 1. It

remains to show that rank(Y ′) ≤ r − 1 or, equivalently, that any subset of r columns of Y ′ are
linearly dependent. For this, let I be the indices of any subset of r columns of Y ′, and let us
denote Ii the ith element of I. Since rank(Y ) = r, there exists β ∈ Rr+1 with β ̸= 0 such that

βr+1Y (:, n) +

r∑
i=1

βiY (:, Ii) = 0. (2.4)

Let us premultiply this equality by e⊤ to obtain

βr+1e
⊤Y (:, n) +

r∑
i=1

βie
⊤Y (:, Ii) = βr+1 +

r∑
i=1

βi = 0,

since e⊤Y (:, i) = 1 for all i as Y = θ(X). This gives βr+1 = −
∑r

i=1 βi and implies that
β1:r ̸= 0; otherwise β = 0. Substituting this equality in (2.4) gives

0 =

r∑
i=1

βiY (:, Ii)−
r∑

i=1

βiY (:, n) =

r∑
i=1

βi
(
Y (:, Ii)− Y (:, n)

)
=

r∑
i=1

βiY
′(:, Ii),

where β1:r ̸= 0. This implies that any subset of r columns of Y ′ are linearly dependent and
completes the proof.

For example, when rank(X) = 1, conv (θ(X)) is a zero-dimensional polytope, that is, a
single point. In fact, the columns of X are multiples of one another, and hence the columns of
θ(X) are equal to one another.

The first result of Thomas [450] follows directly from Lemma 2.5.

Theorem 2.6. [450] If X is a nonnegative matrix with rank(X) ≤ 2, then rank(X) =
rank+(X).
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Proof. This is trivial for rank(X) ≤ 1 since either X is the zero matrix or its columns are
multiples of one another. For rank(X) = 2, Lemma 2.5 shows that after removing the zero
columns of X , conv(θ(X)) is a one-dimensional polytope, that is, a segment. Since the columns
of X must be collinear to lie on a segment, the vertices of this polytope must be two of the
nonzero columns of X . Thus there exists an Exact NMF of size r = 2 where the columns of W
are these two columns of X , and we have 2 = rank(X) ≤ rank+(X) ≤ 2, and rank+(X) = 2
as desired. In fact, it is easy to prove that rank+(X) ≥ rank(X) for any nonnegative matrix X;
see Theorem 3.1(i).

Remark 2.2 (Link with separable NMF). When rank(X) = 2, the two columns of W in an
Exact NMF ofX of size r = 2 can be picked from the columns ofX; see the proof of Theorem 2.6.
We will see how to pick these columns efficiently in Algorithm 4.1. Unfortunately, this fact does
not hold for rank(X) ≥ 3. The reason is that, in dimension d = rank(X) − 1 ≥ 2, the convex
hull of the columns of X is in general not contained in the convex hull of a subset of d + 1
columns. In the worst case, all the columns are vertices (take for example points on the unit
circle in two dimensions).

Exact NMF looks for a polytope that contains the data completely. The vertices of this poly-
tope are the columns of W and can be any elements of the nonnegative orthant. Separable NMF
is a restriction of Exact NMF that will be discussed thoroughly in Chapter 7. It also looks for this
polytope but requires that its vertices are points from the data set. At times this means that more
vertices are needed in a separable NMF solution than are needed for an Exact NMF solution,
unless rank(X) ≤ 2. In other words, for rank(X) ≥ 3, there is not always a separable NMF
solution where the number of columns of W is equal to the nonnegative rank.

Before proving the second result of Thomas [450], let us provide two useful lemmas and a
corollary about Exact NMF when col(X) = col(W ).

Lemma 2.7. Let X ∈ Rm×n
+ , and let X = WH be an Exact NMF of X of size r = rank(X).

Then rank(W ) = rank(X) and col(W ) = col(X).

Proof. Since X =WH is an Exact NMF of size r, W ∈ Rm×r has r columns, and

r = rank(X) ≤ min
(
rank(W ), rank(H)

)
≤ rank(W ) ≤ min(m, r) ≤ r.

Thus rank(X) = rank(W ) = r. Moreover, X = WH implies col(X) ⊆ col(W ). Since the
dimensions of col(X) and col(W ) are equal to one another, namely to rank(X) = rank(X), we
know that col(X) is not strictly contained in col(W ), and thus col(X) = col(W ) as desired.

Lemma 2.8. Let X ∈ Rm×n
+ and W ∈ Rm×r

+ be matrices whose columns have unit ℓ1 norm
and be such that col(X) = col(W ). Then

aff(W ) = aff(X).

Proof. We have

aff(W ) = col(W ) ∩
{
x | e⊤x = 1

}
= col(X) ∩

{
x | e⊤x = 1

}
= aff(X),

where the first and third equalities follow from Lemma 2.4 and the second by the assumption
that col(X) = col(W ).
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Corollary 2.9. Let X ∈ Rm×n
+ and W ∈ Rm×r

+ be matrices whose columns have unit ℓ1 norm
and be such that col(X) = col(W ). Then,

col
(
X
)
= col

(
W
)

and aff
(
X
)
= aff

(
W
)
.

Proof. Since col(X) = col(W ) and by the definition ofX which contains the firstm−1 rows of
X , col

(
X
)
= col

(
W
)
. More precisely, col(X) ⊆ col(W ) if and only if there exists B ∈ Rr×n

such that X = WB. Since X = WB implies X = WB, we obtain col
(
X
)
⊆ col

(
W
)
. Using

the same argument, col(X) ⊆ col(W ) implies col
(
W
)
⊆ col

(
X
)
.

By Lemma 2.8, aff(X) = aff(W ), while aff
(
X
)

= aff
(
W
)

follows using the same
argument as for the column spaces, by simply adding the constraint that B⊤e = e in the argu-
ment above.

With these tools we can now present the counterexample of Thomas demonstrating that
rank+(X) may not be equal to rank(X) when rank(X) ≥ 3.

Theorem 2.10. [450] The nonnegative rank of

X =
1

2


1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1

 (2.5)

is equal to 4, while rank(X) = 3.

Proof. First, let us check that rank(X) = 3:

• X(2 : 4, 1 : 3) is an upper triangular matrix with its diagonal entries equal to 1/2 implying
that rank(X) ≥ 3, and

• X(:, 1) = X(:, 2) +X(:, 3)−X(:, 4) implying that rank(X) ≤ 3.

It remains to show that rank+(X) = 4. Note that the columns of X have unit ℓ1 norm,
that is, X = θ(X). The factorizations X = XI4 = I4X are Exact NMFs of size 4; hence
rank+(X) ≤ 4. Assume rank+(X) = 3 so that there exists a solution (W,H) of Exact NMF
of size r = 3. By Lemma 2.1, we can assume w.l.o.g. that the columns of W and H have unit ℓ1
norm, since the columns of X have unit ℓ1 norm. By Theorem 2.2 and Lemma 2.3, we consider
the equivalent geometric problem of finding W ∈ R4×3

+ such that

conv
(
X
)
⊆ conv

(
W
)
⊆ S3.

By Lemma 2.7, col(W ) = col(X) since r = rank(X). By Corollary 2.9,

aff
(
X
)
= aff

(
W
)
.

Therefore, if rank+(X) = 3, there exists W ∈ R4×3
+ such that

conv
(
X
)
⊆ conv

(
W
)
⊆ S3 ∩ aff(X),

since conv
(
W
)
⊆ aff

(
W
)
= aff

(
X
)
. Note that sinceW has three columns and rank(W ) = 3,

conv
(
W
)

is a triangle.
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Figure 2.4. Geometric illustration of Exact NMF for the 4-by-4 matrix X of Thomas
from (2.5). The matrix X is obtained by discarding the last row of matrix X . The columns of X
are the vectors (0.5,0.5,0), (0.5,0,0.5), (0,0.5,0), and (0,0,0.5).

The vertices of conv(X) are given by (0.5,0.5,0), (0.5,0,0.5), (0,0.5,0), and (0,0,0.5); see
Figure 2.4 for an illustration. Figure 2.4 shows that S3 ∩ aff(X) is a square which coincides
with conv

(
X
)
, that is, conv

(
X
)
= S3 ∩ aff(X). Since conv

(
W
)

must be nested between
conv

(
X
)

and S3 ∩ aff(X), this implies that

conv
(
X
)
= conv

(
W
)
= S3 ∩ aff(X).

This is a contradiction since a square has four vertices. In other words, the triangle conv
(
W
)

cannot contain and be contained within the same square; hence rank+(X) ≥ 4.

Note that there are many other ways to prove that rank+(X) = 4; see Section 3.4.

2.1.4 On the necessity of rank(W ) > rank(X): illustration with
nested hexagons

In this section, we present examples of Exact NMFs that correspond to a geometric problem with
nested hexagons; these examples were presented in [353, 190]. It will help us gain more insight
into the geometric interpretation of Exact NMF. In particular, they provide an instance of Exact
NMF for which rank(W ) > rank(X) is necessary to obtain a decomposition of minimum size,
that is, of size rank+(X).
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Given a scalar parameter a > 1, let us define the nonnegative matrix Xa ∈ R6×6 whose
columns have unit ℓ1 norm by

Xa =
1

6a


1 a 2a− 1 2a− 1 a 1
1 1 a 2a− 1 2a− 1 a
a 1 1 a 2a− 1 2a− 1

2a− 1 a 1 1 a 2a− 1
2a− 1 2a− 1 a 1 1 a
a 2a− 1 2a− 1 a 1 1

 . (2.6)

The aim of this section is to determine the nonnegative rank of Xa depending on the parameter
a via the geometric interpretation of the nonnegative rank.

Geometry of conv(Xa) and col(Xa)∩∆6 One can check10 that rank(Xa) = 3 for
a > 1, and that there exists a decomposition of Xa of the form

Xa =
1

6a


1 2 0
0 1 0
0 0 1
1 0 2
2 1 2
2 2 1


 −1 a− 2 −1 1− 2a 2− 3a 1− 2a

1 1 a 2a− 1 2a− 1 a
a 1 1 a 2a− 1 2a− 1

 . (2.7)

This shows that the matrices Xa for a > 1 share the same column space because the basis
in (2.7) does not depend on the parameter a. By Lemma 2.5, conv(Xa) is a two-dimensional
polytope. Moreover, one can check11 that no column of Xa is contained within the convex
hull of the other columns, hence conv(Xa) has six vertices, that is, conv(Xa) is a hexagon.
This hexagon conv(Xa) is contained in aff(Xa) ∩ ∆6: conv(Xa) ⊆ aff(Xa) by definition
while conv(Xa) ⊆ ∆6 because the columns of Xa are nonnegative and have unit ℓ1 norm. By
Lemma 2.4, aff(Xa) = col(Xa)∩

{
x|e⊤x = 1

}
, and taking the intersection with the nonnegative

orthant, we obtain aff(Xa) ∩ R6
+ = col(Xa) ∩∆6. By Lemma 2.5, the polytope col(Xa) ∩∆6

has dimension 2; hence it is also a polygon. More precisely, it is a hexagon: the vertices of the
hexagon col(Xa) ∩∆6 are given by the columns of the matrix

X = lim
a→+∞

Xa =
1

6


0 1 2 2 1 0
0 0 1 2 2 1
1 0 0 1 2 2
2 1 0 0 1 2
2 2 1 0 0 1
1 2 2 1 0 0

 . (2.8)

To see this, observe that col(Xa) = col(X) for all a > 1 since three columns of X form a basis
of col(Xa); see (2.7). Then, observe that the columns of X belong to

col(Xa) ∩∆6 = col(X) ∩∆6

= {z | z = Xy, y ∈ R6, z ≥ 0, e⊤z = 1},

10The determinant of Xa(1 : 3, 1 : 3) is equal to 1−a
108a2 .

11This can be done by checking that the linear system of equalities and inequalities X(:, k) = X(:, k̄)h and h ∈ ∆5

has no solution for k = 1, 2, . . . , 6, where k̄ = {1, 2, . . . , 6}\{k}.
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and, for each column of X , two of the six inequalities zi ≥ 0 (1 ≤ i ≤ 6) are active. In a
polygon, vertices are the intersections of two adjacent segments. This implies that, for all a > 1,

col(Xa) ∩∆6 = conv(X).

Another way to see this is to observe that, for all a > 1,

Xa =
a− 1

a
X +

1

6a
ee⊤ = X

(
a− 1

a
I6 +

1

6a
ee⊤

)
,

since Xe = e. This means that the columns of Xa are nonnegative linear combinations of
the columns of X . As a increases, the columns of Xa get closer to the columns of X , and
lima→+∞Xa = X . In fact,

conv(Xa) ⊂ conv(Xb) for 1 < a < b.

This follows from the equality

Xa = Xb

(
b(a− 1)

a(b− 1)
I6 +

b− a
6a(b− 1)

ee⊤
)
, (2.9)

which implies that the columns of Xa are convex combinations of the columns of Xb when
b ≥ a > 1. The parameter a acts on Xa by scaling the size of the hexagon associated with
conv(Xa). This hexagon grows as a increases with lima→∞ conv(Xa) = conv(X). In Fig-
ures 2.5 and 2.6, we see the cases of a = 2 and a = 3, respectively.

-1 0 1 2

-0.5

-0.25

0

0.25

0.5

0.75

1

1.25

1.5

Figure 2.5. Geometric illustration of Exact NMF for the 6-by-6 matrix X2

from (2.6) representing a triangle nested between two hexagons. [Matlab file:
ExactNMF_nested_hexagons.m].
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-1 -0.5 0 0.5 1 1.5 2
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Figure 2.6. Geometric illustration of Exact NMF for the 6-by-6 matrix X3 from (2.6)
representing two different quadrilaterals nested between the same two hexagons. Each quadrilat-
eral corresponds to a different Exact NMF. [Matlab file: ExactNMF_nested_hexagons.m].

Remark 2.3 (Figures 2.5 and 2.6). Figures 2.5 and 2.6 are obtained by representing the columns
ofXa in the subspace spanned by their columns (which has dimension 3), while the fact that their
columns have unit ℓ1 norm allows us to reduce the dimension by one, as in Section 2.1.2.1. For
example, for a = 2, we use the basis U = X2(:, [4, 1, 5]), for which we obtain

X2 = U

 0 1 1.5 1 0 −0.5
1 1 0.5 0 0 0.5
0 −1 −1 0 1 1


and

X = U

 −0.5 1.5 2.5 1.5 −0.5 −1.5
1.5 1.5 0.5 −0.5 −0.5 0.5
0 −2 −2 0 2 2

 ,

while the displayed solution W2 is given by

W2 = U

 −1 0.5 2
0 1.5 0
2 −1 −1

 .

Figure 2.5 represents the above matrices within the subspace spanned by U using only the first
two indices (the entries of all the columns of the second factors shown above sum to one). For ex-
ample, the three columns of W2 are represented by (−1, 0), (0.5, 1.5), and (2, 0). For Figure 2.6
with a = 3, we used the basis U = X3(:, [4, 1, 5]).

Such geometric constructions can be obtained in a systematic way. They will be described in
detail in the proof of Theorem 2.11 in Section 2.2 and can be obtained for any matrix of rank 3
via [Matlab file: NPPrank3matrix.m].
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What is the nonnegative rank of Xa? Let (Wa, Ha) be a solution of Exact NMF for
Xa of size rank+(Xa), and we assume w.l.o.g. that the columns of Wa have unit ℓ1 norm. Exact
NMF is equivalent to finding Wa such that

conv(Xa) ⊆ conv(Wa) ⊆ ∆6;

see Theorem 2.2. Since conv(Xa) ⊆ conv(Xb) for a ≤ b by (2.9), rank+(Xa) ≤ rank+(Xb)
for a ≤ b.

We have that rank+(Xa) ≥ rank(Xa) = 3. If rank+(Xa) = rank(Xa) = 3, Lemma 2.7
implies col(Wa) = col(Xa). When this equality is combined with Lemma 2.4 (applied on Wa),
we have

conv(Wa) ⊆ col(Xa) ∩∆6.

Since Wa has three columns and rank(Wa) = 3, conv(Wa) is a triangle.
So far, these are the same observations as for the nested square problem discussed in the

previous section. Geometrically, the problem of checking whether rank+(Xa) = 3 reduces to
checking whether there exists a triangle nested between two hexagons, namely conv(Xa) and
col(Xa) ∩ ∆6 = conv(X). For a = 2 shown in Figure 2.5, four triangles fit between the two
hexagons: the one shown in the figure and its rotation by 60 degrees, and the two triangles made
of three nonadjacent vertices of conv(X). This implies that for any 1 < a ≤ 2, rank+(Xa) = 3.

To compute an Exact NMF, the vertices of conv(W2) can be obtained by averaging two
consecutive vertices of conv(X), where X is given in (2.8); see Figure 2.5. We have

X2 =
1

12


1 2 3 3 2 1
1 1 2 3 3 2
2 1 1 2 3 3
3 2 1 1 2 3
3 3 2 1 1 2
2 3 3 2 1 1



=
1

12


1 4 1
0 3 3
1 1 4
3 0 3
4 1 1
3 3 0


︸ ︷︷ ︸

W2

 2/3 2/3 1/3 0 0 1/3
0 1/3 2/3 2/3 1/3 0

1/3 0 0 1/3 2/3 2/3

 ,

where

W2 =
1

12


1 4 1
0 3 3
1 1 4
3 0 3
4 1 1
3 3 0

 = X


1/2 0 0
1/2 0 0
0 1/2 0
0 1/2 0
0 0 1/2
0 0 1/2

 .

As explained above, there are four distinct solutions in the case a = 2, each corresponding to a
triangle nested between conv(Xa) and conv(X). Permutation and scaling of the columns of W
and the rows of H does not change the geometry of the solutions. The W factors of the other
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Exact NMFs of X2 are given by

1

12


0 3 3
1 1 4
3 0 3
4 1 1
3 3 0
1 4 1

 ,
1

6


0 2 1
0 1 2
1 0 2
2 0 1
2 1 0
1 2 0

 ,
1

6


1 2 0
0 2 1
0 1 2
1 0 2
2 0 1
1 1 0

 .

The first one is obtained by symmetry of the problem and corresponds to the triangle containing
the three other segments of the inner hexagon. The other two are made of three nonadjacent
columns of X . Up to permutation and scaling, these are the only solutions of Exact NMF of
X2. Note that, for 1 < a < 2, there are infinitely many solutions as infinitely many triangles
fit between the two nested hexagons. The related nonuniqueness of Exact NMF solutions is the
topic of Chapter 4.

The observation above also implies that rank+(Xa) ≥ 4 for any a > 2, as no triangle fits
between the two hexagons12 for a > 2. For a = 3, a quadrilateral fits between the two hexagons;
see Figure 2.6. (By symmetry of the problem, there is a total of six solutions when a = 3; see
Figure 2.6.) Therefore, rank+(Xa) = 4 for 2 < a ≤ 3.

Lemma 2.7 does not apply when rank+(Xa) ≥ 4, so we cannot take as a given that col(Wa) =
col(Xa). Thus even though no quadrilateral fits between the two hexagons12 when a > 3, it is
not straightforward to conclude that rank+(Xa) ≥ 5 for a > 3. Fortunately, Corollary 2.16
in Section 2.2 will allow us to reach this conclusion. It states that for a matrix Xa such that
rank+(Xa) ≤ rank(Xa) + 1 and such that Xa is symmetric up to permutation of its rows and
columns (Xa([2, 1, 6, 5, 4, 3], :) is symmetric), there always exists a solution W of Exact NMF
such that col(W ) = col(Xa). Hence, if rank+(Xa) = 4 for a > 3, then a quadrilateral should fit
between the two hexagons but this is not the case. This implies that rank+(Xa) ≥ 5 for a > 3.

Is rank+(Xa) = 5 or rank+(Xa) = 6 for a > 3? For a sufficiently close to 3, there is
a pentagon between the two hexagons implying that rank+(Xa) = 5. Let us consider the case
a → +∞ for which Xa = X; hence the two nested hexagons coincide since conv(X) =
col(X) ∩ ∆6. Therefore, the only polygon that fits between conv(X) and col(X) ∩ ∆6 is the
hexagon conv(X) itself. One would be tempted to conclude that rank+(X) = 6. This would be
true if we were to impose that13 rank(Wa) = rank(X) = 3. All our previous observations were
made under the condition col(Wa) = col(X) (Lemma 2.7). However, it turns out that there exists
a higher dimensional solution W ∈ R6×5 with five vertices and with rank(W ) = 4 > rank(X)
so that conv(W ) has dimension 3, namely

X =
1

6


1 0 0 0 1
2 0 0 1 0
1 0 1 0 0
0 1 1 0 0
0 2 0 1 0
0 1 0 0 1




0 0 0 1 1 0
1 1 0 0 0 0
1 0 0 0 1 2
0 0 1 0 0 1
0 1 2 1 0 0

 . (2.10)

In other words, there exists a three-dimensional polytope within the five-dimensional polytope
∆6 that contains the two-dimensional polytope conv(X); see Figure 2.7 for an illustration. This
implies that rank+(Xa) = 5 for any a > 3, and therefore rank+(X) = 5 too.
[Matlab file: ExactNMF_nested_hexagons.m] can be used to compute Exact NMFs of

Xa for any a > 1.
12This can be proved rigorously using arguments presented in Section 2.3.1.
13This is the topic of the next section. This quantity is referred to as the restricted nonnegative rank of X .
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Figure 2.7. Geometric illustration of the Exact NMF (2.10) of the 6-by-6 matrix X
from (2.8) representing a hexagon contained within a three-dimensional polytope with five ver-
tices within the unit simplex ∆6. Figure adapted from [190].

2.2 Restricted Exact NMF
The RE-NMF problem is obtained by imposing that rank(W ) = rank(X) in the Exact NMF
problem:

Problem 2.2 (Restricted Exact NMF). Given a nonnegative matrix X ∈ Rm×n
+ and a

factorization rank r, compute, if possible, two nonnegative matrices W ∈ Rm×r
+ and

H ∈ Rr×n
+ such that

rank(W ) = rank(X) and X =WH.

It is crucial to recall that rank(W ) = rank(X) and X =WH imply that col(W ) = col(X).
In fact, X =WH implies col(X) ⊆ col(W ), while the dimension of these two linear subspaces
is the same since rank(W ) = rank(X); hence col(X) = col(W ) (this is the same argument as
in Lemma 2.7). As we will see, this restricts the search space significantly.

The smallest r such that an RE-NMF of X exists is the restricted nonnegative rank of X ,
denoted rank∗+(X), which was introduced in [199]. Note that rank∗+(X) ≤ n since X = XI is
a feasible solution to RE-NMF with r = n. However, as opposed to the nonnegative rank, it is
possible that rank∗+(X) > m. We refer the interested reader to [199, 88] for more properties on
the restricted nonnegative rank.
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The reason to consider RE-NMF is twofold:

1. In most data analysis applications, it is assumed thatW has full column rank r and that the
rank of the noiseless input matrix is also r. In other terms, in most real-world data analysis
problems, X̃ = X+N =WH+N where rank(W ) = rank(X) = r and N is the noise.
It is therefore interesting to better understand this particular scenario of Exact NMF.

2. As we will show, RE-NMF is equivalent to the NPP [114, 112, 135], a widely studied
problem in the computational geometry literature. Hence any result for NPP applies to
RE-NMF. Since RE-NMF and Exact NMF are closely related, this will also imply results
for Exact NMF, for example when r = rank(X) in which case RE-NMF and Exact NMF
coincide.

This section is organized as follows. We define the NPP in Section 2.2.1 and prove its equiv-
alence with RE-NMF in Section 2.2.2 (Theorem 2.11). In Section 2.2.3, we discuss the implica-
tions of this result for Exact NMF.

2.2.1 The nested polytope problem

Let us introduce the NPP.

Problem 2.3 (Nested polytope problem). Let A ⊆ B ⊂ Rd be two full-dimensional
nested polytopes, that is, the dimension of A and B is equal to d. The polytope A,
referred to as the inner polytope, is given via the convex hull of n points

A = conv ({v1, v2, . . . , vn}) , vj ∈ Rd for j = 1, 2, . . . , n,

and the polytope B, referred to as the outer polytope, via m inequalities

B = {x ∈ Rd | Fx+ g ≥ 0},

where F ∈ Rm×d and g ∈ Rm. Given k, find, if possible, a polytope E with k vertices,
referred to as the nested polytope, such that

A ⊆ E ⊆ B.

Note that since A and B are full dimensional, we must have k ≥ d + 1; otherwise it is
never possible to find E nested between A and B. Similarly, r ≥ rank(X) is a necessary
condition for RE-NMF to admit a solution. As we will see in Theorem 2.11, there is a one-to-
one correspondence between these two problems.

2.2.2 Equivalence between RE-NMF and NPP

We now show that NPP is equivalent to RE-NMF, and they can be reduced to each other in
polynomial time. This result was first proved by Vavasis in the case of RE-NMF with r =
rank(X) and NPP with k = d + 1 [465]. In [199], the reduction from RE-NMF to NPP was
fully developed, while the reduction from NPP to RE-NMF was incomplete. A comprehensive
proof was later provided by Chistikov et al. [88].

Theorem 2.11. [465, 199, 88] There are polynomial-time reductions from RE-NMF to NPP and
from NPP to RE-NMF.
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Proof. Let us construct explicitly polynomial-time reductions from RE-NMF to NPP and from
NPP to RE-NMF. This means that given any instance of RE-NMF, we construct with polynomi-
ally many operations an instance of NPP such that solving the NPP instance solves the RE-NMF
instance and vice versa.

From RE-NMF to NPP. The main idea behind the reduction from RE-NMF to NPP is the
geometric interpretation described in the previous section: Given an RE-NMF instance, we con-
struct an NPP instance with d = rank(X)− 1 and k = r where the inner polytope corresponds
to conv(X) and the outer polytope to col(X) ∩∆m; in fact, the dimension of col(X) ∩∆m is
rank(X)− 1 as shown in Lemma 2.5. This part of the proof follows [199, Theorem 1].

First, we remove zero columns of X and replace X with its normalization θ(X). The cor-
responding RE-NMF problem has a solution if and only if it has a solution (W,H) where the
columns of W and H have unit ℓ1 norm; see Lemma 2.1.

Let us construct the NPP instance corresponding to RE-NMF. Let d = rank(X) − 1 and
(U, V ) ∈ Rm×(d+1)×R(d+1)×n be an unconstrained factorization ofX which can be computed,
for example, by taking U as a subset of d+1 linearly independent columns of X and computing
V which solves a linear system of equations. Since the entries in each column of X sum to one,
and U is formed as a subset of its columns, the entries of each column of U also sum to one. By
Lemma 2.1, the entries in each column of V must sum to one. The NPP instance is defined as
follows:14

A = conv
(
V
)

with V = V (1 : d, :),

B =
{
x ∈ Rd

∣∣ U(:, 1 : d)x+ U(:, d+ 1)
(
1−

d∑
i=1

xi

)
≥ 0
}
,

where d = rank(X) − 1, and k = r. The nonnegativity of X = UV ≥ 0 implies that A ⊆ B:
every column of V belongs to B since, for j = 1, 2, . . . , n,

U(:, 1 : d)V (1 : d, j) + U(:, d+ 1)
(
1−

d∑
i=1

V (i, j)
)

= U(:, 1 : d)V (1 : d, j) + U(:, d+ 1)V (d+ 1, j)

= UV (:, j) = X(:, j) ≥ 0,

since the sum of the entries of V (:, j) is equal to one for all j. To verify that this is an NPP
instance, we must show that A and B are of dimension d and that B is bounded (that is, it is a
polytope). Clearly, the dimension of A is d since V has rank d + 1 because X = UV where
rank(X) = d + 1. The inclusion A ⊆ B implies that B is full dimensional. To prove that B is
bounded, define F ∈ Rm×d with F (:, ℓ) = U(:, ℓ) − U(:, d + 1) for all 1 ≤ ℓ ≤ d, and denote
g = U(:, d + 1) ∈ Rm. Thus the constraints on the set B can be written as Fx + g ≥ 0. Note
that F is full column rank since U is and that the entries in each column of F sum to zero since
the entries in each column of U sum to one.

Now, assume B is unbounded, that is, assume there exists a point y ∈ B and a direction q ̸= 0
such that y+λq ∈ B for all λ ≥ 0. This implies F (y+λq)+g ≥ 0 for all λ ≥ 0, hence Fq ≥ 0.
Observe that (i) Fq ̸= 0 since F is full column rank and q ̸= 0, and (ii) the entries of Fq sum

14The NPP instance depends on the factorization of X = UV where the entries in the columns of U and V sum to one.
This decomposition is highly nonunique; hence the NPP associated to RE-NMF is not unique. In fact, any invertible ma-
trix Q such that e⊤Q = e⊤ leads to another acceptable factorization X = (UQ)(Q−1V ) since e⊤UQ = e⊤Q = e⊤,
and hence to another NPP. Geometrically, the polytopes in the NPP can be translated, rotated, and dilated, and any feasi-
ble solution after these transformations remains feasible. However, any NPP constructed in this way is equivalent to the
corresponding RE-NMF.
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to zero (since the entries in each column of F do). This implies that at least one entry in Fq is
negative, a contradiction.

It remains to be shown that the RE-NMF instance has a solution if and only if the above NPP
instance has a solution.
(⇒) Let (W,H) be a solution of RE-NMF where the columns of W and H have unit ℓ1 norm,
such that X = WH and rank(X) = rank(W ). Since rank(W ) = rank(X) = d+ 1, we have
col(W ) = col(X) (Lemma 2.7), and there existsC such thatW = UC. Note thatW = UC ≥ 0
since W is a solution of RE-NMF. By Lemma 2.1, the entries in each column of C must sum to
one. We have

X = UV =WH = UCH,

where the first equality is by construction, the second by assumption, and the third since W =
CH . The left inverse of U exists since it is full column rank; hence V = CH . Moreover, the
entries in the columns of V and C sum to one, which implies

V = CH ⇐⇒ V = CH;

see Lemma 2.3. This implies that A = conv(V ) ⊆ conv
(
C
)
. Recall that W = UC ≥ 0 so that

UC = U(:, 1 : d)C + U(:, d+ 1)C(d+ 1, :) ≥ 0,

where C(d + 1, j) = 1 −
∑d

i=1 C(i, j) for all j. This implies C(:, j) ∈ B for all j; hence
conv(C) ∈ B. Therefore, the columns of C form the k = r vertices of a polytope which is a
solution of the NPP since

A = conv
(
V
)
⊆ conv

(
C
)
⊆ B. (2.11)

(⇐) Let C be the matrix whose columns are the vertices of a solution of the NPP so that C
satisfies (2.11). This implies that there exists H whose columns have unit ℓ1 norm such that

V = CH,

and C(:, j) ∈ B for all j. This implies V = CH (see Lemma 2.3), and multiplying on both sides
by U gives X = UV = UCH where UC ≥ 0 by definition of B.

Before providing the reduction from NPP to RE-NMF, let us illustrate the reduction from
RE-NMF to NPP with an example.

Example 2.12. Let us consider the matrix

X =
1

3


1 1 1/2 1/2
1 1/2 1 1/2
1/2 1 1/2 1
1/2 1/2 1 1

 . (2.12)

The rank of X is equal to three: X(:, 4) = −X(:, 1) +X(:, 2) +X(:, 3) implies rank(X) ≤ 3,
while det(X(1 : 3, 1 : 3)) = −1/72 implies rank(X) ≥ 3. Let us construct an NPP equivalent
to the RE-NMF of X following the reduction of the proof of Theorem 2.11 above. We take U as
the first three columns of X which are linearly independent, that is, U = X(:, 1 : 3). The matrix
V such that X = UV is given by

V =

 1 0 0 −1
0 1 0 1
0 0 1 1

 .
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Figure 2.8. Geometric illustration of the construction of the NPP corresponding to the
RE-NMF of X from (2.12).

Note that the entries in the columns of X , U , and V sum to one. The NPP corresponding to the
RE-NMF of X is given by

A = conv
(
V (1 : 2, :)

)
= conv

(
V
)
= conv

({
(1, 0), (0, 1), (0, 0), (−1, 1)

})
and

B =
{
x ∈ R2 | U(:, 1)x1 + U(:, 2)x2 + (1− x1 − x2)U(:, 3) ≥ 0

}
=

{
x ∈ R2 | x1 + x2 +

1

2
(1− x1 − x2) ≥ 0, x1 +

1

2
x2 + (1− x1 − x2) ≥ 0,

1

2
x1 + x2 +

1

2
(1− x1 − x2) ≥ 0,

1

2
x1 +

1

2
x2 + (1− x1 − x2) ≥ 0

}
=
{
x ∈ R2 | x1 + x2 ≥ −1, x2 ≤ 2, x2 ≥ −1, x1 + x2 ≤ 2

}
= conv ({(0, 2), (0,−1), (−3, 2), (3,−1)}) ;

see Figure 2.8 for an illustration. We observe that A and B are quadrilaterals.15 We also observe
that there is a triangle nested between these two quadrilaterals; hence the NPP has a solution
with three vertices (note that this solution is not unique). The vertices of this solution are given
by two vertices of B, namely (0,−1) and (3,−1), and the middle point between the other two
vertices of B, namely (−1.5, 2). In other words, E = conv

(
C
)
, where

C =

(
0 3 −1.5
−1 −1 2

)
is a solution of this NPP. Let us construct the corresponding RE-NMF solution as described in
Theorem 2.11. Given C, we construct

C =

(
C

e⊤ − e⊤C

)
=

 0 3 −1.5
−1 −1 2
2 −1 0.5

 .

15Using the basis U = X(:, [1, 4, 2]) instead of U = X(:, [1, 2, 3]), we obtain another equivalent NPP instance (see
footnote 14) made of nested squares; see Example 2.18.
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Since conv
(
C
)

is a solution of the NPP, A = conv
(
V
)
⊆ conv

(
C
)

(see Figure 2.8), and there
exists a nonnegative matrix H whose columns have unit ℓ1 norm such that V = CH , which is
given by

H =
1

6

 1 0 3 2
3 2 1 0
2 4 2 4

 .

Taking

W = UC = 4


0 2 1
2 2 0
0 0 2
2 0 1


gives X = UV = UCH = WH , while rank(W ) = rank(X) = 3, and hence (W,H) is a
solution of RE-NMF of size r = 3.
[Matlab file: NPPrank3matrix.m] allows us to display the NPP instance for any matrix

of rank three, such as the one above.

We now proceed to the reduction from NPP to RE-NMF.

From NPP to RE-NMF This part of the proof follows [88, Appendix A]. Given the poly-
topes A ⊆ B of an NPP as defined in Problem 2.3, let us construct the corresponding RE-NMF
as follows: Define a matrix

X(:, j) = Fvj + g ≥ 0 for j = 1, 2, . . . , n, (2.13)

which is nonnegative becauseA ⊆ B implies Fvj+g ≥ 0, and choose a factorization rank r = k
(the number of vertices in the nested polytope). Each column of X corresponds to a vertex of A
and each row to a facet of B. Note that since A is full dimensional, col(X) = col([F, g]). Let us
show that the above RE-NMF instance has a solution if and only if the corresponding NPP has
one.
(⇒) Let X = WH be a solution to RE-NMF with inner dimension r, and w.l.o.g., assume W
does not contain a zero column. Since rank(W ) = rank(X), col(W ) = col(X) = col([F, g]);
see the proof of Lemma 2.7. Hence, there exists C ∈ Rd+1×r such that W = [F, g]C. Let us
denote the last row of C by c⊤, so that C = [C; c⊤] and W = FC + gc⊤ ≥ 0. Since B is
bounded, Fq ≱ 0 for all q ̸= 0 (see the argument above). Let us use this observation to show
that c > 0:

• If ci = 0 for some i, then FC(:, i) ≥ 0 while C(:, i) ̸= 0 since W (:, i) ̸= 0, a contradic-
tion.

• If ci < 0 for some i, let us divide the inequality FC(:, i) + cig ≥ 0 by −ci to obtain

−FC(:, i)/ci − g ≥ 0.

For all x ∈ B\{C(:, i)/ci}, Fx+ g ≥ 0 and x− C(:, i)/ci ̸= 0. Therefore,

F (x− C(:, i)/ci) = (Fx+ g) + (−FC(:, i)/ci − g) ≥ 0,

but this a contradiction, and thus we must have c > 0.
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Let D = diag(c) be the diagonal matrix with elements taken from c, and define H ′ = DH .
We have

X = [F, g]

(
v1 v2 . . . vn
1 1 . . . 1

)
=WH = [F, g]CH = [F, g]CD−1H ′

= [F, g]

(
C(:, 1)/c1 C(:, 2)/c2 . . . C(:, r)/cr

1 1 . . . 1

)
H ′.

Since [F, g] is full column rank, applying its left inverse gives us(
v1 v2 . . . vn
1 1 . . . 1

)
=

(
C(:, 1)/c1 C(:, 2)/c2 . . . C(:, r)/cr

1 1 . . . 1

)
H ′.

The bottom row of the equality, e⊤ = e⊤H ′, implies that the columns of H ′ have unit ℓ1
norm, and hence the vi’s belong to the convex hull of the C(:, i)/ci for 1 ≤ i ≤ r. Therefore
the columns of CD−1 form the vertices of a solution to the NPP as they belong to B since
W (:, i) = FC(:, i) + gci ≥ 0 and ci > 0 for all i.
(⇐) Let the columns of C ∈ Rd×r be the vertices of a solution of the NPP. Let us define
W = FC + ge⊤ where e is the vector of all ones. Since C(:, j) ∈ B for all j, W ≥ 0. Since
A ⊆ conv(C), there exists H ≥ 0 whose columns have unit ℓ1 norm such that vj = CH(:, j)
for 1 ≤ j ≤ n. For all 1 ≤ j ≤ n,

X(:, j) = Fvj + g = FCH(:, j) + g = (FC + ge⊤)H(:, j) =WH(:, j);

hence X = WH . Since col(X) = col([F, g]), col(W ) ⊆ col([F, g]) (by construction) and
X =WH , col(X) = col(W ) implying that (W,H) is an RE-NMF of X .

Note that the reduction from RE-NMF to NPP has been used in particular within the literature
on SMCR to describe the set of feasible solutions; see Section 1.4.1. For example, when r =
rank(X) = 3, it amounts to finding all possible triangles nested between the two-dimensional
polytopes conv(θ(X)) and col(X)∩∆m. For higher dimensions, the problem becomes quickly
intractable; see for example [366] and the references therein.

Example 2.13 (Example 2.12, backward). Let us take Example 2.12 backward, that is, let us
consider the NPP with

A = conv
({

(1, 0), (0, 1), (0, 0), (−1, 1)
})

and
B =

{
x ∈ R2 | x1 + x2 ≥ −1, x2 ≤ 2, x2 ≥ −1, x1 + x2 ≤ 2

}
,

and construct the matrix X whose RE-NMF is equivalent. The set B can be written in the form
B =

{
x ∈ R2 | Fx+ g ≥ 0

}
where

F =


1 1
0 −1
0 1
−1 −1

 and g =


1
2
1
2

 .

Let us denote

V =

(
1 0 0 −1
0 1 0 1

)



42 Chapter 2. Exact NMF

so that A = conv
(
V
)
. To construct the matrix X whose RE-NMF is equivalent to the above

NPP, the reduction from NPP to RE-NMF simply requires us to take

X(:, j) = FV (:, j) + g for j = 1, 2, 3, 4,

which gives

X =


2 2 1 1
2 1 2 1
1 2 1 2
1 1 2 2


and is equal to the matrix in Example 2.12 multiplied by 6. (Note that we may have arbitrary
scalings of the rows and columns of X , which does not modify its rank or its restricted nonneg-
ative rank.)

Other reductions from NPP to RE-NMF will be used later in this book: a square nested with
itself in Section 3.6.3.1, an octagon nested with itself in Section 3.6.3.3, and a rectangle inside a
square on page 129.

2.2.3 Implications for Exact NMF

For r = rank(X), Exact NMF and RE-NMF are the same problems since rank(W ) = r =
rank(X) in any factorization of X =WH; see Lemma 2.7.

Moreover, it turns out that in the case when r = rank(X) + 1, Exact NMF and RE-NMF
also coincide in the sense that Exact NMF has a solution if and only if RE-NMF has a solution.

Theorem 2.14. [199, Corollary 2] If RE-NMF admits a solution for r ≤ rank(X) + 1, that is,
rank∗+(X) ≤ rank(X) + 1, then rank+(X) = rank∗+(X).

Proof. If RE-NMF admits a solution for r = rank(X), then r = rank(X) = rank+(X) =
rank∗+(X), and the proof is complete. Otherwise, rank∗+(X) = rank(X) + 1. Let us as-
sume rank+(X) ̸= rank∗+(X), hence rank+(X) = rank(X) = r+, because rank(X) ≤
rank+(X) ≤ rank∗+(X) = rank(X) + 1. Let W ∈ Rm×r+

+ and H ∈ Rr+×n
+ be an Exact NMF

of X . Since X = WH , r+ = rank(W ) = rank(X) (Lemma 2.7), and hence (W,H) is an
RE-NMF of X of size r+ < rank∗+(X), a contradiction.

Considering the transpose of X , we obtain the following corollary (which is, as far as we
know, not present in the literature).

Corollary 2.15. If the RE-NMF of X or of X⊤admits a solution for r ≤ rank(X) + 2, that is,

min
(
rank∗+(X), rank∗+

(
X⊤)) ≤ rank(X) + 2, (2.14)

then rank+(X) = min(rank∗+(X), rank∗+(X
⊤)).

Proof. First note that rank+(X) = rank+(X
⊤), which follows from the symmetry of the

problem, that is, X = WH if and only if X⊤ = H⊤W⊤; see Theorem 3.1(ii). Note, however,
that we do not necessarily have rank∗+(X) = rank∗+

(
X⊤) unless X is symmetric [199].



2.3. Computational complexity of RE-NMF and Exact NMF 43

By Theorem 2.14, the theorem holds true for rank∗+(X) ≤ rank(X) + 1 or rank∗+(X
⊤) ≤

rank(X) + 1. It remains to consider the case where the inequality in (2.14) is an equality. By
symmetry of the problem, let us assume w.l.o.g. that rank∗+

(
X⊤) ≥ rank∗+(X) = rank(X)+2,

and let us prove the result by contradiction, assuming

rank+(X) < rank∗+(X) = rank(X) + 2 ≤ rank∗+
(
X⊤).

There are two cases:
Case 1. rank+(X) = rank(X): by Lemma 2.7, rank+(X) = rank∗+(X), a contradiction.
Case 2. rank+(X) = rank(X) + 1: let (W,H) be an Exact NMF of X of size rank+(X).
We must have rank(W ) = rank(X) + 1; otherwise, rank∗+(X) = rank+(X) because (W,H)
would be an RE-NMF of X of size rank(X) + 1, a contradiction. This implies that W admits
a left inverse W †, and hence H = W †X so that rank(H) ≤ rank(X), implying rank(H) =
rank(X) since rank(X) ≤ rank(H) as X = WH . Therefore rank∗+

(
X⊤) ≤ rank+(X) as

H⊤W⊤ is an RE-NMF ofX⊤ of size rank+(X), which is a contradiction because rank∗+(X) =
rank(X) + 2 ≤ rank∗+

(
X⊤).

For a symmetric matrix, or a matrix that can be made symmetric after permutations and
scalings of its rows and columns (which does not influence the restricted nonnegative rank),
we have rank∗+(X) = rank∗+(X

⊤). In this case, if rank∗+(X) ≤ r + 2, then rank+(X) =
rank∗+(X). For example, the 6-by-6 matrixX from (2.8) with rank(X) = 3 is symmetric after a
proper permutation of its rows and columns. We have rank∗+(X) = 6 because the corresponding
NPP instance is such thatA = B is a hexagon. We showed in Section 2.1.4 that rank(X) = 3 <
rank+(X) = 5 < rank∗+(X) = 6 and, by Corollary 2.15, this is the smallest possible example
of a symmetric matrix with its nonnegative rank strictly smaller than its restricted nonnegative
rank (recall that for rank(X) = 2, both ranks coincide).

We also have the following corollary, which we used in Section 2.1.4 to prove that the non-
negative rank of X3 is equal to 4 and that of Xa for a > 3 is strictly larger than 4.

Corollary 2.16. Let X be a symmetric matrix up to permutation and scaling of its rows and
columns. If rank+(X) ≤ rank(X) + 1, then rank+(X) = rank∗+(X).

Proof. The same proof as that of Corollary 2.15 can be used, considering the two cases rank+(X)
= rank(X) and rank+(X) = rank(X) + 1.

2.3 Computational complexity of RE-NMF and Exact NMF
As we have seen in Section 2.1, Thomas [450] showed that Exact NMF is easily solvable when
rank(X) ≤ 2 since W can be constructed by picking two columns of X , namely the vertices of
conv

(
θ(X)

)
; see Section 4.1 and Algorithm 4.1 for such a construction. In this particular case,

Exact NMF and RE-NMF coincide since r = rank+(X) = rank(X) = 2. In this section, we
discuss the computational complexity of RE-NMF and Exact NMF when rank(X) ≥ 3.

This section is organized as follows. In Section 2.3.1, we discuss the computational com-
plexity of RE-NMF. As we will see, when rank(X) = 3, there exists a polynomial-time al-
gorithm to tackle RE-NMF. This algorithm is derived via the equivalence between RE-NMF
and NPP, and via a polynomial-time algorithm for the two-dimensional NPP (Section 2.3.1.1).
When rank(X) = 4, it is NP-hard to find the minimal r such that an RE-NMF exists (Sec-
tion 2.3.1.2). We also briefly discuss the case when r is assumed to be a fixed constant in RE-
NMF, that is, when r is not part of the input (Section 2.3.1.3). In Section 2.3.2, we discuss the
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computational complexity of Exact NMF. It is NP-hard to check whether rank(X) = rank+(X).
As we will see, even when rank(X) ≥ 3, the computational complexity of Exact NMF is un-
known. However, when r is not part of the input, Exact NMF can be solved in polynomial time;
see Section 2.3.2.2. We briefly mention the practical implications of these complexity results
in Section 2.3.2.3. Finally, we mention yet another important complexity result, namely that
Exact NMF and RE-NMF are not in NP as there exist rational input matrices X that need fac-
tors (W,H) with irrational entries to be decomposed with an Exact NMF of size rank+(X); see
Section 2.3.3.

2.3.1 RE-NMF

In the following three sections, we discuss the complexity of RE-NMF in three different cases:
rank(X) ≤ 3 (Section 2.3.1.1), rank(X) ≥ 4 (Section 2.3.1.2), and r is not part of the input
(Section 2.3.1.3).

2.3.1.1 Case rank(X) ≤ 3

For rank(X) = 3, by Theorem 2.11, RE-NMF is equivalent to a two-dimensional NNP where
one has to find a convex polygon E with minimum number of vertices nested in between two
given convex polygons A ⊆ B. This problem was studied by Silio [420] (1979), who proposed
an algorithm running in O(v1v2 + v log(v)) operations, where v1 (resp. v2) is the number of
vertices of A (resp. of B) and v = v1 + v2. Note that if X is an m-by-n matrix then v1 ≤ m
and v2 ≤ n since, for a polygon, the number of facets (that is, segments) is equal to the number
of vertices. Aggarwal et al. [3] (1989) later proposed a very similar algorithm with improved
complexity (they were not aware of Silio’s work), running in O(v log(k∗)) operations,16 where
k∗ = rank∗+(X) ≤ n is the number of vertices of the minimal nested polygon E ; see below for
a description of this algorithm.

Theorem 2.17. For rank(X) ≤ 3, RE-NMF can be solved in polynomial time.

Proof. The case rank(X) ≤ 2 follows from the result of Thomas (Theorem 2.6); see also Sec-
tion 4.1. The case rank(X) = 3 follows from Theorem 2.11 and the polynomial-time algorithms
of Silio [420] and Aggarwal et al. [3] for the two-dimensional NPP.

Algorithm for the two-dimensional NPP Let us give the main ideas of the algorithms
of Silio [420] and Aggarwal et al. [3]. They first make the following observations:

O1 Any vertex of a solution E can be assumed w.l.o.g. to belong to the boundary of the polygon
B. If this is not the case, it can be replaced by a point on the boundary of B in such a way
that the new solution contains the previous one.

O2 Consider a segment [p1, p2] whose vertices are on the boundary of B and which is tangent
to A. This segment [p1, p2] defines a polygon D with the boundary of B. This polygon D
must contain a vertex of any feasible solution E . If this were not the case, the point pA at
the intersection of the segment and the boundary ofA could not be contained in the nested
polygon E . This is illustrated in Figure 2.9, where the triangle D1 defined by the points
p1, p2, and c1 must contain at least one point in any nested polygon E .

16Wang generalized the result for nonconvex polygons [474]. Bhadury and Chandrasekaran propose an algorithm for
computing all the solutions [43].
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Figure 2.9. Illustration of the algorithm of Silio [420] and Aggarwal et al. [3]: A
is the inner polytope, B is the outer polytope, and E is a nested polytope between A and B.
The solution E is constructed starting from the point p1 located on an edge of B which leads
to a solution with five vertices. The polygons Di (1 ≤ i ≤ 4) are delimited by the bound-
ary of B and the segment [pi, pi+1]. Starting instead from the vertex of B between p1 and p2,
namely the contact change point c1, leads to an optimal solution E∗ with only four vertices;
see Figure 2.10.

Then, given a point x on the boundary of B, they define the point f(x) as the intersection
of the boundary of B and the line that goes through x, is tangent to A, and goes clockwise.
For example, in Figure 2.9, we have p2 = f(p1), p3 = f(p2), and so on. Letting p1 be any
point on the boundary of B, the polynomial-time algorithm of Silio [420] and Aggarwal et al. [3]
constructs iteratively a feasible solution E that contains p1 as follows. First compute the two
points p2 = f(p1) and p3 = f(p2). (Note that any nested polygon containing A must have at
least three vertices.) Then, let k = 3, and, as long as the line going from pk to p1 goes through
the interior of A, set pk+1 = f(pk), and k ← k + 1. This construction terminates with the
feasible solution E = conv

(
{p1, p2, . . . , pk}

)
. Figure 2.9 illustrates such a construction of a

feasible solution E = conv
(
{p1, p2, . . . , p5}

)
.

Because of the two observations O1 and O2 above, we have the following:

• The solution E constructed as described above with k vertices has at most one more vertex
than an optimal solution. In fact, this solution defines at least k − 1 disjoint polygons
that have two endpoints on the boundary of B and that are tangent to A. Since each of
these polygons must contain a vertex of an optimal solution, k∗ = rank∗+(X) ≥ k − 1,
where k∗ is the minimum number of vertices of a nested polygon between A and B.
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Figure 2.9 illustrates this observation where E with five vertices defines four disjoint poly-
gons, namely Di for 1 ≤ i ≤ 4, that must contain a vertex of any feasible solution.17

• There must be a point on B between p1 and p2 that belongs to an optimal solution. In fact,
any solution must contain a point in D1 (O2), and this point can be assumed w.l.o.g. to be
on the boundary of B (O1).

The last step of the algorithm is to identify whether the constructed solution E is optimal and,
if it is not, to construct a solution with one less vertex. To do so, let us define the contact change
points between p1 and p2: they are either (i) the vertices of B between p1 and p2, or (ii) the
points that are located at the intersection of the boundary of B and a line containing an edge of
A. Figure 2.9 illustrates these contact change points between p1 and p2; there are four of them,
namely c1, c2, c3, and c4.

Silio [420] and Aggarwal et al. [3] were able to prove that one only needs to consider solu-
tions generated from these contact change points (instead of p1) to possibly generate a solution
that is better than the one constructed starting from p1 (meaning a solution with one less vertex).
In the example of Figure 2.9, starting the procedure to construct E from the (only) vertex of B
between p1 and p2, namely c1 (instead of p1) generates an optimal solution of this NPP instance,
since it reduces the original solution from five to four vertices; see Figure 2.10. (Another optimal
solution is also obtained starting from c2.)

Algorithm 2.1 summarizes the algorithm of Silio [420] and Aggarwal et al. [3].

Algorithm 2.1 The two-dimensional NPP [420, 3]
Input: Two nested polygons A ⊆ B.
Output: A polygon E nested between A and B with minimum number of vertices.

1: Pick a point p1 on the boundary of B.
2: Let p2 = f(p1) and p3 = f(p2), where the function f(x) is defined as the intersection of

the boundary of B and the line that goes through x, is tangent to A, and goes clockwise.
3: Let k = 3.
4: while the line between p1 and pk goes through the interior of A do
5: pk+1 = f(pk).
6: k = k + 1.
7: end while
8: Let E = conv

(
{p1, p2, . . . , pk}

)
be a feasible solution of the NPP: A ⊆ E ⊆ B.

9: Compute the contact change points between p1 and p2.
10: For each contact change point, construct the corresponding feasible solution for the NPP,

exactly as done above when starting from p1. If such a feasible solution has k − 1 vertices,
replace E by this solution, and return.

When A and B intersect In the case in which the inner polygon intersects the outer
polygon, say at a point p, Silio [420] makes the following interesting observation: any solution
E has to contain p. Hence one can assume w.l.o.g. that either one of the vertices of an optimal
solution is p or two of the vertices of an optimal solution are two points on the segment containing
p (in which case these two points can be assume w.l.o.g. to be the endpoint of this segment
since this leads to a new solution containing the previous one). Therefore, using the above

17To be more precise, the polygons Di are not disjoint since two consecutive polygons intersect in one point on the
boundary of B. However, if this intersection point is selected in a nested polygon, then a minimal solution containing
this point is the one obtained by the procedure described above, and it contains k vertices.
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A
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E∗

c
1

Figure 2.10. Illustration of Algorithm 2.1: A is the inner polytope, B is the outer
polytope and E∗ is a nested polytope, between A and B. The optimal solution E∗ with four
vertices is constructed starting from the point c1.

construction starting from p or from one of the endpoints of the segment containing p leads to an
optimal solution.

Remark 2.4 (Generalization to higher dimensions). The observation that the sets Di (see Fig-
ure 2.9) must contain a vertex of any feasible solution can be generalized in higher dimensions:
in any dimension, any hyperplane tangent to A defines with B a polytope that contains the ver-
tex of any feasible solution. Unfortunately, it is not possible to use this observation to design
an efficient algorithm in higher dimensions (the problem is NP-hard in dimension higher than
two; see Theorem 2.19). However, it has been recently used to provide new lower bounds for the
nonnegative rank [128].

Example 2.18 (Nested squares). Before we go on with the complexity of Exact NMF, let us
illustrate the notions covered in this section with a simple example.18 Let

X =


1 1 ϵ ϵ
1 ϵ 1 ϵ
ϵ 1 ϵ 1
ϵ ϵ 1 1

 with ϵ ∈ [0, 1]. (2.15)

18This example has been used several times in the literature; see for example [51], [292, Example 2.1]. Example 2.12
(page 38) corresponds to the case ϵ = 1/2. A more general example appears in [155, Proposition 4], where the authors
consider a rectangle nested inside a square. Another similar example is presented in Section 4.2.5.
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Figure 2.11. Geometric illustration of Exact NMF for the 4-by-4 matrix X from (2.15)
with ϵ =

√
2−1. The matrixX is the scaled matrixX where the last coordinate is discarded. The

columns of col(X)∩S3 are the points (0.5, 0.5, 0), (0.5, 0, 0.5), (0, 0.5, 0), and (0, 0, 0.5), while
the columns of X are (0.5− δ, 0.5− δ, δ), (0.5− δ, δ, 0.5− δ), (δ, 0.5− δ, δ), and (δ, δ, 0.5− δ),
where δ = ϵ

2(1+ϵ) =
2−

√
2

4 ≈ 0.1464.

In the following, we address the following question: What is the nonnegative rank of X depend-
ing on the parameter ϵ ∈ [0, 1]?

For ϵ = 0, this is the matrix of Thomas from (2.5), and hence rank+(X) = 4 (Theorem 2.10).
For ϵ = 1, the problem is trivial since rank(X) = rank+(X) = 1. For ϵ ∈ (0, 1), rank(X) = 3.
In fact, the sum of the first and fourth columns of X equals the sum of the other two, hence
rank(X) ≤ 3, while the determinant of X(1 : 3, 1 : 3) equals −(−ϵ)2(1 + ϵ) and is dif-
ferent from zero, and hence rank(X) ≥ 3. Since rank(X) = 3 and X is a 4-by-4 matrix,
rank+(X) ∈ {3, 4}. In the following, we show that rank+(X) = 4 for ϵ ∈ [0,

√
2 − 1) and

rank+(X) = 3 for ϵ ∈ [
√
2 − 1, 1). To do so, we follow the same strategy used for the ma-

trix of Thomas in Theorem 2.10 to visualize the problem and its solutions in three dimensions19

(see page 29).
We scale the columns ofX so that their entries sum to one, and we discard the last coordinate

to obtain X . We then draw the columns of X in three dimensions. The intersection of the affine
hull of X with S3 is the same as that for the matrix of Thomas regardless of the value of ϵ; thus
the outer polytope B does not change as ϵ takes different values. If rank+(X) = 3, there must
exist a triangle between A = conv(X) and B = aff(X) ∩ S3; this is the case, for example, in
Figure 2.11 with ϵ =

√
2− 1. To simplify the representation, let us work in the two-dimensional

space obtained by projecting col(X) ∩ S3 onto the span of the first two canonical basis vectors;

19It would be simpler to use the reduction from RE-NMF to the NPP, which would give an equivalent problem.
However, we present here the more intuitive approach using the description from Section 2.1. This allows the reader who
has skipped the proof of Theorem 2.11 to follow the line of thought.
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Figure 2.12. Geometric illustration of Exact NMF for the 4-by-4 matrix X from (2.15)
for ϵ =

√
2 − 1 in two dimensions via a projection on the (x, y) plane from Figure 2.11. The

vertices of the outer square are the points (0.5, 0.5), (0.5, 0), (0, 0.5), and (0, 0), while the
columns of the inner square are (0.5 − δ, 0.5 − δ), (0.5 − δ, δ), (δ, 0.5 − δ), and (δ, δ) where
δ = ϵ

2(1+ϵ) =
2−

√
2

4 ≈ 0.1464.

see Figure 2.12 for an illustration. This projection is equivalent to viewing Figure 2.11 from
above. In this two-dimensional projection, we have an NPP with two nested squares where the
size of the inner square depends on the value of ϵ. Figure 2.13 depicts another example of this
projection with ϵ = 0.25; in this case, rank+(X) = 4 because no triangle can be nested between
the two squares. How can we find the smallest value of ϵ such that rank+(X) = 3? This question
can be answered using the arguments provided by Silio [420] and Aggarwal et al. [3] and using
Algorithm 2.1.

Consider the example presented in Figure 2.13. We would like to find the smallest value of
ϵ for which rank+(X) = 3. If we define the parameter δ = ϵ

2(1+ϵ) , then by the observation O2
(page 44), the convex hull of the points {(0, 0), (0, 0.5), (δ, 0.5), (δ, 0)} must contain a vertex of
any polygon nested between the two squares A and B.

If Algorithm 2.1 is initialized with p1 = (δ, 0), the second vertex generated by the method is
f(p1) = p2 = (δ, 0.5). In order to have rank+(X) = 3, we must be able to contain A within a
triangle, and by the symmetry of the example the final vertex must be beyond p3 = (0.5, 0.25).
If the secant line between p1 and p3 (similarly, between p2 and p3) intersectsA at more than one
point, the triangle will not contain A. Thus if the secant line between (δ, 0.5) and (0.5, 0.25)
intersects the line x = 0.5 − δ at a value of y ≥ 0.5 − δ, the triangle will contain A. One can
check that this is possible for any 1

4 (2−
√
2) = 0.1464 ≤ δ < 1

4 .
Now, let us show that the solution obtained by starting from p1 = (δ, 0) cannot be improved

upon, that is, it is an optimal solution of the NPP. If a better solution exists, it can be constructed
using the contact change points between (δ, 0) and (δ, 0.5); this is the result from Silio [420] and
Aggarwal et al. [3]; see Section 2.3.1.1. There are four contact change points, labeled as c1, c2,



50 Chapter 2. Exact NMF

c1=(0, 0)

c4=(0, 12 )

( 12 , 0)p1=(δ, 0)

c2=(0, δ)

c3=(0, 12 − δ)

p2=(δ, 12 )

p3=( 12 ,
1
4 )

Outer square B
Inner square A
Triangle
Contact change points between p1 and p2(
1
2 − δ,

1
4 + 1

4
δ

1
2−δ

)

Figure 2.13. Illustration of the nested squares problem for δ = 0.1. In order for the
triangle to contain the inner square, one needs the orange point with star shape to be located at
( 12 − δ,

1
2 − δ), that is, 1

2 − δ =
1
4 (1+

δ
0.5−δ ), which is achieved for δ∗ = 1

4 (2−
√
2) = 0.1464.

c2, and c4 in Figure 2.13. Two of them, namely, (0, 0.5 − δ) and (0, δ), lead to solutions which
are rotations of the solution initialized at (δ, 0) by symmetry of the problem. Initializing with the
point (0,0) leads to a solution with more vertices than (δ, 0); for example, in Figure 2.12, starting
from (0,0) we obtain a solution which has four vertices instead of three when starting from
(δ, 0). Thus the NPP has a solution with three vertices if and only if the algorithm initialized
at (δ, 0) leads to a solution with three vertices. As previously noted, this is possible for δ ∈
[ 14 (2−

√
2), 14 ), and finally we see that rank+(X) = 4 for ϵ ∈ [0,

√
2− 1) and rank+(X) = 3

for ϵ ∈ [
√
2− 1, 1) because δ = ϵ

2(1+ϵ) .

2.3.1.2 Case rank(X) ≥ 4.

For rank(X) = 4, RE-NMF reduces to a three-dimensional NPP. This problem has been studied
in the computational geometry literature by Das [112] and Das and Joseph [114] among others
and has been shown to be NP-hard when minimizing the number of facets of E (the reduction is
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from planar 3-SAT).20 From this result, one can deduce (using a duality argument) that minimiz-
ing the number of vertices of E is NP-hard as well [113, 99].

Theorem 2.19. Let X ∈ Rm×n
+ . For rank(X) ≥ 4, finding the minimum r such that RE-NMF

has a solution is NP-hard.

Proof. This is a consequence of Theorem 2.11 and the NP-hardness results of Das and others
[114, 112, 113].

Note, however, that several approximation algorithms have been proposed in the litera-
ture. For example, Mitchell and Suri [345] propose an algorithm running in O(p3) to compute
rank∗+(X) in case rank(X) = 4 within an O(log(p)) factor, where p = m + n. Clarkson [99]
proposes a randomized algorithm for finding E with at most r∗+O(5d ln(r∗+)) vertices which runs
in O(r∗+

2p1+δ) expected time, where r∗+ = rank∗+(X), d = rank(X)− 1, and δ is any positive
fixed value.

In his seminal paper on the complexity of NMF, Vavasis [465] considers RE-NMF with
r = rank(X). Note that, in this case, RE-NMF and Exact NMF are equivalent (Lemma 2.7).
He refers to the corresponding NPP as the intermediate simplex problem where k = d + 1.
Vavasis proves that this problem is NP-hard using a reduction of 3-SAT (see footnote 20) to the
intermediate simplex problem [465, Theorem 4].

Theorem 2.20. [465] It is NP-hard to check whether rank(X) = rank+(X).

Theorem 2.20 implies that RE-NMF and Exact NMF are NP-hard.

2.3.1.3 Case r is not part of the input.

Theorem 2.20 considers that r is part of the input in RE-NMF, while Theorem 2.19 does not fix
r a priori. However, if we assume instead that r is a fixed constant, then solving RE-NMF can
be done in polynomial time in m and n, namely in time O

(
(mn)cr

2)
for some constant c; see

Theorem 2.21 in Section 2.3.2 and the discussion that follows.

2.3.2 Exact NMF

Let us now discuss the computational complexity of Exact NMF. We consider two cases: r part
of the input and r not part of the input.

2.3.2.1 Case when r is part of the input

When rank(X) ≤ 2, Exact NMF coincides with RE-NMF and rank+(X) = rank∗+(X) =
rank(X). Thus Exact NMF can also be solved in polynomial time in this situation.

When rank(X) = 3, Theorem 2.17 shows that the minimal r for which an RE-NMF exists
can be found in polynomial time; however, the computational complexity of finding the minimal

20SAT, or satisfiability, is an instrument problem in computational complexity used to prove NP-completeness results.
It refers to the problem of deciding whether a set of clauses composed of Boolean variables, or their negation, can be
satisfied. SAT is the first problem ever proved to be NP-complete. 3-SAT refers to the subset of satisfiability problems
where each clause contains exactly three Boolean variables. It can be shown that SAT reduces to 3-SAT and vice versa;
see [180] for more details. The incidence graph of a 3-SAT instance is defined as follows. The vertices of the incidence
graph are the variables and the clauses, while the edges connect variables to clauses containing them. Planar 3-SAT
requires the incidence graph to be planar.
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r for which an Exact NMF exists is still unknown to the best of our knowledge. In the next
section, we explain that Exact NMF can be solved in polynomial time when r is a fixed constant.
However, this does not allow us to conclude that Exact NMF can be solved in polynomial time
when rank(X) = 3 because the nonnegative rank of rank-three matrices cannot be bounded
above as a function of the rank. In Chapter 3 we will see some examples of this. In particular
page 91 describes a class of n-by-n matrices of rank three whose nonnegative rank is Ω(

√
n).

Note that if min
(
rank∗+(X), rank+(X

⊤)
)
≤ rank(X) + 2 = 5, then Algorithm 2.1 can be

used to compute rank+(X) since the RE-NMF of X or of X⊤ provides a solution for Exact
NMF; see Corollary 2.15.

Deciding whether there exists a solution to Exact NMF for r = rank(X) is NP-hard, which
was proved by Vavasis [465]; see Theorem 2.20. Note that r = rank(X) is part of the input
meaning that, unless P=NP, there is no algorithm polynomial in r and in the size of X that
solves Exact NMF. We refer the reader to [414] for a different proof using algebraic arguments
(instead of geometric ones) and the references to earlier works that implied NP-hardness of NMF.
Moreover, Arora et al. [15, 16] showed that there is no algorithm for solving Exact NMF that runs
in time (mn)o(r) unless 3-SAT can be solved in time 2o(n) (which is believed to be impossible
unless P=NP).

2.3.2.2 Case when r is not part of the input

In practice, r is usually small, so it is meaningful to wonder whether Exact NMF can be solved
in polynomial time in m and n for a small, fixed r (in other words, the complexity is polynomial
in m and n but not in r). It turns out that the answer is yes, that is, Exact NMF can be solved in
polynomial time when r is not considered part of the input. This can be proved using the seminal
result of Basu, Pollack, and Roy [26] based on quantifier elimination. Their result shows that
finding a point in a semialgebraic set, that is, a set defined via polynomial equations and strict
polynomial inequalities, with p constraints on polynomials of degree at most d with q variables
can be done in time O

(
(pd)cq

)
for some constant c.

In its original form, Exact NMF is written with mr + nr variables (the entries of W and
H) as mn equalities of degree two, namely X = WH . Hence Exact NMF can be decided
in time O

(
(mn)c(mr+nr)

)
for some constant c. Note that the nonnegativity constraints can

be achieved by using auxiliary variables whose squares are equal to the entries of W and H ,
leading to equations of degree four but no inequality constraints, which does not change the
overall complexity.

In the particular case of r = rank(X), the number of variables to formulate Exact NMF can
be drastically reduced.

Theorem 2.21. [16, Lemma 2.2], [16, Corollary 3.20] Deciding whether there exists an Exact
NMF of an m-by-n matrix X with r = rank(X) can be done in time O

(
(mn)cr

2)
for some

constant c.

Proof. Let C = X(:,K) with |K| = r be a subset of linearly independent columns of X , and let
R = X(L, :) with |L| = r be a subset of linearly independent rows of X . In any Exact NMF
of X = WH with r = rank(X), col(X) = col(W ) and col(X⊤) = col(H⊤); see Lemma 2.7.
Hence there exists an Exact NMF (W,H) ofX of size r withX =WH if and only if there exist
S ∈ Rr×r and T ∈ Rr×r such that

W = CS ≥ 0, H = TR ≥ 0, and X = CSTR.

The reformulation in terms of the variables S and R has 2r2 variables andO(mn) constraints of
degree at most two.
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Theorem 2.21 also applies to RE-NMF since r = rank(X), hence rank(W ) = r
(Lemma 2.7).

Arora et al. were able to obtain a reformulation of Exact NMF in the general case, that is,
when rank(W ) is possibly larger than rank(X), using onlyO(r22r) variables and hence making
it solvable in polynomial time for r fixed [15, 16]. Later, Moitra [351] was able to reduce it to
O(r2) variables, essentially as small as that for the case r = rank(X). These constructions are
rather complicated; we refer the reader to [15, 351, 16] for the details.

2.3.2.3 Practical implications

Although r is usually small in practice, the approach based on quantifier elimination described
above cannot currently be used to solve practical problems because of its high computational
cost: although the term O((mn)cr2) is a polynomial in m and n for r fixed, it grows extremely
fast. Even to factorize a 4-by-4 matrix with r = 3, current such algorithms fail to produce a
solution; we have (mn)r

2

= 169 > 1010 (which does not consider c or the hidden constants in
the Big O notation). In contrast, most heuristic NMF algorithms run in O(mnr) operations; see
Section 8. Hence designing a practical algorithm for Exact NMF when r is small is a direction for
future research. Note that, on top of the complexity of the problem, there is another obstacle to
designing such an algorithm: even for a rational input matrix, Exact NMF might require factors
with irrational entries; see Section 2.3.3.

Algorithms for Exact NMF Not many algorithms exist that are designed specifically for
Exact NMF. Most numerical algorithms are developed for approximation problems, such as

min
W≥0,H≥0

∥X −WH∥2F .

If such an algorithm obtains a reconstruction error equal to zero, that is, X = WH , then it
has solved the corresponding Exact NMF problem. We refer the reader to Chapter 8 for the
description of such algorithms.

Let us mention a few heuristic approaches (that is, they do not come with theoretical guaran-
tees) that focus on Exact NMF:

• In [460], Vandaele et al. specifically designed globalization heuristics to tackle Exact NMF.
These include a simulated annealing approach and a greedy randomized adaptive search
procedure. These heuristics were able to compute solutions for a wide class of nonnegative
matrices of small size (with dimensions up to around 100).

• Dong, Lin, and Chu [137] consider an algorithm that sequentially computes rank-one fac-
tors in the case rank(X) = rank+(X). At each step, a nonnegative rank-one factor is
subtracted from the current residual in order to reduce its rank by one. Their approach is
based on the Wedderburn rank reduction formula [479].

• For r = rank(X), the number of variables in the problem can be drastically reduced from
mr+nr to 2r2; see the proof of Theorem 2.21. This approach has been used in particular
in the SMCR literature; see [366] and the references therein. Other works have used the
same idea, for example in [251] for symNMF where W = H⊤.

2.3.3 Are RE-NMF and Exact NMF in NP?

In 1993, Cohen and Rothblum [100] asked whether there always exists a rational Exact NMF
of size rank+(X) for an input matrix X with rational entries (rational Exact NMF means that
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the entries of W and H are rational). This question is related to the problem of whether Exact
NMF is in NP which requires that its solution be able to be written as a polynomial in the size
of the input. It turns out that the answer to Cohen and Rothblum’s question is no. Explicit
counterexamples were obtained independently by Shitov [412, 414] and Chistikov et al. [89].
Shitov’s counterexample is a 21-by-21 matrix with entries in {0, 1, 2} whose nonnegative rank
is less than 19, while there is no rational NMF of size smaller than 20. Chistikov et al. created
a counterexample with a 6-by-11 rational matrix whose nonnegative rank is 5 while over the
rationals it is 6. The same result holds for RE-NMF, as shown by Chistikov et al. [88]. In the
case r = rank(X) = rank+(X), the problem is still open as the above counterexamples satisfy
rank(X) < rank+(X). However, Shitov [416] showed that there exists a nonnegative matrix
whose entries belong to a subfield of R with r = rank(X) = rank+(X), while its nonnegative
rank over that subfield (meaning that the entries of W and H are required to belong to that
subfield) is strictly larger than r.

Another closely related result is the fact that Exact NMF is ∃R-complete, that is, Exact NMF
is equivalent to deciding if a given system of polynomial equations with integral coefficients has
a real solution [413]. The same holds for RE-NMF [135].

2.4 Take-home messages
The three main take-home messages from this chapter are as follows:

1. Exact NMF can be reduced to finding a polytope, conv
(
θ(W )

)
, nested between two given

polytopes, conv
(
θ(X)

)
⊆ ∆m. The dimension of the convex hull of θ(X) is rank(X)−1

(Lemma 2.5) and the dimension of ∆m is m− 1, while the dimension of conv
(
θ(W )

)
is

unknown in advance but belongs to the interval
[
rank(X)− 1, r − 1

]
, since rank(W ) ∈

[rank(X), r].

2. RE-NMF imposes that the dimension of conv
(
θ(W )

)
is the same as that of conv

(
θ(X)

)
by imposing rank(W ) = rank(X). The smallest size of an RE-NMF is referred to as the
restricted nonnegative rank of X and denoted rank∗+(X). RE-NMF is equivalent to the
NPP (where the inner and outer polytopes have the same dimension); see Theorem 2.11.
RE-NMF can be solved in polynomial time when rank(X) = 3 using an algorithm for
the two-dimensional NPP (Algorithm 2.1). For rank(X) ≥ 4, it is NP-hard to compute
rank∗+(X) (Theorem 2.19).

3. Exact NMF is NP-hard. If r is fixed and not part of the input (that is, r is considered
as a fixed constant), it can be solved in polynomial time, namely in time O

(
mnO(r2)

)
.

However, this is not very useful in practice because of the high computational cost and, as
far as we know, all available existing algorithms are heuristics and come with no global
optimality guarantee.
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Nonnegative rank

This chapter discusses the nonnegative rank and is oriented toward theoretical results. Re-
call that the nonnegative rank of a nonnegative matrix X is the smallest r such that an Exact
NMF of X exists and is denoted rank+(X). In other words, the nonnegative rank of X is
the smallest r such that X can be decomposed as the sum of r nonnegative rank-one terms
X =

∑r
p=1W (:, p)H(p, :), where W ≥ 0 and H ≥ 0. By convention, the nonnegative rank of

a matrix containing only zero entries is equal to zero.
If your interests are rather geared toward data analysis applications, this chapter can be

skipped.

Organization of the chapter In Section 3.1, several properties of the nonnegative rank
are presented. In Section 3.2, we show how the nonnegative rank is impacted by small and by
rank-one perturbations of the input matrix. In Section 3.3, we discuss what the nonnegative rank
of randomly generated matrices is. In Sections 3.4 and 3.5, several techniques for computing
lower and upper bounds for the nonnegative rank are presented, respectively. Finally, we discuss
the link between the nonnegative rank and several closely related problems, namely the compact
representations of polytopes which led to recent breakthrough results in combinatorial optimiza-
tion (Section 3.6), and communication complexity (Section 3.7) as well as other applications
(Section 3.8). The chapter is concluded with take-home messages (Section 3.9).

3.1 Some properties of the nonnegative rank
The paper by Cohen and Rothblum [100] (1993) is the first to thoroughly investigate the nonneg-
ative rank, its properties, and its applications. Let us start with some properties that were proved
in their paper.

Theorem 3.1. Let X ∈ Rm×n
+ . The following properties hold:

(i) rank(X) ≤ rank+(X) ≤ min(m,n), where the inequalities can be strict.

(ii) rank+(X) = rank+(X
⊤).

(iii) For any Y ∈ Rm×n
+ , rank+(X + Y ) ≤ rank+(X) + rank+(Y ).

(iv) For any Y ∈ Rn×p
+ , rank+(XY ) ≤ min

(
rank+(X), rank+(Y )

)
.

55
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(v) For any Y ∈ Rp×q
+ , rank+

(
X 0
0 Y

)
= rank+(X) + rank+(Y ).

(vi) If rank(X) ≤ 2 or min(m,n) ≤ 3 or min(m,n) = rank(X), then

rank+(X) = rank(X).

Proof. (i) The rank of an m-by-n matrix X can be defined as the smallest r such that there exists
W ∈ Rm×r and H ∈ Rr×n with X = WH . Since the nonnegative rank is defined in the same
way with the additional constraint that U and V are componentwise nonnegative, rank(X) ≤
rank+(X). The second inequality is implied by the trivial factorizationsX = XIn = ImX . We
have proved in Section 2.1 that the 6-by-6 matrix X from Equation (2.8) corresponding to the
nested hexagon problem satisfies

rank(X) = 3 < rank+(X) = 5 < min(m,n) = 6,

which provides an example where the inequalities are strict.
(ii) This follows directly from X =WH ⇐⇒ X⊤ = H⊤W⊤.
(iii) Let (W,H) be an Exact NMF of X with rX = rank+(X) rank-one factors, and let (U, V )
be an Exact NMF of Y with rY = rank+(Y ) rank-one factors. We have

X + Y =WH + UV = (W U)

(
H
V

)
,

which provides an Exact NMF of X + Y with rX + rY factors, which gives the result.
(iv) Let (W,H) be an Exact NMF of X with rX = rank+(X) rank-one factors, and let (U, V )
be an Exact NMF of Y with rY = rank+(Y ) rank-one factors. We have

XY =WHUV =W (HUV )︸ ︷︷ ︸
A≥0

= (WHU)︸ ︷︷ ︸
B≥0

V.

HenceWA is an Exact NMF ofXY with rX rank-one factors, andBV is an Exact NMF ofXY
with rY rank-ones factors, which gives the result.
(v) Let us consider the following Exact NMF:

Z =

(
X 0
0 Y

)
=WH =

(
W1

W2

)(
H1 H2

)
=

(
W1H1 W1H2

W2H1 W2H2

)
.

We must have W1H2 = 0 and W2H1 = 0. Since Wi ≥ 0 and Hi ≥ 0 for i = 1, 2,
W1(:, k) ̸= 0 implies H2(k, :) = 0 and vice versa. Similarly, W2(:, k) ̸= 0 implies H1(k, :) = 0
and vice versa. This means that each rank-one factor W (:, k)H(k, :) can have nonzero entries in
positions corresponding to X or Y but not for both simultaneously. Therefore we need at least
rank+(X)+rank+(Y ) rank-one factors in any Exact NMF of Z. IfWXHX is an Exact NMF of
X of size rank+(X), and WYHY is an Exact NMF of Y of size rank+(Y ), then we can easily
construct an Exact NMF of Z of size rank+(X) + rank+(Y ) as

Z =

(
X 0
0 Y

)
=

(
WX 0
0 WY

)(
HX 0
0 HY

)
=

(
WXHX 0

0 WYHY

)
,

which concludes the proof.
(vi) The case rank(X) ≤ 2 is the result of Thomas [450]; see Theorem 2.6. The case min(m,n)
= rank(X) follows from the trivial decompositions X = XIn = ImX . The case min(m,n)
≤ 3 follows from the two previous cases: since rank(X) ≤ min(m,n), either rank(X) ≤ 2 or
rank(X) = 3 = min(m,n), and in both cases rank+(X) = rank(X).
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3.2 The nonnegative rank under perturbations
In this section, we discuss how the nonnegative rank of a nonnegative matrixX is modified under
small and rank-one perturbations of X in Sections 3.2.1 and 3.2.2, respectively.

3.2.1 Lower semicontinuity

An important property of the nonnegative rank is that it is lower semicontinuous, that is, it can
only increase in a neighborhood of a matrix.

Theorem 3.2. [51, Theorem 3.1] Let X ∈ Rm×n
+ without zero columns and rank+(X) = k.

Then there exists a ballB(X, ϵ) = {Y | ∥X−Y ∥F ≤ ϵ} for some ϵ > 0 such that rank+(Y ) ≥ k
for all Y ∈ B(X, ϵ) ∩ Rm×n

+ .

Proof. We refer the interested reader to [51, Theorem 3.1] for a formal proof which is based
on the geometric interpretation of NMF: in the problem of finding a nested polytope between an
inner and an outer polytope, perturbing slightly the inner and outer polytopes cannot lead to a
nested polytope with fewer vertices.

We have already encountered matrices such that rank+(X) > rank(X); see for exam-
ple (2.5) and (2.6). Together with Theorem 3.2, this implies that the set of matrices of rank
r with 3 ≤ r < min(m,n) and nonnegative rank strictly larger than r, that is, the set{

X ∈ Rm×n
+

∣∣ rank(X) = r < rank+(X)
}
,

has a positive measure within the set {X ∈ Rm×n
+ | rank(X) = r} of matrices of rank r; see

also Section 3.3 for a discussion.

3.2.2 Rank-one perturbations

Given a matrix X ∈ Rm×n and any rank-one perturbation yz⊤ with y ∈ Rm and z ∈ Rn, it is
well-known that

rank(X)− 1 ≤ rank
(
X + yz⊤

)
≤ rank(X) + 1.

One may wonder whether this property holds for the nonnegative rank. ForX ∈ Rm×n
+ , y ∈ Rm

+ ,
and z ∈ Rn

+,

rank+
(
X + yz⊤

)
≤ rank+(X) + 1,

which follows from Theorem 3.1(iii).
What about lower bounds for rank+

(
X + yz⊤

)
? Can the nonnegative rank of X + yz⊤

be smaller than the nonnegative rank of X minus one? The answer is yes. This result is a
consequence of the following theorem;21 see Corollary 3.5 below.

Theorem 3.3. For any nonnegative matrix X ∈ Rm×n
+ , there exists y ∈ Rm

+ and z ∈ Rn
+ such

that
rank+

(
X + yz⊤

)
= rank(X).

21Although it is relatively easy to prove, Theorem 3.3 is a result not present in the literature to the best of our knowl-
edge.
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Proof. First, w.l.o.g., let us

• discard the zero columns of X: it does not impact its rank or its nonnegative rank, while
taking the entries of z corresponding to zero columns of X equal to zero, that is, z(i) = 0
for all i such thatX(:, i) = 0, does not impact the rank or the nonnegative rank ofX+yz⊤

(the corresponding columns of X + yz⊤ are zero);

• normalize the columns of X to unit ℓ1 norm. This amounts to multiplying X on the right
by a diagonal matrix D with positive diagonal elements. Scaling the vector z in the same
way, that is, z ← Dz, does not influence the rank or the nonnegative rank of X and
X + yz⊤.

Then, let us denote r = rank(X), and let us construct an unconstrained factorization of
X = UV with U ∈ Rm×r and V ∈ Rr×n as follows. Pick r linearly independent columns of
X to form U ; hence U ≥ 0 and the columns of U have unit ℓ1 norm. Since the columns of U
are linearly independent, there must exist V (not necessarily nonnegative) such that X = UV
with rank(V ) = r, and the entries in each column of V sum to one, that is, e⊤V = e⊤; see
Lemma 2.1. Note that this is the same construction as in the proof of Theorem 2.11.

Now, let y = Ue ≥ 0 and z = αe where α = |mini,j V (i, j)| so that V ′ = V + αee⊤ ≥ 0.
We have

X + yz⊤ = UV + αUee⊤ = U
(
V + αee⊤

)
= UV ′,

which provides an Exact NMF of X + yz⊤ = UV ′ of size r = rank(X), which proves
rank+

(
X + yz⊤

)
≤ r.

To prove rank+
(
X + yz⊤

)
≥ r, it suffices to prove that rank(X + yz⊤) = r since the rank

is a lower bound for the nonnegative rank; see Theorem 3.1(i). To prove rank(X + yz⊤) = r,
it is sufficient to prove that V ′ has rank r, since X + yz⊤ = UV ′ where U ∈ Rm×r and
rank(U) = r. Since V ∈ Rr×n has rank r, we can construct a matrix B ∈ Rr×r with r linearly
independent columns of V . Let us show that C = B + αee⊤ has rank r, implying that V ′ has
rank r since C is made of r columns of V ′. Assume rank(C) < r so that there exists x ̸= 0 such
that

Cx = (B + αee⊤)x = 0.

Multiplying by e⊤ on both sides, we obtain

e⊤(B + ee⊤)x = (e⊤B + α(e⊤e)e⊤)x = (1 + αr)e⊤x = 0,

and hence e⊤x = 0 since α ≥ 0. This implies that Bx = 0, which is a contradiction since B has
rank r.

Let us illustrate the construction of the proof of Theorem 3.3.

Example 3.4 (Illustration of Theorem 3.3). In Section 2.1.4, it was proved that the matrix

X =


0 1 2 2 1 0
0 0 1 2 2 1
1 0 0 1 2 2
2 1 0 0 1 2
2 2 1 0 0 1
1 2 2 1 0 0
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satisfies rank(X) = 3 and rank+(X) = 5. Let us follow the construction of Theorem 3.3 to find
a rank-one perturbation to X that makes its nonnegative rank equal to rank(X) = 3 and hence
reduces its nonnegative rank by two. The first three columns of X are linearly independent, so
let us take U = X(:, 1 : 3) for which V , such that X = UV , is given by

V =

 1 0 0 1 2 2
0 1 0 −2 −3 −2
0 0 1 2 2 1

 .

Taking α = |mini,j V (i, j)| = 3, we obtain

X + 3(Ue)e⊤ = X + 3
(
3 1 1 3 5 5

)⊤ (
1 1 1 1 1 1

)

=


9 10 11 11 10 9
3 3 4 5 5 4
4 3 3 4 5 5
11 10 9 9 10 11
17 17 16 15 15 16
16 17 17 16 15 15


= UV + 3Uee⊤ = U(V + 3ee⊤)

=


0 1 2
0 0 1
1 0 0
2 1 0
2 2 1
1 2 2


 4 3 3 4 5 5

3 4 3 1 0 1
3 3 4 5 5 4

 ,

which shows that the nonnegative rank of X + 3(Ue)e⊤ is smaller than three. By Theorem 3.3,
we know it is equal to three since rank(U) = rank(V + 3ee⊤) = 3.

Geometric interpretation of Theorem 3.3 Given a nonnegative matrix X , let y and
z be as described in the proof of Theorem 3.3. Let us denote C = X + yz⊤, and let us pro-
vide the geometric intuition why rank+(C) = rank(X). Since rank(X) = rank(C) (see
the proof of Theorem 3.3), the nonnegative rank and the restricted nonnegative rank of C co-
incide, that is, rank∗+(C) = rank+(C); see Theorem 2.14. By Theorem 2.11, computing
rank∗+(C) is equivalent to finding a nested polytope between two given full-dimensional poly-
topes A ⊆ B in dimension d = rank(C)− 1. Adding the constant vector αUe to all columns
of X in the RE-NMF instance turns out to be equivalent to moving all points of A toward a
point in the interior of A. In particular, for α → ∞ and after normalization of the columns of
X (which is required in the reduction from RE-NMF to NPP), all columns of X collide to a
single point, namely Ue

∥Ue∥1
, so that A becomes a single point. In other words, the transforma-

tion X + αUee⊤ shrinks the inner polytope A in the NPP instance, while the outer polytope B
is unchanged as it only depend on the column space of X . Therefore, for α sufficiently large,
there always exists a nested polytope with d + 1 vertices nested between A and B, and hence
rank∗+(C) = rank(X).

Interestingly, a similar behavior was observed in Section 2.1.4: we analyzed the matrix Xa

whose corresponding NPP is made of two nested hexagons, and the inner hexagon is shrunk as a
decreases. If the vertices of the inner hexagon are moved sufficiently close to the center, that is,
if a is sufficiently small (namely for a ≤ 2), then a triangle fits between the two hexagons and
rank+(Xa) = 3; see Figure 2.5. Note that in this example the perturbations are not of rank one.
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Rank-one perturbations can modify the nonnegative rank by more than
one As we will see later in this chapter, there exist matrices whose rank is significantly smaller
than their nonnegative rank. For example, there exist

• n-by-nmatrices of rank 3 and nonnegative rank larger than log n (namely linear Euclidean
distance matrices (EDMs); see Section 3.4.2);

• n-by-n matrices of rank 3 and nonnegative rank in Ω(
√
n) (namely the slack matrices of

generic n-gons; see Section 3.6.3.5); and

• 2n-by-2n matrices of rank n(n+1)
2 + 1 and nonnegative rank larger than

(
3
2

)n
(namely

some unique disjointness (UDISJ) matrices; see Section 3.7.1).

We refer the interested reader to the recent paper [295] that discusses in depth the separation
between the rank and the nonnegative rank. In particular, the authors provide a family of n-
by-n matrices with rank no(1) and nonnegative rank n1−o(1). This means that there are n-by-n
matrices whose ratio between the nonnegative rank and the rank is of the order of the dimension
of the matrix, namely n1−o(1).

By Theorem 3.3, there exists nonnegative rank-one perturbations that reduce the nonnegative
rank of the three classes of matrices listed above by a quantity proportional to log(n),

√
n, and(

3
2

)n
, respectively.

Also, using, for example, the 6-by-6 matrix X of Example 3.4 which satisfies rank(X) = 3
and rank+(X) = 5, we can construct a 6p-by-6p matrix Y with rank 3p and nonnegative rank
5p for any p ≥ 1. This can be done by taking Y as a block diagonal matrix with p diagonal
blocks equal to X; see Theorem 3.1(v).

We therefore have the following corollary.

Corollary 3.5. For any positive integer r, there exist nonnegative matrices X and nonnegative
rank-one perturbations yz⊤ such that

rank+(X + yz⊤) ≤ rank+(X)− r.

Proof. This follows from Theorem 3.3 and the matrices mentioned above for which rank+(X)
is arbitrarily larger than rank(X).

Theorem 3.3 also implies that if y and z are not required to be nonnegative but only that
X + yz⊤ ≥ 0, then rank-one perturbations of X can increase its nonnegative rank by more than
one.

Corollary 3.6. For any positive integer r, there exist nonnegative matrices X such that

rank+(X + yz⊤) ≥ rank+(X) + r,

where X + yz⊤ ≥ 0, y ∈ Rm, and z ∈ Rn (y and z are not required to be nonnegative).

Proof. Let Y be a nonnegative matrix such that rank+(Y ) ≥ rank(Y ) + r; see the discussion
before Corollary 3.5 for examples. By Theorem 3.3, there exists a, b such that rank+(X) =
rank(Y ) where X = Y + ab⊤. Now take y = −a and z = b so that Y = X + yz⊤ for which

rank+
(
X + yz⊤

)
= rank+(Y ) ≥ rank(Y ) + r = rank+(X) + r.
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3.3 Generic values of the nonnegative rank
In this section, we address the following question: given a nonnegative matrix X randomly
generated, what is the probability that rank(X) = rank+(X)? To the best of our knowledge,
this question has not been discussed much in the literature, and this chapter contains some new
results. Of course, the answer to this question depends on how the matrix is generated.

3.3.1 Independently distributed entries

If all entries of X are independently distributed using a continuous distribution (such as the
uniform distribution), then rank(X) = rank+(X) = min(m,n) with probability one (this does
not hold for discrete distributions such as the Bernoulli distribution). In fact, the probability for
an m-by-n matrix whose entries are independently distributed using a continuous distribution to
have rank min(m,n) is one.

If the entries ofW ∈ Rm×r
+ andH ∈ Rr×n

+ are independently distributed using a continuous
distribution (for example using the uniform distribution in [0,1]) and we let X = WH , then
rank+(X) = rank(X) = rank(W ) = rank(H) = r with probability one. This is closely
related to the assumptions made in most data analysis applications, such as hyperspectral imag-
ing, text mining, or audio source separation. It is usually assumed that the observed data matrix
X̃ ∈ Rm×n

+ is generated as follows:

X̃ = X +N with X =WH,

where N is the noise, and W ∈ Rm×r
+ and H ∈ Rr×n

+ are nonnegative matrices whose rank is
equal to r = rank(X). In other words, it is implicitly assumed that rank(X) = rank+(X) = r.

3.3.2 Geometric distribution

In some applications, in particular in the study of extended formulations (see Section 3.6),
rank(X) = rank+(X) usually does not hold.

In this section, we investigate another way to randomly generate X based on the geometric
interpretation of NMF. Let us start with the simplest nontrivial case, that is, when min(m,n) = 4
and rank(X) = 3. In fact, for min(m,n) < 4 and/or rank(X) < 3, rank(X) = rank+(X); see
Theorem 3.1(vi). Without loss of generality, let us consider the case m = 4 and rank(X) = 3.
In this case, rank+(X) is equal to three or four, hence rank+(X) = rank∗+(X) (Theorem 2.14),
so that deciding whether rank+(X) = 3 or rank+(X) = 4 is equivalent to deciding whether the
corresponding NPP instance has a solution with three or four vertices.

A possible way to generateX is to first generate randomly its column space, spanned by some
matrix U ∈ Rm×r, making sure it has a nontrivial intersection with the nonnegative orthant.
This can be achieved, for example, using independently and uniformly distributed entries in
the interval [0, 1]. Then, the columns of X are picked uniformly at random in the polytope
col(U) ∩∆m. However, such a construction is difficult to analyze. To simplify the analysis, let
us consider a similar construction using the geometric interpretation of NMF and instead generate
an NPP instance from which we will construct the matrixX using the one-to-one correspondence
between these two problems; see Theorem 2.11. Recall that the dimension of the NPP is given
by rank(X)− 1 = 2. We proceed as follows:

• Generate at random four points in the two-dimensional unit disk, that is, within the unit
circle. The outer polygon B in the NPP is defined as the convex hull of these four points.
Note that B will be either a triangle or a quadrilateral, with probability one. This is sim-
ilar to the step of generating the basis U for the span of X since there is a one-to-one
correspondence between B and the column space of X; see the proof of Theorem 2.11.
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• Generate n points uniformly at random in B to obtain the points whose convex hull defines
the inner polytope A in the NPP. This step is equivalent to the step of picking points
uniformly at random in col(U)∩∆m, since the points whose convex hull is A correspond
to the columns of X; see the proof of Theorem 2.11.

• Given the NPP instance defined by A ⊆ B, generate the matrix X from the corresponding
RE-NMF instance; see Theorem 2.11.

This data generation can be easily analyzed via a well-known result in geometry which gives the
probability that four points generated at random in a disk are the vertices of a convex quadrilateral
or a convex triangle. This is the so-called Sylvester’s four-point problem. The probability of
obtaining a quadrilateral is equal22 to 1 − 35

12π2 ≈ 70.45% [281, 223, 381]. In terms of the
original NMF problem, this means that the probability for the randomly generated hyperplane
corresponding to col(U) ∩ ∆m to intersect the unit simplex in four segments is 70.45% and
in three segments is 29.65%. In fact, any hyperplane which intersects the three-dimensional
simplex in its interior has to intersect exactly three or four of its edges; see Figure 2.4 for an
example with four intersections.

Lemma 3.7. Let the n columns of the matrix X be generated as described in the previous
paragraph. Then rank(X) = 3 with probability one for n ≥ 3, and

lim
n→∞

P (rank+(X) = 4) = 1− 35

12π2
.

Proof. With probability one, four points generated at random within the unit disk are not aligned,
hence B is a two-dimensional polytope, that is, a polygon. Since the columns ofA are generated
uniformly at random within B, they are also not aligned with probability one, as long as n ≥ 3.
This implies rank(X) = 3; see Theorem 2.11.

As explained above, the probability that B has four vertices is 1− 35
12π2 . In the NPP instance,

as n goes to infinity, A → B as the points in A are generated uniformly at random within B.
Since the solution E must satisfy A ⊂ E ⊂ B, this implies E → B, and hence, for n sufficiently
large, E must have four vertices.

The above result can be easily generalized in the case rank(X) = m− 1 because the proba-
bility for the convex hull of m+2 points picked uniformly at random in the m-dimensional unit
ball to have m+ 2 vertices is also known [281, 223, 381] and given by

1−
(n+ 2)

(
n+1

1
2 (n+1)

)n+1

2n
( (n+1)2

1
2 (n+1)2

)n+1 .

3.4 Lower bounds on the nonnegative rank
In some applications, it is key to compute bounds on the nonnegative rank. In particular, lower
bounds are particularly useful for the study of extended formulations as they correspond to a
lower bound on the size of linear programs over a given polytope; see Section 3.6. These bounds
are also useful in other contexts, such as communication complexity; see Sections 3.7 and 3.8.

Many lower bounds are based on the sparsity pattern of the input matrix X . The zero pattern
of X implies a zero pattern on any of its Exact NMF X =WH . This can be leveraged to bound
the nonnegative rank. In particular, if X(i, j) = 0 for some (i, j), then for all p, we must have

22See also http://mathworld.wolfram.com/SylvestersFour-PointProblem.html (consulted June 24, 2019).

http://mathworld.wolfram.com/SylvestersFour-PointProblem.html
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W (i, p) = 0 or H(p, j) = 0, otherwise, (WH)i,j > 0. In the following, we review several
lower bounding techniques for the nonnegative rank.

3.4.1 Fooling sets

One of the first lower bounding techniques for the nonnegative rank is based on the identification
of a fooling set, which was first introduced in [100] (1993) and referred to as a set of pairwise
independent entries; see also [162] for more details.

Definition 3.8 (Pairwise independent entries). Given a matrix X ∈ Rm×n
+ , two entries (i, j)

and (k, ℓ) are pairwise independent if

(i) X(i, j) > 0 and X(k, ℓ) > 0, and

(ii) X(i, ℓ) = 0 or X(k, j) = 0.

The two conditions in Definition 3.8 imply that i ̸= k and j ̸= ℓ; otherwise, we have a
contradiction (an entry would have to be positive and equal to zero simultaneously). Note that
(i) can be equivalently formulated as X(i, j)X(k, ℓ) > 0, and (ii) as X(i, ℓ)X(k, j) = 0.

Let us illustrate this notion with the matrix of Thomas [450]:

X =


1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1

 .

The entries ofX at positions (1,1) and (2,3) are pairwise independent sinceX(1, 1)=X(2, 3)=1
and X(1, 3) = 0. The entries at positions (1,1) and (3,4) are also pairwise independent. As a
matter of fact, any two entries (i, j) and (k, ℓ) of X such that X(i, j)X(k, ℓ) > 0, i ̸= k, and
j ̸= ℓ, are pairwise independent.

The following lemma provides a simple observation about pairwise independent entries.

Lemma 3.9. Let X = WH for some nonnegative matrices W and H , and let the two entries of
X at positions (i, j) and (k, ℓ) be pairwise independent. Then no rank-one factorW (:, p)H(p, :)
for any p can be positive simultaneously on these two entries: for all p,

W (i, p)H(p, j) = 0 or W (k, p)H(p, ℓ) = 0.

Proof. Assume there exists p such that

W (i, p)H(p, ℓ) > 0 and W (k, p)H(p, j) > 0.

This contradicts X = WH since X(i, ℓ) = 0 or X(k, j) = 0 as (i, j) and (k, ℓ) are pairwise
independent, while W and H are nonnegative (no cancellation is possible).

We can now define a fooling set. A fooling set of a nonnegative matrix X is a set of entries
that are all pairwise independent. It leads to a lower bound for the nonnegative rank.

Lemma 3.10. If X ∈ Rm×n
+ is a nonnegative matrix with a fooling set of size f , then

rank+(X) ≥ f.
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Proof. Let (W,H) be an Exact NMF of X of size rank+(X). Since the rank-one factors
W (:, p)H(p, :) cannot be positive simultaneously for two entries in the fooling set (Lemma 3.9),
and since X =WH implies that WH must be positive at least once in each entry in the fooling
set, this implies that rank+(X) ≥ f .

The size of the largest fooling set ofX , denoted ω(X), is referred to as the fooling set bound.

Lemma 3.10 leads to a simple and direct proof that the matrix of Thomas [450] has nonnega-
tive rank four: {(1, 1), (2, 3), (3, 2), (4, 4)} is a fooling set of size 4, represented as follows using
framed entries: 

1 1 0 0

1 0 1 0

0 1 0 1

0 0 1 1

 .

Note that it is not possible to have a larger fooling set, that is, ω(X) = 4, since X is a 4-by-4
matrix.

Rectangle graph and link with the clique number Let us define the rectangle
graph of a matrix X .

Definition 3.11. The rectangle graph of X , denoted G(X) = (V,E), is constructed as follows.
The set of vertices corresponds to the positive entries of X , that is, V = {(i, j) | X(i, j) > 0},
and an edge connects two vertices (i, j) and (k, ℓ) in V if and only if they are pairwise indepen-
dent, that is, X(i, ℓ) = 0 or X(k, j) = 0.

By construction, the clique number of G(X), that is, the size of the largest subset of vertices
that are all connected, is equal to the fooling set bound of X . Note that the clique number is hard
to compute in general [180].

Limitations of the fooling set bound The fooling set bound does not always provide
strong lower bounds, especially for matrices with only a few zero entries. In particular, Fiorini
et al. showed the following.

Lemma 3.12. [162, Lemma 5.5] If every row or if every column of X contains at most s zero
entries, then ω(X) ≤ 2s+ 1.

Proof. Consider a fooling set ofX of size f = ω(X). The f -by-f submatrix ofX induced by the
rows and columns of the entries belonging to this fooling set contains at least

(
f
2

)
= f(f − 1)/2

zeros, because every pair of entries in the fooling set must correspond to at least one zero in X .
This implies that one row of the submatrix has at least (f − 1)/2 zeros. In the case when every
row of X contains at most s zero entries (the same result holds for the columns by symmetry),
we obtain (f − 1)/2 ≤ s, that is, f ≤ 2s+ 1.

Example 3.13 (Linear EDMs). Throughout this chapter, we will illustrate lower bounds for the
nonnegative rank on the class of linear EDMs. Linear EDMs of size n-by-n are defined as
follows:

X(i, j) = (xi − xj)2 for i, j = 1, 2, . . . , n,
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where x ∈ Rn and23 xi ̸= xj for all i ̸= j. For example, for xi = i for all i and n = 6, we
obtain

X6 =


0 1 4 9 16 25
1 0 1 4 9 16
4 1 0 1 4 9
9 4 1 0 1 4
16 9 4 1 0 1
25 16 9 4 1 0

 . (3.1)

Linear EDMs X of size n-by-n have zeros only on their diagonal, with a single zero entry on
each row, hence the size of the largest fooling set is at most 3, that is, ω(X) ≤ 3 (Lemma 3.12).
We have that ω(X) = 3 for n ≥ 3; take for examples the entries at positions (1,2), (2,3), and
(3,1) to form a fooling set of size 3.

What is the nonnegative rank of linear EDMs? First, their rank is at most three [27]: since
(xi − xj)2 = x2i − 2xixj + x2j ,

X =
[
e x x ◦ x

] [
x ◦ x − 2x e

]⊤
,

where x◦x is the componentwise (Hadamard) product of x with itself. One can easily check that
it is exactly three for n ≥ 3, showing that any 3-by-3 linear EDM has three linearly independent
columns.

Let us try to understand the geometry of the NPP instance corresponding to linear EDMs.
This will allow us to determine their restricted nonnegative rank. First, since the rank of these
matrices is equal to three, the corresponding NPP has dimension 2, and A and B are polygons.
Second, recall that the entries of matrix X of the Exact NMF instance are given by X(:, j) =
Fvj + g for all j, where A = conv ({v1, v2, . . . , vn}) and B = {x ∈ Rr|Fx + g ≥ 0} with
vj ∈ R2 for all j, F ∈ Rn×2, and g ∈ Rn. The equality X(i, j) = F (i, :)vj + g(i) = 0 implies
that the jth point of A, that is, vj , is located on the ith segment of B. For a rank-three matrix
X with only zeros on its diagonal, the jth point of A is located on the jth segment of B. In
other words, there is a one-to-one correspondence between the n points of A and the n edges
of B. Therefore, B\A is made of n disjoint regions which implies that rank∗+(X) = n [199]:
any solution of this NPP instance must contain a point in each region; see Section 2.3.1, and see
Figure 3.1 for an illustration of this geometric observation on the matrix X6 from (3.1).

What about the nonnegative rank of such matrices? It is not possible to obtain a fooling set
of size larger than 3; hence we can only obtain the lower bound rank+(X) ≥ rank(X) = 3
using fooling sets. Using the facts that rank∗+(X) = rank+(X) for rank∗+(X) ≤ rank(X) + 1
(Theorem 2.14) and that linear EDMs are submatrices of larger linear EDMs, we conclude that,
for n ≥ 4, the nonnegative rank of linear EDMs is larger than four.

Remark 3.1. For any nonnegative m-by-n rank-three matrix whose columns have supports not
contained in one another (the support is the index set of nonzero entries), rank∗+(X) = n [199,
Theorem 8]. The proof follows the same reasoning as that for linear EDMs.

3.4.2 Counting argument

In Goemans preprint that appeared on his website in 2008 (although only published in 2015) and
that was presented at ISMP 2009 in Chicago under the title “Smallest Compact Formulation for
the Permutahedron,” he [215] makes the following observation.

23Usually linear EDMs are not required to satisfy xi ̸= xj for all i ̸= j. However, in terms of rank computations,
one can assume w.l.o.g. that it holds. If xi = xj for some i ̸= j, then X(:, i) = X(:, j) and X(i, :) = X(j, :); hence
removing one of these two columns and the corresponding row does not modify its rank or its nonnegative rank.
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Figure 3.1. NPP instance corresponding to the linear EDM X6 from (3.1). [Matlab
file: NPPrank3matrix.m].

Lemma 3.14. [215] Let X be a nonnegative matrix with p columns or p rows with distinct
supports. Then,

rank+(X) ≥ log2(p).

Proof. Let p be the number of columns of X with distinct supports. Let X = WH be an Exact
NMF of size r = rank+(X). Since

X(:, j) =

r∑
k=1

W (:, k)H(k, j) for all j, (3.2)

and H is nonnegative, each of the p different supports of the columns of X must be generated
using the union of a subset of the supports of the r columns of W . In other words, denoting by
supp(x) the support of the vector x, we have for all j that

supp(X(:, j)) = ∪
k∈Kj

supp(W (:, k)), where Kj = {k|H(k, j) > 0}.

The r columns of W can generate at most 2r different supports, which implies that

2r ≥ p ⇐⇒ r ≥ log2(p).

By symmetry the same observation applies to the rows, which concludes the proof.

We were recently told by an anonymous reviewer that the following stronger result was hid-
den in the paper of Yannakakis [494], or, rather, it is an implication of the discussions in his
paper; see Remark 3.2 below.

Lemma 3.15. [494] LetX be a nonnegative matrix, and let p be the maximum number of distinct
supports that can be obtained as the union of supports of the columns of X . Then,

rank+(X) ≥ log2(p).

By symmetry the same result applies to the rows of X .
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Proof. Let X =WH be an Exact NMF of size r = rank+(X). For any vector v ∈ Rn
+,

Xv =WHv =Wv′, where v′ = Hv ≥ 0.

This implies that

supp(Xv) = ∪
j s.t. v(j)>0

supp(X(:, j))

= supp(Wv′)

= ∪
k s.t. v′(j)>0

supp(W (:, k)).

Since v can be chosen as any nonnegative vector, this means that the union of the supports of
any subset of the columns of X must be equal to the union of the supports of a subset of the
columns of W . (This generalizes the observation of Lemma 3.14, taking v = ei for all i.) Since
at most 2r supports can be generated using the columns of W , the result follows; this is the same
argument as in Lemma 3.14.

Lemma 3.15 requires us to compute the maximum number of distinct supports that can be
obtained as the union of supports of the columns of X , which is not necessarily trivial, but
any lower bound for this number leads to a lower bound for the nonnegative rank; Lemma 3.14
provides such a lower bound.

Example 3.16 (Linear EDMs, Example 3.13 continued). For an n-by-n linear EDM X , all
the columns of X have a different support. Hence Lemma 3.14 implies that

rank+(X) ≥ ⌈log2(n)⌉.

Although the rank is fixed and equal to three, the nonnegative rank of n-by-n linear EDMs
grows at least as fast as log2(n). Note, however, that for n = 6, this bound gives rank+(X) ≥
log2(6) = 2.585 and hence does not improve upon the fooling set bound.

Observe that only n + 2 distinct supports can be generated using linear combinations of
the n columns of X since the sum of any two columns has a support containing all elements
{1, 2, . . . ,m}, while the empty set is also a valid support (corresponding to the choice v = 0 in
Lemma 3.15). Hence Lemma 3.15 implies that for an n-by-n linear EDM X ,

rank+(X) ≥ ⌈log2(n+ 2)⌉.

To improve the lower bound for the nonnegative rank of linear EDMs we have derived so far,
which is 4 for n ≥ 4 using Theorem 2.14, n needs to be larger than 15 (so that n+2 > 16 = 24),
in which case Lemma 3.15 leads to a lower bound for their nonnegative rank which is larger
than 5.

Remark 3.2 (Geometric interpretation of Lemma 3.15). Given a nonnegative matrix X , let
us consider the NPP instanceA ⊆ B corresponding to the RE-NMF instance ofX . Each column
of X corresponds to an element of A and each row to a facet of B, implying that X(i, j) = 0 if
and only if the jth element of A is located on the ith facet of B; see Theorem 2.11. Taking linear
combinations of columns of X is equivalent to taking convex combinations of elements ofA. Let
us refer to the support of a point within B as the set of facets of B that it does not belong to. With
this definition, and the observation above, the support of each column of X coincides with the
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supports of the corresponding element ofA. Since points in the relative interior of the same face
of B have the same support since a face is defined as the intersection of facets, one can show
that the maximum number p of distinct supports that can be obtained as the union of supports of
columns of X is equal to the number of faces of B that A intersects. In the particular case when
A = B (this will correspond to slack matrices; see Section 3.6), p is the number of faces of B
since A touches all faces of B as A = B. This is the observation made by Yannakakis [493].
For example, taking A = B as a polygon with n vertices gives p = 2n+ 2 because any polygon
has 2n + 2 faces, and there is a one-to-one correspondence with the linear combinations of the
columns of X that generate distinct supports, namely

• n vertices (zero-dimensional faces): the original columns of X with two zero entries (each
vertex is located on two segments);

• n edges (one-dimensional faces): the linear combinations of two columns of X corre-
sponding to adjacent vertices of the polygon with one zero entry (any other combinations
of two vertices lead to a point in the interior of the polygon);

• the polygon itself (a two-dimensional face): the linear combinations of three columns of
X (or two columns that do not correspond to adjacent vertices) that do not contain any
zero entry; and

• the empty set: the trivial combination of the columns of X with n zero entries.

Another example is n-by-n linear EDMs X: the NPP instance is such that B is a polygon,
and the elements of A are located on each segment of B; see Figure 3.1 for an illustration
in the case n = 6. For such matrices, n + 2 distinct supports can be generated using linear
combinations of the columns of X; see Example 3.16. Geometrically, A intersects n + 2 faces
of B: the n segments and the interior, to which we need to add the empty set; see Figure 3.1 for
the case n = 6.

3.4.3 Antichain

Instead of assuming that there are p columns of X with different supports as in the previous
subsection, let us make the stronger assumption that there are p columns whose supports are not
contained in one another. This stronger assumption is particularly meaningful as, in many cases,
the supports of the columns of X are not contained in one another, for example for linear EDMs
and slack matrices discussed in Section 3.6. This assumption means that there exist p columns of
X whose supports form a Sperner family of size p, also known as an antichain of size p, which
is a family of p sets that are not contained in one another [429]. For example, for linear EDMs
of size n, p = n since they have zeros only on their diagonal.

This subsection is organized as follows. First, we show that if the supports of p columns
of X form an antichain of size p, then the supports of the corresponding p columns of H in
any Exact NMF (W,H) of X must also form an antichain of size p (Lemma 3.17). Then,
we recall the well-known Sperner theorem on the size of the largest antichain over r elements
(Theorem 3.18). Together with Lemma 3.17, this implies a lower bound for the nonnegative rank
(Theorem 3.20).

Lemma 3.17. Let X be a nonnegative matrix with p columns whose supports are not contained
in one another, that is, they form an antichain of size p. Then, in any Exact NMF X = WH of
X of size r, the supports of the corresponding p columns of H form an antichain of size p.
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Proof. Let (W,H) be an Exact NMF of X of size r. Let us denote the supports of the rows of
W and columns of H as follows:

ui = supp
(
W (i, :)

)
= {k |Wik ̸= 0} for 1 ≤ i ≤ m

and
vj = supp

(
H(:, j)

)
= {k | Hkj ̸= 0} for 1 ≤ j ≤ n.

Since Xij =W (i, :)H(:, j),

Xij = 0 ⇐⇒ ui ∩ vj = ∅. (3.3)

If vj1 ⊆ vj2 for some j1, j2, (3.3) implies that the support of the j2th column of X contains the
support of the j1th column of X , that is, supp(X(:, j1)) ⊆ supp(X(:, j2)). In fact, X(:, j1) is a
linear combination of a subset of the columns of W used to reconstruct X(:, j2). In other words,
for vj1 ⊆ vj2 and any set uℓ, uℓ ∩ vj1 ̸= ∅ ⇒ uℓ ∩ vj2 ̸= ∅. Therefore, if X contains p columns
whose supports are not contained in one another, then the subset contaning the corresponding p
elements of {vj}nj=1 are not contained in one another and hence form an antichain of size p.

Let us now recall the well-known result by Sperner that bounds the size of an antichain over
r elements. We provide the proof from [330] for completeness and because it is very elegant.
Combined with Lemma 3.17, this will lead to a new lower bound for the nonnegative rank (The-
orem 3.20).

Theorem 3.18 (Sperner). Let S = {s1, s2, . . . , sn} be a set of n subsets of {1, 2, . . . , r}. Also
let S be an antichain, that is, no subset in S is contained in another subset in S. Then,

n ≤
(

r

⌊r/2⌋

)
, (3.4)

and the bound is tight (take all subsets of size ⌊r/2⌋).

Proof. [330] This proof is based on a counting argument observing that there are r! permutations
of {1, 2, . . . , r}. Given si ∈ S with k elements, there are k!(r−k)! permutations of {1, 2, . . . , r}
whose first k elements are in si. Because the subsets in S are not contained in one another, two
permutations generated using two different subsets si and sj cannot coincide (otherwise, this
would imply that si ⊂ sj or sj ⊂ si). Let us also denote by ck the number of sets with k
elements contained in S, that is, ck =

∣∣{s ∈ S | |s| = k}
∣∣; hence n =

∑r
k=0 ck. We have

r∑
k=0

ckk!(r − k)! ≤ r! .

The left-hand side counts the different permutations generated using the subsets in S as described
above; the right-hand side is the total number of different permutations of the set {1, 2, . . . , r}.
Therefore, dividing both sides by r!, we obtain

n(
r

⌊r/2⌋
) =

r∑
k=0

ck(
r

⌊r/2⌋
) ≤

r∑
k=0

ck(
r
k

) =

r∑
k=0

ck
k!(r − k)!

r!
≤ 1,

since
(

r
⌊r/2⌋

)
≥
(
r
k

)
for all k. This completes the proof.

Lemma 3.17 and Theorem 3.18 were used in [70] to lower bound the Boolean rank of binary
matrices. Given a binary matrix X ∈ {0, 1}m×n, its Boolean rank is the smallest r such that
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there exists W ∈ {0, 1}m×r and H ∈ {0, 1}r×n with (WH)i,j = 0 if and only if X(i, j) = 0.
The corresponding (W,H) is referred to as a Boolean factorization ofX . The Boolean rank only
considers the location of the positive entries in X , W , and H and requires that the supports of X
and WH coincide. Let us denote by bin(X) the binarization of X , that is,

bin(X)i,j =

{
1 if X(i, j) > 0,
0 if X(i, j) = 0.

Let us also denote by rank01(X) the Boolean rank of the binarization of X . We have the follow-
ing result.

Lemma 3.19. For X ∈ Rm×n
+ ,

rank+(X) ≥ rank01(X).

Proof. Any Exact NMF (W,H) of X leads to a Boolean factorization of X by binarizing W and
H .

Finally, Lemma 3.17, which only focuses on the supports of X , W , and H , also applies to
Boolean factorizations of X .

Theorem 3.20. [70] Let X be a matrix having p rows or p columns whose supports form an
antichain. Then,

rank+(X) ≥ rank01(X) ≥ min

{
r

∣∣∣∣ ( r

⌊r/2⌋

)
≥ p
}
.

Proof. The first inequality is from Lemma 3.19. The second inequality follows from Lemma 3.17
and Theorem 3.18. In fact, let (W,H) be a Boolean factorization of bin(X). Using exactly
the same argument as in the proof of Lemma 3.17, this implies that there are p subsets of
{1, 2, . . . , r} corresponding to the supports of p columns of H that are not contained in one
another, that is, they form an antichain of size p. Theorem 3.18 allows us to conclude the proof
for the case when p columns of X form an antichain. By symmetry, the same argument holds if
X has p rows with supports not contained in one another.

Example 3.21 (Linear EDMs, Example 3.13 continued). The above result implies that the non-
negative rank of linear EDMs is larger than the minimum r such that n ≤

(
r

⌊r/2⌋
)

[27]. For linear
EDMs, this means that to obtain a lower bound of 5 for the nonnegative rank, one only needs
n ≥ 7 since

(
4
2

)
= 6, which significantly improves the bound using the counting argument

(Lemma 3.15) which requires n ≥ 15; see Example 3.16.

Making additional assumptions on the supports of the rows/columns of X , one can use simi-
lar arguments to improve the above antichain-based lower bound for the nonnegative rank [459,
Theorem 2].

3.4.4 Rectangle covering bound

The rectangle covering bound (RCB) for a matrix X is the minimum number of rectangles nec-
essary to cover all positive entries of X . A rectangle is a subset of rows and columns of X such
that the corresponding submatrix of X contains only positive entries (see below for an example).
More precisely, let

supp(X) = {(i, j) | X(i, j) > 0}
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be the support of X . The RCB of X , denoted rc(X), is the minimum number of nonnegative
rank-one matrices Rk (1 ≤ k ≤ rc(X)) such that

supp(X) = ∪rc(X)
k=1 supp(Rk).

The support of a rank-one matrix corresponds to a rectangle, that is, the support of each nonzero
row/column is the same (hence the name).

It is easy to see that the RCB is equal to the Boolean rank of the binarization of X , that is,

rc(X) = rank01(X) ≤ rank+(X),

since any rectangle covering provides a Boolean factorization and vice versa.

Example 3.22 (Linear EDMs, Example 3.13 continued). For the 6-by-6 linear EDM X6 from
(3.1), rc(X6) = 4 with the following four rectangles:

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0

+


0 0 0 0 0 0
1 0 0 1 0 1
1 0 0 1 0 1
0 0 0 0 0 0
1 0 0 1 0 1
0 0 0 0 0 0

+


0 1 0 0 1 1
0 0 0 0 0 0
0 1 0 0 1 1
0 1 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0



+


0 0 1 1 1 0
0 0 1 1 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 1 1 0

 =


0 1 1 1 2 1
1 0 1 2 1 1
1 1 0 1 1 2
1 2 1 0 1 1
2 1 1 1 0 1
1 1 2 1 1 0

 ; (3.5)

see [Matlab file: rec_cov_linEDM.m].

Link with the biclique covering number Let us interpret the matrix X ∈ Rm×n as
the biadjacency matrix of a bipartite graph Gb = (V1 × V2, E) where V1 = {s1, s2, . . . , sm},
V2 = {t1, t2, . . . , tn}, and (si, tj) ∈ E ⇐⇒ X(i, j) > 0. Then a rectangle whose support
is contained in the support of X corresponds to a so-called biclique of Gb, that is, a subset
of vertices from V1 and V2 that are all connected. The biclique covering number of Gb is the
minimum number of such bicliques needed to cover all edges of Gb. The biclique covering
number of Gb equals the RCB of X; see [419] and the references therein for more details.

Link with the chromatic number of G(X) Using the rectangle graph G(X) of X
(Definition 3.11, page 64), one can check that the RCB is equal to the chromatic number of
G(X), that is, the smallest number of colors needed to color the vertices of G(X) so that no
two adjacent vertices share the same color. In fact, in the rectangle graph, two vertices are
not connected if the corresponding 2-by-2 submatrix of X only has positive entries. Hence a
rectangle in X corresponds to a set of non-connected vertices in G, which can be assigned the
same color; see [162] for more details.

Linear combinatorial formulation Unfortunately, the RCB is hard to compute in gen-
eral. However, it can be formulated as a linear combinatorial optimization problem, that is, a
linear optimization problem with binary variables [368]. A formulation can be obtained as fol-
lows. First, generate all rectangles Rp for 1 ≤ p ≤ q whose support is contained in the support
of X and whose support is not contained in the support of any other such rectangle (these are
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referred to as maximal rectangles). There are at most min(2m, 2n) − 1 such rectangles. Once
the support of the rows of a rectangle is fixed, it is easy to select the support of the columns to
obtain the corresponding unique maximal rectangle: select all columns that have positive entries
on these rows. By symmetry, the same observation holds when the support of the columns is
fixed. This allows us to generate all maximal bicliques of the bipartite graph corresponding to
X; see for example [6] and the references therein for more sophisticated approaches.

Then, given the q maximal rectangles Rp ∈ {0, 1}m×n for 1 ≤ p ≤ q, let us define the
binary variables

yp =

{
1 if the pth rectangle is selected,
0 otherwise.

A feasible covering of X corresponds to a vector y ∈ {0, 1}q such that
∑q

p=1 ypRp ≥ bin(X).
The RCB can therefore be computed using a linear integer formulation over the variable y. This
is similar to a minimum set covering problem:

rc(X) = min
y∈{0,1}q

q∑
p=1

yp such that
q∑

p=1

ypRp ≥ bin(X). (3.6)

The RCB can therefore be computed for matrices of small size and/or for which the number
of maximal rectangles q is small. For example, for the slack matrices of four-dimensional 0/1
polytopes and for the slack matrices of n-gons (see Section 3.6 for the details on these matrices),
the RCB can be computed on a standard laptop for min(m,n) ≤ 13 [368, 459]. Note, however,
that the RCB was derived for the slack matrices of n-gons for n up to 33 via computer-assisted
proofs [23].

Example 3.23 (Linear EDMs, Example 3.13 continued). With our naive implementation of
the above strategy to compute the RCB, we were able to compute the RCB for the linear
EDMs for n ≤ 10 within a few seconds (it took about 20 seconds for n = 10, while for
n = 11 we stopped the program after 5 minutes); see [Matlab file: rec_cov_bound.m].
For 4 ≤ n ≤ 6, the RCB of n-by-n linear EDMs is 4; see (3.5) for a solution for n = 6. For
n ∈ [7, 10], the RCB is 5. In this case, the RCB coincides with the lower bound based on anti-
chains (Section 3.4.3) that required n ≥ 7 to have a lower bound of 5 for the nonnegative rank
of n-by-n linear EDMs.

Bounding the rectangle covering number Since in many cases the RCB cannot be
computed, one usually resorts to using lower bounds for the RCB itself [162].

The first example is the fooling set bound which is a lower bound for the RCB:

ω(X) ≤ rc(X).

Interestingly, this bound corresponds to a well-known bound in graph theory: the clique number
of the rectangle graph G(X) is smaller than its chromatic number, since every vertex in a clique
must be assigned a different color.

Similarly, the lower bounds using the counting argument and antichains (Sections 3.4.2
and 3.4.3) also apply to the RCB since they only take into account the support of X .

Another lower bound for the RCB is the ratio between the number of positive entries in X
and the size of the largest rectangle whose support is contained in the support of X , that is,

rc(X) ≥ | supp(X)|
size of largest rectangle

. (3.7)

However, finding the largest rectangle is also a difficult problem in general as it corresponds to
finding the largest biclique in the corresponding bipartite graph, referred to as the maximum-edge
biclique problem, which is NP-complete [380]. However, it can be computed or upper bounded
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accurately in some cases. We will discuss an important use of this bound in Section 3.7, on the
so-called UDISJ matrices.

Example 3.24 (Linear EDMs, Example 3.13 continued). Let us illustrate the bound (3.7) on
n-by-n linear EDMs which have zero entries only on their diagonal. The number of positive
entries is equal to n2 − n, while the size of the largest rectangle is ⌈n2 ⌉⌊

n
2 ⌋, taking for example

the bottom left rectangle; see (3.5) for an example when n = 6. For simplicity, assume n is even,
in which case

rc(X) ≥ n2 − n
n2/4

= 4− 4/n,

where X is any n-by-n linear EDM. This is not a very strong bound since it only provides the
lower bound of 4 for the nonnegative rank of X when n ≥ 5.

Looking back at the combinatorial formulation (3.6) of the RCB, it is possible to relax the
combinatorial problem, replacing the constraints y ∈ {0, 1}r with 0 ≤ y ≤ 1 (this is the first
relaxation in a standard branch and bound procedure). This gives a lower bound for rc(X), hence
a lower bound for rank+(X), which is referred to as the fractional RCB. For the same reason as
for the RCB, it can only be computed if the number of rectangles is not too large.

Note that the RCB is the strongest lower bound among the bounds that solely rely on the
support of X . We refer the reader to [162] for other examples, discussions, and limitations of the
RCB.

3.4.5 Refined rectangle covering bound

The RCB can be refined by taking into account the values of the positive entries of X instead
of just their location. Oelze, Vandaele, and Weltge [368] introduced the so-called refined RCB
(RRCB) of a matrix X , denoted rrc(X), which requires that the diagonal entries of any 2-by-2
rank-two submatrix of X must be covered by at least two rectangles. Using the notation of the
formulation (3.6), for any pair (i, j) and (k, ℓ) such that X(i, j)X(k, l) − X(i, ℓ)X(k, j) ̸= 0,
the RRCB imposes the constraints

A(i, j) ≥ 2 and A(k, ℓ) ≥ 2, where A =

r∑
p=1

ypRp.

Note that these constraints are satisfied by the solution of (3.6) when X(i, ℓ) = 0 or X(k, j) = 0
since in that case (i, j) and (k, ℓ) are pairwise independent and can only be covered using two
rectangles; see Lemma 3.9. Compared to the RCB, the RRCB adds the constraints that require
the diagonal entries of any 2-by-2 positive rank-two submatrix ofX to be covered by at least two
rectangles. This implies that the RRCB is always larger than the RCB, that is,

rc(X) ≤ rrc(X) ≤ rank+(X),

for any nonnegative matrix X [368, Theorem 3.4]. For example, for the matrix

X =

(
2 1
1 1

)
,

we have rc(X) = 1 < rrc(X) = 2. In particular, the RRCB improves the RCB and is tight for
the slack matrices of all 4-dimensional 0/1 polytopes [368] and of the regular 9-gon and 13-gon
(see Section 3.6.3).

3.4.6 Geometric bound

In this section, we present the geometric lower bound proposed in [199] which is based on the
restricted nonnegative rank.
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Theorem 2.2 states that Exact NMF of matrix X is equivalent to finding a polytope with
r vertices, namely conv (θ(W )), nested between conv (θ(X)) and the unit simplex ∆m. RE-
NMF is the same problem as Exact NMF except that it requires col(W ) = col(X). Moreover,
the number of vertices of a nested polytope that satisfies this condition has at least rank∗+(X)
vertices, by definition of the restricted nonnegative rank.

Let X =WH be an Exact NMF of size rank+(X). Observe that the polytope

P = conv (θ(W )) ∩ col(X)

is a feasible solution for RE-NMF of θ(X). Hence we know that P has at least rank∗+(X)
vertices. This observation can be used to lower bound the nonnegative rank. Let us define the
quantity faces(n, d, k) to be the maximal number of k-faces (that is, faces of dimension k) of a
polytope with n vertices in dimension d; see (3.9) below for an explicit formula. For example,
faces(n, d, 0) = n for any d ≥ 2 since 0-faces are vertices. We have the following result.

Theorem 3.25. [199, Theorem 5] The restricted nonnegative rank of a nonnegative matrix X
with r = rank(X) and r+ = rank+(X) can be bounded above by

rank∗+(X) ≤ max
r≤rw≤r+

faces(r+, rw − 1, rw − r). (3.8)

Proof. This follows from the discussion above. Let (W,H) be a solution to Exact NMF of X of
size r+ = rank+(X). The polytope T = conv (θ(W )) ⊆ ∆m with r+ vertices has dimension
rw − 1 ∈ {r − 1, . . . , r+ − 1}, where rw = rank(W ) (see Lemma 2.5). If we intersect T with
Q = col(X) of dimension r, we obtain a feasible solution for RE-NMF which must have more
than rank∗+(X) vertices, that is,

rank∗+(X) ≤ #vertices(T ∩Q).

It remains to show that the number of vertices of P = T ∩Q is at most faces(r+, rw−1, rw−r).
Since the linear subspace Q intersected with ∆m has dimension r− 1 (Lemma 2.5), the number
of vertices of T ∩ Q ⊆ ∆m is upper bounded by the number of (rw − r)-faces of T , which is
upper bounded by faces(r+, rw − 1, rw − r).

Note that when rw = r, faces(r+, r − 1, 0) = r+. This corresponds to the case rank(W ) =
rank(X) for which rank+(X) = rank∗+(X).

A tight bound for the function faces(n, d, k) exists and is attained by cyclic polytopes [517,
Corollary 8.28, p. 257]:

faces(n, d, k − 1) =

d
2∑

i=0

∗
((

d− i
k − i

)
+

(
i

k − d+ i

))(
n− d− 1 + i

i

)
, (3.9)

where
∑ ∗ denotes a sum where only half of the last term is taken for i = d

2 if d is even, and the
whole last term is taken for i = ⌊d2⌋ =

d−1
2 if d is odd. Let us introduce for easier reference a

function ϕ corresponding to the upper bound in Theorem 3.25:

ϕ(r, r+) = max
r≤rw≤r+

faces(r+, rw − 1, rw − r).

When r = rank(X) is fixed, ϕ is an increasing function of its second argument r+, since
faces(n, d, k) increases with n. Therefore the inequality rank∗+(X) ≤ ϕ(r, r+) from Theo-
rem 3.25 implicitly provides a lower bound on the nonnegative rank r+ that depends on both
rank r and restricted nonnegative rank rank∗+(X).
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Corollary 3.26. [199] If X is a nonnegative matrix, then

rank+(X) ≥ min
k

{
k
∣∣ ϕ(rank(X), k) ≥ rank∗+(X)

}
.

The function ϕ can be upper bounded in the following way.

Lemma 3.27. [199, Theorem 6] The upper bound ϕ(r, r+) on the restricted nonnegative rank of
a nonnegative matrix X with r = rank(X) and r+ = rank+(X) satisfies

ϕ(r, r+) = max
r≤rw≤r+

faces(r+, rw − 1, rw − r)

≤ max
r≤rw≤r+

(
r+

rw − r + 1

)
≤
(

r+
⌊r+/2⌋

)
≤ 2r+

√
2

πr+
≤ 2r+ .

Proof. The first inequality follows from faces(n, d, k − 1) ≤
(
n
k

)
, since any set of k distinct

vertices defines at most one (k − 1)-face. The second follows from the maximality of central
binomial coefficients. The third is a standard upper bound on central binomial coefficients, and
the fourth is an even cruder upper bound.

Of course, the above lower bound requires knowledge of the restricted nonnegative rank,
which is hard to compute in general for rank(X) ≥ 4 (Theorem 2.19). However, in some cases,
it can be computed easily.

Example 3.28 (Linear EDMs, Example 3.13 continued). For an n-by-n linear EDMs X ,
rank∗+(X) = n; see the discussion on page 65. For example, for n = 6, the geometric bound
gives rank+(X6) ≥ 4, while for n = 7, it gives rank+(X7) ≥ 5, which coincides with the RCB.

The geometric bound can be improved in several ways, for example when the input matrix is
symmetric, or when the input matrix has rank three; see [199] and [185, Chapter 3.6] for more
details, and see [Matlab file: geometric_bound]. It can also be improved by using the f -
vector of polytopes whose entries are the number of k-faces for all k, instead of just the number
of vertices (which are the 0-faces) [127]. For the 6-by-6 linear EDM X(i, j) = (i − j)2 for all
1 ≤ i, j ≤ 6, we obtain rank+(X) ≥ 5 with the improved geometric bound of [199]. It turns
out this bound is tight, since the nonnegative rank of X is at most 5, as proved by the following
decomposition of X:

0 1 4 9 16 25
1 0 1 4 9 16
4 1 0 1 4 9
9 4 1 0 1 4
16 9 4 1 0 1
25 16 9 4 1 0

 =


5 0 4 1 0
3 0 1 0 1
1 0 0 1 4
0 1 0 1 4
0 3 1 0 1
0 5 4 1 0




0 0 0 1 3 5
5 3 1 0 0 0
0 0 1 1 0 0
0 1 0 0 1 0
1 0 0 0 0 1

 .

Comparison with the antichain-based bound As for linear EDMs, the restricted
nonnegative rank of the slack matrices that will be discussed in Section 3.6 is also maximal and
equal to the number of columns (see page 85 for an explanation of this result). Interestingly,
in these two cases, Lemma 3.27 shows that the geometric bound (Corollary 3.26) provides a
tighter bound than the bound based on antichains (Sections 3.4.3), which itself is stronger than
the bound based on counting arguments (Sections 3.4.2); see Figure 3.3 in Section 3.6.3.4 (page
91) for an illustration on the slack matrices of regular n-gons.
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3.4.7 Hyperplane separation

In personal communication with Thomas Rothvoss, Samuel Fiorini provided the following lemma.
It was implicitly present in the paper [57] later published as the journal version [58].

Lemma 3.29. Let X ∈ Rm×n
+ . Let also Z ∈ Rm×n, and define

α(Z) = max
R∈{0,1}m×n

⟨Z,R⟩ such that rank(R) = 1. (3.10)

Then,

rank+(X) ≥ ⟨Z,X⟩
α(Z)∥X∥∞

,

where ∥X∥∞ = maxi,j |X(i, j)|.

Proof. [400, Lemma 1] First, let us show that ⟨Z,R⟩ ≤ α(Z) holds for any rank-one matrix
R ∈ [0, 1]m×n and not just for the binary rank-one matrices. For this, let us write R = xy⊤

with x ≥ 0 and y ≥ 0. After scaling, one can assume w.l.o.g. that x ∈ [0, 1]m and y ∈ [0, 1]n.
Consider the optimization problem

max
x∈[0,1]m,y∈[0,1]n

⟨Z, xy⊤⟩,

and suppose the optimal solution (x∗, y∗) is not binary. Assume x∗ is not binary. For y = y∗

fixed, the above optimization problem is a linear program over the cube [0, 1]n so that there exists
a binary optimal solution,24 and hence x∗ can be assumed to be binary w.l.o.g. By symmetry, the
same reasoning holds for y∗. Geometrically speaking, this means that

conv{R ∈ [0, 1]m×n | rank(R) ≤ 1} = conv{R ∈ {0, 1}m×n | rank(R) ≤ 1},

even though the set of matrices of rank at most one is not a convex set itself.
Now, let X =

∑r
k=1Rk with Rk ≥ 0 and rank+(Rk) = 1 (this corresponds to an Exact

NMF of X of size r). We have

⟨Z,X⟩ =
r∑

k=1

∥Rk∥∞
〈
Z,

Rk

∥Rk∥∞

〉

≤ α(Z)
r∑

k=1

∥Rk∥∞

≤ α(Z)r∥X∥∞.

The first inequality follows from the result above since Rk

∥Rk∥∞
∈ [0, 1]m×n for all k; the second

inequality follows from the nonnegativity of the Rk’s.

This lower bound for the nonnegative rank is interesting in two aspects:

1. It does not depend directly on the support of X and hence may lead to nontrivial bounds
for positive matrices.

24The vertices of [0, 1]n are the binary vectors {0, 1}n, while there exists at least one optimal vertex for any linear
program over a polyhedron containing at least one vertex.
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2. It actually leads to an infinite number of lower bounds depending on the choice of Z.
Appropriate choices of Z may lead to strong lower bounds. In particular, it is via the
hyperplane separation bound that Rothvoss was able to prove his seminal result, namely
that the perfect matching polytope has exponential extension complexity [400, 401]; see
Section 3.6.

Note that it is always best to takeZ(i, j) as small as possible for all (i, j) such thatX(i, j) = 0
because it leads to the best possible lower bound for the nonnegative rank of X . In fact, this
choice does not affect the numerator ⟨Z,X⟩, while it can only decrease α(Z). Also, it limits
the number of rectangles to consider when computing α(Z) via (3.10): the objective takes the
value −∞ for any rectangle containing an entry equal to −∞, and hence such rectangles can be
discarded.

Still, the main drawback of the hyperplane separating bound is the computation of α(Z)
which requires solving a difficult combinatorial problem. Using the factorization R = xy⊤ for
x and y binary, and assuming x is fixed, the optimal y can be easily computed:

[
y∗(x)

]
j
=

{
0 if x⊤Z(:, j) < 0,
1 otherwise.

The same result holds when y is fixed, by symmetry. This means that the quantity α(Z)
can be computed in O

(
mn2min(m,n)

)
operations, as done in [Matlab file: hyperplane_

separation_bound.m]. This is impractical when min(m,n) is large. However, α(Z) can be
replaced with any valid upper bound as done, for example, in [400].

Example 3.30. Consider the matrix of Thomas [450],

X =


1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1

 ,

and let Z = 2X − 1, meaning that Z is obtained from X by replacing its zero entries with −1
(they could also be chosen as −∞; see above). One can check by inspection that α(Z) = 2 (an
optimal solution of (3.10) is obtained, for example, with the rectangle containing the first row
and first two columns of X), and hence

rank+(X) ≥ ⟨Z,X⟩
α(Z)∥X∥∞

=
8

2
= 4.

This is yet another proof that the nonnegative rank of the matrix of Thomas is four. This ex-
ample can be run with [Matlab file: bound_nnr_Thomas.m] that also computes the other
bounds presented in this section. All bounds, from the fooling set bound to the bounds presented
hereafter, provide a lower bound of 4.

Note that generating Z randomly, for example using the normal distribution randn(m,n),
usually leads to poor lower bounds. Out of 100,000 such generated Z’s, the best lower bound we
have obtained for the matrix of Thomas is 2.81.

3.4.8 Nonnegative nuclear norm

Let us present the bound proposed by Fawzi and Parrilo [154] and explain its connections with
the nuclear norm, a widely used convex relaxation for the rank [394]. This bound has some
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similarities with the hyperplane separation bound presented in the previous section but relies on
the Frobenius norm, instead of the infinity norm. It also relies on the set of copositive matrices
Cn defined as

Cn = {A ∈ Rn×n | x⊤Ax ≥ 0 for all x ≥ 0}.

Theorem 3.31. [154, Theorem 1] Let X ∈ Rm×n
+ , and let

ν+(X) = max
Z∈Rm×n

⟨X,Z⟩ such that
(

I −Z
−Z⊤ I

)
∈ Cm+n.

Then,

rank+(X) ≥
(
ν+(X)

∥X∥F

)2

. (3.11)

Proof. Let X = WH =
∑r

k=1W (:, k)H(k, :) be an Exact NMF of X of size r = rank+(X).
Let us assume w.l.o.g. that ∥W (:, k)∥2 = ∥H(k, :)∥2 for all k; this can be achieved by a scaling
of the rank-one factors in the decomposition. Using the inequality ∥x∥1 ≤

√
r∥x∥2 for the vector

x ∈ Rr with xk = ∥W (:, k)∥2∥H(k, :)∥2 for all k, we obtain∑r
k=1 ∥W (:, k)∥2∥H(k, :)∥2√∑r
k=1 ∥W (:, k)∥22∥H(k, :)∥22

≤
√
r =

√
rank+(X).

Let us show that the numerator of the left-hand side is smaller than ν+(X) and that the denomi-
nator is larger than ∥X∥F , which will prove the result.

• For any matrix Z such that
(

I −Z

−Z⊤ I

)
is copositive, we have for all k that(

W (:, k)
H(k, :)⊤

)⊤(
I −Z
−Z⊤ I

)(
W (:, k)
H(k, :)⊤

)
≥ 0

since W and H are nonnegative. Expanding the product, we obtain

W (:, k)⊤ZH(k, :)⊤ ≤ 1

2
(∥W (:, k)∥22 + ∥H(k, :)∥22) = ∥W (:, k)∥2∥H(k, :)∥2

since ∥W (:, k)∥2 = ∥H(k, :)∥2 for all k. Therefore,

⟨X,Z⟩ =

〈
r∑

k=1

W (:, k)H(k, :), Z

〉
=

r∑
k=1

W (:, k)⊤ZH(k, :)⊤

≤
r∑

k=1

∥W (:, k)∥2∥H(k, :)∥2.

• We have

∥X∥2F =

∥∥∥∥∥
r∑

k=1

W (:, k)H(k, :)

∥∥∥∥∥
2

F

=

r∑
k=1

∥∥W (:, k)H(k, :)
∥∥2
F
+ 2

∑
k<ℓ

〈
W (:, k)H(k, :),W (:, ℓ)H(ℓ, :)

〉
≥

r∑
k=1

∥∥W (:, k)
∥∥2
2

∥∥H(k, :)
∥∥2
2
,

since ∥W (:, k)H(k, :)∥2F = ∥W (:, k)∥22∥H(k, :)∥22, and W and H are nonnegative.
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Link with the nuclear norm The nuclear norm of a matrix A, denoted ∥A∥∗, is the sum
of its singular values. It can be shown that [257]

∥A∥∗ = min
U,V

min(m,n)∑
k=1

∥U(:, k)∥2∥V (k, :)∥2 such that A = UV.

Moreover, using the inequality ∥x∥1 ≤
√
r∥x∥2 for any vector x,

r = rank(A) ≥

(
σ1(A) + σ2(A) + · · ·+ σr(A)√
σ2
1(A) + σ2

2(A) + · · ·+ σ2
r(A)

)2

=

(
∥A∥∗
∥A∥F

)2

. (3.12)

For A ≥ 0, the quantity ν+(A) can be interpreted as a nonnegative nuclear norm: one can show
that [154, Theorem 4]

ν+(A) = min
W≥0,H≥0

∑
k

∥W (:, k)∥2∥H(k, :)∥2 such that X =WH.

Therefore, the lower bound (3.11) for the nonnegative rank can be interpreted as the analogue of
the lower bound (3.12) for the rank. We refer the interested reader to [154] for more details.

Computation It is hard to optimize over the copositive cone, that is, the set of copositive
matrices [140]. However, it can be approximated using semidefinite programming. Let us intro-
duce the cone of completely positive matrices, denoted Cn

+, which is the dual cone25 of Cn:

Cn
+ =

{
A ∈ Rn×n | A = BB⊤ for some B ≥ 0

}
.

In other words, completely positive matrices admit an Exact NMF with W = H⊤; this will
be referred to later as the symNMF problem in Section 5.3. The minimal r such that such a
decomposition exists is referred to as the completely positive rank (cp-rank). The cp-rank
behaves rather differently from the nonnegative rank. In particular, the cp-rank can be higher
than the dimension of the matrix (up to n(n + 1)/2 − 1 [231, 24]) or might not exist. For
example, the matrix

X =

(
1 1
1 0

)
is not completely positive, that is, its cp-rank is infinite. Let us explain why, but first let us define
the set Sn+ of positive semidefinite (PSD) matrices: a symmetric matrix A is PSD if x⊤Ax ≥ 0
for all x. Equivalently, a symmetric matrix A is PSD if all its eigenvalues are nonnegative. Since
x⊤(BB⊤)x = ∥Bx∥22 ≥ 0 for any B and x, Cn

+ ⊆ Sn+. The matrix X above has one negative
eigenvalue (its eigenvalues are (1±

√
5)/2), so that it does not belong to Sn+ and hence does not

belong to Cn
+. We refer the reader to [39] for more information on the cp-rank.

Using duality, one can show that [154, Theorem 4]

ν+(X) = min
P∈Sm,Q∈Sn

{
1

2
(tr(P ) + tr(Q))

∣∣∣ ( P X
X⊤ Q

)
∈ Cm+n

+

}
.

Assuming we have a lower bound for ν+(X), we can derive a new lower bound for the
nonnegative rank; this follows from (3.11). To do so, instead of optimizing over Cm+n

+ , one
can optimize over sets that contain Cm+n

+ so that the minimum is decreased. In particular, there
exists a hierarchy of such sets. The first level of the hierarchy is Cn

[0] = Sn+ ∩ Rn×n
+ ⊇ Cn

+:
as explained above, any completely positive matrix must be componentwise nonnegative and

25See page 106 for a definition.
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PSD. Then, without going into detail, they showed that there exists a hierarchy of sets Cn
[k]

that are representable using PSD matrices (with an increasing number of variables) such that
Cn
[k+1] ⊂ Cn

[k] and that tend to Cn
+ as k increases; see [154] for more details. We denote

ν
[0]
+ (X) = min

P ∈ Sm

Q ∈ Sn

{
1

2
(tr(P ) + tr(Q))

∣∣∣ ( P X
X⊤ Q

)
∈ Sm+n

+ ∩ R(m+n)×(m+n)
+

}
,

for which

rank+(X) ≥

(
ν
[0]
+ (X)

∥X∥F

)2

.

Even the computation of ν[0]+ (X) is relatively expensive since it requires solving a semidef-
inite program with matrices of size (m + n) by (m + n). On a standard laptop and using
interior-point methods, ν[0]+ (X) can be computed for m and n up to about 100; see [Matlab
file: nonneg_nuclear_norm_bound.m].

For linear EDMs, the bound (3.11) is rather weak; for example it is equal to 2.27 for n = 6.
Similar behavior will be observed for the slack matrices of n-gons; see Section 3.6.3.

An advantage of the bound (3.11) is that, as for the hyperplane separation bound, it does not
rely on the support of the input matrix. However, for some matrices, it can be rather poor. For
linear EDMs, the bound based on ν[0]+ (X) is below 3 for all n ≤ 16 (we have not tried higher
values). As we will see in Section 3.6.3, this bound is also poor for the slack matrices of regular
n-gons. Note, however, that this bound can be improved by adding some degrees of freedom in
the formulation (including the scaling of the rows and columns of X , which does not affect its
nonnegative rank). We refer the reader to [154] for details and more examples.

3.4.9 Self-scaled bound and sum of squares

In the paper [155], Fawzi and Parrilo develop a general approach to lower bound cone ranks,
that is, ranks corresponding to factorizations where the factors belong to specific cones (such as
the nonnegative orthant); see the subsection on cone factorizations (page 93). We present in this
section their result only in terms of the nonnegative rank, and we refer the reader to the paper for
more details. For example, their result also applies to the cp-rank.

Given a nonnegative matrix X ∈ Rm×n
+ , let us define the set of nonnegative rank-one matri-

ces which are componentwise smaller than X:

X+(X) =
{
R ∈ Rm×n

∣∣ rank(R) ≤ 1 and 0 ≤ R ≤ X
}
.

The supports of the matrices in X+(X) correspond to the rectangles in the RCB.

Lemma 3.32. [155] Let L(.) be a linear functional such that

L(R) ≤ 1 for all R ∈ X+(X). (3.13)

Then, L(X) ≤ rank+(X).

Proof. Let X =
∑r+

k=1Rk correspond to an Exact NMF for X with r+ = rank+(X) where
Rk ≥ 0 and rank(Rk) = 1 for all k. This implies that Rk ≤ X and hence Rk ∈ X+(X) so that
L(Rk) ≤ 1 for all k, and therefore

L(X) =

r+∑
k=1

L(Rk) ≤ r+ = rank+(X).
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Given X , one can try to find the linear functional satisfying the condition (3.13) that leads to
the largest lower bound for the nonnegative rank of X , namely

τ+(X) = max
L linear

L(X) such that L(R) ≤ 1 for all R ∈ X+(X).

We have the following result.

Theorem 3.33. [155, Theorem 2] For any X ∈ Rm×n
+ ,

τ+(X) ≤ rank+(X).

Proof. This follows directly from Lemma 3.32.

Generalization of the hyperplane separation bound Lemma 3.32 can be used to
derive the hyperplane separation bound: it corresponds to the choice

L(X) =

〈
Z

α(Z)
, X

〉
,

where Z ∈ Rm×n and α(Z) is given in (3.10), and where X is normalized, that is, X ← X
∥X∥∞

.
This implies that τ+(X) is always larger than the hyperplane separation bound.

Note that the hyperplane separation bound implicitly requires L(R) ≤ 1 for all rectangles
(not only those satisfying R ≤ A); see the definition of α(Z) in (3.10). However, choosing Z
such that Z(i, j) = −∞ for all (i, j) such that X(i, j) = 0 (which is the best possible choice;
see the discussion in Section 3.4.7) means that one can only consider the rectangles R such that
supp(R) ⊆ supp(X).

Computation of τ+(X) The quantity τ+(X) is difficult to compute. Note that τ+(X) is
larger than the fractional RCB [155, Theorem 4], which itself is hard to compute.

As for the quantity ν+(X), it is possible to derive a semidefinite relaxation to lower bound
τ+(X). This is based on sum of squares, and we refer the reader to [155] for more details. Here
is the formulation:

τ+(X) ≥ τ sos
+ (X) = min

t∈R,Y ∈Rmn×mn
t

such that
(

t vec(X)⊤

vec(X) Y

)
⪰ 0,

Yij,ij ≤ X(i, j)2 for all i, j,
Yij,kℓ ≤ Yiℓ,kj for all i < k and j < ℓ.

The variable Y has mn columns and rows, hence this optimization problem cannot be solved
when mn is large using a standard interior-point solver. On a standard laptop, one can handle
m and n up to around 15 [155]; see also [Matlab file: self_scaled_bound.m]. How-
ever, some simplifications are possible, in particular to reduce the number of variables to
| supp(X)| [155].

Example 3.34 (Linear EDMs, Example 3.13 continued). For the 6-by-6 linear EDM defined
as X(i, j) = (i− j)2 for 1 ≤ i, j ≤ 6, τsos(X) = 3.82, which provides a lower bound of 4 for
the nonnegative rank of X . For n = 7, τsos(X7) = 4.19, which provides a lower bound of 5.
These coincide with the antichain bound, the RCB, and the geometric bound.

Starting from the RCB presented in Section 3.4.4, all bounds can be compared using [Matlab
file: bound_nnr_linEDM.m].
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3.4.10 Further readings

In the paper [161], the authors propose highly efficient implementations of several lower bounds
for the nonnegative rank in26 C++, namely the fooling set bound, the RCB and the fractional
RCB, the RRCB and the fractional RRCB (which is obtained in the same way as for the RCB),
the hyperplane separation bound, and a nonnegative variant.

Let us briefly mention two other powerful approaches for lower bounding the nonnegative
rank. Introducing the concepts needed to understand these approaches and showing explicitly
how they can be used in the context of the nonnegative rank is beyond the scope of this book.

The first approach is based on information-theory concepts. Intuitively, the idea is to use
the connection between the nonnegative rank and the decomposition of a distribution P into
independent “components”; see Section 1.4.6. These bounds lead to strong lower bounds for the
nonnegative rank, especially in the context of (approximate) extended formulations. We refer the
reader to [61] and the references therein for the details.

The second approach [219] uses noncommutative polynomial optimization to formulate hier-
archies of semidefinite programming lower bounds on matrix factorization ranks. This approach
is rather general and applies to the nonnegative rank, the PSD rank (see the discussion in Sec-
tion 3.6.4 on cone factorizations), and their symmetric analogues: the CP-rank (see page 79) and
the completely PSD rank. This approach shares some similarities with the work of Fawzi and
Parrilo [155] presented in Section 3.4.9. We refer the reader to the paper [219] for complete
details and some numerical examples.

3.5 Upper bounds for the nonnegative rank
Upper bounds are usually obtained by providing explicit factorizations. This has been done, for
example, for

• linear EDMs of the form X(i, j) = (i − j)2 for i, j = 1, 2, . . . , n leading to the upper
bound of 2 log2(n) when n is a power of two [199, 244]; and

• the slack matrices of regular n-gons [165, 459]; see Section 3.6.3.

However, there exist a few general upper bounds for the nonnegative rank. Of course, the
restricted nonnegative rank is such an upper bound since for any nonnegative matrix X ,

rank+(X) ≤ rank∗+(X).

Shitov [411] was able to prove the following result.

Theorem 3.35. [411, Theorem 3.2] The nonnegative rank of a rank-three matrix X ∈ Rm×n
+

does not exceed 6min(m,n)
7 .

This results implies for example that any 7-gon can be represented as the projection of a
three-dimensional polytope with at most six facets; see the next section for more details. Shitov
also proved a sublinear upper bound for the nonnegative rank of rank-three matrices [410], later
improved to the following.

Theorem 3.36. [417] The nonnegative rank of a rank-three matrix X ∈ Rm×n
+ does not exceed

147min(m,n)2/3.

26The code is available from https://bitbucket.org/matthias-walter/nonnegrank/.

https://bitbucket.org/matthias-walter/nonnegrank/
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3.6 Lower bounds on extended formulations via the
nonnegative rank

Lower bounding techniques for the nonnegative rank have had a tremendous impact in the study
of extended formulations (see also Section 1.4.7 in the introduction). Let us quote Braun and
Pokutta [61]:

Nonnegative matrix factorizations and lower bounds for those are the main (arguably
even the only) strong tools to establish lower bounds on the extension complexity.

In a nutshell (see the details in Section 3.6.1 below), the minimum number of inequalities
needed to represent the feasible set of a linear program, namely, a polyhedron, is equal to the
nonnegative rank of a particular matrix, referred to as the slack matrix of that polyhedron. The
relatively recent breakthrough results in the field of linear integer programming bounding the size
of such compact representations were obtained by bounding the nonnegative rank of the corre-
sponding slack matrices. Examples include the proof that there does not exist a polynomial-size
linear formulation for the TSP polytope [163] (2012) and the matching polytope [400] (2014).

In this section, we review this connection and present several examples. It is organized as
follows. In Section 3.6.1, we introduce the setup and define an extended formulation and the
extension complexity of a polytope. In Section 3.6.2, we prove the seminal paper of Yannakakis
(Theorem 3.39), namely that the nonnegative rank of the slack matrix of a polytope is equal
to the extension complexity of that polytope. In Section 3.6.3, we illustrate this result on the
n-gons. This allows us to review the different lower bounding techniques for the nonnegative
rank presented in Section 3.4 on several examples. We conclude the section by mentioning
two generalizations of extended formulations for polytopes: approximate and conic extended
formulations (Section 3.6.4), and by discussing the extension complexity of the Cartesian product
of two polytopes (Section 3.6.5).

3.6.1 Introduction

A standard approach for tackling combinatorial optimization problems is to use linear optimiza-
tion. By representing the convex hull of the set of feasible solutions via linear equalities and
inequalities, the corresponding optimization problem can be solved via linear optimization. An
important problem is therefore the compact description of polytopes. In particular, if one is
able to represent the convex hull of the set of feasible solutions using a polynomial number of
inequalities, then the problem can be solved in polynomial time via linear optimization.

In this section we focus on bounded polyhedra, that is, polytopes, but the results can be
extended to unbounded polyhedra; see the discussion in [162]. A key issue is representing these
polytopes compactly, that is, with as few inequalities (that is, facets) as possible, possibly using
additional variables. Such reformulations are referred to as extended formulations.

Definition 3.37 (Extended formulation). Let

P = {x ∈ Rd | Ax ≤ b} where A ∈ Rm×d and b ∈ Rm

be a polytope. An extended formulation of P is a polyhedron

Q = {(x, y) ∈ Rd+p | Cx+Dy ≤ g and Ex+ Fy = h}

in variables (x, y) ∈ Rd+p such that x ∈ P if and only if there exists y such that (x, y) ∈ Q.

In the definition above, the projection of Q onto the variable x, which we denote projx(Q),
is equal to P . Optimizing a linear function f(x) over P is therefore equivalent to optimizing



84 Chapter 3. Nonnegative rank

the same function f(x) over Q. The size of the extended formulation Q of P is the number of
inequalities in Q, that is, the number of rows of the matrices C and D.

Most polytopes arising in combinatorial optimization have an exponential number of facets in
their “natural” formulations, that is, in terms of their original variables. However, some of them
can be reformulated using only a polynomial number of inequalities via appropriate extended
formulations; these are referred to as compact extended formulations.

Example 3.38 (Permutahedron). Let us illustrate the notion of compact extended formulations
on the permutahedron; see [376] and the references therein for more details. The permutahedron
Πn in dimension n is the convex hull of the set of points corresponding to all permutations of
{1, 2, . . . , n}. For example, for n = 3,

Π3 = conv
(
(1, 2, 3), (1, 3, 2), (2, 1, 3), (3, 1, 2), (2, 3, 1), (3, 2, 1)

)
.

The permutahedron has n! vertices and can be written as follows using 2n−2 inequalities (it has
2n − 2 facets):{

x ∈ Rn
∣∣ n∑

i=1

xi =
n(n+1)

2
,
∑
i∈S

xi ≥
|S|(|S|+1)

2
for all ∅ ≠ S ⊂ {1, 2, . . . , n}

}
.

The inequalities require that any nonempty subset of |S| entries of x must sum to at least
|S|(|S|+1)

2 . Introducing the n2 variables Z ∈ Rn×n, the permutahedron can be written as fol-
lows:

Πn =
{
x ∈ Rn

∣∣ there exists Z ∈ Rn×n
+ such that

n∑
i=1

iZ(i, j) = xj for all j,

n∑
i=1

Z(i, j) = 1 for all i,

n∑
j=1

Z(i, j) = 1 for all j
}
.

This reformulation has n2 + n variables and n2 inequalities (namely Z ≥ 0). Hence this is a
compact extended formulation of size n2 of the permutahedron.

There exists a more compact formulation of Πn of size n log(n) using sorting networks [215].
Since the slack matrix of the permutahedron has n! columns with different supports, its nonneg-
ative rank is lower bounded by log(n!) = Θ(n log(n)) (because (n/2)n/2 ≤ n! ≤ nn); see
Lemma 3.14 in Section 3.4.2. This proves that there cannot exist more compact formulations
(see Theorem 3.39).

We refer the reader to the papers [105, 462, 267, 483, 375, 153] for more details on extended
formulations, including more examples of compact extended formulations.

The smallest size of an extended formulation ofP is called the extension complexity ofP and
denoted xc(P). As explained above, describing the polytope corresponding to a combinatorial
problem allows us to solve it using linear optimization. Hence knowing whether such a polytope
has an extension complexity polynomial in the number of variables is crucial as it indicates
whether the corresponding combinatorial problem can be solved in polynomial time via linear
optimization.
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3.6.2 Yannakakis’s result

In 1988, Yannakakis unraveled a key result: the extension complexity of a polytope is equal to
the nonnegative rank of its slack matrix; see Theorem 3.39 below. The slack matrix S ∈ Rm×n

+

of the polytope
P =

{
x ∈ Rd | a⊤i x ≤ bi, i = 1, 2, . . . ,m

}
is defined as

S(i, j) = bi − a⊤i vj ≥ 0 for all i, j,

where v1, v2, . . . , vn are the vertices of P . Before stating and proving the seminal result of
Yannakakis, let us make a few remarks:

• The slack matrix of a polytope is not unique, since its representation in terms of inequalities
is not (for example by multiplying an inequality by a positive number, or by adding redun-
dant inequalities). However, the nonnegative rank is invariant with respect to the choice of
the representation of P . For example, adding rows (resp. columns) corresponding to valid
inequalities for P (resp. points in P) to the slack matrix does not change its nonnegative
rank since any valid inequality is a conic combination of the inequalities defining P (resp.
any point inside P is a convex combination of its vertices).

• The slack matrix S is equal to the matrix X of the RE-NMF instance obtained by using
the reduction from the NPP with

A = P ⊆ B = P;

see the paragraph “From NPP to RE-NMF” (page 40) and in particular (2.13). In the
NPP, since the inner polytope A and the outer polytope B coincide, the only solution is
E = A = B, implying that the restricted nonnegative rank of a slack matrix X is equal to
the number of vertices of P , that is, rank∗+(X) = n [199, Theorem 7].

• In his original paper [492] (later published as a journal paper [493]), Yannakakis defined
the extension complexity as the number of variables plus the number of constraints in
the extended formulation and showed that extension complexity and nonnegative rank are
within a factor of two of each other; see also the discussion in [162].

Theorem 3.39. [492, 493] Let P be a polytope of dimension larger than one, and let S be its
slack matrix. Then

rank+(S) = xc(P ).

Proof. [163, Theorem 3], [400, Theorem 2] Let us first show that xc(P) ≤ rank+(S). For this,
given P = {x ∈ Rd | b − Ax ≥ 0} with A ∈ Rm×d and b ∈ Rm, let us show that any Exact
NMF of S = WH of size r with W ≥ 0 and H ≥ 0 provides the following explicit extended
formulation of P of size r (with some redundant equalities):

Q = {(x, y) | b−Ax =Wy and y ≥ 0};

that is, let us show that projx(Q) = {x | ∃y s.t. (x, y) ∈ Q} = P . We have

• projx(Q) ⊆ P since W ≥ 0 and y ≥ 0, and hence b−Ax =Wy ≥ 0 for all (x, y) ∈ Q;

• P ⊆ projx(Q) because all vertices vj (1 ≤ j ≤ n) of P belong to projx(Q): by construc-
tion, (vj , H(:, j)) ∈ Q since S(:, j) = b−Avj =WH(:, j) and H(:, j) ≥ 0.
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It remains to show that rank+(S) ≤ xc(P). Let

Q = {(x, y) ∈ Rd+p | Cx+Dy ≤ g and Ex+ Fy = q}

be an extended formulation of P with r inequalities, that is, C and D have r rows. From this
extended formulation, let us construct the r-dimensional nonnegative vectors wi and hj such
that S(i, j) = w⊤

i hj for 1 ≤ i ≤ m and 1 ≤ j ≤ n, which will imply rank+(S) ≤ r.
Since Q is an extended formulation of P , there exists zj such that (vj , zj) ∈ Q for all j. Let
hj = g − Cvj − Dzj be the slack of (vj , zj) with respect to the inequalities of Q. By linear
programming (LP) duality, we know that each valid constraint a⊤i x+ 0⊤y ≤ bi (1 ≤ i ≤ m) of
Q can be obtained by a conic combination of its defining constraint Cx+Dy ≤ g (this requires
the assumption that the dimension of P is larger than one), that is, for all i, there exists wi ∈ Rr

+

such that
w⊤

i (C D g) = (a⊤i 0 bi).

We obtain
w⊤

i hj = w⊤
i (g − Cvj −Dzj) = bi − a⊤i vj = S(i, j).

Many results were obtained later (starting around 2010) to provide bounds on the extended
formulations of difficult combinatorial problems using Theorem 3.39. In particular, Fiorini et
al. [163, 164] proved that the extension complexity of the TSP polytope has exponential extension
complexity, and Rothvoss proved that the perfect matching polytope has exponential extension
complexity [401].

3.6.3 Application to the slack matrices of n-gons

In this section, we apply the different notions covered in this chapter to the slack matrices of
n-gons. We first review the cases of the square and the regular hexagon that we have actually
already investigated in Section 2.1. We then present the case of the regular octagon, in particular
to illustrate the use of the different lower bounds for the nonnegative rank on this 8-by-8 matrix.
We present the general case of regular n-gons and describe an application: approximating the
second-order cone with a polytope. Finally, we briefly discuss the case of generic n-gons.

3.6.3.1 Square

Let us start with the square with four facets

P = {x ∈ R2 | x1 ≥ 0, x2 ≥ 0, x1 ≤ 1, x2 ≤ 1}

and four vertices
(0, 0), (1, 0), (1, 1) and (0, 1).

This leads to the following facet-by-vertex slack matrix:

(1, 1) (1, 0) (0, 1) (0, 0)
x1 ≥ 0 1 1 0 0
x2 ≥ 0 1 0 1 0
x2 ≤ 1 0 1 0 1
x1 ≤ 1 0 0 1 1

.

This matrix equals the matrix of Thomas (2.5) (we have ordered the facets and vertices in order
to achieve this). Looking back at Figure 2.4 (page 29), this is not surprising: the inner and
outer polytopes in the corresponding NPP instance are the same square. We have seen that the
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nonnegative rank of the matrix of Thomas is 4; it is therefore not possible to represent the square
with fewer than four inequalities.

3.6.3.2 Hexagon

We have considered in Section 2.1 the matrix

X =


0 1 2 2 1 0
0 0 1 2 2 1
1 0 0 1 2 2
2 1 0 0 1 2
2 2 1 0 0 1
1 2 2 1 0 0

 .

Doing the same exercise as for the square, one can check that this matrix is a slack matrix of
the regular hexagon. In fact, we have proved in Section 2.1 that the corresponding NPP instance
has the inner and outer polytopes being the same regular hexagon. Moreover, we have seen that
the nonnegative rank of this matrix is five, implying that the extension complexity of the regular
hexagon is five. We have also seen that the columns of X belong to the convex hull of a three-
dimensional polytope with only five vertices, because X = WH where W has five columns
and rank(W ) = 4; see Figure 2.7 (page 35). Equivalently (Theorem 3.39), the hexagon can be
represented as the projection of a polytope with five facets (Theorem 3.39); see Figure 3.2.

6 facets

5 facets

Figure 3.2. Minimum-size extended formulation of the regular hexagon with five facets.
Figure taken from [459].

3.6.3.3 Octagon

Let P = {x ∈ R2 | Ax ≤ b} be the regular octagon centered at the origin with

A =

(
1 a 0 −a −1 −a 0 a
0 a 1 a 0 −a −1 −a

)⊤

, and b(i) = 1 + a for all i,

where a =
√
2
2 . The vertices of P are the columns of

V =

(
1+a a −a −(1+a) −(1+a) −a a (1+a)
a 1+a 1+a a −a −(1+a) −(1+a) −a

)
.
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We obtain the slack matrix

S = AV − [b b . . . b]

=



0 1 1 + 2a 2 + 2a 2 + 2a 1 + 2a 1 0
0 0 1 1 + 2a 2 + 2a 2 + 2a 1 + 2a 1
1 0 0 1 1 + 2a 2 + 2a 2 + 2a 1 + 2a

1 + 2a 1 0 0 1 1 + 2a 2 + 2a 2 + 2a
2 + 2a 1 + 2a 1 0 0 1 1 + 2a 2 + 2a
2 + 2a 2 + 2a 1 + 2a 1 0 0 1 1 + 2a
1 + 2a 2 + 2a 2 + 2a 1 + 2a 1 0 0 1

1 1 + 2a 2 + 2a 2 + 2a 1 + 2a 1 0 0


.

Let us show that rank+(S) = 6. We have rank+(S) ≤ 6 since S =WH where

W =



1 0 0 1 0 1 + 2a
1 + 2a 0 0 0 1 2 + 2a

1 1 0 0 0 1 + 2a
0 2a 1 0 0 1
0 1 1 + 2a 0 1 0
1 0 2 + 2a 0 1 + 2a 0
0 0 1 + 2a 1 1 0
0 0 1 2a 0 1


and

H =


0 0 0 1 0 0 1 0
1 0 0 0 0 1 1 + 2a 1 + 2a
1 1 0 0 0 0 0 0
0 1 1 + 2a 1 + 2a 1 0 0 0
0 0 1 0 0 0 0 1
0 0 0 0 1 1 0 0

 ,

with rank(W ) = 4 and rank(H) = 5. Such factorizations can be computed using the code
from [460], [Matlab file: exactNMFheur.m], or using explicit factorizations from [165,
459]. Note that one can write down explicitly the extended formulation of P of size 6 using
the Exact NMF given above. It suffices to follow the first part of the proof of Theorem 3.39:

Q = {(x, y) ∈ R2+6 | b = Ax+Wy, y ≥ 0}

is an extended formulation for P with six inequalities. Since rank([A,W ]) = 4 while b ∈
col([A,W ]), four variables can be discarded. Hence we can write the regular 8-gon as the pro-
jection of a polytope in four dimensions with six inequalities.

Let us review the different lower bounds presented in this chapter.

• Rank. We have rank(S) = 3 ≤ rank+(S).

• Fooling set. The largest fooling of S set has size 4. The largest fooling set for the slack
matrix of any n-gon has size 4 for n ≥ 6. This is because such matrices have essentially the
same pattern of zeros: only two zeros per column and row (each vertex intersects exactly
two facets, and vice versa) and the pattern of zeros is circulant (it is shifted by one on the
right between each row). To prove this result, first observe that such circulant matrices do
not contain any 5-by-5 submatrix with (at least) two zeros per row and column, and then
apply Lemma 3.12. (Note that applying Lemma 3.12 directly on S only provides an upper
bound of size 5 for any fooling set since S has two zeros per row and columns.)
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Remark 3.3. Surprisingly, the slack matrices of 5-gons have a fooling set of size 5:

X =


0 ∗ ∗ ∗ 0
0 0 ∗ ∗ ∗
∗ 0 0 ∗ ∗
∗ ∗ 0 0 ∗
∗ ∗ ∗ 0 0

 ,

where ∗ indicates a positive entry.

• Counting argument. The matrix S has eight columns with different supports, hence the
counting argument of Goemans leads to rank+(S) ≥ log2(8) = 3 (Lemma 3.14). Using
the refined argument of Yannakakis (Lemma 3.15) and observing that one can generate
2n + 2 columns with distinct supports using linear combinations of the n columns of S
(see Remark 3.2), we obtain rank+(S) ≥ log2(18) = 4.17, which leads to a lower bound
of 5.

• Antichain. The matrix S has eight columns with supports not contained in one another,
as for linear EDMs. The antichain bound gives the lower bound rank+(S) ≥ 5 since

5 = min
r
r such that

(
r

⌊r/2⌋

)
≥ 8.

• RCB and RRCB. The RCB gives rc(S) = 6 and hence is tight. As explained in Sec-
tion 3.4.4, it can be computed via the resolution of a combinatorial problem. Since the
RCB is tight, the RRCB leads to the same bound.

• Geometric. The restricted nonnegative rank of a slack matrix of a polytope P is always
equal to the number of vertices of P [199, Theorem 7]. This is because in the correspond-
ing NPP instance the inner and outer polytopes coincide with P , and hence the only nested
polytope is P itself. Now, we need to find the smallest k such that

ϕ(rank(S), k) = ϕ(3, k) ≥ rank∗+(S) = 8;

see Corollary 3.26. Since ϕ(3, 4) = 6 while ϕ(3, 5) = 10, the geometric lower bound
gives rank+(S) ≥ 5.

Note that by using the improved geometric bound for rank-three matrices proposed in [199,
Corollary 4], we obtain rank+(S) ≥ 6 which is tight.

• Hyperplane separation. The best lower bound we were able to obtain with the hyperplane
separation bound is 2.712, using

Z(i, j) =

 −∞ if S(i, j) = 0,
0 if S(i, j) = 1,

S(i, j) otherwise.

For this matrix, α(Z) = 20.14 where the best rectangle is the 3-by-4 bottom left rectangle;
hence

rank+(X) ≥ ⟨Z, S⟩
α(Z)∥S∥∞

= 2.712.

Generating 10000 matrices Z whose entries are generated uniformly at random in [0, 1]
(except the ones corresponding to the zero entries of S which are set to −∞) did not
improve this bound.
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• Nonnegative nuclear norm. We have ν[0]+ (S) = 29.564, and hence

rank+(S) ≥

(
ν
[0]
+ (S)

∥S∥F

)2

= 2.95.

• Self-scaled bound. We have τ sos
+ (S) = 5.15 ≤ rank+(S) which implies rank+(S) ≥ 6,

which is tight.

In summary, the extension complexity of the regular octagon is equal to six. This can be
proved by computing an explicit Exact NMF of rank six and providing tight lower bounds for the
nonnegative rank of this matrix. For the regular octagon, four lower bounds are tight: the RCB,
the RRCB, the improved geometric bound, and τ sos

+ (S). Except for the RRCB, these bounds
can be computed using [Matlab file: bound_nnr_octagon.m], along with the hyperplane
separation bound and the bound based on the nonnegative nuclear norm.

3.6.3.4 Regular n-gons

Ben-Tal and Nemirovski [32] provided extended formulations of the regular n-gons when n is
a power of two (n = 2k for some k) with 2 log2(n) + 4 inequalities. They used this construc-
tion to approximate the unit disk with regular n-gons. This allowed them to approximate, up
to any given accuracy ϵ, second-order cone optimization problems (where inequalities have the
form ∥Ax − b∥2 ≤ c⊤x − d for some matrix A, vectors b and c, and scalar d) with linear
optimization problems of polynomial size in ln (1/ϵ) and in the dimension and the number of
constraints of the second-order cone. This is interesting because it essentially shows that, from
a theoretical point of view, the expressiveness of second-order cone optimization is not much
more powerful than linear optimization; see also [214, 25] for some numerical experiments and
applications. Note that the lower bound based on a counting argument of Lemma 3.15 provides
the bound log2(2n+ 2) since 2n + 2 distinct supports can be generated using the n columns
of the slack matrix; see also Remark 3.2. For n = 2k for some integer k, the construction of
Ben-Tal and Nemirovski was slightly reduced to size 2 log2(n) by Glineur [214]. Kaibel and
Pashkovich [268, 269] proposed a general construction for arbitrary n of size 2 ⌈log2(n)⌉ + 2.
Fiorini, Rothvoss, and Tiwary [165] improved the construction, leading to an extended formu-
lation of size 2 ⌈log2(n)⌉. Finally, the authors in [459] improved the bound to 2 ⌈log2(n)⌉ − 1
when 2k−1 < n ≤ 2k−1 + 2k−2 for some integer k. They used explicit Exact NMFs of these
slack matrices. They conjectured that the bound is tight, which holds for n ≤ 13, 21 ≤ n ≤ 24,
and 31 ≤ n ≤ 32 as it matches the best known lower bound; see Figure 3.3.

Figure 3.3 compares the different lower and upper bounds for the nonnegative rank of the
slack matrix or regular n-gons for 3 ≤ n ≤ 33. It displays three upper bounds:

• Shitov: the bound ⌈ 6min(m,n)
7 ⌉ of Shitov [411].

• Reflection: the bound of [165] that uses a geometric construction based on reflections to
obtain explicit extended formulations of the regular n-gons.

• Factorization: the bound of [459] that proposed explicit Exact NMFs of the slack matrices
of regular n-gons.

It displays eight lower bounds presented in this chapter: the ones based on the counting argu-
ment (Section 3.4.2) and on antichains (Section 3.4.3), the RCB (Section 3.4.4), the RRCB (Sec-
tion 3.4.5), the geometric bound (Section 3.4.6), ν[0]+ (Section 3.4.8), and τ sos

+ (Section 3.4.9).
The following observations can be made:



3.6. Lower bounds on extended formulations 91

4 8 16 32
n

3

4

5

6

7

8

9

10

11

12

Figure 3.3. Lower and upper bounds for the nonnegative rank of the slack matrices of
regular n-gons. Figure adapted from [459, Figure 2].

• Some bounds are computationally expensive to compute (namely, RCB, RRCB, ν[0]+ , and
τ sos
+ ) and cannot be computed for all values of n. For these matrices, we know the fooling

set bound is always 4 (see the discussion in subsection 3.6.3.3 about the regular octagon).
However, in general, it requires solving a difficult combinatorial problem (corresponding
to a maximum clique problem that we solved explicitly for n ≤ 20).

• The RRCB improves upon the RCB, by one, for n = 9 and n = 13. The RRCB is the only
tight lower bound in these two cases and, together with the explicit factorizations, proves
that the extension complexity of the regular 9-gon is 7 and of the regular 13-gon is 8.

• The bound ν[0]+ , and to a lesser extent τ sos
+ (X), is relatively poor for these matrices (it is

smaller than 3 for n ≥ 7). Also, neither can be computed for large n.

• The geometric bound is the improved version for rank-three matrices [199, Corollary 7].
It performs rather well, being tight for quite a few values of n; it is the only tight (as it
matches the value of explicit factorizations) and computable bound for n = 15, 16, 21, 22,
23, 24, 31, 32.

3.6.3.5 Generic n-gons

As opposed to regular n-gons, generic n-gons have large extension complexity in Ω(
√
n) [165],

and hence cannot be represented compactly in general. Shitov provided a sublinear upper bound
of 147n2/3 for the slack matrices of n-gons [417]; see Theorem 3.36.
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3.6.4 Approximate and conic extended formulations

There are two important generalizations of the bounds for extended formulations based on the
nonnegative rank. Let us briefly mention them.

3.6.4.1 Approximate extended formulations

As we have mentioned previously, many combinatorial problems do not admit compact extended
formulations, such as the TSP and the matching polytopes. However, one may wonder whether
this holds when the extended formulations only need to approximate the given polytope up to
some accuracy.

An approach to tackle this question is to consider the slack matrix of a pair of polytopes.
Let us look back at the NPP: given the polytope A defined via its vertices {v1, v2, . . . , vn} and
the polytope B defined via its facets Fx + g ≥ 0 with A ⊆ B, find, if possible, a polytope E
with p vertices nested between A and B, that is, A ⊆ E ⊆ B. We have seen that this problem is
equivalent to RE-NMF of the matrixX defined asX(:, j) = Fvj+g for all j; see Theorem 2.11.
Let us define the matrix X using this construction as the slack matrix of the pair (A,B). One
can show the following.

Theorem 3.40. [57, Theorem 1] The minimum extension complexity over all polytopes E such
that A ⊆ E ⊆ B is equal to the nonnegative rank of the slack matrix of the pair of polytopes
(A,B). This quantity is referred to as the extension complexity of the pair (A,B) and denoted
xc(A,B). The corresponding extended formulation of E is referred to as an extended formulation
of (A,B).

Note that xc(P) = xc(P,P) for any polytope P , since the slack matrix of the pair (P,P) is
the slack matrix of P .

Theorem 3.40 allowed Braunn et al. [57, 58] to prove that O(n1/2−ϵ)-approximations of the
clique polytope require a linear program of exponential size, where n is the number of nodes in
the graph and ϵ is a small fixed constant. This was later improved by showing that the same bound
applies to O(n1−ϵ)-approximations [62]; see also [59, 61]. Braun and Pokutta [60] established
that for all fixed 0 < ϵ < 1, every linear program approximating the matching polytope by a
factor (1 + ϵ/n) must have exponential size, where n is the number of nodes in the graph.

Let us briefly explain the idea behind the proofs of these results. For simplicity, let us consider
a maximization problem over a polytope of the form

P = {x ∈ Rr | Ax ≤ b} with b ≥ 0.

The generalization to any polyhedron and to whether maximization or minimization is considered
can be found in [57]. For any ρ ≥ 1, let us define

ρP = {x ∈ Rr | Ax ≤ ρb},

where ρP is a dilatation of P by a factor ρ so that P ⊆ ρP since 0 ≤ b ≤ ρb. Note that x ∈ P
if and only if ρx ∈ ρP . Hence, for any c ∈ Rd,

max
x∈ρP

c⊤x = ρmax
x∈P

c⊤x.

Now, in order to bound the extension complexity of an approximation of a polytope P , we can
consider the extension complexity of the pair of polytopes P and ρP . Any polytope in between
P and ρP provides a ρ-approximation for P . In other words, finding an extended formulation
for the pair (P, ρP) allows us to approximate any linear program over P by a factor of at most ρ.
Finally, the proofs rely on bounding the nonnegative rank of the slack matrix of the pair (P, ρP).



3.6. Lower bounds on extended formulations 93

3.6.4.2 Cone factorizations

In an Exact NMF of size r of a matrix X ∈ Rm×n
+ , we are looking for m vectors wi ∈ Rr

+

(1 ≤ i ≤ m, the rows of W ) and n vectors hj ∈ Rr
+ (1 ≤ j ≤ n, the columns of H) such that

X(i, j) = ⟨wi, hj⟩ = w⊤
i hj for all i, j.

The nonnegative rank of X is the smallest r such that such a decomposition exists. Replacing
the constraints

wi ∈ Rr
+ and hj ∈ Rr

+ for all i, j

with

wi ∈ K and hj ∈ K∗ for all i, j

for some cone K and its dual27 K∗ leads to a generalization of the notion of Exact NMF and
hence of the notion of the nonnegative rank.

Let us focus on the cone of r-by-r PSD matrices (which is self-dual like the nonnegative
orthant). The PSD rank of a nonnegative m-by-n matrix X is the smallest r such that there
exists wi, hj ∈ Sr+ with

X(i, j) = ⟨wi, hj⟩ for all i, j.

Note that wi, hj are r-by-r PSD matrices, and this factorization is referred to as a PSD factoriza-
tion. The power of this generalization is that the theorem of Yannakakis [217, Theorem 4] also
generalizes leading to conic extended formulation. In particular, the PSD rank of the slack matrix
of a polytope is equal to the size of its smallest PSD extended formulation, which is the size of the
PSD matrices involved in the formulation. This can be generalized to sets other than polytopes
but then requires dealing with infinite dimensional matrices (the slack matrix is infinite since the
number of extreme points and facets is not finite). We refer to the surveys [152, 451, 153] for
more details.

Note that the PSD rank can be significantly smaller than the nonnegative rank: there exists
a family of 2n-by-2n matrices with PSD rank in O(1) and nonnegative rank in 2Ω(n) [415].
However, similarly as for (linear) extended formulations, these results allowed them to show
that there are no polynomial-size PSD extended formulations for the cut, TSP, and stable set
polytopes [306].

These ideas also recently allowed Hamza Fawzi to prove that the PSD cone cannot be repre-
sented using the second-order cone [151]; the proof relies on the second-order cone rank of the
cone of 3-by-3 PSD matrices being infinite.

3.6.5 Extension complexity of the Cartesian product of polytopes

To conclude this section on extended formulations, we mention an important open question about
the extension complexity of the Cartesian product of polytopes and its link with the nonnegative
rank. Given two polytopes P and Q, the open question is to determine the extension complexity

27See page 106 for a definition.
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of their Cartesian product

P ×Q = {(x, y) | x ∈ P and y ∈ Q}.

It is easy to show (see below) that xc(P×Q) ≤ xc(P)+xc(Q), and it is conjectured that equality
holds; indeed, it has been proved to hold when P or Q is a pyramid [454]. Let S ∈ Rm×n and
T ∈ Rp×q be the slack matrices of P and Q, respectively. The above conjecture is equivalent
to showing that the nonnegative rank of the slack matrix of P ×Q of dimension (m+ p)× nq,
given by

S × T =

(
S(:, 1) . . . S(:, 1) S(:, 2) . . . S(:, 2) . . . S(:, n) . . . S(:, n)

T T . . . T

)
,

is equal to the sum of the nonnegative ranks of S and T , that is,

rank+(S × T ) = rank+(S) + rank+(T ).

It is easy to prove that rank+(S×T ) ≤ rank+(S)+rank+(T ), decomposing S and T separately.
Note that the inequality can be strict for matrices which are not slack matrices (take for example
T = S = e).

3.7 Link with communication complexity
In its simplest variant, communication complexity addresses the following problem: Alice and
Bob have to compute the function

f : {0, 1}m × {0, 1}n 7→ {0, 1}.

Alice knows a ∈ {0, 1}m and Bob b ∈ {0, 1}n, and the aim is to minimize the number of
bits exchanged between Alice and Bob to compute f(a, b). Nondeterministic communication
is a variant where Bob and Alice first receive a message z before starting their communication.
The nondeterministic communication complexity of f , denoted NCC(f), is the minimum of
the length of the message z plus the communication in the deterministic protocol in order to
be able to compute f . The communication matrix X ∈ {0, 1}2m×2n is equal to the function
f for all possible combinations of inputs. Let us use the notation X(a, b) for the entry of the
communication matrix corresponding to a ∈ {0, 1}n and b ∈ {0, 1}n so that f(a, b) = X(a, b)
for all a and b.

Theorem 3.41. The NCC of f is equal to the logarithm of the RCB of X rounded from above:

⌈log2(rc(X))⌉ = NCC(f). (3.14)

Proof. [307, Theorem 1] Let us first show that NCC(f) ≤ ⌈log2(rc(X))⌉. Alice (resp. Bob)
knows the row a (resp. column b) ofX where the answer is located. Assume a rectangle covering
ofX into r = rc(X) rectangles exists. IfX(a, b) = 1, let the message z be the string identifying
the rectangle in X containing (a, b). The length of z is ⌈log2(rc(X))⌉ bits. Both Alice and Bob
can verify that the rectangle contains the row a and the column b, respectively. If f(a, b) = 0, no
rectangle contains (a, b) so that Alice or Bob output f(a, b) = 0.

Let us now show that NCC(f) ≥ ⌈log2(rc(X))⌉. For this, let us introduce another definition
of the NCC. The NCC of the function f is the minimum k such that there exist two functions
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A : {0, 1}m × {0, 1}k 7→ {0, 1} and B : {0, 1}n × {0, 1}k 7→ {0, 1} satisfying

f(a, b) = 1 ⇒ there exists z ∈ {0, 1}k such that A(a, z) = 1 and B(b, z) = 1, and

f(a, b) = 0 ⇒ for all z ∈ {0, 1}k such that A(a, z) = 0 or B(b, z) = 0.

The function A (resp. B) is the function Alice (resp. Bob) uses to compute the value of f(a, b),
given z ∈ {0, 1}k. By definition of the NCC, Alice (resp. Bob) needs such a function to compute
f(a, b) given a (resp. b) and the input z (which depends on a and b). Suppose NCC(f) = k,
and let A and B be the functions as described above. For a given z ∈ {0, 1}k, define a rectangle
C × D using C = {a | A(a, z) = 1} and D = {b | B(b, z) = 1}. The union of all such
rectangles has to cover the communication matrix X by definition of A and B, and there are 2k

such rectangles, which concludes the proof.

Theorem 3.41 implies that the NCC of f is upper bounded by the logarithm of the nonnega-
tive rank of the communication matrix, since rank+(X) ≥ rc(X), as noted by Yannakakis [493].
We refer the reader to [308, 402] and the references therein for more details.

3.7.1 Unique disjointness problem

Let us discuss a key example, namely the UDISJ problem. In this problem, both Alice and Bob
receive a subset of {1, 2, . . . , n}, and they have to determine whether the two subsets have zero
or one element in common. In the other cases, every output is considered correct. Equivalently,
Alice is given a ∈ {0, 1}n and Bob is given b ∈ {0, 1}n, and they have to output 1 if a⊤b = 0,
0 if a⊤b = 1, and any nonnegative real otherwise. The communication matrix corresponding to
this problem is referred to as the UDISJ matrix (because the function f can take any value if the
two subsets intersect in strictly more than one element, this is actually a class of matrices). Let
us use the notation X(a, b) for the entry of a UDISJ matrix corresponding to some a ∈ {0, 1}n
and b ∈ {0, 1}n. Any UDISJ matrix has the form

X(a, b) =

 1 if a⊤b = 0,
0 if a⊤b = 1,
≥ 0 otherwise.

Let us stress that entries corresponding to subsets with strictly more than one element in common,
that is, X(a, b) with a⊤b > 1, are not of interest, and any nonnegative output is considered
correct. The UDISJ matrix appears as a submatrix in many combinatorial problems and has
been instrumental in proving the lower bounds of (approximate) extended formulations; see for
example [61] and the references therein.

The NCC of this problem is Ω(n) because the RCB of X is lower bounded by
(
3
2

)n
[163,

164]. This implies that the nonnegative rank of any such matrix is 2Ω(n) because(
3

2

)n

≤ rc(X) ≤ rank+(X).

The proof, which relies on lower bounding rc(X), uses the same idea as the simple lower bound
for the RCB based on the ratio of the largest rectangle contained in X to its total number of
positive entries; see Equation (3.7), page 72. There are 3n entries of X such that a⊤b = 0 for
which X(a, b) = 1. In fact, when a⊤b = 0 there are three possibilities for each 1 ≤ i ≤ n:
(1) a(i) = b(i) = 0, (2) a(i) = 0 and b(i) = 1, or (3) a(i) = 1 and b(i) = 0. Moreover, one
can prove that every rectangle can cover at most 2n of these entries ofX; see [402, Lemma 5.10]
and the references therein. Therefore, rc(X) ≥

(
3
2

)n
. Note that this bound holds regardless of

the values of X(a, b) for a⊤b > 1.
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Open question on a UDISJ matrix An example of a UDISJ matrix is given by
Un(a, b) = (1− a⊤b)2 where a, b ∈ {0, 1}n. For example, for n = 3,

U3 =



1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0
1 0 0 1 1 0 0 1
1 1 1 1 0 0 0 0
1 0 1 0 0 1 0 1
1 1 0 0 0 0 1 1
1 0 0 1 0 1 1 4


,

and rank(U3) = 7. One can check that all the lower bounds presented in this chapter do not
improve upon the bound rank(U3) = 7 ≤ rank+(U3). It is an open problem to decide whether
rank+(U3) = 7 or rank+(U3) = 8. It is strongly believed that rank+(U3) = 8. For ex-
ample, the code from [460] cannot compute any factorization with small error (for r = 7, the
best solution found has relative error ∥U3 −WH∥F /∥U3∥F = 8.36%); see [Matlab file:
UDISJ.m].

More generally, the rank of the above UDISJ matrix is rank(Un) = n(n+1)
2 + 1 (see

Remark 3.4 below), while the nonnegative rank is larger than (3/2)n; see the discussion
in Section 3.7. This is another example of a large gap between the rank and the nonnega-
tive rank. Can one prove stronger lower bounds? In particular, it has been conjectured that
rank+(Un) = 2n.

Remark 3.4 (Rank of Un). Let us show that rank(Un) = 1 + n(n+1)
2 by induction. (We prove

this result because it is a nice exercise, and we were not able to find it in the literature.) It suffices
to show that rank(U1) = 2 and rank(Un+1) = rank(Un) + n. The matrix

U1 =

(
1 1
0 1

)
so that rank(U1) = 2.

It remains to prove that rank(Un+1) = rank(Un) + n. For that, let us define recursively the
matrix Fn ∈ {0, 1}2

n×n as follows:

F1 =

(
0
1

)
and Fn =

(
Fn−1 0
Fn−1 e

)
.

Since the rows of Fn contain all possible 0/1 patterns, including the rows of the identity matrix,
rank(Fn) = n. Let us also denote Vn = FnF

⊤
n , with rank(Vn) = n since rank(Fn) = n. Note

that col(Vn) = col(Fn). We have

Un = (ee⊤ − Vn)◦2 = ee⊤ − 2Vn + V ◦2
n ,

and hence V ◦2
n = Un − ee⊤ + 2Vn. We obtain

Un+1 =

(
ee⊤ −

(
Fn 0
Fn e

)(
Fn 0
Fn e

)⊤
)◦2

=

(
ee⊤ −

(
Vn Vn
Vn Vn + ee⊤

))◦2

=

(
Un Un

Un Un

)
−
(

0 0
0 ee⊤

)
+ 2

(
0 0
0 Vn

)
.
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We have that
(
0
e

)
∈ col

(
Un

Un

)
which follows from

(
e
e

)
and

(
e
0

)
belonging to col

(
Un

Un

)
, which itself

follows from the form of Un (see above) and because 0 is the first row of Fn and
(
e
0

)
is the last

column of Fn. This implies that

rank(Un+1) = rank

(
Un 0
Un Vn

)
= rank

(
Un 0
Un Fn

)
= rank(Un) + rank(Fn),

where the second equality follows from col(Vn) = col(Fn) and the third because the matrix is
block triangular. Since rank(Fn) = n, this concludes the proof.

3.8 Other applications of the nonnegative rank
The nonnegative rank is related to other problems in the literature; however, for these problems,
it did not have as much impact as for extended formulations. Let us recall some of them:

• The nonnegative rank is an upper bound for the minimum biclique cover number of a
bipartite graph; see Section 3.4.4.

• Let P be a probability matrix P (where
∑

i,j P (i, j) = 1) corresponding to the distribution
of two random variables (X,Y ) so that

P(X = i, Y = j) = P (i, j).

The nonnegative rank of P is equal to the minimum number of pairs of independent vari-
ables that can explain this distribution; see Section 1.4.6.

• The nonnegative rank is closely related to minimal state representations of stochastic se-
quential machines and the minimal cover of labeled Markov chains; see Section 1.4.3.

3.9 Take-home messages
The nonnegative rank of a nonnegative matrix is an intriguing quantity. Although it shares some
properties with the usual rank (see in particular Theorem 3.1), it may behave rather differently.
For example, we have seen that rank-one perturbations may increase or decrease the nonnegative
rank by more than one unit (Corollaries 3.5 and 3.6). Moreover, the nonnegative rank is NP-hard
to compute; see Chapter 2. Although the nonnegative rank has been used in various contexts,
such as probability (Section 1.4.6) and communication complexity (Section 3.7), it has had the
most impact in the study of extended formulations of polytopes in combinatorial optimization.
Yannakakis proved that the nonnegative rank of the slack matrix of a polytope is equal to its
extension complexity (the minimum number of inequalities needed to represent it); see Theo-
rem 3.39. This result has been used to provide lower bounds on the extension complexity of
polytopes, which in turn allowed providing limits of LP for solving combinatorial optimization
problems. A notable example is the proof that the perfect matching polytope cannot be repre-
sented via a polynomial number of inequalities [400, 401].





Chapter 4

Identifiability

There are several issues when using NMF in practice, including for example the choice of the
factorization rank r and of additional constraints that W and H should satisfy depending on the
application at hand; see Chapter 5. However, the two main issues are arguably the NP-hardness
of computing solutions and the nonuniqueness of the solutions. The NP-hardness of Exact NMF
was discussed in Chapter 2, while NP-hardness of NMF will be discussed in Chapter 6. In
this chapter, we discuss the nonuniqueness issue of the solutions of Exact NMF, also known
as the identifiability issue. In other words, we discuss conditions under which the factors W
and H in an Exact NMF decomposition X = WH are unique (up to scaling and permutation
ambiguities) and hence correspond to the true factors that generated the data. This is crucial
in many applications. For example, in blind HU (Section 1.3.2), it ensures that the recovered
matrix W corresponds to the spectral signatures of the true endmembers and that the matrix H
corresponds to the abundances of the endmembers within the pixels of the image. In audio source
separation (Section 1.3.2), it ensures that the matrix W corresponds to the frequency response
of the sources and that the matrix H corresponds to the activation of the sources over time.
In Chapter 2, when studying the geometric interpretation of Exact NMF, we have encountered
several matrices whose Exact NMF are not unique. As we will see, the geometric interpretation
plays a crucial role in characterizing the solutions of Exact NMF.

Most theoretical results on identifiability focus on Exact NMF. The reason is twofold. First,
analyzing identifiability in noisy settings is much more difficult. Second, identifiability of NMF
can be decomposed into two subproblems:

1. The first subproblem is the uniqueness of the low-rank approximation X̃ = WH , that is,
the uniqueness of the solution to the problem

min
X̃∈N r

+

D
(
X, X̃

)
, (4.1)

where N r
+ is the set of nonnegative matrices of nonnegative rank at most r, that is,

N r
+ = {X̃ | there exist W ∈ Rm×r

+ and H ∈ Rr×n
+ such that X̃ =WH}.

Although the solution to the problem (4.1) is not necessarily unique, this type of nonunique-
ness is usually not a problem in practice, as long as X̃ is a good approximation of X . In
fact, assume there are two solutions X̃1 and X̃2 such that D(X, X̃1) = D(X, X̃2) = ϵ for
some small ϵ. If D is a distance (for example, the Frobenius, ℓ1, or ℓ∞ norm), using the
triangle inequality, we obtain

D
(
X̃1, X̃2

)
≤ D

(
X̃1, X̃

)
+D

(
X̃, X̃2

)
≤ 2ϵ,

99
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hence X̃1 and X̃2 are close to one another, given that ϵ is small. In other words, even if
there are several solutions, they are close to one another, given that they are sufficiently
close to X . We do not discuss this type of nonuniqueness in this book. We refer the
interested reader to, for example, the discussion in [224] under the relaxed assumptions
that X̃ ≥ 0 and rank(X̃) = r.

2. What is more important to practitioners is that the recovered factors are close to the true
underlying factors that generated the data. It was shown in [298, Theorem 6] that if X̃−X
is sufficiently small28 and the Exact NMF (W,H) ofX is unique, then the optimal solution
(W̃ , H̃) of the NMF problem (1.1) for X̃ is close to the Exact NMF (W,H) of X , up to
permutation and scaling of the rank-one factors. In other words, if the Exact NMF (W,H)
of X is unique and the noise N is small, the estimation error on the factors W and H is
small when solving the NMF for X̃ = X + N . Hence, assuming the noisy input data X̃
is close to X , the problem of identifiability of NMF reduces to the identifiability of Exact
NMF of X . This is the problem we discuss in this chapter.

Let us formally define the uniqueness of an Exact NMF decomposition.

Definition 4.1 (Uniqueness of Exact NMF). The Exact NMF (W,H) of X = WH of size r
is unique if and only if for any other Exact NMF (W ′, H ′) of X = W ′H ′ of size r, there exists
a permutation matrix29 Π ∈ {0, 1}r×r and a diagonal scaling matrix D with positive diagonal
elements such that

W ′ =WΠD and H ′ = D−1Π⊤H.

In other words, an Exact NMF (W,H) of X of size r is unique if and only if the only other
Exact NMFs (W ′, H ′) of X of size r have the form

W ′H ′ =

r∑
k=1

W ′(:, k)H ′(k, :) =

r∑
k=1

αkW (:, πk)︸ ︷︷ ︸
W ′(:,k)

1

αk
H(πk, :)︸ ︷︷ ︸
H′(k,:)

, (4.2)

for some permutation π of {1, 2, . . . , r}, and some positive scalars αk (1 ≤ k ≤ r). This
definition of uniqueness is also often referred to as essential uniqueness in the literature, and
(W,H) is said to be essentially unique. Another terminology says that (W,H) is unique up to
permutation and scaling. These terminologies are more precise since we can always permute and
scale30 the rank-one factors to obtain equivalent factorizations; see (4.2). However, for simplicity,
we prefer to use the term “unique” as defined above.

In this chapter, the main question we address is the following: Given an Exact NMF (W,H)
of X of size r, when is it unique? We will mostly focus on the case r = rank(X), as done in the
literature.

Before delving into the details, let us point out that in some applications, identifiability is not
a concern. For example,

• in the study of extended formulations discussed in Section 3.6, any factorization provides
an extended formulation, and there is no reason to look for a particular one;

28No explicit bounds are provided, and such bounds would probably be rather weak. It would be interesting to
investigate further the stability of NMF solutions under small perturbations.

29A permutation matrix is a square binary matrix that has exactly one entry equal to 1 in each row and each column and
has zeros everywhere else. In other words, permutation matrices are obtained by permuting the columns of the identity
matrix.

30There is a slight abuse of language here since we scale not the rank-one factors W (:, k)H(k, :) (1 ≤ k ≤ r) but
rather the vectors W (:, k) and H(k, :) that compose them. We will use this abuse of language throughout and sometimes
refer to it as the scaling degree of freedom.
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• in some data analysis applications, the main goal is linear dimensionality reduction, and
there is no ground truth to recover. For example, in facial feature extraction (Section 1.3.1),
it is difficult to argue that there exists a unique set of features that one is desperately looking
for. In this context, computing any meaningful set of features with low reconstruction
error is satisfactory. These features are then used, for example, within a facial recognition
system [227].

Organization of the chapter We first briefly discuss the case rank(X) ≤ 2 (Sec-
tion 4.1). Then we present the two main parts of this chapter. In the first part (Section 4.2),
we discuss the identifiability of Exact NMF, providing geometric and algebraic characterizations
of the set of solutions. We also present sufficient and necessary conditions for Exact NMF to
have a unique solution. As we will see, in most cases, we should not expect Exact NMF to have
a unique solution. In the second part (Section 4.3), we discuss regularized Exact NMF models,
that is, we consider Exact NMF models where the factors (W,H) satisfy additional properties,
namely, separability, orthogonality, minimum volume, or sparsity. Under these additional prop-
erties, we will see that Exact NMFs are unique under much milder conditions. This is crucial
in practice: taking into account prior knowledge allows us to recover the ground truth factors
(W,H); we will discuss this further in Section 5.3.

4.1 Case rank(X) ≤ 2

Let us start with the simple case rank(X) ≤ 2 for which rank(X) = rank+(X) (Theorem 2.6).
For rank(X) = 1, the Exact NMF of X is always unique, as the single column of W ∈ Rm×1

has to be taken as a multiple of any nonzero column of X which are multiples of one another.
For rank(X) = 2, the uniqueness of Exact NMF can be characterized as follows.

Theorem 4.2. Let X ∈ Rm×n
+ with rank(X) = 2. The Exact NMF of X of size 2 is unique if

and only if there exists i, j, k, ℓ such that

X
(
{i, j}, {k, ℓ}

)
=

(
α 0
0 β

)
for some α > 0 and β > 0, that is, if and only if X contains a 2-by-2 diagonal matrix with
positive diagonal elements as a submatrix.

Proof. To prove this result, let us use the geometric interpretation of Exact NMF using nested
convex hulls described in Section 2.1.2, which we briefly recall here. W.l.o.g., let us remove
the zero columns of X and normalize its columns to unit ℓ1 norm, and let (W,H) be an Exact
NMF of X of size two where the columns of W and H have unit ℓ1 norm (Lemma 2.1). Since
rank(X) = 2, rank+(X) = 2 (Theorem 2.6) and hence for any Exact NMF of X of size 2,
col(W ) = col(X); see Lemma 2.7. This implies that

conv(X) ⊆ conv(W ) ⊆ ∆r ∩ col(X),

where conv(X) and ∆r ∩ col(X) are segments, since their dimension is equal to rank(X)− 1;
see Lemma 2.5. Therefore, the nested segment conv(W ) is unique if and only if the two seg-
ments conv(X) and ∆r ∩ col(X) coincide. Note that, given W , H is uniquely determined since
rank(W ) = 2.

Let us now show that X contains a 2-by-2 diagonal matrix with positive diagonal elements
as a submatrix (which for simplicity we refer to as a diagonal submatrix for the remainder of the
proof) if and only if conv(X) = ∆r ∩ col(X), which will conclude the proof. For this, let us
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construct the feasible solution (W,H) of the Exact NMF of X of size 2 such that conv(W ) =
conv(X), that is, the two columns of W ∈ Rm×2 are the two vertices of conv(X). This means
that W = X(:,K) for some index set K with |K| = 2. This implies that for all 1 ≤ j ≤ n, there
exists H(:, j) ∈ ∆2 such that

X(:, j) =WH(:, j) =W (:, 1)H(1, j) +W (:, 2)H(2, j).

Therefore the support of each column of X is either supp
(
W (:, 1)

)
, supp

(
W (:, 2)

)
, or supp(

W (:, 1)
)
∪ supp

(
W (:, 2)

)
. Hence X contains a diagonal submatrix if and only if W contains

a diagonal submatrix. Now observe that conv(W ) = ∆r ∩ col(X) if and only if for (i, j) ∈{
(1, 2), (2, 1)

}
we have

W (:, i) + α(W (:, i)−W (:, j)) /∈ ∆r for any α > 0,

that is, when starting fromW (:, i) and going in the direction opposite toW (:, j), we go out of the
nonnegative orthant. This happens if and only if W (:, i)−W (:, j) has one negative entry where
W (:, i) is zero, that is, there must exist k such that W (k, i) = 0 and W (k, j) > 0. Since this
must hold for (i, j) = (1, 2) and (i, j) = (2, 1), this is equivalent to requiring that W contains a
diagonal submatrix.

Figure 4.1 provides an example of a nonunique Exact NMF of a matrix X , since
conv

(
θ(X)

)
⊂ ∆r ∩ col(X). (Recall that θ(X) is the matrix X whose columns have been

normalized to unit ℓ1 norm.)
The two vertices of conv

(
θ(X)

)
can be identified in different ways. For example, the

first vertex can be identified as the column of θ(X) with the largest ℓ2 norm,31 and the sec-
ond can be identified as the column of θ(X) furthest away from the first identified column.
Moreover, one can easily characterize the set of feasible solutions: W (:, 1) and W (:, 2) can
be chosen as any point on the segment col(X) ∩ ∆m (which is the intersection between the

Figure 4.1. Geometric illustration of rank-two Exact NMF for m = 3 and n = 25 with
a nonunique solution. Both figures represent the same data set, up to scaling. The figure on the
right is the normalization to unit ℓ1 norm of the columns of X from the figure on the left.

31A strongly convex function such as f(x) = ∥x∥22 always attains its maximum over a polytope at one of its vertices;
see Section 7.4.1 for more details.
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line containing the segment conv
(
θ(X)

)
and the nonnegative orthant) but not in the relative

interior of conv
(
θ(X)

)
, W (:, 1) and W (:, 2) being on a different side of conv

(
θ(X)

)
; see

Algorithm 4.1. Such constructions have been known for a long time, in particular in the SMCR
literature [301]; see Section 1.4.1 and also [355].

Algorithm 4.1 Exact NMF of size r = 2 [Matlab file: Rank2NMF.m]

Input: A rank-two nonnegative matrix X ∈ Rm×n
+ .

Output: Exact NMF (W,H) of X of size r = 2.

1: Remove the zero columns of X .
2: Scale X , that is, X ← θ(X).
3: % Identify the two vertices of conv(X)
4: Let j1 = argmaxj ∥X(:, j)∥2.
5: Let j2 = argmaxj ∥X(:, j)−X(:, j1)∥2.
6: % Construct a feasible solution conv(X) ⊆ conv(W ) ⊆ col(X) ∩∆m

7: W (:, 1) = X(:, j1) + α1(X(:, j1)−X(:, j2)) where

α1 ∈
[
0, min

{k|X(k,j2)>X(k,j1)}

X(k, j1)

X(k, j2)−X(k, j1)

]
,

so that W (:, 1) ≥ 0.
% The choice for α1 is unique and equal to zero if there exists k such that X(k, j1) = 0 and
X(k, j2) > 0

8: W (:, 2) = X(:, j2) + α2(X(:, j2)−X(:, j1)) where

α2 ∈
[
0, min

{k|X(k,j1)>X(k,j2)}

X(k, j2)

X(k, j1)−X(k, j2)

]
,

so that W (:, 2) ≥ 0.
% The choice for α2 is unique and equal to zero if there exists k such that X(k, j2) = 0 and
X(k, j1) > 0

9: Let H ∈ R2×n
+ be such that X =WH .

When rank(X) ≥ 3, the problem is much more complicated since we are facing NPPs in
dimensions higher than 2 for which uniqueness is difficult to characterize. This is the topic of
the remainder of this chapter.

4.2 Exact NMF with r = rank(X)

Most results on identifiability of Exact NMF focus on the case r = rank+(X) = rank(X). This
is because most applications for which identifiability is a key aspect come from data analysis: in
this context, rank+(X) = rank(X) is a standard assumption. The factorsW andH and the data
matrix X = WH have rank r; this is the case, for example, for the four applications presented
in Section 1.3 (namely facial feature extraction, hyperspectral unmixing, text mining, and audio
source separation).

In this section, we first characterize the set of solutions of the Exact NMF problem with
r = rank(X) in three different ways, namely using

• its equivalence with the NPP (Section 4.2.1.1),

• an algebraic characterization (Section 4.2.1.2), and

• its interpretation in terms of nested convex cones (Section 4.2.1.3).
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We then provide two sufficient conditions for W and H to obtain unique Exact NMF solu-
tions for the matrix X =WH , namely

• the separability condition (Section 4.2.2) and

• the sufficiently scattered condition (SSC; Section 4.2.3).

In Section 4.2.4, we present a necessary condition based on the support of W and H to have
a unique Exact NMF. Finally, we discuss the sparsity of the input matrix X; in particular, we
explain why sparsity of the input matrix is not a necessary condition to have a unique Exact
NMF, and we illustrate this observation with several examples of positive matrices that have a
unique Exact NMF (Section 4.2.5).

4.2.1 Characterizations of the set of solutions of Exact NMF

In this section, we provide three different ways to represent the set of solutions of Exact NMF.

4.2.1.1 Geometric characterization I: NPP

The case r = rank(X) can be characterized more easily, as Exact NMF coincides with RE-NMF
which is equivalent to the NPP where the inner and outer polytopes have the same dimension
r − 1. We have the following result.

Theorem 4.3. The Exact NMF (W,H) of X of size r = rank(X) is unique if and only if the
solution to the corresponding NPP problem constructed using Theorem 2.11 is unique.

Proof. For r = rank(X), Exact NMF coincides with RE-NMF, so that the result follows from
the one-to-one relationship between RE-NMF and NPP instances; see Theorem 2.11.

Note that in the NPP, there is no permutation nor scaling ambiguity, and hence a unique
solution is truly unique.

Theorem 4.3 has been known for a long time; see Section 1.4 and also, for example, [138,
298, 465] and the references therein. Theorem 4.3 is particularly useful when rank(X) = 3 as
the corresponding NPP is two-dimensional and can be solved efficiently; see Section 2.3.1.1. It
will be used to construct interesting examples in Section 4.2.5.

4.2.1.2 Algebraic characterization

In an Exact NMF (W,H) of X of size r = rank(X), col(W ) = col(X) (Lemma 2.7). This
is not true in general when r > rank(X); see Sections 2.1.4 and 3.6.3 for some examples.
Therefore, when r = rank(X), as we have already seen, the space of solutions of Exact NMF
can be parametrized with an invertible r-by-r matrix Q (Theorem 2.21). Let us recall this result
stated in a different way.

Lemma 4.4. Let (W,H) be an Exact NMF of X of size r = rank(X). Then, any Exact NMF
(W ′, H ′) of X of size r has the form

W ′ =WQ ≥ 0 and H ′ = Q−1H ≥ 0

for some invertible r-by-r matrix Q.
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Proof. Since X = W ′H ′ = WH are Exact NMFs of size r = rank(X), we have, by
Lemma 2.7, that col(X) = col(W ) = col(W ′) of dimension r. Therefore there exists an
invertible r-by-r matrix Q such that

W ′ =WQ.

Moreover, since W has rank r, it admits a left inverse W † such that W †W = Ir. Hence

W ′H ′ =WQH ′ = X =WH ⇒ QH ′ = H,

where the left-hand side was multiplied by W † on both sides to obtain the right-hand side.

The only nonnegative matrices Q whose inverse is nonnegative are diagonal matrices with
positive diagonal elements, up to permutations of rows and columns [38]. Such matrices lead
to equivalent factorizations (WQ,Q−1H) corresponding to permutations and scalings of the
rank-one factors and hence do not destroy uniqueness of Exact NMF (Definition 4.1).

Theorem 4.5. The Exact NMF (W,H) of X of size r = rank(X) is unique if and only if the
only invertible matrices Q such that

WQ ≥ 0 and Q−1H ≥ 0 (4.3)

are diagonal matrices with positive diagonal elements, up to permutations of rows and columns.

Proof. This follows directly from Lemma 4.4 and the fact that Q and Q−1 are both nonnegative
if Q is a diagonal matrix, up to permutations of its rows and columns.

4.2.1.3 Geometric characterization II: nested cones

The geometric characterization in Theorem 4.3 is based on the construction of an equivalent
geometric problem, the NPP, that must have a unique solution. However, this reformulation does
not tell us much about the conditions that W and H must satisfy for uniqueness to hold. In this
section, we derive another equivalent reformulation which can be traced back from the work of
Thomas [450]; see also the discussion in [298]. This characterization will be useful to derive
necessary and sufficient conditions for the uniqueness of Exact NMF.

To derive this second geometric characterization, we use the notions of cones and their dual,
which we recall here. A coneW is a set such that x ∈ W implies that αx ∈ W for all α ≥ 0.
Let us recall that the cone generated by the columns of a matrix W is defined as

cone(W ) = {x |x =Wh for h ≥ 0} .

The extreme rays of a cone W are the points in W that cannot be represented as nonnegative
linear combinations of other points in W; more precisely, x ∈ W is an extreme ray of W if
x /∈ W \ cone(x). An extreme direction D of a convex coneW is defined as

D = {αx | α ≥ 0, x is an extreme ray ofW}.

A coneW is polyhedral (or finitely generated) if there exists a matrixW such that cone(W )=W .
The order of a polyhedral cone is the minimum number of columns in such aW ; it is equal to the
number of extreme directions of cone(W ). A simplicial cone is a polyhedral cone of the form
cone(W ) where W has full column rank; such a cone is of order r if W has r columns. Given
two matrices A ∈ Rr×m and B ∈ Rr×n, it is easy to verify that

cone(A) ⊆ cone(B) ⇐⇒ A(:, j) ∈ cone(B) for all j.
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Given a coneW , its dual is denoted byW∗ and defined as

W∗ =
{
y
∣∣x⊤y ≥ 0 for all x ∈ W

}
.

Lemma 4.6. Given a matrix W , the dual of cone(W ) is given by

cone∗(W ) =
{
y
∣∣W⊤y ≥ 0

}
.

Proof. By definition,

cone∗(W ) =
{
y
∣∣x⊤y ≥ 0 for all x ∈ cone(W )

}
=
{
y
∣∣x⊤y ≥ 0 for all x =Wh, h ≥ 0

}
=
{
y
∣∣h⊤W⊤y ≥ 0 for all h ≥ 0

}
=
{
y
∣∣W⊤y ≥ 0

}
.

The last equality follows from the fact that a vector z has nonnegative inner product with all
nonnegative vectors if and only if it is nonnegative, that is,

z ≥ 0 ⇐⇒ z⊤h ≥ 0 for all h ≥ 0.

In other words, the nonnegative orthant is a self-dual cone:
(
Rn

+

)∗
= Rn

+.

We have the following corollary.

Corollary 4.7. Let W ∈ Rm×r and H ∈ Rr×n. Then WH ≥ 0 if and only if

cone
(
W⊤) ⊆ cone∗(H).

Proof. We have

WH ≥ 0 ⇐⇒ H⊤W⊤ ≥ 0 ⇐⇒ W (i, :)⊤ ∈ cone∗(H) for all i

⇐⇒ cone(W⊤) ⊆ cone∗(H),

where the second equivalence follows from Lemma 4.6.

Before we provide the second geometric characterization of the uniqueness of Exact NMF,
let us provide an elementary result from convex geometry. We refer the interested reader to [399]
for more on convex cones.

Lemma 4.8. Let Q ∈ Rr×r be invertible. Then cone∗(Q⊤) = cone(Q−1).

Proof. We have

cone∗
(
Q⊤) = {y |Qy ≥ 0}

=
{
Q−1x |Q(Q−1x) ≥ 0

}
=
{
Q−1x |x ≥ 0

}
= cone(Q−1),

where the first equality follows from Lemma 4.6 and the second from the change of variable
y = Q−1x which is made w.l.o.g. since Q is invertible.
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Theorem 4.9. [298, Theorem 1] The Exact NMF (W,H) of X of size r = rank(X) is unique if
and only if the only simplicial cone T of order r such that

cone
(
W⊤) ⊆ T ⊆ cone∗(H) (4.4)

is the nonnegative orthant Rr
+.

Proof. First observe that for an r-by-r matrix Q, cone(Q) is the nonnegative orthant, that is,
cone(Q) = Rr

+, if and only if Q is a permutation of a diagonal matrix with positive diagonal
elements. In fact, the unit vectors ek (1 ≤ k ≤ r) are extreme rays of Rr

+ and hence have
to be among the columns of any matrix Q (up to scaling) given that cone(Q) = Rr

+ (see also
Lemma 4.11 for other equivalent characterizations).

Using this observation, let us rephrase Theorem 4.5: (W,H) is a unique Exact NMF of X of
size r if and only if the only invertible r-by-r matrices Q satisfying WQ−1 ≥ 0 and QH ≥ 0
are such that cone(Q) = Rr

+.
Moreover, since r = rank(W ) in any Exact NMF (W,H) of X of size r, the dimension

of T in (4.4) is at least r, and hence there must exist an invertible r-by-r matrix P such that
T = cone(P ). Let us denote Q = P−⊤ so that T = cone(Q−⊤) (we use this transformation to
have this Q coincide with the Q of Theorem 4.5).

Below, we show that for an invertible r-by-r matrix Q,

(i) cone(W⊤) ⊆ T = cone(Q−⊤) ⇐⇒ WQ ≥ 0, and

(ii) T = cone(Q−⊤) ⊆ cone∗(H) ⇐⇒ Q−1H ≥ 0.

Together with the observations above, this concludes the proof, because the condition (4.4) in
Theorem 4.9 is equivalent to the condition (4.3) in Theorem 4.5.

It remains to prove (i) and (ii):

(i) By Lemma 4.8, cone(Q−⊤) = cone∗(Q). By Lemma 4.6, we obtain

cone(W⊤) ⊆ cone(Q−⊤) = cone∗(Q) ⇐⇒ Q⊤W⊤ ≥ 0 ⇐⇒ WQ ≥ 0.

(ii) By Lemma 4.6,

cone(Q−⊤) ⊆ cone∗(H) ⇐⇒ H⊤Q−⊤ ≥ 0 ⇐⇒ Q−1H ≥ 0.

We will see in the next two sections that Theorem 4.9 is particularly useful for deriving
sufficient conditions on W and H for the Exact NMF (W,H) of X to be unique.

4.2.2 Sufficient condition I: separability

Let us define a separable matrix as follows.

Definition 4.10 (Separable matrix). The matrix H ∈ Rr×n
+ is separable if cone(H) = Rr

+.

Lemma 4.11. Let H ∈ Rr×n
+ . The following conditions are equivalent:

(i) H is separable, that is, cone(H) = Rr
+.

(ii) cone∗(H) = Rr
+.

(iii) H contains an r-by-r submatrix which is a permutation of a diagonal matrix with positive
diagonal entries.

(iv) There exists an index set K of size r such that cone
(
H(:,K)

)
= Rr

+.
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Proof. (i) ⇐⇒ (ii) follows from the nonnegative orthant being self-dual.
(iii) ⇐⇒ (iv) follows directly since the cone spanned by an r-by-r diagonal matrix with

positive diagonal entries is Rn
+.

(iv) ⇒ (i) follows directly, while (i) ⇒ (iv) follows from the unit vectors being extreme
rays of the nonnegative orthant (they are not conic combinations of other vectors within the
nonnegative orthant).

Combining the definition of a separable matrix and Theorem 4.9, we obtain the following
sufficient conditions on W and H for the Exact NMF (W,H) of X to be unique.

Theorem 4.12. If X admits an Exact NMF (W,H) of size r = rank(X) where W⊤ and H are
separable, then the Exact NMF (W,H) of X is unique.

Proof. This follows directly from Theorem 4.9: by separability of W⊤ and H ,

cone(W⊤) = Rr
+ = cone∗(H),

so that the unique simplicial cone of order r nested between cone(W⊤) and cone∗(H) is Rr
+.

Let us state two simple corollaries.

Corollary 4.13. The r-by-r identity matrix Ir admits a unique NMF of size r, namely W = Ir
and H = Ir.

Proof. This result follows from Theorem 4.12.
A simpler, more straightforward, proof follows from the fact that the unit vectors are the

extreme rays of the nonnegative orthant.

Corollary 4.14. Let X be a nonnegative matrix with rank(X) = rank+(X), and let the matrix
X contain a diagonal matrix with positive diagonal entries as an r-by-r submatrix. Then the
Exact NMF (W,H) of X of size r is unique.

Proof. This follows from Theorem 4.12 and Corollary 4.13. The diagonal submatrix in X
must be factorized with diagonal matrices (Corollary 4.13). This implies that W and H contain
diagonal matrices as submatrices, and hence the Exact NMF of X is unique (Theorem 4.12).

Looking back at the case rank(X) = 2, it is interesting to observe that the separability
condition of W⊤ and H is also necessary; see Theorem 4.2.

Relaxed sufficient conditions based on separability The separability condition
was first introduced by Donoho and Stodden [138] (2004). In their paper, Donoho and Stodden
derive sufficient conditions for Exact NMF to be unique. In short, they require H to be separable
while they require a milder nontrivial condition on the support of W . In Laurberg et al. [298],
other sufficient conditions were derived, which are closely related to separability (they require a
condition on H which is stronger than separability, while the condition on W is also based on its
support but is milder).

We do not provide these conditions in detail here; we refer the interested reader directly to
these papers, and also to the discussions in [251, 170]. In the next section, we present a much
milder sufficient condition than separability for uniqueness.
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Is separability of W⊤ and H a reasonable condition in practice? The re-
quirement that W⊤ and H are both separable in Theorem 4.12 is unlikely to be satisfied in
real-world settings. As we will see in detail in Chapter 7, it makes sense to assume separability
of H or W in several applications. For example, in airborne hyperspectral images, which are
images of the earth taken from an airplane or a drone (such as the one shown in Figure 1.6), H
is separable if for each material present in the image, there exists a pixel containing only that
material. This is called the pure-pixel assumption in the hyperspectral imaging literature which
is reasonable in several scenarios. This notably requires a relatively high-resolution image; see
Chapter 7 for more details. However, the matrix W is typically not separable as most of its
entries are positive.

We will see in Section 4.3.1 how to require only one of the two factors to be separable and
obtain a uniqueness result under additional constraints, namely imposing that W = X(:,K) for
some index setK of size r. In Chapter 7, we will see how to tackle this problem numerically, pre-
senting polynomial-time algorithms that provably recover (W,H), even in the presence of noise.

4.2.3 Sufficient condition II: sufficiently scattered

In this section, we consider the SSC. As we will see, this is an instrumental condition when
studying the identifiability of Exact NMF and of regularized Exact NMF, which will be discussed
in Section 4.3.

Definition 4.15 (Sufficiently scattered condition). The matrix H ∈ Rr×n
+ is sufficiently scat-

tered if the following two conditions are satisfied:
SSC1. C = {x ∈ Rr

+ | e⊤x ≥
√
r − 1∥x∥2} ⊆ cone(H).

SSC2. There does not exist any orthogonal matrix Q such that cone(H) ⊆ cone(Q), except for
permutation matrices. (An orthogonal matrix Q is a square matrix such that Q⊤Q = I .)

The SSC is a milder condition than separability: if H is separable, that is, cone(H) = Rr
+,

then

• SSC1 holds: C ⊆ cone(H) since C ⊆ Rr
+;

• SSC2 holds: the only orthogonal r-by-r matrices Q such that cone(H) = Rr
+ ⊆ cone(Q)

are permutation matrices; see the proof of Theorem 4.9.

Figure 4.2 provides an illustration that compares separability and the SSC in the case r = 3.
The SSC is not an easy concept to grasp, and the aim of this section is to discuss the SSC and

its implications on Exact NMF. It is organized as follows.

• Section 4.2.3.1 discusses the geometric interpretation of the SSC.

• Section 4.2.3.2 provides several lemmas that are used in Section 4.2.3.3 to prove the
uniqueness of the Exact NMF (W,H) of X when H and W⊤ satisfy the SSC.

• Section 4.2.3.4 sheds some light on the question of whether the SSC is likely to be satisfied
for a given matrix H . Unfortunately, checking whether a given matrix H satisfies the SSC
is NP-hard in general. However, we provide a new necessary condition for SSC1 to be
satisfied based on the sparsity of H . This new condition can be checked efficiently, which
we illustrate with some numerical experiments.

• Finally, Section 4.2.3.7 discusses whether requiring both W⊤ and H to satisfy the SSC is
reasonable in practice.
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Figure 4.2. Comparison of separability (left) and the SSC (right) for r = 3. The
figure represents the columns of H , normalized to unit ℓ1 norm. On the left, separability and the
SSC are satisfied as cone(H) coincides with Rr

+. On the right, only the SSC is satisfied since
cone(H) contains C (SSC1) while it can be checked that SSC2 holds as well.

4.2.3.1 Geometric interpretation of the SSC

Let us discuss the two conditions in the SSC.

Condition SSC1 SSC1 requires C ⊆ cone(H). The set C is a second-order cone, also
known as a Lorentz cone or an ice cream cone; see the green shape in Figure 4.3 for its represen-
tation for r = 3. The set C ∩∆r is an (r − 1)-dimensional sphere, namely{

x ∈ ∆r
∣∣ ∥x∥2 ≤ 1√

r − 1

}
=

{
x ∈ Rr

+

∣∣ ∥x∥2 ≤ 1√
r − 1

and e⊤x = 1

}
centered at 1

r e of radius 1√
r(r−1)

, within the affine subspace {x | e⊤x = 1}. This sphere goes

through the points 1
r−1 (e − ek) for k = 1, 2, . . . , r. For example, for r = 3, C ∩ ∆3 is the

disk centred at (1/3, 1/3, 1/3) of radius 1√
6

that goes through the points (1/2,1/2,0), (1/2,0,1/2),
and (0,1/2,1/2); see Figure 4.3 for an illustration. This means that C is tangent to every facet
of the nonnegative orthant (see Lemma 4.18 for a proof). Hence the condition SSC1, that is,
C ⊆ cone(H), implies that the columns of H are sufficiently spread in the nonnegative orthant
since their conical hull contains C; see Figures 4.2 and 4.4 for illustrations. In particular, cone(H)
must contain the vectors (e− ek) ∈ C for k = 1, 2, . . . , r whose kth entry is equal to zero, hence
H must have some degree of sparsity. In fact, to reconstruct exactly a vector that has zero entries
using nonnegative linear combinations of nonnegative basis vectors, the basis vectors must have
zero entries in these positions; see Theorem 4.28 for a rigorous characterization.

Note also that the only simplicial cone of order r contained in the nonnegative orthant and
containing C is the nonnegative orthant [137, Lemma 1]. This implies that the SSC boils down to
the separability condition when r = n. However, in general, r is much smaller than n and SSC
is a much milder condition than separability. However, for r = rank(X) = 2, the SSC and the
separability condition are equivalent since C = R2

+ in that case.
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Figure 4.3. Illustration of the sets ∆3 and C and their intersection C ∩∆3. (This figure
is similar to [251, Figure 2], and we are grateful to the authors for providing us with the code to
generate it.)

Condition SSC2 SSC2 requires that the only orthogonal r-by-r matrices Q such that
cone(H) = Rr

+ ⊆ cone(Q) are permutation matrices. In a nutshell, this is a regularity con-
dition that prevents cone(H) from being too small. A first intuition is that if there exists a scalar
q <
√
r − 1 such that

{x ∈ Rr
+ | e⊤x ≥ q∥x∥2} ⊆ cone(H), (4.5)

then SSC2 holds; see [320]. Clearly, the condition (4.5) implies SSC1 because C is contained
in {x ∈ Rr

+ | e⊤x ≥ q∥x∥2} for q <
√
r − 1. This means that if SSC1 is satisfied, then SSC2

will in general be satisfied as well. Interestingly, for q = 1, we recover the separability condition
since e⊤x ≥ ∥x∥2 holds for any nonnegative vector, including the unit vectors.

The condition (4.5) was introduced in [320], where it replaces SSC1 and SSC2 which is more
elegant but slightly less general.

Example 4.16. Let us provide an example that allows us to better understand SSC1 and SSC2;
this example was presented in [298, Example 3] and [251, Example 2]. Let

H =

 ω 1 1 ω 0 0
1 ω 0 0 ω 1
0 0 ω 1 1 ω

 (4.6)

for ω ∈ [0, 1]. Note that, for ω = 0, H is separable since H(:, {2, 1, 4}) = I3. This example is
also closely related to the example with nested hexagons presented in Section 2.1.4, because the
NPP instance corresponding to the RE-NMF of X = H⊤H is nested hexagons.

For which values of ω does H satisfy the SSC? Figure 4.4 illustrates this problem geometri-
cally. We have the following:

• For ω > 0.5, H does not satisfy the SSC. More precisely, in Figure 4.4(a), we see that H
does not satisfy SSC1, because cone(H) represented by the black squares does not contain
C, which is shown as the circle with the solid boundary. The matrix H does not satisfy
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e1 e2

e3

(a) ω = 0.75 (SSC1, SSC2)

e1 e2

e3

(b) ω = 0.5 (SSC1, SSC2)

e1 e2

e3

(c) ω = 0.25 (SSC1, SSC2)

Unit simplex ∆r

Columns of Q

Columns of H

— C ∩∆r

- - C∗ ∩∆r

Figure 4.4. Illustration of the SSC on the matrix H from (4.6), after projection onto
{x | e⊤x = 1}. (It may be insightful to look at Figures 4.2 and 4.3 displaying C ∩ ∆r.) For
ω = 0.75 (top left), H does not satisfy SSC1 because C ̸⊆ cone(H), nor SSC2 because there
exists Q orthogonal such that cone(Q) ⊆ cone(H) ⊆ C∗. For ω = 0.5 (top right), H does
not satisfy SSC2; note, however, that H satisfies SSC1. For ω = 0.25 (bottom left), H satisfies
the SCC: C ⊆ cone(H) (SSC1), and there does not exist an orthogonal matrix Q within C∗
containing cone(H), except the unit simplex (SSC2). Note that for ω = 0, H is separable as its
columns coincide with e1, e2 and e3. (This figure is similar to [251, Figure 2].)
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SSC2 either, as we can see that there exists an orthogonal matrix Q such that the columns
of H are contained within cone(Q), denoted by the blue dashed triangle, namely

Q =
1

3

 −1 2 2
2 −1 2
2 2 −1

 .

In fact, we have H = QB, where

B =
1

3

 2− ω 2ω − 1 2ω − 1 2− ω 2ω + 2 2ω + 2
2ω − 1 2− ω 2ω + 2 2ω + 2 2− ω 2ω − 1
2ω + 2 2ω + 2 2− ω 2ω − 1 2ω − 1 2− ω

 ,

which is nonnegative for any ω ≥ 0.5.

• For ω = 0.5, H satisfies SSC1 but not SSC2. In fact, we see in Figure 4.4(b) that the
cone generated by the columns of H contains C, while there exists an orthogonal matrix Q
(the same as for the case above), different from a permutation matrix, whose convex cone
contains the columns of H .

• For ω < 0.5, H satisfies SSC1 and SSC2. In fact, we see in Figure 4.4(c) that the columns
of H contain cone(C), while it can be shown that no orthogonal matrix Q exists that
contains the columns of H , except for permutation matrices.

This example shows that the SSC is much milder than separability, which requires the col-
umns of H to contain the unit vectors and hence holds only for ω = 0.

4.2.3.2 Useful lemmas for the identifiability of Exact NMF under the SSC

In this section, we provide four lemmas that will be key to further understanding the SSC and
to proving identifiability of Exact NMF under the SSC. If you are less interested in theoretical
aspects of NMF, you can skip this section and go directly to the identifiability result based on the
SSC presented in Section 4.2.3.3.

The first lemma is well known in convex geometry.

Lemma 4.17. Let A and B be two convex cones. If A ⊆ B, then B∗ ⊆ A∗.

Proof. Let x ∈ B∗, hence x⊤y ≥ 0 for all y ∈ B. Since A ⊆ B, x⊤y ≥ 0 for all y ∈ A, hence
x ∈ A∗.

The second lemma provides the dual cone of C. Although this result is well known, we
provide a proof here for completeness, and because such a proof is not so easily found in the
literature. Understanding this proof is not necessary to follow the rest of this chapter and hence
can be skipped. It is however a nice exercise.32

Lemma 4.18. The dual cone of C is given by

C∗ =
{
y ∈ Rr | e⊤y ≥ ∥y∥2

}
. (4.7)

Moreover C ⊆ Rr
+ ⊆ C∗, and C is tangent to every facet of Rr

+.

32There are simpler proofs; for example using the ice-cream cone {(t, x) ∈ R × Rr−1 | t ≥ q∥x∥2} (a rotation of
C) and its dual {(s, y) ∈ R× Rr−1 | s ≥ 1/q∥y∥2} (this relationship is much easier to prove).
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Proof. For r = 1, C = C∗ = R+, and the result is trivial, so let us consider r ≥ 2.
Let us first show that C ⊆ Rr

+; see Figure 4.3 for an illustration in three dimensions. This
will imply that Rr

+ ⊆ C∗ (Lemma 4.17) since Rr
+ is self-dual (see Figure 4.4 for an illustration).

Assume x ∈ C has a negative entry; w.l.o.g. assume x(1) < 0. This implies that e⊤x(2 : r) >
e⊤x, hence

∥x(2 : r)∥1 ≥ e⊤x(2 : r) > e⊤x ≥
√
r − 1∥x∥2 >

√
r − 1∥x(2 : r)∥2,

where the third inequality follows from the definition of C. This is a contradiction, since ∥y∥1 ≤√
r − 1∥y∥2 for any (r − 1)-dimensional vector y. Using the same arguments but where all

inequalities are replaced with equalities, C is tangent to every facet of Rr
+. In other words, if

x(k) = 0 for some k then ∥x∥1 =
√
r − 1∥x∥2, hence x = e − ek ∈ C, up to scaling. These

are the only extreme rays of C tangent to the facets of Rr
+. The inclusion Rr

+ ⊆ C∗ follows by
Lemma 4.17 and self-duality of Rr

+.
Let us now show that C∗ as defined in (4.7) is in fact the dual of C. For simplicity, let us

denote A =
{
x ∈ Rr | e⊤x ≥ ∥x∥2

}
which we need to prove is the dual of C. Let us first show

that A ⊆ C∗, that is, y⊤x ≥ 0 for all x ∈ C and all y ∈ A. Since C is a convex cone, it
is sufficient to check that y⊤x ≥ 0 for x on the boundary of C, because any other point in C
is a convex combination of these boundary points. The boundary of C consists of the points{
x | e⊤x =

√
r − 1∥x∥2

}
which we will denote as bd C. Since e⊤y ≥ ∥y∥2 > 0 for y ̸= 0, we

can scale y w.l.o.g. such that e⊤y = 1 as it does not alter the inequality y⊤x ≥ 0. Let us now
consider the convex optimization problem

min
y
x⊤y such that e⊤y = 1 and ∥y∥2 ≤ 1. (4.8)

The feasible set of the optimization problem (4.8) is A ∩ {y | e⊤y = 1}. Showing that the opti-
mal value of (4.8) is nonnegative for any x ∈ bd C ∩ {x | e⊤x = 1} is therefore equivalent to
showing that A ⊆ C∗. The first-order optimality conditions of (4.8) are

x = λe− µy, e⊤y = 1, µ ≥ 0, ∥y∥2 ≤ 1, µ(1− ∥y∥2) = 0,

where λ and µ ≥ 0 are the Lagrangian variables associated with the constraint e⊤y = 1 and
∥y∥2 ≤ 1, respectively. For a convex optimization problem admitting a Slater point (a point
strictly inside the relative interior of the feasible set), which is the case here (for example, y =
e/r), these conditions are necessary and sufficient for optimality. Let us find the solutions that
satisfy these conditions. Either µ = 0 or ∥y∥2 = 1. If µ = 0, we must have x = λe ≥ 0, in
which case x⊤y = λe⊤y ≥ λ∥y∥2 ≥ 0. Otherwise ∥y∥2 = 1, and the optimality conditions give

y = y(λ) =
λe− x
∥λe− x∥2

.

We have x⊤y ≥ 0 if and only if λx⊤e− ∥x∥22 ≥ 0 if and only if λ ≥ ∥x∥2
2

x⊤e
= 1

r−1 . It remains to
show that, at optimality, λ ≥ 1

r−1 . The value of λ that provides the optimal solution y(λ) must
satisfy the constraint g(λ) = e⊤y(λ) = 1. We need to find λ such that g(λ) = 1. We have

g(λ) = e⊤y(λ) = e⊤
λe− x
∥λe− x∥2

=
λr − 1

∥λe− x∥2
=

λr − 1

(λ2r − 2λ+ 1
r−1 )

1/2
,

where we used ∥λe − x∥22 = λ2r − 2λ + 1
r−1 . Note that g(1/r) = 0, while limλ→∞ g(λ) =√

r > 1. We have

g′(λ) =
r − 1

(λ2r − 2λ+ 1
r−1 )

3/2
> 0,
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so that g(λ) is increasing. This implies that g(λ) = 1 has a unique solution in [ 1r ,+∞]: one can
check that it is given by λ = 1

r−1 , for which y(λ)⊤x = 0. This concludes the first part of the
proof.

It remains to show that C∗ ⊆ A. First, let us show that for any y ∈ C∗\{0}, e⊤y > 0. Since
y⊤x ≥ 0 for all x ∈ C ⊆ R+, y ∈ C∗\{0} has at least one positive entry. Assume e⊤y < 0 and
let k = argmaxk yk so that yk > 0. Since x = e − ek ∈ C, x⊤y < e⊤y < 0, a contradiction.
Now, assume there exists z ∈ C∗\A, that is, e⊤z < ∥z∥2 while x⊤z ≥ 0 for all x ∈ C. Since
e⊤z > 0, we can assume w.l.o.g. that e⊤z = 1 < ∥z∥2 (simply normalize z, and e⊤z > ∥z∥2 is
not affected). Consider the optimization problem

max
x

z⊤x such that e⊤x = 1 and ∥x∥22 ≤
1

r − 1
,

where the feasible set is C ∩ {x | e⊤x = 1}. Using the same derivations as above, the optimal x
has the form

x(λ) =
1√
r − 1

λe− z
∥λe− z∥2

.

Note that z⊤x(λ) ≥ 0 if and only if λ ≥ ∥z∥2 > 1. Let us show that the value of λ at optimality,
for which e⊤x(λ) = 1, satisfies λ < ∥z∥2, which leads to a contradiction. Let us define

h(λ) = e⊤x(λ) =
1√
r − 1

λr − 1

∥λe− z∥2
=

1√
r − 1

λr − 1√
λ2r − 2λ+ ∥z∥22

.

As for g(λ), one can show that h(λ) is an increasing function of λ. Denoting α = ∥z∥2 > 1, we
have

h(α) =
1√
r − 1

αr − 1√
α2r − 2α+ α2

> 1

since
(αr − 1)2 − (r − 1)(α2r − 2α+ α2) = (α− 1)2 > 0.

Since h is increasing, h(λ) = 1 if and only if λ < α = ∥z∥22, leading to a contradiction.

The third lemma shows that a cone generated by an orthogonal matrix is self-dual.

Lemma 4.19. Let Q be an orthogonal matrix. Then cone(Q) = cone∗(Q), that is, cone(Q) is
self-dual.

Proof. By Lemma 4.8, cone∗(Q) = cone∗(Q−⊤) = cone(Q), since Q−⊤ = Q as Q⊤Q = I .

Lemmas 4.17 and 4.19 already shed some light on SSC2: under SSC1 (C ⊆ cone(H)),
cone(H) ⊆ cone(Q) and Q orthogonal imply that

C ⊆ cone(Q) ⊆ C∗.

Figure 4.4 provides an example for r = 3, projected onto the subset {x | e⊤x = 1}, where
the columns of Q belong to the border of C∗. We observe that as long as the columns of H are
sufficiently spread within the nonnegative orthant so that their conical hull contains C (SSC1), it
is unlikely for SSC2 to be violated.

The last lemma is key to proving uniqueness of Exact NMF under the SSC. It shows that
the only simplicial cones of order r nested between C and its dual C∗ are the ones generated by
orthogonal matrices (up to scaling of the columns). Intuitively, looking at Figure 4.4, the only
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triangles containing C and contained in C∗ are equilateral triangles whose vertices belong to the
border of C∗.

Lemma 4.20. [251, Lemma 1] Let Q ∈ Rr×r and ∥Q(:, j)∥2 = 1 for all j. If

C ⊆ cone(Q) ⊆ C∗,

then

• Q is orthogonal, that is, Q⊤Q = Ir, and

• Q⊤e = e, that is, Q(:, j) ∈ bd C∗ = {x ∈ Rr | e⊤x = ∥x∥2} for all j.

Proof. Since cone(Q) ⊆ C∗,

e⊤Q(:, j) ≥ ∥Q(:, j)∥2 = 1 for j = 1, 2, . . . , r, (4.9)

that is, e⊤Q ≥ e⊤. Since C ⊆ cone(Q) and C is full dimensional, rank(Q) = r. Let P = Q−⊤

so that P⊤Q = Ir. By Lemma 4.8, cone(Q) = cone∗(P ) while C ⊆ cone∗(P ), and hence
cone(P ) ⊆ C∗ so that

e⊤P (:, j) ≥ ∥P (:, j)∥2 for j = 1, 2, . . . , r. (4.10)

Let us multiply and sum the inequalities (4.9) and (4.10), one by one, to obtain

e⊤QP⊤e ≥
r∑

j=1

∥Q(:, j)∥2∥P (:, j)∥2. (4.11)

The left-hand side of (4.11) equals r since QP⊤ = Ir. Let us lower bound the right-hand side
of (4.11) using the Cauchy–Schwarz inequality

r∑
j=1

∥Q(:, j)∥2∥P (:, j)∥2 ≥
r∑

j=1

Q(:, j)⊤P (:, j) = r (4.12)

since Q⊤P = Ir. This implies that all inequalities (4.9)–(4.12) are equalities. In particular
Q⊤e = e, and

r∑
j=1

∥Q(:, j)∥2∥P (:, j)∥2 =

r∑
j=1

Q(:, j)⊤P (:, j),

which is possible only if ∥Q(:, j)∥2∥P (:, j)∥2 = Q(:, j)⊤P (:, j) for j = 1, 2, . . . , r, implying
that P (:, j) is a positive scaling of Q(:, j) for j = 1, 2, . . . , r, that is, P = DQ for a diagonal
matrix D. Multiplying by Q⊤ on both sides of P = DQ, we obtain PQ⊤ = Ir = DQQ⊤, and
hence D = Ir as ∥Q(:, j)∥2 = 1 for all j. Finally, P = Q, and hence Q is orthogonal.

4.2.3.3 Unique Exact NMF under the SSC

Let us now state the main result of this Section 4.2.3.

Theorem 4.21. [251, Theorem 4] If W⊤ and H are sufficiently scattered, then the Exact NMF
(W,H) of X of size r = rank(X) is unique.



4.2. Exact NMF with r = rank(X) 117

Proof. By Theorem 4.9, it suffices to prove that the unique simplicial cone T of order r such that

cone(W⊤) ⊆ T ⊆ cone∗(H)

is the nonnegative orthant, that is, T = Rr
+. Since C ⊆ cone(W⊤) because W⊤ satisfies SSC1,

and cone∗(H) ⊆ C∗ because H satisfies SSC1 (combined with duality—Lemma 4.6),

C ⊆ T ⊆ C∗.

By Lemma 4.20, T = cone(Q), where Q is an orthogonal matrix. This allows us to conclude
since H satisfies SSC2, that is, the only orthogonal matrices Q such that cone(H) ⊆ cone(Q)
are permutations of the identity matrix, and hence T = Rr

+.

The last part of the proof of Theorem 4.21 does not rely on W⊤ satisfying SSC2. In fact,
Theorem 4.21 remains valid if this condition is not satisfied for one of the two factor matrices,
W⊤ or H . Let us state this observation formally.

Corollary 4.22. Let W⊤ ∈ Rr×m
+ and H ∈ Rr×n

+ satisfy SSC1 and W⊤ or H satisfy SSC2.
Then the Exact NMF (W,H) of X of size r = rank(X) is unique.

Proof. The same proof as Theorem 4.21 applies. By symmetry, whether it is W⊤ or H that
satisfies SSC2 allows us to conclude that T = Rr

+.

Let us now present an example to illustrate Theorem 4.21. After that, we will further discuss
the SSC.

Example 4.23 (Example 4.16 continued). Let us take

W⊤ = H =

 ω 1 1 ω 0 0
1 ω 0 0 ω 1
0 0 ω 1 1 ω

 (4.13)

for ω ∈ [0, 1]. For ω < 0.5, H = W⊤ satisfies the SSC; see Example 4.16. It turns out that, for
this example, the SSC is tight in the sense that, for ω = 0.5, the Exact NMF (W,H) of X of size
3 is not unique. The following pair (W ′, H ′) is also an Exact NMF of X:

W ′⊤ = H ′ =

 0 0.5 1 1 0.5 0
0.5 0 0 0.5 1 1
1 1 0.5 0 0 0.5

 ;

(W ′, H ′) cannot be obtained by permutation and scaling of the columns ofW and rows ofH for
ω = 0.5. Interestingly, constructing the NPP instance corresponding to this RE-NMF leads to a
nested hexagon problem, similar to that presented in Section 2.1.4.

This example also allows us to construct an example where Corollary 4.22 applies while
Theorem 4.21 does not. Take H as in (4.6) for any ω < 0.5 so that H satisfies the SSC, and
take W⊤ as in (4.6) with ω = 0.5 so that W⊤ satisfies SSC1 but not SSC2. Then the NMF of
X =WH is unique by Corollary 4.22.

As we will see in Section 4.2.5 with some examples, the requirement that both W⊤ and H
satisfy SSC1 is not a necessary condition to have a unique NMF.
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4.2.3.4 Can we check the SSC efficiently?

Given a nonnegative matrixH , it is NP-hard to check in general whetherH satisfies the SSC [251].
To show this, let us consider the following optimization problem:

max
x
∥x∥22 such that H⊤x ≥ 0 and e⊤x = 1. (4.14)

Solving (4.14) is NP-hard in general [168]. Note that the optimal value of (4.14) is always at
least one since the unit vectors are feasible solutions. We have the following lemma.

Lemma 4.24. The optimal value of (4.14) is strictly larger than one if and only if SSC1 fails.
Hence checking SSC1 is NP-hard.

Proof. The following statements are equivalent:

• The optimal value of (4.14) is strictly larger than one.

• There exists a point x such that H⊤x ≥ 0 and ∥x∥2 > e⊤x = 1.

• There exists a point x ∈ cone∗(H) and x /∈ C∗.

• cone∗(H) ̸⊆ C∗.

• C ̸⊆ cone(H).

• H does not satisfy SSC1.

To show these equivalences, we simply need to recall the definitions of C and C∗ and cone∗(H) =
{x | H⊤x ≥ 0} (Lemma 4.6), and to use duality (Lemma 4.17).

Since it is NP-hard to solve (4.14) [168], it is NP-hard to check whether SSC1 holds.

Lemma 4.24 is rather disappointing. In fact, if an Exact NMF algorithm outputs a solution
(W,H), we cannot check in general whetherW⊤ andH satisfy the SSC, hence we cannot check
whether this solution is unique using the SSC. However, it does not prevent us from trying to
understand better when the SSC is satisfied. In particular, it is useful to derive sufficient and nec-
essary conditions for the SSC to hold that can be checked in polynomial time. In Section 4.2.3.5,
we present a sufficient condition for the SSC that can be easily checked. In Section 4.2.3.6,
we provide a new necessary condition for SSC1 to hold. Moreover, this new condition can be
checked efficiently (see Algorithm 4.2). It is based on the geometric interpretation of the SSC
and the sparsity pattern of the columns of H .

Note that separability ofH can be easily checked (the columns ofH must contain all the unit
vectors, up to scaling) but is much stronger (it implies the SSC) and unlikely to be satisfied for
both W⊤ and H; see Section 4.2.2.

4.2.3.5 Sufficient condition for the SSC

In [320], Lin et al. provide the following sufficient condition for the SSC to hold and that focuses
on the 2-sparse columns of H , that is, the columns of H containing at most two nonzero entries.
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Theorem 4.25. [320, Theorem 4] Let H ∈ Rr×n
+ with r ≥ 3. If for all i ̸= j ∈ {1, 2, . . . , r},

there exists k, ℓ ∈ {1, 2, . . . , n} such that

• H(p, k) = 0 and H(p, ℓ) = 0 for all p ̸= i, j, that is, H(:, k) and H(:, ℓ) are 2-sparse
with nonzero entries at location i and j, and

• H(i, k) > α(r)H(j, k) and H(j, ℓ) > α(r)H(i, ℓ) where α(3) = 2 and α(r) = 1 for
r ≥ 4,

then H satisfies the SSC.

Note that if there exists a 1-sparse column of H with a positive entry at position i, then
the condition H(i, k) > α(r)H(j, k) needed for Theorem 4.25 is satisfied for any j ̸= i by
taking k as the index of the 1-sparse column. In particular, if H is separable, then Theorem 4.25
guarantees that H satisfies the SSC (which is a nice sanity check).

Example 4.26. Let us take the matrix H from Example 4.16,

H =

 ω 1 1 ω 0 0
1 ω 0 0 ω 1
0 0 ω 1 1 ω

 , (4.15)

where ω ∈ [0, 1). As explained in Example 4.16, H satisfies the SSC if and only if ω < 0.5;
see Figure 4.4 for an illustration. For this matrix, the conditions of Theorem 4.25 are met for
any ω < 0.5, and hence these sufficient conditions are also necessary. For example, for the pair
(i, j) = (1, 2), take (k, ℓ) = (2, 1) so that

H(1, 2) = 1 > 2H(2, 2) = 2ω, and H(2, 1) = 1 > 2H(1, 1) = 2ω.

If H does not contain 1-sparse columns, the condition of Theorem 4.25 requires H to have
at least 2

(
r
2

)
= r(r− 1) columns that are 2-sparse. This is a rather strong condition typically not

met in practice because it requires two 2-sparse observations for each possible pair of columns
of W . For example, in hyperspectral imaging, this would require each pair of materials to be
observed together in pixels several times. However, this condition can be checked easily.

Providing milder sufficient conditions for the SSC to hold and that can be checked efficiently
is a topic for future research.

4.2.3.6 Necessary condition for the SSC

Let us try to link the sparsity of H with the SSC, and let us first discuss the simplest case with
r = 3. Let H ∈ R3×n

+ satisfy SSC1, and let us look at Figure 4.4 (page 112), which provides
a nice interpretation of the SSC, after projection on the set {x | e⊤x = 1}. Let us denote
ēj = 1

r−1 (e − ej) for j = 1, 2, . . . , r. If H satisfies SSC1, the three points ē1 = (0, 1/2, 1/2),
ē2 = (1/2, 0, 1/2), and ē3 = (1/2, 1/2, 0) belong to C, and hence to cone(H).

Moreover, C is also tangent to cone(H) at each of these points. Therefore, if any of these
three points is an extreme ray of cone(H), C will not be contained within cone(H). Thus
cone(H) must contain a small interval around ē1, ē2, and ē3 in order to contain C. From Fig-
ure 4.4, we observe that for cone(H) to contain C, H must have two columns on each segment
[ei, ek] for 1 ≤ i < k ≤ 3: one closer to ei and the other closer to ek. Therefore, H must contain
two columns in the sets {x | x(j) = 0} for j = 1, 2, 3; henceH has at least six zero entries. Note
that if no column of H is a unitary vector (after scaling), then H must have at least six columns,
that is, n ≥ 6 (as in Figure 4.4). This observation is closely related to Theorem 4.25.
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Let us generalize this result to higher dimensions, allowing us to link the SSC of H with its
sparsity. We begin with a lemma.

Lemma 4.27. Let H ∈ Rr×n
+ satisfy SSC1, and, for k = 1, 2, . . . , r, let the index set

Ik = {j | H(k, j) = 0}

correspond to the columns of H on the kth facet of the nonnegative orthant which is defined as
Fk = {x ∈ Rr

+ | x(k) = 0}. Then

e /∈ bd cone (H(K, Ik)) for k = 1, 2, . . . , r, (4.16)

where K = {1, 2, . . . , r}\{k}.

Proof. By SSC1, e ∈ cone (H(K, Ik)) since e − ek ∈ C ⊆ cone(H) (note that the two e’s
in this expression do not have the same dimension). Assume there exists k such that (4.16) is
not satisfied, that is, e ∈ bd cone (H(K, Ik)). This means that there exists a vector v ∈ Rr−1

defining a valid, nontrivial inequality for cone (H(K, Ik)) which goes through e. That is, there
exists a v ∈ Rr−1 such that v⊤H(K, Ik) ≥ 0, v ̸= 0, and v⊤e = 0.

W.l.o.g. assume k = 1, and let us choose α such that v̂ =
(
α
v

)
∈ Rr is a valid inequality for

cone(H). By construction,
δ = min

j /∈Ik

H(k, j) > 0.

Let

β = min
j /∈Ik

v⊤H(K, j) and α = max

(
0,
−β
δ

)
.

The inequality v̂⊤x ≥ 0 is valid for cone(H), that is,

cone(H) ⊆ V = {x | v̂⊤x ≥ 0},

because

v̂⊤H(:, Ik) = v⊤H(K, Ik) ≥ 0, and v̂⊤H(:, j) ≥ αδ + β ≥ 0 for j /∈ Ik.

Moreover, ēk ∈ bdV since v̂⊤ēk = v⊤e = 0.
Note that ēk ∈ bd C since e⊤ēk = 1 =

√
r − 1∥ēk∥2. Now, the only nontrivial valid

inequality for C that goes through ēk is its tangent (C is a second-order cone), namely Fk =
{x | e⊤k x = x(k) = 0}. In fact, by Lemma 4.18, C is tangent to every facet of the nonnegative
orthant; see Figure 4.3 for an illustration. This is a contradiction since V is a different valid
inequality for C that goes through ēk; in fact, V ≠ Fk and C ⊆ cone(H) ⊆ V .

We can now generalize our observations for r = 3 to higher dimensions.

Theorem 4.28. Let H ∈ Rr×n
+ satisfy SSC1, and let Ik = {j | H(k, j) = 0} denote the

index set of columns of H containing a zero in the kth entry for k = 1, 2, . . . , r. Then, for all
k = 1, 2, . . . , r,

• |Ik| ≥ r − 1, that is, H has at least r − 1 zeros per row;

• cone
(
H(K, Ik)

)
contains e in its relative interior, with K={1, 2, . . . , r}\{k}.
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Proof. Let us use the same notation as in Lemma 4.27. For e to belong to the interior of
cone (H(K, Ik)), it is required that Ik ≥ r − 1. In fact, a cone in dimension r − 1 has a
nonempty interior if and only if it has at least r−1 extreme directions. The second claim follows
directly from Lemma 4.27.

Theorem 4.28 implies that if H ∈ Rr×n
+ satisfies SSC1, then H has at least r(r − 1) zero

entries. This implies that if each column of H is k-sparse, that is, each column has at most k
nonzero entries, we must have n ≥ r(r−1)

r−k for H to satisfy SSC1. Moreover, columns of H
containing more than two zero entries, say, the jth and other ones, are located on the border of
the jth facet of the nonnegative orthant. Therefore, it is more likely for such columns to contain
ēk in the interior of their conical hull.

Example 4.29. Let us consider the 4-by-6 matrix H containing all 2-sparse columns with non-
zero entries equal to one:

H =


1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

 . (4.17)

This matrix satisfies the conditions of Theorem 4.28 (for example, sum the last three columns to
obtain 2ē1) and has exactly r(r − 1) = 12 zeros; see Figure 4.5 for an illustration. Note that it
does not satisfy the sufficient condition from Theorem 4.25 based on the 2-sparse columns of H .

e1 e2

e3

e4

Figure 4.5. Geometric illustration of the matrix H from (4.17): the squares represent
the columns of H after projection onto {x | e⊤x = 1}. This matrix satisfies the assumptions of
Theorem 4.28.

This matrix satisfies SSC1: the polytope whose vertices are the squares in Figure 4.5 contains
C intersected with {x | e⊤x = 1}. This can be checked by solving (4.14) via the enumeration of
all the vertices of the feasible set (a convex function is always maximized at a vertex of a poly-
tope); see [Matlab file: isSSC.m], and see [Matlab file: checkSSC_H46_2sparse.m]
for its application on the matrix H of (4.17). This matrix, however, does not satisfy SSC2; it
turns out that all vertices of the feasible set of (4.14) have their objective function equal to one.
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Another way to see this is via the decomposition

H = QH ′ =


0.5 0.5 0.5 −0.5
0.5 0.5 −0.5 0.5
0.5 −0.5 0.5 0.5
−0.5 0.5 0.5 0.5




1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1
0 0 0 1 1 1

 ,

which shows that H does not satisfy SSC2 since Q = Q−⊤ is orthogonal and cone(H) ⊆
cone(Q), since Q−1H = H ′ ≥ 0 implies cone(H) ∈ cone∗(Q−⊤) = cone∗(Q) = cone(Q)
(Lemmas 4.6 and 4.19). Moreover, the matrix

X = H⊤H =


2 1 1 1 1 0
1 2 1 1 0 1
1 1 2 0 1 1
1 1 0 2 1 1
1 0 1 1 2 1
0 1 1 1 1 2


does not admit a unique NMF as X = H ′⊤H ′ is another Exact NMF (which cannot be obtained
via permutations of the rows of H).

While SSC is NP-hard to check, the conditions of Theorem 4.28 can be checked in polyno-
mial time; see Algorithm 4.2 which implements such a procedure. It could be used for example
a posteriori, after an NMF solution has been computed, to check whether W⊤ and H satisfy the
necessary condition of Theorem 4.28 for SSC1 to be satisfied.

Is it likely that a randomly generated sparse matrix H will satisfy the SSC?
Let us use Theorem 4.28 to lower bound the number of columns of H that are needed on average
to have a chance to satisfy the SSC, when the nonzero entries ofH are picked at random. Assume
that the probability of an entry of H being equal to zero follows a Bernoulli distribution of
parameter θ ∈ (0, 1), that is, P(H(k, j) = 0) = θ for all k, j. When a column of H is sampled,
there is a probability of θ that it belongs to Fk = {x | x(k) = 0}, and we need to have at least
r − 1 columns on Fk for k = 1, 2, . . . , r (Theorem 4.28). How many samples are needed on
average to satisfy this condition? This is a well-known question in dictionary learning, closely
related to the coupon collector problem;33 see for example Spielman, Wang, and Wright [431,
Theorem 1]. The coupon collector problem tells us that, on average, about 1

θ ln(r) samples are
needed to collect one point in each subspace, that is, to have a single point on each Fk. Since
we need r − 1 on each Fk, about 1

θ r ln(r) samples are enough on average.34 For example, if
the columns are on average (r − 1)-sparse (that is, there is on average a single zero entry per
column), that is, θ = 1

r , one requires on average n ≥ O(r2 log(r)) samples. Note that this is not
significantly larger than the deterministic lower bound of n = r(r − 1) when there is a single
zero entry in each column of H (Theorem 4.28). We will illustrate this observation through a
numerical example in the next subsection.

The numerical experiments in [251, 170] validate these observations (Huang and coworkers
check the SSC by solving (4.14) with a heuristic), and the authors claim that

If H is generated randomly and if every row has at least r − 1 zero elements, then
the sufficiently scattered condition is satisfied with very high probability, which is a
fairly mild condition.

33In the coupon collector problem, the goal is to obtain r distinct coupons via several purchases. Each purchase gives
a coupon with some probability, and the contents of the purchases are independent of one another.

34This is a crude estimation; fewer samples are actually needed. However, a better estimate is nontrivial to obtain. The
corresponding problem is referred to as the double Dixie cup problem [365].
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Algorithm 4.2 Checking the necessary condition of Theorem 4.28 for SSC1 [Matlab
file: SSC1_nec_cond.m]

Input: H ∈ Rr×n
+

Output: SSC1-nec = yes if H satisfies the conditions of Theorem 4.28,
SSC1-nec = no otherwise.

1: if rank(H) < r or mink,j H(k, j) < 0 then
2: SSC1-nec = no. Return.
3: end if
4: Remove zero columns of H .
5: Normalize the columns of H: H(:, j)← H(:,j)

e⊤H(:,j)
for j = 1, 2, . . . , n.

6: Remove duplicated columns in H .
7: for k = 1, 2, . . . , r do
8: Let Ik = {i | H(k, i) = 0}, and denote K = {1, 2, . . . , r}\{k}.
9: % We need rank

(
H(K, Ik)

)
≥ r − 1 for cone

(
H(K, Ik)

)
to have

% a nonempty interior.
10: if rank

(
H(:, Ik)

)
< r − 1 then

11: SSC1-nec = no. Return.
12: end if

% Extract the extreme rays of cone
(
H(K, Ik)

)
.

13: Let I ′k ⊆ Ik be the indices corresponding to the extreme rays of cone
(
H(K, Ik)

)
, that

is,
i ∈ I ′k ⇐⇒ i ∈ Ik and min

x≥0
∥H(K, i)−H(K, Ik\{i})x∥2 > 0.

% If e is in the interior of cone
(
H(K, I ′k)

)
, then e = H(K, Ik)x for some

% x ≥ 0 with the support of x being at least† r − 1.
14: Solve

x∗ = argminx≥0

∥∥e−H(K, I ′k)x∥∥2 .
15: if

∥∥e−H(K, I ′k)x∗∥∥2 > 0 or supp(x∗) < r − 1 then
16: SSC1-nec = no. Return.
17: end if
18: end for
19: SSC1-nec = yes.
† It it possible that supp(x∗) < r− 1 while e belongs to the interior of cone

(
H(K, Ik)

)
. For example, let us consider

a cone within the nonnegative orthant in three dimensions with four extreme rays. After the projection onto ∆r (step 5),
this cone is a quadrilateral and all the points between two opposite vertices are in the interior of the quadrilateral while
being nonnegative linear combinations of only two vertices. However, the set of such points has a zero measure, hence
this is unlikely to happen. Even if this were to happen, it is also unlikely for an algorithm to end up at the sparsest solution
of the least squares problem (this subset of optimal solutions is of measure zero within the set of optimal solutions). For
example, by construction, interior-point methods would avoid such solutions.

Although this statement might be a bit bold since having r − 1 zero rows is a necessary
condition (Theorem 4.28), the experiments in their papers show thatH satisfy the SSC with high
probability given that it is sufficiently sparse.

Numerical experiments Let us perform an experiment to observe when the necessary
condition of Theorem 4.28 is satisfied for randomly generated matrices H . Let us generate H
using the sprand(r,n,d) function of MATLAB that produces an r-by-n matrix with density
d (that is, the probability for an entry to be equal to zero is 1 − d). We make sure that H does
not have zero columns by resampling these columns (this is necessary when r and d are small).
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Figure 4.6. Percentage of matrices H randomly generated using sprand(r,n,d) for
n = 100 (top) and n = 200 (bottom) that pass the test of Algorithm 4.2 which checks whether
the necessary condition of Theorem 4.28 for SSC1 is satisfied. (White squares indicate that all
matrices pass the test, black squares that none do.) You can generate these figures using [Matlab
file: SSC1_nec_cond_illus.m].

We take r ∈ {10, 20, . . . , 100}, which is a typical range in practice, n ∈ {100, 200}, which
is smaller than the typical values observed in practice, and d ∈ {0.1, 0.2, . . . , 0.9}. For each
combination of values, we generate 100 such matrices, and Figure 4.6 reports how many times
the necessary condition of Theorem 4.28 holds for n = 100 (on the top) and n = 200 (on the
bottom).

As expected, the probability of passing the test decreases as the density or the dimension r
increases. It is important to keep in mind that the value n = 100 is small as n ≤ r2 for all tested
r. In practice, n is typically much larger, and hence it would be more likely for random matrices
to pass the test; for example, it is the number of pixels in a hyperspectral image, the number of
documents in a corpus, or the number of time windows in an audio signal. For n = 100, we
observe that matrices generated for r ≥ 30 and density d ≥ 0.5 do not satisfy the SSC in most
cases. Even when the density is as low as d = 0.1, some matrices with rank as low as r = 20 do
not pass the test. This behavior is consistent with the results in [170, Figure S2]. These failures
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occur when there are not enough positive entries in each row ofH , because ēk must be contained
in the relative interior of the conical hull of the columns of H .

From n = 100 to n = 200, there is a drastic improvement. For example, for n = 200 and

• r ≤ 20, all generated matrices pass the test;

• r ≤ 30 and d ≤ 0.8, r ≤ 40 and d ≤ 0.5, or r ≤ 50 and d ≤ 0.4, almost all generated
matrices pass the test (only 4, 5, and 16 fail out of 2400, 2000, and 2000, respectively).

Let us shed some light on these numerical results using the observation above predicting
the average value of n to have at least r − 1 zeros per row of H , namely n ≳ 1

1−dr ln(r) or,

equivalently, d ≲ ψ(r, n) = 1 − r ln(r)
n . Table 4.1 provides the values of ψ(r, n) for the values

of n and r from Figure 4.6.

Table 4.1. Value of ψ(r, n) = 1 − r ln(r)
n , which provides an upper bound on the

density, d, for which the average H = sprand(r,n,d) has r − 1 zeros per row.

r = 10 r = 20 r = 30 r = 40 r = 50 r = 60
n = 100 0.770 0.401 < 0 < 0 < 0 < 0
n = 200 0.885 0.700 0.490 0.262 0.022 < 0

The bound for the values of d in Table 4.1 is smaller than for the corresponding larger value of
d in Figure 4.6 that allow us to pass the test of Algorithm 4.2. The reason is that ψ(r, n) is larger
than the actual average value of d needed to have r− 1 zero per rows in H (see footnote 34). For
example, ψ(30, 200) = 0.49, which is smaller than the largest value of d where all matrices pass
the test; see the bottom of Figure 4.6, where this happens for d ≤ 0.6. This illustrates that the
necessary condition for SSC is easily satisfied for n sufficiently large and d sufficiently small.
For example, in practice, when r ≈ 40, the number of samples n is typically much larger than
200 while the density is typically lower than 50%: most samples do not use more than half the
basis elements when r is large. Similar observations were made in [251, 170]. In particular,
[170, Figure S2] shows the same behavior as Figure 4.6 with a sharp phase transition.

A direction for further research would be to identify more precisely under which conditions
the SSC is satisfied when H is randomly generated. This is a difficult question since checking
the SSC is NP-hard (Lemma 4.24).

4.2.3.7 Is the SSC on W⊤ and H reasonable in practice?

The requirement that W⊤ and H both satisfy the SSC in Theorem 4.21 makes it difficult to be
satisfied in real-world settings. For example, in airborne hyperspectral imaging, the matrix W
typically has mostly positive entries (spectral signature are typically positive) and hence does not
satisfy the SSC. We will see in Section 4.3.3 how to relax the condition that W⊤ and H both
satisfy the SSC and require only one of the two factors to satisfy the SSC (this can be achieved
by looking for minimum-volume solutions).

There are, however, some applications whereW⊤ andH satisfy the SSC. This is the case for
example in audio source separation of relatively simple signals (for example, a piano recording).
The SSC for H requires that all sources are not active at all times, which is typically the case
(during each time window, only a small subset of all piano notes are played simultaneously).
The SSC for W⊤ requires that the frequency response of the sources does not overlap too much.
This is also typically the case (this holds for piano notes). Such an example was presented in
Section 1.3.4 for the piano recording of “Mary Had a Little Lamb,” where the solution shown
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in Figure 1.8 was obtained with a standard NMF algorithm without any additional constraints.
This is why plain NMF usually works well for simple source separation problems, as observed
in Smaragdis et al. [425] but without any theoretical explanations.

4.2.4 Necessary condition: Sperner family

In this section, we discuss a simple to derive, yet important, necessary condition for an Exact
NMF to be unique. This condition is presented in Theorem 4.34 and requires that the supports
of the columns of W are not contained in one another, that is, they form a Sperner family (also
known as an antichain). By symmetry, the same condition holds for the rows of H . Before doing
so, we derive several intermediate results which will imply Theorem 4.34.

The following necessary condition for Exact NMF is relatively straightforward.

Theorem 4.30. [298] If the Exact NMF (W,H) ofX of size r is unique, then (W, Ir) is a unique
Exact NMF of W of size r and (Ir, H) is a unique Exact NMF of H of size r.

Proof. Let W admit another Exact NMF: W = (WQ)(Q−1Ir), where Q is not the permutation
of a diagonal matrix (Theorem 4.5). This implies that WQ ≥ 0 and Q−1 ≥ 0. Therefore,
X = (WQ)(Q−1H) is another Exact NMF of X since Q−1H ≥ 0 as Q−1 ≥ 0 and H ≥ 0, a
contradiction. The same holds for H by symmetry.

It is interesting to observe that if H satisfies SSC1 then the Exact NMF (H, Ir) of H is
unique.

Corollary 4.31. Let H ∈ Rr×n
+ satisfy SSC1; then the Exact NMF (H, Ir) of H of size r is

unique.

Proof. The identity matrix Ir is separable and hence satisfies the SSC, while H satisfies SSC1
by assumption. This implies that HIr is a unique Exact NMF of H of size r; see Corollary
4.22.

Let us show the following lemma.

Lemma 4.32. Let W ∈ Rm×r
+ have a column whose support is contained in the support of

another column; then the Exact NMF (W, Ir) of W of size r is not unique.

Proof. Let us assume that the support of the kth column of W is contained in the support of the
ℓth column ofW . Let us construct another Exact NMF (W ′, H ′) ofW which is not a permutation
and scaling of (W, Ir). For simplicity, let us denote H = Ir. We proceed as follows.

• For ϵ > 0 sufficiently small, we take

W ′(:, ℓ) =W (:, ℓ)− ϵW (:, k) ≥ 0

since supp(W (:, k)) ⊆ supp(W (:, ℓ)). The maximum possible value of ϵ such that
W ′(:, ℓ) ≥ 0 can be computed explicitly as follows:

ϵmax = min
p∈supp(W (:,k))

W (p, ℓ)

W (p, k)
> 0.

• W ′(:, j) =W (:, j) for j ̸= ℓ.
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• H ′(i, :) = H(i, :) for i ̸= k.

• H ′(k, :) = H(k, :) + ϵH(ℓ, :) ≥ 0 since H ≥ 0 and ϵ > 0.

Let us show that W ′H ′ =WH and hence that (W ′, H ′) is an Exact NMF of W of size r. Since
only two rank-one factors have been modified, it suffices to show that

W ′(:, k)H ′(k, :) +W ′(:, ℓ)H ′(ℓ, :) =W (:, k)H(k, :) +W (:, ℓ)H(ℓ, :).

We have

W ′(:, k)H ′(k, :) +W ′(:, ℓ)H ′(ℓ, :)

=W (:, k)
(
H(k, :) + ϵH(ℓ, :)

)
+
(
W (:, ℓ)− ϵW (:, k)

)
H(ℓ, :)

=W (:, k)H(k, :) + ϵW (:, k)H(ℓ, :) +W (:, ℓ)H(ℓ, :)− ϵW (:, k)H(ℓ, :)

=W (:, k)H(k, :) +W (:, ℓ)H(ℓ, :).

Finally, one can check that W ′ =WQ and H ′ = Q−1H = Q−1, where Q is the identity matrix
where the zero entry Q(k, ℓ) is replaced by −ϵ. The inverse of Q is the identity matrix where
the zero entry at position (k, ℓ) is replaced by ϵ, hence H ′ = Q−1 ≥ 0. Since Q is not the
permutation of a diagonal matrix, (W, Ir) is not a unique Exact NMF of W (Theorem 4.5).

Example 4.33. The matrix

W =

 1 0
2 4
3 5


can never be part of a unique Exact NMF because

W ′ =WQ =

 1 0
2 4
3 5

( 1 0
−0.5 1

)
=

 1 0
0 1
0.5 1

 ≥ 0,

where

Q−1 =

(
1 0
0.5 1

)
≥ 0,

hence Q−1H ≥ 0 for any H ≥ 0, while Q is not the permutation of a diagonal matrix.

Now, we can derive an interesting necessary condition for the uniqueness of an Exact NMF,
X = WH . Recall that a Sperner family, also known as an antichain, is a family of sets that are
not contained in one another; see Section 3.4.3.

Theorem 4.34. [355] If the Exact NMF (W,H) of X of size r is unique, then the supports of the
columns of W form a Sperner family, and the supports of the rows of H form a Sperner family.

Proof. This follows directly from Theorem 4.30, Lemma 4.32, and the symmetry of NMF (X =
WH ⇐⇒ X⊤ = H⊤W⊤).

This result can also be found in [298, Theorem 3], [251, Theorem 3], [186, Remark 7], and
[288, Theorem 3.4].

Given an NMF solution computed by an NMF algorithm, the necessary condition on the
supports of W and H of Theorem 4.34 can be checked easily, allowing us to know whether there
is a chance for this NMF to be unique.
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Theorem 4.34 implies that each column of W and each row of H in a unique Exact NMF of
size r ≥ 2 must have a least one entry equal to zero. In fact, the support of a column of W (resp.
a row of H) with only positive entries is {1, 2, . . . ,m} (resp. {1, 2, . . . , n}) and hence contains
any other support.

Geometric interpretation Theorem 4.34 can be interpreted geometrically as follow. For
(W, Ir) to be a unique Exact NMF of W , the only simplicial cone of order r nested between
cone(W⊤) and cone∗(Ir) = Rr

+ must be Rr
+; see Theorem 4.9. For this to be possible, there

must be at least one row of W on each facet of Rr
+, that is, each column of W must have

at least one entry equal to zero in a different position. Otherwise, we can easily move that
facet of Rr

+ toward the inside of Rr
+ to generate a smaller simplicial cone of order r nested

between cone(W⊤) and Rr
+ (this is actually what is implicitly done in the proof of Lemma 4.32).

Moreover, if a row is located on several facets (that is, has several other zero entries), then another
row must also be on that facet. Otherwise, there would be another simplicial cone of order r
obtained by rotating that facet of Rr

+ toward its interior, and nested between cone(W⊤) and Rr
+.

Looking back at the case rank(X) = 2 It is interesting to observe that, for r =
rank(X) = 2, the two columns of W form a Sperner family if and only if W contains the
identity as a submatrix (up to scaling), and this condition becomes sufficient; see Theorem 4.2.

Improved necessary condition Krone and Kaie have provide an improved necessary
condition using rigidity theory in [288, Proposition 4.8]. Let us try to summarize their contribu-
tion in a few words. A necessary condition for (W,H) to be a unique Exact NMF of X = WH
is that (W,H) is locally rigid. Intuitively, this means that (W,H) cannot be modified locally to
generate another solution. For example, the triangle nested between two hexagons in Figure 2.5
(page 31) is locally rigid. Of course, this local condition does not imply uniqueness. For the
example of Figure 2.5, there exist four locally rigid solutions by symmetry of the problem (see
the discussion on page 34). A factorization that is locally rigid is either infinitesimally rigid or
the Kruskal rank35 of a certain matrix, denoted Z(W,H), is not maximal. The matrix Z(W,H)
is constructed from (W,H) and the number of columns of this matrix is equal to the number of
zeros in (W,H). If the matrix Z(W,H) does not have maximal Kruskal rank, then the infinites-
imally rigid condition requires W and H to have at least r2− r+1 zeros in total. (Theorem 4.34
only requires at least 2r zeros.) We refer the interested reader to their paper for more details as
these results are out of the scope of this book.

4.2.5 Sparsity of the input matrix

As we have seen in the previous section, it is necessary for W and H to have some degree of
sparsity to be a unique Exact NMF. Interestingly, this observation was already made by Paatero
and Tapper [371] (1994):

If all columns of the correct unknown W and all rows of the correct unknown H
contain a significant number of zeros, then the result by NMF is unique.

However, as we will see below with several examples, this is not a necessary condition for X . If
the data points are strictly within the interior of the nonnegative orthant, one may expect to have
more than one cone containing them, but this intuition is not correct. The following was even
mentioned in [137]:

35The Kruskal rank of a matrix X is the maximum k such that any subset of k columns of X is linearly independent.
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In short, we must look for situations where the data do not obey strict positivity in
order to have uniqueness.

Of course, the presence of zero entries in the input matrix increases the chances to have a unique
Exact NMF since it implies zeros in the factors W and H:

X(i, j) =
∑
k

W (i, k)H(k, j) = 0 ⇒ W (i, k) = 0 or H(k, j) = 0 for all k;

see for example the discussion in [186]. However, this is not a necessary condition for X to have
a unique Exact NMF. We now provide several examples of positive matrices that have a unique
NMF. The second example also shows that the SSC is not a necessary condition to have a unique
Exact NMF.

Matrix from Example 4.16 Looking back at Example 4.23 (page 117) with ω = 0.25,
we obtain

X =WH =
1

16


17 8 4 1 4 16
8 17 16 4 1 4
4 16 17 8 4 1
1 4 8 17 16 4
4 1 4 16 17 8
16 4 1 4 8 17

 ,

which has a unique Exact NMF, since W⊤ and H are sufficiently scattered for ω = 0.25.

Unique Exact NMF for which SSC is not necessary Let us construct another ex-
ample where X has only positive entries and admits a unique NMF. This example will also show
that W and H do not need to be sufficiently scattered to have a unique Exact NMF, showing that
this condition is not necessary. This example is based on a triangle nested between a square and
a rectangle. We derive this example step by step, allowing an interested reader to construct their
own examples. The key is to use the equivalence between RE-NMF and NPP (Theorem 2.11)
and the fact that the dimension of the NPP is equal to rank(X)− 1. For rank(X) = 3, the NPP
has dimension 2 and can be solved efficiently (Theorem 2.17).

Let us take the square defined with the inequalities

f1(x, y) = x ≥ 0,

f2(x, y) = y ≥ 0,

f3(x, y) = 1− x ≥ 0,

f4(x, y) = 1− y ≥ 0

as the outer polytope B in the NPP. Let δ = 0.25 and let us pick the four points

(x1, y1) = (δ, 0.2),

(x2, y2) = (δ, 0.2 + 1.6δ),

(x3, y3) = (1− δ, 0.2 + 1.6δ),

(x4, y4) = (1− δ, 0.2)

to be the vertices of the inner polytope A in the NPP, which is a rectangle; see Figure 4.7. It
turns out that the triangle whose vertices are

(0, 0.2), (0.5, 1), and (1, 0.2)
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Figure 4.7. Illustration of the NPP instance corresponding to the matrix X given
in (4.18). The crosses are the contact change points between the vertices (0,0.2) and (0.5,1) of
the unique nested triangle. The dotted lines are solutions of the two-dimensional NPP starting
from these contact change points using Algorithm 2.1. All these solutions have four vertices,
implying uniqueness of the displayed solution which cannot be locally modified.

is the only triangle nested between the square and the rectangle. To prove this, one can use
Algorithm 2.1 for the two-dimensional NPP problem; see Section 2.3.1. If there were other
solutions, they could be constructed using Algorithm 2.1 by starting from

• one of the contact change points between (0,0.2) and (0.5,1); as shown in Figure 4.7, such
solutions have four vertices;

• points in the neighborhood of (0,0.2). However, the solution constructed starting from
(0,0.2) is locally unique because it ends up exactly on (0,0.2) while being tangent to the
inner polygon. (More precisely, this solution is locally rigid; see [288] for more details.)

This implies the uniqueness of the triangle shown in Figure 4.7.
Using Theorem 2.11, the matrix X in RE-NMF corresponding to this NPP instance is given

by

X(i, j) = fi(xj , yj) for i = 1, . . . , 4 and j = 1, . . . , 4,

so that

X =


0.25 0.25 0.75 0.75
0.2 0.6 0.6 0.2
0.75 0.75 0.25 0.25
0.8 0.4 0.4 0.8

 . (4.18)
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Up to permutation and scaling, the unique Exact NMF of X of size 3 is given by

X =WH =


0 0.5 1
0.2 1 0.2
1 0.5 0
0.8 0 0.8


 0.75 0.5 0 0.25

0 0.5 0.5 0
0.25 0 0.5 0.75


and corresponds to the unique solution of the corresponding NPP displayed in Figure 4.7, and
W (1 : 2, :) are the vertices of the triangle.

Let us make a few observations:

• The factors W⊤ and H do not satisfy SSC1 because it requires that there are at least
r − 1 = 2 zeros per row; see Theorem 4.28.

• This example is similar to the nested squares problem presented in Example 2.18. How-
ever, for the nested squares (where the squares have the same center), a triangle nested
between the squares, if it exists, is never unique because of the symmetry (the same be-
havior appears for the nested hexagon problem; see Figure 2.5). Here the inner polygon is
not a square (but a rectangle) and has a different center than the outer polygon, breaking
this symmetry and allowing the solution to be unique.

• If δ is taken sufficiently large in the construction of the vertices of the inner rectangle, the
solution of the corresponding Exact NMF problem is not unique: more than one triangle
is nested between the rectangle and the square; see Figure 4.8 for an illustration with
δ = 0.375 for which

X =


0.375 0.375 0.625 0.625
0.2 0.8 0.8 0.2

0.625 0.625 0.375 0.375
0.8 0.2 0.2 0.8

 . (4.19)

The value of δ = 0.375 was chosen such that the solution of the NPP constructed us-
ing the first contact change point has three vertices, hence making the solution of the NPP
nonunique. Using the symmetry of this NPP problem, one can check that there are four so-
lutions. Figure 4.8 displays these four triangles, numbered from 1 to 4, which correspond,
respectively, to W equal to

0 0.5 1
0.2 1 0.2
1 0.5 0
0.8 0 0.8

 ,


0 0.5 1
0.8 0 0.8
1 0.5 0
0.2 1 0.2

 ,
1

8


3 3 8
0 8 4
5 5 0
8 0 4

 ,
1

8


5 5 0
0 8 4
3 3 8
8 0 4

 .

• Given the matrix X , it is possible to compute an Exact NMF using NMF algorithms;
see Chapter 8. For δ < 0.375, the Exact NMF is unique, and so is the optimal NMF
solution. However, as δ gets closer to 0.375, there are four regions in the search space with
very small objective function values corresponding to four local minima close to the W ’s
shown above. Hence we have observed numerically that as δ gets closer to 0.375, NMF
algorithms need in general more (randomly generated) initial points to find the global
optimum.
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Figure 4.8. Illustration of the NPP instance corresponding to the matrix X given
in (4.19) with four distinct solutions nested between the square and the rectangle.

Other examples from [288] Several examples of 5-by-5 positive matrices with a unique
Exact NMF36 of size r = rank(X) = 4 can be found in [288]. In these examples, the matrices
W⊤ and H also do not satisfy the SSC as W⊤ and H do not have (r − 1) = 3 zeros per row
(Theorem 4.28); here is one of their examples:

104184 229176 94392 336996 77040
94663 117528 485070 3404 7979
535318 168896 1169348 255210 182576
156494 310908 1119179 316225 460213
763917 337540 876372 1016103 574666



=


0 0 396 108
0 0 4 555
0 470 0 812

455 0 0 926
194 761 550 0




0 260 681 695 985
847 0 978 543 366
217 522 0 851 191
169 208 874 0 13

 .

Note that the construction relies on a rather different approach; constructing such examples using
a geometric approach would be more difficult as three-dimensional NPP are more difficult to
visualize and solve (Theorem 2.19).

36Actually, the authors only prove that these Exact NMFs are locally unique. However, there is strong numerical
evidence that they are also globally unique; namely, any numerical solution generated by the algorithm proposed in [460]
to compute Exact NMFs always coincides with the given Exact NMF, up to permutation and scaling.
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4.2.6 Further readings

The two main identifiability results of this section (Theorems 4.12 and 4.21) and the necessary
condition (Theorem 4.34) directly apply to the symNMF problem where W⊤ = H . This is
straightforward: if the Exact NMF (W,H) of X is unique and W⊤ = H , the symmetric Exact
NMF also has a unique solution (since the solution space of symmetric Exact NMF is smaller
than that of Exact NMF because of the additional constraint W⊤ = H). We refer the reader
to [251] for more details. We also refer the interested reader to the recent paper [409] for other
results on the identifiability of symNMF.

For a more in-depth look at this topic, we recommend the recent paper “Uniqueness of Non-
negative Matrix Factorizations by Rigidity Theory” by Krone and Kubjas [288]. The authors
provide necessary conditions for the uniqueness of Exact NMF of size r = rank(X) using
rigidity theory.

4.3 Regularized Exact NMF
Among Exact NMF solutions, we may look for one that satisfies some additional constraints
or that minimizes some criterion. This allows us to reduce the number of solutions and leads to
identifiability under milder assumptions than for Exact NMF. Let us formally define this problem.

Problem 4.1 (Regularized Exact (N)MF). Given a matrix X ∈ Rm×n, the setsW ⊆
Rm×r andH ⊆ Rr×n, and the objective function f :W×H 7→ R, define the following
optimization problem:

min
W,H

f(W,H)

such that X =WH, (4.20)
W ∈ W and H ∈ H.

Any optimal solution to (4.20) is referred to as a regularized Exact (N)MF of X of
size r.

We put the N in parentheses in (N)MF because for some of the models described in this
section, nonnegativity is not a necessary condition for identifiability. If there is no objective
function in a regularized Exact (N)MF problem, we write f = 0. As for the Exact NMF problem
(Definition 4.1), we say that a regularized Exact (N)MF is unique if the optimal solution to (4.20)
is unique, up to permutation and scaling of the rank-one factors.

In this section, we present four key models of the form (4.20) that lead to unique solutions
under appropriate conditions, namely

• separable NMF that requires H to be a separable matrix (Section 4.3.1),

• ONMF that requires H to have orthogonal rows (Section 4.3.2),

• minimum-volume NMF that requires the convex hull of the columns of W to have the
smallest possible volume (Section 4.3.3), and

• sparse NMF that requires H to be sparse (Section 4.3.4).

In Section 4.3.5, we summarize the identifiability results obtained for regularized Exact
(N)MF; see in particular Table 4.2 (page 155).
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4.3.1 Separable NMF

Let us define separable NMF which assumes thatH is separable (see Definition 4.10 on page 107).

Definition 4.35 (Separable NMF). Given a matrix X ∈ Rm×n and a factorization rank r,
separable NMF is the regularized Exact (N)MF problem with f = 0,

W = Rm×r and H = {H ∈ Rr×n
+ | H is separable}. (4.21)

Remark 4.1 (Terminology). The use of NMF in “separable NMF” is arguably not suitable
since W is not required to be nonnegative. However, we follow the terminology mostly used
in the literature. The same choice will be made for ONMF and min-vol NMF in the next two
sections.

The matrix H in separable NMF contains the identity matrix as a submatrix (up to permuta-
tion and scaling); see Lemma 4.11. Given X = WH where H ∈ Rr×n is separable therefore
implies that there exists an index set K of size r such that W = X(:,K), up to scaling of the
columns of W . Geometrically, this means that there exists a subset of r columns of X whose
conical hull contains all the columns of X; see Figure 4.9 (left) for an illustration. If X ≥ 0 and
the columns of X are scaled to have unit ℓ1 norm, then separability means that the columns of
W are the vertices of conv(X) since the columns of H have unit ℓ1 norm as well (Lemma 2.1);
see Figure 4.9 (right) for an illustration.

Figure 4.9. Geometric illustration of separable NMF for m = r = 3 and n = 25,
with W = X(:,K) for some index set K of size r = 3. Both figures represent the same data set.
The figure on the right is the normalization to unit ℓ1 norm of the columns of X and W from the
figure on the left.

We have the following lemma.

Lemma 4.36. Let X =WH where H ∈ Rr×n
+ is separable. Then

cone(W ) = cone(X).
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Proof. Since X =WH for H ≥ 0, cone(X) ⊆ cone(W ). Since H is separable, there exists an
index setK such thatH(:,K) is a diagonal matrix with positive diagonal elements (Lemma 4.11).
W.l.o.g. let us assume this diagonal matrix is the identity matrix (after scaling the columns of W
accordingly). This implies that W = X(:,K) and hence cone(W ) ⊆ cone(X).

We can now prove identifiability of separable NMF.

Theorem 4.37. Let X = WH where H ∈ Rr×n
+ is separable and r = rank(X). Then (W,H)

is the unique separable NMF of X .

Proof. Let (W̄ , H̄) be a solution of separable NMF. By Lemma 4.36,

cone(W ) = cone(W̄ ) = cone(X).

Since r = rank(X) = rank(W ), cone(X) has r extreme rays which are the columns of W .
Similarly, since r = rank(X) = rank(W̄ ), the columns of rank(W̄ ) are the r extreme rays of
cone(X). Therefore, the columns of W and W̄ must coincide, up to scaling and permutation.

Given W , H is unique and equal to W †X where W † is the left inverse of W .

Note that separable NMF can be cast as another equivalent regularized Exact (N)MF, where
the constraints (4.21) are replaced with

W = {W |W = X(:,K), |K| = r} and H = Rr×n
+ .

In fact, X =WH , W = X(:,K), and r = rank(X) implies that H is separable since it implies
that H(K, :) = Ir. Hence separable NMF is closely related to the column subset selection
problem; see Chapter 7 for more details.

The condition r = rank(X) in Theorem 4.12 can be relaxed to the condition that cone(X)
has r distinct extreme directions while preserving the uniqueness of W . However, the unique-
ness of H is not preserved. For example, if r > rank(X), a point corresponding to a column of
H with positive entries is in the interior of cone(X) and can be constructed with multiple linear
combinations of extreme rays of X . To preserve uniqueness of H , there is an additional condi-
tion: all columns ofX are located on (d−1)-dimensional faces of cone(X) generated by exactly
d − 1 extreme directions. In that case, the convex combinations given by H are unique [442].
For example, consider a cone in three dimensions with more than three extreme directions. For
H to be unique, the data points can only belong to the border of that cone; hence the columns of
H can have at most two positive entries corresponding to two adjacent extreme directions.

Remark 4.2 (Link with semi-NMF). SinceW does not need to be nonnegative, separable NMF
is related to semi-NMF, which is the problem where X = WH with H ≥ 0 while W is not
required to be nonnegative; see Section 5.4.3. However, like unconstrained LRMA, semi-NMF
does not have a unique solution for most matrices without further assumptions like separability
or sparsity [203].

Is the separability a reasonable condition in practice? In Chapter 7, we will
analyze in detail algorithms for separable NMF. In particular, we will see that separable NMF
can be solved in polynomial time. Moreover, in the presence of noise, separable NMF algorithms
can recover the columns of W up to some error bounds that depend on the noise level. We will
also discuss several applications where separability makes sense such as hyperspectral unmixing,
audio source separation, facial feature extraction, and document classification. Separable NMF is
therefore a particularly interesting NMF model because it resolves the two main issues of NMF:
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NP-hardness and identifiability. This is the reason why Chapter 7 is dedicated to this particular
NMF variant. Note that separability is a rather strong condition that does not hold in many
practical scenarios. However, separable NMF algorithms can be used as effective initializations
strategies for more sophisticated NMF models; see Section 8.6.

4.3.2 Orthogonal NMF

ONMF is an NMF variant where H is required to have orthogonal rows, that is, HH⊤ = Ir; see
for example [130, 132, 91, 495, 489, 312, 17, 476] and the references therein. The exact variant
is defined as follows.

Definition 4.38 (Exact ONMF). Given a matrix X ∈ Rm×n and a factorization rank r, Exact
ONMF is the regularized Exact (N)MF problem with f = 0,

W = Rm×r and H = {H ∈ Rr×n
+ | HH⊤ = Ir}.

Together with nonnegativity of H , orthogonality implies that each column of H has a single
positive entry.

Lemma 4.39. Let H ∈ Rr×n
+ satisfy HH⊤ = Ir. Then each column of H has at most a single

positive entry.

Proof. The proof follows from the observation that two nonnegative vectors x and y are orthog-
onal if and only if they have disjoint supports, that is, for x ≥ 0 and y ≥ 0, x⊤y = 0 if and only
if xiyi = 0 for all i. The constraint HH⊤ = Ir implies that every two rows of H are orthogonal
and hence have disjoint supports. This implies that each column of H can have at most a single
positive entry.

Lemma 4.39 implies that ONMF is a clustering problem: each column of X is approximated
using a single properly scaled column of W . It can be shown that ONMF is a particular variant
of spherical k-means; see Section 5.5.3. This also means that Exact ONMF corresponds to
separable NMF where all columns of X are multiples of columns of W . Hence the uniqueness
result of separable NMF applies to ONMF. However, due to the particular nature of Exact ONMF,
the condition r = rank(X) can be relaxed.

Theorem 4.40. Let X = WH where H ∈ Rr×n
+ satisfies HH⊤ = Ir and the columns of

W ∈ Rm×r are not multiples of one another. Then the Exact ONMF (W,H) of X of size r is
unique.

Proof. By Lemma 4.39, under the constraints H ≥ 0 and HH⊤ = Ir, each column of X is a
multiple of a column of W , that is, for all j, there exists k such that X(:, j) = W (:, k)H(k, j).
Moreover, HH⊤ = Ir implies that each row of H must have at least one positive entry, and
hence that every column of W appears at least once as a column of X (up to a proper scaling;
see below). Since the columns of W are not multiples of one another, there is only one way
to construct W in an Exact ONMF: pick r columns of X that are not multiples of one another,
up to a proper scaling (see below). Given W , H is unique and assigns each column of X to
its corresponding column of W that it is multiple with. For columns of X equal to zero, the
corresponding column of H is equal to zero since no column of W is equal to zero (because
columns of W are not multiples of one another). Note that, as opposed to separable NMF, there
is no scaling ambiguity in Exact ONMF because the normalization ∥H(k, :)∥2 = 1 for all k
imposes a particular scaling for the rows of H , and hence for the columns of W .
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Figure 4.10. Illustration of the clustering performed by ONMF with r = 6 on the
Urban hyperspectral image (Figure 1.6). Each cluster shown above corresponds to a row of H ,
reshaped as an image. The first cluster corresponds to the road, the second and third to two
different types of grass, the fourth to the trees, the fifth to dirt, and the last to roof tops. [Matlab
file: ONMF_Urban.m].

Is orthogonality a reasonable condition in practice? The ONMF model is rather
strong and applies only in clustering settings. For example, in hyperspectral imaging (Sec-
tion 1.3.2), ONMF requires that each pixel contains a single material; this assumption is violated
in most cases. However, it may be useful to apply ONMF on such data sets in order to cluster the
pixels according to the material they contain in the largest proportion. Figure 4.10 displays the
ONMF solution for the Urban hyperspectral image obtained with the EM-ONMF algorithm [384]
based alternating optimization (see Section 8.3.1 for more details on this strategy) and initialized
with a separable NMF algorithm, namely, the successive projection algorithm (SPA) (see Sec-
tion 7.4.1). ONMF allows us to extract different meaningful clusters for this relatively simple
hyperspectral image.

In facial feature extraction where X is a pixel-by-subject matrix (Section 1.3.1), ONMF
approximates each input facial image with a single face: this would be useful if one wants to
cluster the faces according to the subject they display (assuming the different images of the same
subject are approximately multiples of one another). Applying ONMF on X⊤ instead generates
facial features that are disjoint: pixels are clustered into regions corresponding to different facial
features, that is, sets of pixels behaving similarly among the subjects; see Figure 4.11 for an
illustration of ONMF on the CBCL facial images using the same algorithmic approach as for the
Urban hyperspectral image.

Remark 4.3 (Spatial coherence). On the two ONMF examples shown in Figures 4.10 and 4.11,
the spatial coherence of the clusters (that is, the rows of H) is automatically obtained while it
was not imposed explicitly. ONMF was applied on a matrix X obtained by reshaping the input
images as its rows; hence the spatial information is lost and not used by ONMF. The reason
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Figure 4.11. Illustration of the clustering performed by ONMF with r = 49 on the
CBCL facial images (Figure 1.2). Each image on the above 7-by-7 grid is obtained by reshaping
a row of H as an image. [Matlab file: ONMF_CBCL.m].

for this spatial coherence is that neighboring pixels contain similar information and hence are
likely to have the same cluster assignment. For example, in the hyperspectral image, neighboring
pixels are likely to contain the same materials. Spatially more coherent solutions can be obtained
by using this prior; see Section 5.3.

4.3.3 Minimum-volume NMF

Let us consider a first min-vol NMF model, which is a regularized Exact (N)MF model X =
WH where the columns of H belong to the unit simplex, that is, H ≥ 0 and H⊤e = e. The
assumption H⊤e = e can be made w.l.o.g. for Exact NMF by scaling the columns of X to unit
ℓ1 norm (this follows from Lemma 2.1); see Section 7.2.2 for further discussion on this issue
when X is not nonnegative. This normalization implies

conv(X) ⊆ conv(W ),

that is, each column of X is a convex combination of the columns of W ; see Section 2.1.2.
Among the m-by-r matrices W such that conv(X) ⊆ conv(W ), it makes sense to look for a
matrix W whose convex hull has minimum volume (see the next subsection for a formal defi-
nition). Intuitively, we look for basis vectors as close as possible to the data points. If the data
points are sufficiently spread within conv(W ), then such a W is unique; see Theorem 4.43,
which requires H to satisfy the SSC. As we will see later, there are other min-vol NMF models,
based on other normalizations of W and H .

The main idea behind min-vol NMF dates back to Full, Erlich, and Klovan [178] (1981)
and from Craig’s belief [109] (1994) that a minimum-volume solution would correspond to the
true materials within a hyperspectral image, given that the data points (that is, the pixels) are
sufficiently spread within conv(W ).

A first NMF-based formulation and algorithm was proposed in [343] (2007), and many works
followed, especially in the area of hyperspectral unmixing; see for example [79, 236, 8, 516] and
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the references therein. It was also later used for blind source separation [407, 370], chemo-
metrics [327], and machine learning applications such as facial feature extraction [513], topic
modeling [171, 259], and community detection [246]. The first identifiability result of min-vol
NMF (see Theorem 4.43 below) was proved by Fu et al. [176] (2015), and a similar result was
proved by Lin et al. [320] (2015). These papers were worked out independently, as explained
in [176, footnote 3], and the proofs are rather different.

This section about min-vol NMF is organized as follows. We first explain how to measure
the volume of conv(W ) (Section 4.3.3.1). Then we present three different min-vol NMF mod-
els using different normalizations (Sections 4.3.3.2–4.3.3.4). Although these models essentially
lead to the same identifiability result in noiseless settings, they behave rather differently in the
presence of noise; this is discussed in Section 4.3.3.5. Finally, we discuss the issue of solving
min-vol NMF (Section 4.3.3.6) and whether the SSC on H which is required for the identifiabil-
ity in min-vol NMF is reasonable in practice (Section 4.3.3.7).

4.3.3.1 How to measure the volume of conv(W )

Let a1, a2, . . . , ar ∈ Rr−1 be r points in dimension r− 1 (for example, the vertices of a triangle
in two dimensions). The volume of the convex hull of these points is given by the determinant
of a particular matrix [437]:

volume
(
conv({a1, a2, . . . , ar})

)
=

1

(r − 1)!

∣∣det ( a2−a1 a3−a1 . . . ar−a1
)∣∣ .

In fact, recall that the volume of the parallelotope37 generated by the columns of a matrix
A is given by |det(A)|. The volume of conv({a1, a2, . . . , ar}) is equal to the volume of
conv({0, a2 − a1, . . . , ar − a1}) (it is just a translation by −a1) which is proportional to the
volume of the parallelotope generated by a2 − a1, . . . , ar − a1.

For an m-by-r matrix W with m ≥ r, the volume of conv(W ) is zero (for example, the
volume of a two-dimensional triangle in three dimensions is zero). What we are interested in
is the volume of conv(W ) within the affine hull of the columns of W , which is an (r − 1)-
dimensional subspace, given that r = rank(W ). Hence computing the volume of conv(W )
for an m-by-r matrix W with m ≥ r requires us to perform a linear dimensionality reduction
to represent the columns of W in an (r − 1)-dimensional subspace. This can be achieved for
example using PCA as done in [343].

However, there is another measure related to the volume of conv(W ) that is more convenient
for proving the identifiability results of min-vol NMF. We focus on this measure in this book.
Add the vector 0 to the set of points ai ∈ Rr (i = 1, 2, . . . , r) above to obtain

volume
(
conv({0, a1, a2, . . . , ar})

)
=

1

r!

∣∣det ( a1 a2 . . . ar
)∣∣ = 1

r!
|det(A)|, (4.22)

where A = [a1, a2, . . . , ar].

Lemma 4.41. Let W ∈ Rm×r with m ≥ r and r = rank(W ). Then

1

r!

√
det(W⊤W )

is the volume of the convex hull of the columns of W and the origin in the linear subspace
spanned by the columns of W .

37The parallelotope generalizes to higher dimensions the parallelogram in two dimensions and parallelepiped in three
dimensions.
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Proof. This follows directly from the observations above. First note that the affine hull of [0,W ]
is the column space of W . Let W = UΣV ⊤ be the compact SVD of W where U ∈ Rm×r

and V ∈ Rr×r have orthogonal columns, and Σ is a diagonal matrix whose diagonal entries are
the nonnegative singular values of W (see Section 6.1.1 for more information on the SVD). The
matrix U is an orthogonal basis of col(W ). Using the formula (4.22), the volume of the convex
hull of the columns of W and the origin in the subspace col(W ) is given by 1

r! times

|det(ΣV ⊤)| = det(Σ) =
√
det(W⊤W ),

since the singular values of W⊤W = V Σ2V ⊤ are equal to the square of the singular values of
W = UΣV ⊤.

In the following three sections, we discuss three min-vol NMF models of the form

min
W,H

det
(
W⊤W

)
such that X =WH,H ≥ 0,

under different normalizations of H or W , namely H⊤e = e (Section 4.3.3.2), He = e
(Section 4.3.3.3), and W⊤e = e (Section 4.3.3.4). Note that some normalization is neces-
sary; otherwise, W will go to zero because of the scaling degree of freedom in NMF, that is,
WH = (αW )(H/α) for any α > 0.

4.3.3.2 Min-vol NMF (1): H⊤e = e

One min-vol NMF model that leads to unique solutions imposes the columns of H to have unit
ℓ1 norm, that is, H⊤e = e.

Definition 4.42 (Min-vol NMF (1)). Given a matrix X ∈ Rm×n and a factorization rank r,
min-vol NMF (1) is the regularized Exact (N)MF problem with

W = Rm×r, H = {H ∈ Rr×n
+ | H⊤e = e}, and f(W,H) = det(W⊤W ). (4.23)

We have the following identifiability result for min-vol NMF (1).

Theorem 4.43. [176, Theorem 1] Let X = WH where H ∈ Rr×n
+ satisfies the SSC, H⊤e = e,

and r = rank(X). Then (W,H) is a unique solution to the min-vol NMF (1) of X of size r.

Proof. By assumption, (W,H) is a feasible solution of min-vol NMF (1), that is, of (4.20) with
W , H, and f defined in (4.23). Let (W̄ , H̄) be another feasible solution of min-vol NMF (1).
Since r = rank(X), rank(W̄ ) = rank(H̄) = rank(W ) = rank(H) = r so that there exists an
r-by-r invertible matrix Q such that

W̄ =WQ−1 and H̄ = QH;

see Lemma 4.4. We also have
H̄H† = Q,

where H† is the right inverse of H , that is, HH† = Ir, which exists since rank(H) = r. By
assumption, e⊤H = e⊤H̄ = e⊤ so that

e⊤Q = e⊤H̄H† = e⊤H† = (e⊤H)H† = e⊤. (4.24)
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Moreover, H̄ = QH ≥ 0 since H̄ ∈ H, hence, by Corollary 4.7,

cone(Q⊤) ⊆ cone∗(H). (4.25)

Since H satisfies SSC1, C ⊆ cone(H), hence cone∗(H) ⊆ C∗ by duality (Lemma 4.17). To-
gether with (4.25), this implies that cone(Q⊤) ⊆ C∗, that is,

Q(j, :)e ≥ ∥Q(j, :)∥2 for j = 1, 2, . . . , r. (4.26)

Therefore,

|det(Q)| ≤
r∏

j=1

∥Q(j, :)∥2 ≤
r∏

j=1

Q(j, :)e ≤

(∑r
j=1Q(j, :)e

r

)r

=

(
e⊤Qe

r

)r

= 1,

where

• the first inequality is the Hadamard’s inequality,

• the second follows from (4.26),

• the third follows from the arithmetic-geometric mean inequality, that is,
∏r

i=1 xi ≤(
1
r

∑r
i=1 xi

)r
for x ∈ Rr

+,

• the last equality follows from (4.24).

If |det(Q)| = 1, all inequalities above are equalities, hence, for all j,

Q(j, :)e = ∥Q(j, :)∥2 = 1

and |det(Q)| =
∏r

j=1 ∥Q(j, :)∥2, implying that Q⊤ is orthogonal.38 Using cone(Q⊤) ⊆
cone∗(H), we obtain by duality that cone(H) ⊆ cone(Q⊤) since, by Lemma 4.19, cone∗(Q⊤)
= cone(Q⊤). Finally, since H satisfies SSC2, Q⊤ is orthogonal, and cone(H) ⊆ cone(Q⊤),
Q⊤ can only be a permutation matrix.

Suppose now (W̄ , H̄) is an optimal solution to (4.20), that is, it is a regularized Exact (N)MF
of X , which is not obtained by permutation of the rank-one factors of WH (note that the scaling
degree of freedom is absent due to the constraint H⊤e = e). Then Q (as defined above) cannot
be a permutation matrix (Theorem 4.5) implying that |det(Q)| < 1. We have

det
(
W̄⊤W̄

)
= det

(
Q−⊤W⊤WQ−1

)
= det

(
W⊤W

)
|det(Q)|−2

> det
(
W⊤W

)
.

This contradicts the optimality of (W̄ , H̄) since (W,H) is a feasible solution.

Remark 4.4. The proof of Theorem 4.43 follows the proof from [176] to show the identifiability
of min-vol NMF. In [320], the authors use a slightly more restrictive condition on H; see (4.5)
and the discussion that follows (page 111).

As stated above, the condition H⊤e = e is not restrictive when X ≥ 0 and in the absence
of noise, as it can be assumed w.l.o.g. by normalizing the columns of the input matrix X to have
unit ℓ1 norm; see Lemma 2.1. (The condition H⊤e = e can also be assumed w.l.o.g. even when

38This is a standard linear algebra result and can be proved for example using Lemma 7.11 (page 227).
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X ≱ 0 using a proper scaling; see Section 7.2.2.) However, in the presence of noise, such a
scaling might not be desirable. For example, the columns of X with small norm that typically
contain less information and are more easily affected by noise (such as background pixels in a
hyperspectral image, or documents containing only a few words) are given the same importance
as columns with large norms [294].

In [169] (2018), Fu, Huang, and Sidiropoulos were able to relax the condition H⊤e = e
to the condition He = e (see Theorem 4.45 below). The condition He = e can be assumed
w.l.o.g., even in the presence of noise: normalizing the r rows of H simply removes the scaling
degree of freedom in NMF. At this point, it is interesting to observe the following: although these
two results are equivalent in noiseless settings (after normalizing the input matrix), they might
behave rather differently in noisy scenarios; this will be illustrated in Example 4.48.

4.3.3.3 Min-vol NMF (2): He = e

It is also possible to obtain identifiability results for min-vol NMF using a model that normalizes
the rows of H instead of the columns.

Definition 4.44 (Min-vol NMF (2)). Given a matrix X ∈ Rm×n and a factorization rank r,
min-vol NMF (2) is the regularized Exact (N)MF problem with

W = Rm×r, H = {H ∈ Rr×n
+ | He = e}, and f(W,H) = det(W⊤W ). (4.27)

Min-vol NMF (2) is more relaxed than min-vol NMF (1) because row normalization can be
assumed w.l.o.g. We have the following identifiability result.

Theorem 4.45. [169, Theorem 1] Let X = WH where H ∈ Rr×n
+ satisfies the SSC, He = e,

and r = rank(X). Then (W,H) is the unique solution to min-vol NMF (2) of X of size r.

Proof. The proof follows exactly the same steps as the proof of Theorem 4.43; there are only a
few differences due to the different normalizations.

By assumption, (W,H) is a feasible solution of min-vol NMF (2), that is, of (4.20) withW ,
H and f as defined in (4.27). Let (W̄ , H̄) be another feasible solution of min-vol NMF (2).
Since r = rank(X), there exists an r-by-r invertible matrix Q such that

W̄ =WQ−1 and H̄ = QH;

see Lemma 4.4. Since He = H̄e = e,

e = H̄e = QHe = Qe. (4.28)

For the same reasons as in Theorem 4.43, cone(Q⊤) ⊆ C∗, that is, Q satisfies (4.26). Therefore,

|det(Q)| ≤
r∏

j=1

∥Q(j, :)∥2 ≤
r∏

j=1

Q(j, :)e = 1,

where the first inequality is the Hadamard’s inequality, the second follows from (4.26), and the
equality follows from the inequalities (4.28).

The remainder of the proof is exactly the same as that of in Theorem 4.43.

Although the constraint He = e relaxes the constraint H⊤e = e, we have observed that
min-vol NMF (2) does not perform well in the presence of noise when the rank-one factors are
unbalanced. Assume there exists k and ℓ such that

∥W (:, k)H(k, :)∥1 ≫ ∥W (:, ℓ)H(ℓ, :)∥1.
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The normalization He = e implies ∥H(k, :)∥1 = 1 for all k since H ≥ 0 and hence implies that

∥W (:, k)H(k, :)∥1 = ∥W (:, k)∥1 ≫ ∥W (:, ℓ)∥1 = ∥W (:, ℓ)H(ℓ, :)∥1.

This leads to two practical problems (see Example 4.48 for a numerical experiment). First, this
makes the influence of these two columns of W in the objective det(W⊤W ) unbalanced. The
model favors W (:, k), that is, the objective will be decreased more by making W (:, k) closer to
the data points than W (:, ℓ).

Second, W is ill-conditioned, that is, it has a large condition number, which leads to slower
convergence of first-order methods, and possibly numerical issues. The conditioning of a matrix
W is defined as κ(W ) = σmax(W )

σmin(W ) where σmin(W ) and σmax(W ) are the smallest and largest
singular values of W , respectively. Using the inequalities σmax(W ) ≥ maxj ∥W (:, j)∥2 and
σmin(W ) ≤ minj ∥W (:, j)∥2, we obtain

κ(W ) ≥ maxj ∥W (:, j)∥2
minj ∥W (:, j)∥2

≥ ∥W (:, k)∥2
∥W (:, ℓ)∥2

≫ 1.

4.3.3.4 Min-vol NMF (3): W⊤e = e

The authors in [310] (2019) formulate a min-vol NMF model using the condition W⊤e = e that
normalizes the columns of W instead of the rows of H .

Definition 4.46 (Min-vol NMF (3)). Given a matrix X ∈ Rm×n and a factorization rank r,
min-vol NMF (3) is the regularized Exact (N)MF problem with

W = {W ∈ Rm×r |W⊤e = e}, H = Rr×n
+ , and f(W,H) = det(W⊤W ). (4.29)

Min-vol NMF (3) does not seem like a significant modification compared to min-vol NMF (2),
scaling W instead of H . However, given that the volume of the convex hull of W and the ori-
gin is minimized, this prevents the two drawbacks of min-vol NMF (2) explained above: this
normalization balances the importance of the columns of W and leads to more well-conditioned
W . Our experience has shown that the normalization W⊤e = e performs much better and is
more numerically stable in noisy settings. This min-vol model with the constraint W⊤e = e was
considered earlier in [513] but no identifiability guarantees were provided.

Theorem 4.47. [310, Theorem 1] Let X =WH where H ∈ Rr×n
+ satisfies the SSC, W⊤e = e,

and r = rank(X). Then (W,H) is the unique solution to min-vol NMF (3) of X of size r.

Proof. The proof follows the same steps as the proof of Theorem 4.43; there are only a few
differences due to the different normalizations.

By assumption, (W,H) is a feasible solution of min-vol NMF (3), that is, of (4.20) withW ,
H, and f as defined in (4.29). Let (W̄ , H̄) be another feasible solution of min-vol NMF (3).
Since r = rank(X), there exists an r-by-r invertible matrix Q such that

W̄ =WQ−1 and H̄ = QH;

see Lemma 4.4. Since W⊤e = W̄⊤e = e,

e = W̄⊤e = Q−⊤W⊤e = Q−⊤e. (4.30)

Multiplying Q−⊤e = e by Q⊤ leads to e = Q⊤e.
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For the same reasons as in Theorem 4.43, cone(Q⊤) ⊆ C∗, that is, Q satisfies (4.26). There-
fore,

|det(Q)| ≤
r∏

j=1

∥Q(j, :)∥2 ≤
r∏

j=1

Q(j, :)e ≤

(∑r
j=1Q(j, :)e

r

)r

=

(
e⊤Qe

r

)r

= 1,

where the first inequality follows from the Hadamard’s inequality, the second from (4.26), and
the third from the arithmetic-geometric mean inequality, and the equality follows from (4.30).

The remainder of the proof is exactly the same as in Theorem 4.43.

The normalization W⊤e = e slightly weakens the generality of the identifiability results
from min-vol NMF (1)–(2), even in noiseless conditions. In Theorems 4.43 and 4.45, the
only constraint on W is the implicit constraint that r = rank(W ). Therefore, we could have
e⊤W (:, j) ≤ 0 for some j, in which case W cannot be scaled to satisfy W⊤e = e while H
remains nonnegative. However, if W ≥ 0 and r = rank(W ), the scaling W⊤e = e can be
assumed w.l.o.g., and hence the identifiability result is equivalent in noiseless conditions to the
ones using H⊤e = e and He = e. Additionally, the condition W ≥ 0 can actually be relaxed to
X ≥ 0. If X = WH ≥ 0, then conv(W⊤) ⊆ cone∗(H) ⊆ C∗ (Corollary 4.7 combined with
SSC1 and duality), hence e⊤W (:, j) ≥ ∥W (:, j)∥2 > 0 for all j as r = rank(W ).

4.3.3.5 Comparison of min-vol NMF models in the presence of noise

Min-vol NMF (1)–(2) lead to the same identifiability result in the absence of noise (after scaling
of the input matrix), while min-vol NMF (3) is slightly less general as it requires W⊤e = e
which can be assumed w.l.o.g. when X =WH ≥ 0; see the discussion after Theorem 4.47.

In noisy settings, we are looking for (W,H) such that WH ≈ X and W has a small volume,
and hence one needs to balance the data fitting term D(X,WH) and the volume regularization.
For example, a standard min-vol NMF formulation that has been shown to be very successful in
practice is the following:

min
W∈W,H∈H

D(X,WH) + λ logdet(W⊤W + δIr), (4.31)

where λ > 0 is a parameter balancing the data fitting and minimum-volume terms, and δ > 0 is
a small parameter preventing logdet(W⊤W + δIr) from going to −∞ when rank(W ) < r (see
Example 8.11 for the description of an algorithm for tackling this problem). Using the logarithm
of det(W⊤W ) has been shown to produce better results compared to det(W⊤W ), being less
sensitive to very small and very large singular values of W [172, 12]. In fact,

det(W⊤W + δI) =

r∏
i=1

(
σ2
i (W ) + δ

)
,

while

logdet(W⊤W + δI) =

r∑
i=1

log
(
σ2
i (W ) + δ

)
.

Moreover, it has been shown that the logarithm of the determinant is closely related to a genera-
tive model where the columns of H are generated following a Dirichlet distribution [360].

In this context, min-vol NMF (1) is rather restrictive because it imposes that the columns of
H have unit ℓ1 norm, or requires the input matrix to be preprocessed if this assumption is not
satisfied; see the discussion in Section 4.3.3.2 and in [169]. In many applications, this constraint
is not satisfied, for example in audio source separation or in text mining. However, in practice,
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most algorithms developed so far have focused on min-vol NMF (1), most likely due to the
following reasons:

• In hyperspectral unmixing where most of the literature on min-vol NMF can be found,
the so-called sum-to-one constraint H⊤e = e agrees with the linear mixing model (see
Figure 1.5, page 8) since the entries of H correspond to the abundances of the materials in
the pixels.

• The intuition behind min-vol NMF came about with the interpretation of NMF in terms of
nested convex hulls. The constraints He = e and W⊤e = e combined with the min-vol
NMF are less intuitive. In both cases, the columns of W form a cone containing cone(X),
while the volume of their convex hull with the origin is minimized. With the constraint
He = e, it is difficult to interpret conv([W, 0]) since the norms of the columns of W can
be arbitrarily large or small. On the contrary, with W⊤e = e, the columns of W are on the
affine set {x | e⊤x = 1}, and hence minimizing the volume of conv([W, 0]) makes more
sense.

• Min-vol NMF (2-3) are much more recent models. Note, however, that the model with the
constraints W⊤e = e was considered relatively early in [513] (2011) but has not attracted
much attention, possibly due to the reasons above and because no identifiability guarantees
were provided.

Compared to min-vol NMF (2), min-vol NMF (3) has two important practical advantages, as
already pointed out above:

• normalizing the columns of W better balances their importance in the volume regulariza-
tion term, and

• it corresponds to W matrices which are better conditioned and hence leads to more stable
numerical algorithms.

For example, in hyperspectral imaging, assume an endmember (say, the kth) is present in a much
higher proportion than the others (for example the grass in the Urban image; see Figure 1.6).
In that case, the rank-one factor W (:, k)H(k, :) corresponding to this endmember has a much
higher norm than the others. Using the normalization39 He = e of min-vol NMF (2) makes the
corresponding column of W have a much larger norm than the other columns and hence makes
W ill-conditioned; see Example 4.48 below. The authors of [310] observed empirically on audio
source separation problems that the condition number of W was growing to values larger than
1016; this is what motivated them to consider the constraint W⊤e = e instead. The constraint
W⊤e = e balances the importance of the columns of W while bounding the condition number
of W as follows [310]:

κ(W⊤W + δI) =
σmax(W

⊤W + δI)

σmin(W⊤W + δI)

=
σmax(W )2 + δ

σmin(W )2 + δ

≤ (
√
rmaxk ∥W (:, k)∥2)

2
+ δ

δ
≤ 1 +

r

δ
,

39In the paper [169], it is shown that the normalization He = e can be replaced with He = ρe for any ρ > 0, but this
degree of freedom does not resolve the issue of W being ill-conditioned (it simply allows the entries of W to be scaled
by a constant which does not modify its condition number).
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where we used the facts that

• σmax(W ) = max∥x∥2≤1 ∥Wx∥2 ≤
√
rmaxk ∥W (:, k)∥2, since

σ2
max(W ) ≤ ∥W∥2F =

∑
k

∥W (:, k)∥22 ≤ rmax
k
∥W (:, k)∥22;

• ∥W (:, k)∥2 ≤ ∥W (:, k)∥1 = 1 for W ≥ 0.

In the following example, we observe the behavior of the different min-vol NMF models on
the Urban hyperspectral image.

Example 4.48 (Urban hyperspectral image). Let us apply the three min-vol NMF models on
the Urban hyperspectral image (see Figure 1.6). We performed 1000 iterations of the optimiza-
tion scheme that optimizes W and H alternately as described in Example 8.11 to solve (4.31)
with 10 inner iterations for the updates of W and H , and with δ = 0.1. We tune the penalty
parameter λ in (4.31) so that all models achieved a relative error of about 5%, that is, so that
∥X−WH∥F

∥X∥F
≈ 0.05, while a separable NMF algorithm (namely SNPA) is used as an initializa-

tion (see Section 7.4.4). Figure 4.12 reports the spectral signatures extracted (columns of W )
and Figure 4.13 shows the corresponding abundance maps (reshaped rows of H).

We observe the following:

• The solution computed by min-vol NMF (2) has one of the columns of W close to zero
(the fourth one), while the first and third columns have very large norms. As explained in
the previous paragraph and in the discussion after Theorem 4.45, the reason is that min-
vol NMF (2) gives more importance to endmembers present in large proportions (here, the
grass and trees) because of the constraint He = e. For this reason, the matrix W⊤W + δI
is ill-conditioned: MATLAB issued a warning while running the algorithm as this matrix
needs to be inverted in the algorithm used; see Example 8.11.
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Figure 4.12. Spectral signatures (that is, columns of W ) extracted by min-vol NMF.
From left to right: min-vol NMF (1), min-vol NMF (2), and min-vol NMF (3). The abundance
maps corresponding to these spectral signatures are shown in Figure 4.13, respecting the same
ordering.
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Figure 4.13. Abundance maps (that is, reshaped rows of H) extracted by min-vol
NMF. From left to right: min-vol NMF (1), (2), and (3). The spectral signatures correspond-
ing to these abundance maps are shown in Figure 4.12, respecting the same ordering. [Matlab
file: minvolNMF_Urban.m].
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• For min-vol NMF (1), the third and fourth extracted spectral signatures are not realistic
as many entries are close or equal to zero, similarly as for min-vol NMF (2). Moreover,
the abundance maps are denser and noisier than that of min-vol NMF (3); in particular
the second and fourth abundance maps. This is an indication that the extracted spectral
signatures do not correspond to well-defined materials.

• Min-vol NMF (3) provides very good results. All spectral signatures are meaningful and
correspond well to results found in the literature; see for example [514]. Although the
abundance maps do not separate all materials perfectly (see Figure 1.6 for a comparison),
they are spatially coherent and rather sparse. The first one corresponds to grass, the second
to road, the third to trees and grass, the fourth to roof tops 2, the fifth to road and dirt, and
the sixth to roof tops 1 and dirt.

Hence, on this hyperspectral image, min-vol NMF (3) provides the best results among
the three min-vol NMF models. This is the typical behavior we have observed on several data
sets; see [Matlab file: minvolNMF_Moffet.m] for an example on the Moffet hyperspectral
image.

Remark 4.5 (Link with the nuclear norm). The nuclear norm of a matrix is the sum of its
singular values (see also Section 3.4.8). In particular,

∥W∥∗ =

r∑
i=1

σi(W )

for an r-by-m matrix W with m ≥ r. It is a widely used surrogate for the rank function in
order to obtain low-rank solutions; see [394] and the references therein. The rationale is that
the nuclear norm of a matrix is the ℓ1 norm of the vector of singular values, while the rank is its
ℓ0 norm. Considering the minimum-volume regularizer

g(W ) = logdet(W⊤W + δI) =

r∑
i=1

log
(
σ2
i (W ) + δ

)
,

one can check that the function g(W ) is a sharper (but nonconvex) surrogate (after a proper
scaling and translation) for the rank function than the nuclear norm for δ sufficiently small; see
Figure 4.14. Hence the function g(W ) can also be used when looking for an m-by-r matrix
W whose rank is smaller than r as done in [156, 350]. This would be useful for example for
multispectral images for which the number of materials r can be larger than the number of
spectral bands m [309]. Note that using the nuclear norm for a min-vol NMF model provides
reasonable results but does not perform as well as g(W ) [12].

4.3.3.6 Can min-vol NMF be solved efficiently?

If there are no constraints on the input matrixX , finding the convex hull conv(W ) with r vertices
of minimum volume containing conv(X) is NP-hard [372]. Therefore, although the SSC relaxes
the separability condition, it comes at a cost: the corresponding optimization problem is harder
to solve. Moreover, as far as we know, the behavior of min-vol NMF in the presence of noise is
not well-understood, while there are quite a few theoretical results in this direction for separable
NMF (Chapter 7). Understanding min-vol NMF in the presence of noise is an important direction
of research.

Another important direction of research is to identify when min-vol NMF is solvable in poly-
nomial time. In particular, it was conjectured that it is the case when H is sufficiently scat-
tered [170]. Proving this conjecture, and providing an efficient algorithm to solve min-vol NMF
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Figure 4.14. Function fδ(x) = ln(x2+δ)−ln(δ)
ln(1+δ)−ln(δ) for different values of δ, ℓ1 norm

(= |x|), and ℓ0 norm (= 0 for x = 0, = 1 otherwise). This show that ln(x2 + δ) becomes a
sharper surrogate to the ℓ0 norm as δ decreases (up to a constant term, and scaling). Figure
adapted from [309].

under this assumption, would be a key result in the NMF literature. Note that the former does
not necessarily imply the latter (for example, Exact NMF can be solved in polynomial time for
r fixed, but it remains to provide a practical algorithm to do so even for 4-by-4 matrices; see the
discussion around Theorem 2.21, page 52). Also, adapting such algorithms in the presence of
noise would be necessary for real-world applications.

An important effort in this direction is the algorithm proposed in [321]: the authors provide
a provably correct algorithm for min-vol NMF (1). The idea is to first compute the maximum-
volume ellipsoid contained in conv(X), which can be formulated as a semidefinite program. IfH
is sufficiently scattered, they can show that this ellipsoid touches each facet of conv(W ), which
allows them to compute its vertices. However, this approach requires all facets of conv(X)
to be computed (each of them corresponds to a constraint in the semidefinite program), and
there might be exponentially many facets for a polytope with n vertices in dimension m; see
Equation (3.9), page 74. Hence their algorithm does not run in polynomial time. However, they
are able to solve middle-scale problems, with m = 224, n = 1000, and r = 8, in a few minutes.
This idea has been recently revisited, and a new algorithm has been proposed leading to better
performances [319].

For large-scale real-world problems, practitioners rely on formulations of the form (4.31)
and use standard nonlinear optimizations strategies. A typical approach is to optimize alterna-
tively over the variables W for H fixed and vice versa. The problem in H is convex, while
the problem in W is nonconvex, because of the term logdet(W⊤W ), but a convex quadratic
auxiliary function (that is, an upper bound which is tight at the given iterate) can be easily con-
structed [172, 309]; see Example 8.11 in Section 8.1.3.

4.3.3.7 Is the SSC on W⊤ or H reasonable in practice?

In [170], the authors conjecture that the SSC is also necessary for min-vol NMF to be unique.
This is an important open question. Note, however, that this conjecture does not hold if the model
incorporates the constraint W ≥ 0; see the matrix in (4.18) for a counterexample.
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In any case, the SSC on one of the two factors in NMF is arguably rather mild. It drastically
relaxes the separability condition and was shown to be very powerful in many applications; see
the introduction of this section. It only requires that one of the two factors in NMF is sufficiently
sparse; see Section 4.2.3.4. This sparsity assumption on one of the two factors holds in most
applications; see the discussion in the beginning of the following section.

4.3.4 Sparse NMF

Sparse approximations have attracted a lot of attention in the last two decades, including sparse
low-rank approximations [505], sparse PCA [115], and dictionary learning [4], to cite a few.

Although NMF naturally leads to sparse factors W and H (see Section 1.2), one may want
to enhance this property of NMF. For example, let us look back at the four applications from
Section 1.3 to see how sparsity arises:

• Facial features extraction: each facial image contains a small subset of all possible facial
features (H is sparse). Moreover, facial features are located within a small region of the
image, hence activating only a few pixels (W is sparse); see Figure 1.2 (page 7).

• Hyperspectral unmixing: each pixel contains a small number of materials (typically, at
most 5) making H sparse; see Figure 1.6.

• Text mining: most documents typically discuss only a few topics (H sparse) while most
topics use only a small subset of words within the dictionary (W sparse).

• Audio source separation: most sources are not active during all time windows (H sparse)
while the signature of most sources does not cover the full frequency domain (W sparse);
see Figure 1.8 (page 11).

Variants of NMF requiring sparse W and/or H are referred to as sparse NMF. Sparse NMF
was introduced early on because it enhances the ability of NMF to learn a parts-based represen-
tation and produces more easily interpretable factors. For example, in facial feature extraction,
sparsity leads to more localized features, while fewer features are used to reconstruct each input
image. Moreover, as we will show in this subsection, sparsity leads to identifiable solutions. The
first landmark paper on sparse NMF was by Hoyer [243] (2004). Hoyer introduced the following
measure of sparsity based on the ratio between the ℓ1 and ℓ2 norms: for x ∈ Rn and x ̸= 0,

spar(x) =

√
n− ∥x∥1

∥x∥2√
n− 1

∈ [0, 1]. (4.32)

We have that spar(x) = 0 if and only if ∥x∥1 =
√
n∥x∥2 so that all entries of x are equal

to one another. Also, spar(x) = 1 if and only if ∥x∥1 = ∥x∥2 and hence ∥x∥0 = 1, where
∥x∥0 counts the number of nonzero entries of x. Hoyer then proposed an efficient algorithm
to project a vector onto a set of given sparsity, used this projection within an NMF algorithm,
and applied it for facial feature extraction. Many other algorithms and applications were later
considered, including audio source separation [471], bioinformatics [277], and hyperspectral
unmixing [387].

Rather surprisingly, identifiability results for sparse NMF are very scarce. We are only aware
of the result by Theis, Stadlthanner, and Tanaka [448], which has rather strong conditions. How-
ever, in the dictionary learning literature, many such results were obtained. Most works focus
on models where the positions of the zero entries and the values of the nonzero entries of H
are randomly generated. Also, most works focus on the overcomplete case, that is, r ≫ n. It
is beyond the scope of this book to present these results; we refer the interested reader to [220]
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and the references therein. Instead, we focus on a relatively simple recent result that applies in a
deterministic scenario in the undercomplete case, that is, m ≥ r and r = rank(W ), which has
been our focus so far. As we will see, this result allows us to shed some light on min-vol NMF
in comparison with sparse NMF.

This section is organized as follows. We first define a particular sparse NMF model, referred
to as k-sparse matrix factorization (MF) (Section 4.3.4.1). Then we provide the identifiability
result for this model (Section 4.3.4.2), which we compare to min-vol NMF in Section 4.3.4.3.

4.3.4.1 k-sparse MF

Let us first define the sparse NMF variant for which we present an identifiability result. Recall
that a vector is k-sparse if it has at most k nonzero entries.

Definition 4.49 (k-sparse MF). Given a matrixX ∈ Rm×n and the integers k ≤ r, the k-sparse
MF problem is the regularized Exact (N)MF problem with f = 0,

W = Rm×r, and H = {H ∈ Rr×n | H(:, j) is k-sparse for all j}.

As for separable, orthogonal, and min-vol NMF, W does not need to be nonnegative. More-
over, H does not need to be nonnegative either.

4.3.4.2 Identifiability of k-sparse MF

Before providing the identifiability result, let us introduce some notation and two useful lemmas.
The Kruskal rank of a matrixX , denoted k-rank(X), is the maximum r such that any subset of r
columns of X are linearly independent [289]. We have k-rank(X) ≤ rank(X), but k-rank(X)
can be arbitrarily smaller than rank(X) (in particular, k-rank(X) = 0 if X contains a zero
column). The Kruskal rank is closely related to the notion of spark, which is the smallest p such
that p columns of X are linearly dependent, widely used in the dictionary learning literature, so
that the spark of X is equal to k-rank(X) + 1.

Given W ∈ Rm×r, let us denote, for j = 1, 2, . . . , r,

Fj(W ) = col(W (:,J )) where J = {1, 2, . . . , r}\{j}.

We now state a simple lemma showing that identifying the r columns of W is equivalent to
identifying the r subspaces {Fj(W )}rj=1 spanned by r − 1 columns of W .

Lemma 4.50. LetW ∈ Rm×r andW ′ ∈ Rm×r be full column rank. If there exists a permutation
π such that

Fj(W ) = Fπ(j)(W
′) for j = 1, 2, . . . , r,

then W and W ′ are equal to each other, up to permutation and scaling of their columns.

Proof. This follows directly from a simple linear algebra argument since, for all j,

col(W (:, j)) = ∩i ̸=jFi(W )

for any m-by-r matrix W of rank r.

Let us now prove a key lemma. It states that if there are sufficiently many data points on one
of the subspaces {Fj(W )}rj=1, then it must be identified in any sparse factorization.
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Lemma 4.51. [102, Lemma 3.5] Let A ∈ Rm×p be such that rank(A) = k-rank(A) = r − 1.
Let also A =WH where W ∈ Rm×r has rank r, and the columns of H are k-sparse. Then

p ≥
⌊
r(r − 2)

r − k

⌋
+ 1 ⇒ there exists j such that Fj(W ) = col(A).

Proof. For simplicity, let us denote Fj = Fj(W ). For j = 1, 2, . . . , r, let us define

Sj = {A(:, i) | A(:, i) ∈ Fj}

so that Sj is the set of columns ofA contained in the jth hyperplane Fj generated byW . If there
exists some j such that |Sj | ≥ r−1, then col(Sj) = Fj since, by assumption, k-rank(A) = r−1
and the dimension of Fj is r − 1. In other words, any hyperplane Fj containing strictly more
than r − 2 data points of A satisfies Fj = col(A). Moreover, every column of A lies on at
least r − k subspaces {Fj}rj=1 since ∥H(:, i)∥0 ≤ k for all i. Hence one can check using the
pigeonhole principle that the maximum number of columns that A can contain such that each of
the r hyperplanes generated by W contains at most r − 2 columns of A is given by

pmax =

⌊
r(r − 2)

r − k

⌋
.

Hence p ≥ pmax + 1 > pmax implies Fj = col(A) for some j, which completes the proof.

We can now state an identifiability theorem for k-sparse MF.

Theorem 4.52. Let X = WH where the columns of H ∈ Rr×n are k-sparse and rank(W ) =
rank(X) = r, and assume there exist subsets {Ij}rj=1 such that

(i) Ij ⊆ {i | H(j, i) = 0}, so that the columns of X(:, Ij) belong to Fj(W ),

(ii) k-rank(X(:, Ij)) = r − 1 for j = 1, 2, . . . , r, and

(iii) |Ij | ≥
⌊
r(r−2)
r−k

⌋
+ 1 for j = 1, 2, . . . , r.

Then (W,H) is the unique solution to the k-sparse MF of X of size r.

Proof. By (i) and (ii), Fj(W ) = col(X(:, Ij)) for all j. Uniqueness of W follows from
Lemma 4.51 using A = X(:, Ij) = WH(:, Ij). The conditions (ii) and (iii) imposed on
the Ij’s imply that rank(A) = k-rank(A) = r − 1 so that for any k-sparse MF (W ′, H ′)
of X = W ′H ′, Fj(W

′) = col(X(:, Ij)) = Fj(W ) for all j (up to permutation of the columns
of W ′). Lemma 4.50 allows us to conclude that identifying the column of W or its subspaces
Fj(W ) is equivalent.

Uniqueness of H follows from the assumption that rank(W ) = r implying r = rank(W ),
and hence there is a unique H such that X =WH .

Theorem 4.52 tells us that a k-sparse MF X = WH is unique if on each subspace spanned
by all but one column of W , there are

⌊ r(r−2)
r−k

⌋
+ 1 columns of X with Kruskal rank40 r − 1.

For example, for r = 3 and k = 2, Theorem 4.52 guarantees that having four distinct points
on each subspace spanned by two columns of W makes k-sparse MF unique. However, having
three points on each subspace is not always enough; see Figure 4.15 for an illustration.

40We make a slight abuse of language here: the Kruskal rank of a set of columns is equal to the Kruskal rank of the
matrix obtained by concatenating these columns.
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data points
first 2-sparse MF
second 2-sparse MF

Figure 4.15. A scenario where k-sparse MF is not unique for r = 3 and k = 2: each
data point is a linear combination of two out of the three columns of W . The data points and the
subspaces are projected onto the affine space {x | e⊤x = 1} so that we may visualize them in
two dimensions. The k-sparse MF of these data points would be unique by adding a single point
on any of the subspaces [102, Theorem 3.8]. Figure adapted from [102, Figure 1].

Theorem 4.52 can be used to compute a minimum value of the number n of columns of a
matrix X to have a unique k-sparse MF. Since each column of X belongs to r − k subspaces
among {Fj(W )}rj=1, it may belong to r−k subsets Ij’s, and hence the condition (4.52) implies
that

n ≥
∑r

j=1 |Ij |
r − k

≥ r

r − k

(⌊
r(r − 2)

r − k

⌋
+ 1

)
.

For example, for r = 3 and k = 2, we need n = 12 points.
The conditions of Theorem 4.52 can be relaxed; see the discussion in [102]. Also, it could be

improved by taking nonnegativity of W and/or H into account; see the discussion in [103]. This
is a topic for future research.

4.3.4.3 Sparse vs. minimum-volume NMF

The SSC that makes min-vol NMF identifiable requires some degree of sparsity; see Theo-
rem 4.28, and see Section 4.3.4.3 for a discussion. Moreover, minimizing the volume of W in
min-vol NMF leads to Exact NMFs with a certain degree of sparsity for H . For example, it can
be easily checked that the support of the rows of H in a min-vol NMF solution form an antichain
(otherwise, a solution with smaller volume can be constructed using the same construction as in
Theorem 4.34).

When the columns of H are k-sparse, the SSC guaranteeing min-vol NMF to succeed re-
quires H to have at least r(r−1)

r−k columns (see the discussion after Theorem 4.28). Sparse NMF
requires more columns, namely O(r3/(r − k)2) columns (Theorem 4.52). However, the condi-
tion on the nonzero entries is milder for sparse NMF; in particular, the Kruskal rank condition
is satisfied with probability one if the nonzero entries of H are generated randomly. This is not
the case for the SSC that requires the columns of H to be sufficiently spread. This means that
neither min-vol NMF nor sparse NMF is superior to the other. One should choose the right model
depending on the application at hand. In some cases, min-vol NMF will lead to identifiability
while sparse NMF will not, and vice versa. Let us illustrate this with a simple example.
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Example 4.53. Let us consider the matrix from Example 4.16:

H(ω) =

 ω 1 1 ω 0 0
1 ω 0 0 ω 1
0 0 ω 1 1 ω

 .

For ω < 0.5, H satisfies the SSC; see Figure 4.4 (page 112). Hence X =WH(ω) is identifiable
using any of the min-vol NMF models and for any W of rank three as long as ω < 0.5. This is
not the case for 2-sparse MF: there is another solution for this particular problem; see Figure 4.4,
where one can check that there is another triangle going through the six columns of H . Hence
there exists another 2-sparse MF (W ′, H ′) where the columns ofH ′ are 2-sparse (but the volume
of W ′ is larger):

H = QH ′ =

 ω−1 1 1
1 ω−1 1
1 1 ω−1

 1−ω
2−ω 0 0 1−ω

2−ω
1

2−ω
1

2−ω

0 1−ω
2−ω

1
2−ω

1
2−ω

1−ω
2−ω 0

1
2−ω

1
2−ω

1−ω
2−ω 0 0 1−ω

2−ω

 ,

so that W ′H ′ = (WQ)H ′ is another 2-sparse MF, where det(Q) = ω3 − 3ω2 + 4 > 1 for
ω ∈ [0, 1).

Now, let us consider the matrix

H(ω1, ω2) =
(
H(ω1) H(ω2)

)
.

For any choice of ω1 ̸= ω2 such that min(ω1, ω2) ≥ 0.5, H(ω1, ω2) does not satisfy the SSC,
and min-vol NMF is not identifiable (see Example 4.16, from which one can construct other min-
vol NMFs). Looking at Figure 4.4, the intuition is that adding 2-sparse columns to H is useless
to make min-vol NMF identifiable as long as these columns are not sufficiently spread within
R3

+. On the other hand, sparse NMF is identifiable for any ω1 ̸= ω2: each two-dimensional
subspace Fj(W ) contains four points that have Kruskal rank two.

In summary, sparse NMF does not require the data points to be sufficiently scattered within
cone(W ) but requires that there are enough of them on the different facets generated by r − 1
columns of W .

From a practical point of view, our experience has shown that sparse NMF is a more difficult
problem to handle than min-vol NMF. As mentioned above, under the SSC, it appears that min-
vol NMF algorithms provide good estimates of the ground truth solutions, even in the presence
of noise. As far as we know, no such observations have been made for sparse NMF. Imposing
the columns of H to be k-sparse is a problem of a combinatorial nature, while min-vol NMF
is a continuous optimization problem; see for example (4.31). Also, in most applications, the
levels of sparsity of the columns of H are different; hence choosing a single value of k and
imposing all columns of H to be k-sparse is not often reasonable. In practice, most algorithms
rely on strategies that add a sparsity-promoting penalty term in the objective such as the ℓ1
norm [277] or try to minimize the data fitting error D(X,WH) while achieving a certain degree
of sparsity [243].

4.3.4.4 Sparse NMF via facet identification

More recently, several models and algorithms with identifiability guarantees have been proposed
for sparse NMF that rely on identifying the facets of conv(W ):

• In [183], Ge and Zou identify facets of conv(W ) using the fact that a data point can be re-
constructed using convex combinations of points within the same facet. For identifiability,



4.3. Regularized Exact NMF 155

they require that, among the facets of conv(X), only the facets of conv(W ) contain points
in their relative interior.

• In [2], authors identify the facets of conv(W ) by selecting the facets of conv(X) con-
taining the largest number of columns of X . To obtain identifiability, it is only required
that d ≥ rank(X) data points are present on each facet of conv(W ), while no facet of
conv(X) which is not a facet of conv(W ) contains more than d points.

We refer the interested reader to [2] and the references therein for more information on such
approaches.

4.3.5 Summary of identifiability for regularized Exact (N)MF

In terms of generality, we have the following inclusions:

Exact ONMF ⊆ separable NMF ⊆ min-vol NMF (1-3).

Sparse NMF generalizes Exact ONMF where all columns of H are 1-sparse, but not separable
NMF, which only requires r columns of H to be 1-sparse while the others are unconstrained. As
we have shown, neither sparse NMF nor min-vol NMF dominates the other.

However, min-vol NMF and sparse NMF are difficult optimization problems to be solved,
as opposed to Exact ONMF and separable NMF. Table 4.2 summarizes the identifiability results
discussed in this chapter.

Table 4.2. Summary of identifiability/uniqueness results for various regularized Exact
(N)MF models of the form (4.20) for r = rank(X), that is, X = WH where W ∈ Rm×r and
H ∈ Rr×n, implying rank(W ) = rank(H) = r. That is, solutions to (4.20) are unique when
each model satisfies the corresponding conditions. When no further conditions are imposed on
W or H , we indicate /. When no objective function is used, we also indicate /. Some of these
models do not need W and/or H to be nonnegative, hence these identifiability results apply to
a broader class than NMF problems; this explains the notation (N)MF. Note that separability
(Definition 4.10) and SSC (Definition 4.15) require nonnegativity.

Model W H f(X,W,H) Theorem

Exact NMF SSC† SSC† / 4.21
separable NMF W = X(:,K) H separable / 4.37
Exact ONMF / HH⊤=Ir, H≥0 / 4.40

min-vol NMF (1) / SSC, H⊤e=e det(W⊤W ) 4.43
min-vol NMF (2) / SSC, He=e det(W⊤W ) 4.45
min-vol NMF (3) W⊤e = e SSC det(W⊤W ) 4.47
k-sparse MF / k-sparse columns / 4.52

†One of these two conditions can be relaxed to SSC1 (Corollary 4.22).

4.3.6 Other models and further research

As we will see in Chapter 5, there exist numerous other regularized NMF models. Such models
are typically designed to take into account the prior information of the application at hand, which
leads to better practical performance. This allows the search space to be reduced and hence
leads, in many cases, to the sought decomposition. However, for many of them, no identifiability
results are available. Therefore, a topic for further research is to provide identifiability guarantees
for other regularized Exact (N)MF models. Another important topic for further research is to



156 Chapter 4. Identifiability

analyze the sensitivity of these models in the presence of noise (Chapter 7 discusses the case of
separable NMF). Also, it is important to keep in mind that uniqueness does not necessarily lead
to tractability. For example, solving sparse NMF is hard; we “only” have the guarantee that,
under some conditions, the globally optimal solution is unique. An interesting recent work in
these directions is a recovery guarantee for NMF when using alternating optimization (that is,
optimizing alternatively forW withH fixed and vice versa; see Chapter 8) under some generative
model and assuming the initial solution is close enough to the sought solution [316].

4.4 Take-home messages
The two main take-home messages from this chapter are as follows:

1. In most cases, you should not expect Exact NMF to have a unique solution.

The conditions for uniqueness are rather strong and do not apply for most real-world sce-
narios. An exception is for simple mixtures of audio signals where it can be expected that
the sources and the activations are sufficiently scattered.

2. If in your application of interest, identifiability is crucial (such as in hyperspectral imaging
or audio source separation), you should pay particular attention to your NMF formulation.

In practice, you should therefore look for NMF solutions with additional properties as
it leads to much weaker conditions for identifiability, often met in practical situations.
Identifiability in this context was discussed in Section 4.3. Two notable examples are
(1) the SSC on one of the two factors W⊤ or H , and (2) the sparsity of W and/or H . Both
conditions are rather mild in the sense that they are reasonable in most applications while
leading to the identifiability via min-vol and sparse NMF models, respectively.



Part II

Approximate factorizations

In the three previous chapters, we have focused on exact decompositions. In the next five chap-
ters, we focus on approximate decompositions, and in particular on the NMF problem defined in
Problem 1.1 (page 4).

In Chapter 5, we discuss NMF models. This includes the choice of the error measure and
of the factorization rank. Because NMF suffers from identifiability issues (see Chapter 4), prac-
titioners often use additional constraints and regularizers within the NMF model. These are
designed depending on the particular application in order to recover the sought unique solution.
We review some of these models. We also link some of these models with well-known data
analysis techniques such as k-means, and PLSA/PLSI.

In Chapter 6, we address the computational complexity issue of NMF, building up on the
results from Chapter 2. We discuss the influence of the error measure as well as of the use of
regularizations and constraints within the model. Not surprisingly, NMF is a difficult problem,
as it allows us to tackle Exact NMF as a particular case. However, as we will see, there are some
differences. For example, Exact NMF for r = 1 is trivial (all columns of the input matrix are
multiples of one another), while some NMF models are NP-hard even for r = 1.

A possible way to get around the two main difficulties of NMF (complexity and identifiabil-
ity) is to make additional assumptions on the input matrix. This is the topic of Chapter 7, where
separable NMF is discussed (recall that separable NMF requires W = X(:,K) for some index
set K). It is an NMF model that is identifiable (see Chapter 4) and can be solved in polynomial
time, even in the presence of noise.

However, because the input matrix does not necessarily admit a separable decomposition,
and NMF is a hard nonconvex optimization problem in general (Chapter 6), practitioners usually
rely on standard nonlinear optimization schemes to tackle NMF. These algorithms are presented
in Chapter 8; they include in particular the MU popularized by Lee and Seung.

Finally, in Chapter 9, we discuss some practical issues when using NMF and present three
more applications of NMF, namely, SMCR, microarray data analysis, and recommender systems.





Chapter 5

NMF models

In this book, what we call an NMF model is an optimization model that requires the choice of

• the variables (in the standard NMF model, the factors W and H),

• the objective function (such as the standard least squares error ∥X − WH∥2F ) with or
without regularizers (such as ∥H∥1 to induce sparse solutions), and

• constraints on the variables (such as nonnegativity of W and H in the standard NMF
model, and orthogonality with HH⊤ = I in the ONMF model).

Over the years, many NMF models have been introduced. The goal of this chapter is to review
the most important ones and explain which model is the most appropriate in which situation. This
is a key challenge when using NMF in practice.

The main motivation for designing various NMF models is identifiability: introducing prior
knowledge within a model increases the chances of obtaining the sought solution. Let us quote
Vincent et al. [470]:

Guiding separation improves the accuracy of the parameter estimates, which in turn
improves separation.

In the paper of Paatero and Tapper [371] (1994), it is mentioned that

With nontrivial regularizers, the degeneracy of an NMF problem usually disappears.
The solution of NMF is unique.

For example, in multispectral imaging, the number of sources, r, is sometimes larger than the
ambient dimension, m. Since the nonnegative rank is bounded by the ambient dimension (The-
orem 3.1), we have rank+(X) ≤ m < r. Hence the NMF cannot be unique without additional
constraints because some columns of W and/or rows of H can be set to zero; for example one
feasible solution is X = [Im, 0m×r−m][X; 0r−m×n]. Therefore, one has to impose additional
constraints to obtain meaningful solutions. In this case, possible options are to look for a sparse
factor H (Section 4.3.4) or a factor W with minimum volume (Section 4.3.3).

Organization of the chapter This chapter is divided into five parts. The first part dis-
cusses the choice of the error measure D(X,WH) in NMF which is related to the statistical
properties of the noise present in the data set (Section 5.1). The second part briefly discusses the
choice of the factorization rank r, also know as the order of the model (Section 5.2). Selecting
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the order of an NMF model is a difficult task. The third part (Section 5.3) discusses regularized
NMF models, where regularization terms are added to the objective function to promote some
structures on the factors. The fourth part (Section 5.4) discusses NMF variants that add con-
straints into the NMF model; it extends Section 4.3, where several such models were introduced,
namely orthogonal, separable, min-vol, and sparse NMF. Finally, in Section 5.5, NMF is put
into perspective by providing links with other data analysis models, namely (nonnegative) PCA,
(spherical) k-means clustering, PLSA/PLSI, and neural networks. We conclude with take-home
messages.

5.1 Error measures
As already mentioned in the introduction of this book (Chapter 1), one defining characteristic of
an LRMA model is the choice of the error measure, D(X,WH), used to evaluate the quality of
the approximation,WH , ofX . Ideally, this choice should be dictated by the statistical properties
of the noise added to the low-rank matrix. However, in practice, the distribution of the noise is
usually unknown, while the linear model, X = WH , is only a model (“all models are wrong”;
see the discussion in the introduction of this book and in Section 9.2). Therefore, in most cases,
one needs to rely on some strategy to decide which error measure to use. The choice of the error
measure is of course not specific to NMF, nor LRMA, and is faced when designing any regression
model. Note that the error measure is also referred to as the objective/loss/cost function, or the
data fitting term.

This section is organized as follows. We first explain how error measures are obtained as
maximum likelihood estimators of statistical distributions of the noise (Section 5.1.1). Then we
focus on the choice of the error measure in practice (Section 5.1.2). Finally, we discuss in more
detail beta-divergences, which are the most widely used in the NMF literature (Section 5.1.3),
and for which we will present algorithms in Chapter 8.

5.1.1 Statistical model and maximum likelihood

Let us briefly recall the principle of maximum likelihood estimators. Suppose that the entry at
position (i, j) of matrix X contains the observations of a random variable, X̃ij , defined by the
parameter (Ŵ Ĥ)ij . For example, these random variables may follow a linear mixing model
with additive noise, X̃ = Ŵ Ĥ + Ñ , where the factors Ŵ ≥ 0 and Ĥ ≥ 0 are deterministic, but
unknown, and the noise is i.i.d. Gaussian with mean 0 and standard deviation σ. In this case it is
equivalent to say that the entries of X̃ follow a Gaussian distribution,

X̃ij ∼ N
(
(Ŵ Ĥ)ij , σ

)
for all i, j and some σ > 0.

Thus the probability density function of X̃ij is

p
(
X̃ij ; (Ŵ Ĥ)ij , σ

)
=

1√
2πσ

e−
1

2σ2 (X̃ij−(Ŵ Ĥ)ij)
2

.

Since the noise is assumed to be i.i.d., the likelihood of the sample X with respect to (Ŵ Ĥ)ij
and σ is

ℓ(X; Ŵ Ĥ, σ) =
∏
i,j

p(Xij ; (Ŵ Ĥ)ij , σ). (5.1)

Given a sample X , the unknown parameters, Ŵ , Ĥ , and σ, can be estimated by solving the
optimization problem

max
W≥0,H≥0,σ

ℓ(X;WH,σ).
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The solution41 to this optimization problem is known as the maximum likelihood estimator for
(Ŵ , Ĥ). Most NMF models are written in a simpler form, minimizing the logarithm of the
likelihood multiplied by −1 (up to some multiplicative and additive constant factors that do not
influence the optimization problem) and can be written as

min
W≥0,H≥0

D(X,WH).

For the example above with i.i.d. Gaussian noise,

D(X,WH) =
∑
i,j

(X −WH)2ij = ∥X −WH∥2F ,

which is obtained by taking the logarithm of (5.1), and simplifying the expression (in particular,
getting rid of the parameter σ > 0 which does not influence the estimation of Ŵ and Ĥ). This is
the well-known least squares objective function.

Let us list a few other important examples where we assume i.i.d. noise, unless specified
otherwise. We do not explicitly derive the likelihood functions and the corresponding NMF
objective functions; these can be found in standard textbooks.

• Poisson. The entries of X̃ are distributed as a Poisson distribution of parameter (Ŵ Ĥ)ij ,
that is, for all i, j,

P(X̃ij = k) =
(Ŵ Ĥ)kij

k!
e−(Ŵ Ĥ)ij for k = 0, 1, 2, . . . .

This is not an additive noise. The Poisson distribution makes particular sense for count
data, such as vector of word counts used in text mining (see Section 1.3.3) and this model
is closely related to PLSI/PLSA (see Section 5.5.4). It is also used in imaging, motivated
by the fact that capturing an image is a photon-counting process with Poisson noise; see
[232] and the references therein. Note that (Ŵ Ĥ)ij = 0 implies X̃ij = 0 since we
have P(X̃ij = 0) = 1 for (Ŵ Ĥ)ij = 0. This implies that positive entries of the sample
X cannot be approximated by zeros, that is, X(i, j) > 0 implies (Ŵ Ĥ)ij > 0. The
maximum likelihood estimator corresponding to the Poisson distribution is obtained by
minimizing the β-divergence for β = 1 between the matrices X and WH . It is defined as

D(X,WH) =
∑
i,j

Xij log

(
Xij

(WH)ij

)
−Xij + (WH)ij

and is known as the Kullback–Leibler (KL) divergence between X and WH . The β-
divergences are discussed in Section 5.1.3.

• Uniform. The entries of X̃ follow the distribution

X̃ij ∼ U((Ŵ Ĥ)ij − u, (Ŵ Ĥ)ij + u) for all i, j,

where U(a, b) is the uniform distribution in the interval [a, b]. The corresponding maxi-
mum likelihood estimator is obtained by minimizing the componentwise infinity norm42

between X and WH , that is,

D(X,WH) = ∥X −WH∥∞ = max
i,j
|X −WH|ij .

41Of course, computing this solution might be difficult (see Chapter 6), and the solution might not be unique (see
Chapter 4), and these are two main issues in practice.

42In the linear algebra community, the infinity norm of matrix A is defined as max∥x∥∞≤1 ∥Ax∥∞. We use in
this book the terminology for the componentwise infinity norm of a matrix, as is often done in the machine learning
community. We make the same choice for the ℓ1 norm.
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This is an additive noise, X̃ = Ŵ Ĥ + Ñ with Ñij ∼ U(−u, u) for all i, j. Such a
noise model makes sense, for example, for quantized low-rank matrices, that is, low-rank
matrices whose entries are rounded up to some accuracy. For example, rounding entries
of a matrix to the nearest integer is closely related to adding uniform noise in the interval
[−0.5, 0.5]; see for example [209].

• Laplace. The probability density function of the Laplace distribution is

p
(
X̃ij ; (Ŵ Ĥ)ij , σ

)
=

1

2σ
e−

1
σ |X̃ij−(Ŵ Ĥ)ij | for all i, j,

and the corresponding maximum likelihood estimator is obtained by minimizing the com-
ponentwise ℓ1 norm of the residual, that is,

D(X,WH) = ∥X −WH∥1 =
∑
i,j

|X −WH|ij .

This is an additive noise with X̃ = Ŵ Ĥ + Ñ where Ñij ∼ L(0, σ) for all i, j, where
L(a, b) is the Laplace distribution of mean a and diversity b. In practice, the component-
wise ℓ1 norm is often used in the presence of outliers as it is less sensitive to large de-
viations than the Frobenius norm43 and more generally than β-divergences [273]. This
problem is closely related to robust PCA; see [212] and the discussion therein.

• Multiplicative gamma. All models above, except for the Poisson distribution, correspond
to additive noise. Let us consider the multiplicative noise model X̃ = (Ŵ Ĥ) ◦ N where
N is the noise. If the noise N follows a gamma distribution of mean 1, the corresponding
maximum likelihood estimator is obtained by minimizing the β-divergence for β = 0
between X and WH . It is defined as

D(X,WH) =
∑
i,j

Xij

(WH)ij
− log

(
Xij

(WH)ij

)
− 1

and is known as the Itakura–Saito (IS) divergence; see Section 5.1.3 for more details. As
we will see, this model is invariant to scaling, that is, D(γX, γWH) = D(X,WH) for
any γ > 0, and is particularly meaningful for audio data sets [158].

• If the noise is additive Gaussian, independently but not identically distributed, that is,
X̃ij ∼ N ((Ŵ Ĥ)ij , σij) for all i, j and for some σij ≥ 0, then the maximum likelihood
estimator is obtained by minimizing

D(X,WH) =
∑
i,j

Pij(X −WH)2ij , where Pij =
1

σ2
ij

. (5.2)

This is a WLRA problem. Intuitively, the larger the variance, the less importance is given
to the corresponding entry in the objective function. If the entry at position (i, j) is not
observed, then σij = ∞ and a weight of zero is associated with that entry. This corre-
sponds to the low-rank matrix completion problem with noise: given a low-rank matrix
contaminated with i.i.d. Gaussian noise and with missing entries, recover these missing
entries (approximately); see Section 9.5 for a numerical example. If the variance is zero,
there is no noise and the corresponding entry of X should be approximated perfectly. For
other types of noise such as the ones mentioned above, weighted variants can be derived
to take into account independently but not identically distributed noise.

43Recall that, in one dimension, argminx∈R
∑

i |ai − x| is the median of the ai’s, while argminx∈R
∑

i(ai − x)2

is their average.
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Table 5.1 summarizes some important objective functions for NMF depending on the distri-
bution of the data as discussed above. The table includes Tweedie distributions that correspond
to the maximum likelihood estimators obtained by minimizing β-divergences between X and
WH; we refer the reader to [98, 329, 421] for more details on these distributions.

Table 5.1. Several error measures for NMF and the corresponding distribution.

Acronym D(X,WH) Distribution†

ℓ2-NMF [303] ∥X −WH∥2F =
∑

i,j(X −WH)2ij Gaussian

Weighted NMF [179]
∑

i,j Pij(X −WH)2ij
independently distributed

entries, Gaussian

ℓ1-NMF [273] ∥X −WH∥1 =
∑

i,j |X −WH|ij Laplace

ℓ∞-NMF [209] ∥X −WH∥∞ = maxi,j |X −WH|ij Uniform

KL-NMF [303] D1(X,WH) Poisson

IS-NMF [158] D0(X,WH) multiplicative Gamma

β-NMF [160] Dβ(X,WH) Tweedie distributions
†If not specified, the noise is i.i.d.

Discussion For nonnegative input data, additive noise of mean 0 (such as Gaussian or
Laplace; see above) is not always reasonable since this implies a positive probability of observing
negative entries in the input matrix [86]. This includes all NMF models using componentwise
ℓp norms, which we refer to as ℓp-NMF, with D(X,WH) = minW≥0,H≥0

∑
i,j |X −WH|pi,j .

In particular, such models do not make much sense for sparse data sets (such as document data
sets) or data sets with many small entries (such as audio data sets). For document and audio data
sets, the β-divergences with β ∈ [0, 1] have been shown to perform much better; see for exam-
ple [158, 201] and the references therein. However, for data sets with mostly positive entries
(such as images), ℓp-NMF are reasonable and have been used successfully in many scenarios.

The ℓp norms and β-divergences are the most popular error measures for NMF. However,
many other measures have been used, including Bregman divergences [433], α-divergences [98],
the earth mover’s distance [405], and γ-divergences [335], to cite a few. We do not cover them
in this book and refer the reader to the corresponding papers for more information. We also
refer the reader to [241] for a nice introduction to the topic in the context of low-rank tensor
approximation, with examples of maximum likelihood estimators for the Bernoulli distribution
for binary data and the Rayleigh distribution for nonnegative continuous data.

5.1.2 Choice of the error measure

Choosing the right objective function for your NMF model can be crucial. Let us quote Lu, Yang,
and Oja [329]:

The performance of NMF can be improved by using the most suitable β-divergence,
not restricting to the squared Euclidean distance or KL divergence, as in the paper
of Lee and Seung [303].

To the best of our knowledge, there are currently mainly four ways to handle this situation.
Let us briefly discuss them.
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Empirical choice The user chooses empirically the objective function she/he believes is
the most suitable for the application at hand. This is, as far as we know, the simplest and most
widely used approach. For example, as mentioned above, for count data such as document data
sets, the KL divergence is particularly meaningful and often used [86]. For image data sets,
the Frobenius norm is reasonable and easier to handle from a computational point of view (see
Chapter 8) and hence is the most widely used error measure.

Cross validation The objective function is automatically selected using cross validation.
If the ground truth factors (W,H) are known, then they can be used to assess the quality of
solutions computed with different error measures. Otherwise, part of the data set can be hidden;
typically a subset of the entries ofX is randomly selected. Then NMF models are learned on this
data set for different error measures, using a weighted error measure that takes into account the
missing data similarly as in (5.2). Then the model is tested on the remaining entries: how well
can it predict the missing entries? The model that best fits the hidden entries is the one selected;
see [352, 90, 159]. For example,

• for music transcription based on NMF, Vincent, Bertin, and Badeau [469] argued that the
β-divergence with β = 0.5 performs best;

• for hyperspectral images (Section 1.3.2), Févotte and Dobigeon [159] observed that using
β-divergences with β ≈ 1.5 performs best.

Statistical approaches The most suitable objective function is chosen using some sta-
tistically motivated criteria. For example, score matching minimizes the expected squared Eu-
clidean distance between the scores of the true distribution and the model [329]. A maximum
likelihood approach can also be used to assess whether the observed data is more likely to follow
a given distribution [129]. Using this strategy, the authors in [129] showed for example that for
piano and jazz signals, the β-divergence for β ≈ 0 was the most suitable. This is expected since
β = 0 corresponds to the IS divergence and is known to be suitable for audio signals.

Distributional robustness More recently, a distributionally robust NMF (DR-NMF)
model was proposed in [201]. DR-NMF computes an NMF solution that is robust to differ-
ent types of noise distributions. For example, using several β-divergences, DR-NMF looks for a
solution (W,H) that minimizes the maximum value among these β-divergences,44 that is,

min
W≥0,H≥0

max
β∈Ω

Dβ(X,WH),

where Dβ(X,WH) is the β-divergence between X and WH (see the next section for more
details), and Ω is a subset of β’s of interest. This problem can be tackled by minimizing a
weighted sum of the different objective functions where the weights assigned to the different
objective functions are automatically tuned within the iterative process. For example, for audio
signals where both KL and IS divergences are often used, using DR-NMF with Ω = {0, 1} leads
to a low reconstruction error for both IS and KL divergences.

5.1.3 β-divergences

An important class of estimators is based on the β-divergences; see Section 5.1.1 and in particular
Table 5.1. We will mostly focus on this class of error measures in the remainder of this book.

44For DR-NMF to make sense, the objective functions Dβ(X,WH) should be scaled appropriately.
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Given two nonnegative scalars z and y, the β-divergence between z and y is defined as follows:

dβ(z, y) =


z
y − log z

y − 1 for β = 0,

z log z
y − z + y for β = 1,

1
β(β−1)

(
zβ + (β − 1)yβ − βzyβ−1

)
for β ̸= 0, 1.

(5.3)

Figure 5.1 displays the function dβ(z, y) for z = 1 and β = −1, 0, 1, 2, 3.
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Figure 5.1. Illustration of the β-divergences dβ(1, y) for β = −1, 0, 1, 2, 3.

Let us mention two important properties of the β-divergences:

• Convexity. The function dβ(z, y) is convex in the second argument, y, for β ∈ [1, 2].
This implies that Dβ(X,WH) is convex in H for W fixed and vice versa. This makes
it easier to design the alternating optimization strategy, where W and H are optimized
alternatively, for β ∈ [1, 2]; see Chapter 8.

• Scaling. For any γ > 0, z, y ≥ 0,

dβ(γz, γy) = γβdβ(z, y).

This implies that the larger the β, the more sensitive is the β-divergence to large values of
z, and vice versa. In particular, the β-divergence for β = 0, which is the IS divergence,
is invariant to scaling. This means that small and large entries in X are given the same
importance in terms of relative error; for example, approximating 10−3 with 10−6 leads
to the same error as approximating 106 with 103 since only the ratio z

y plays a role in
d0(z, y). This is because the IS divergence corresponds to an underlying noise model
which is multiplicative; see Section 5.1.1. This property is interesting in audio source
separation as low-power frequency bands can perceptually contribute as much as high-
power frequency bands. Moreover, it can be motivated using a meaningful statistical model
generating the data; see [158] for the details.

The β-divergence between two matrices A and B is

Dβ(A,B) =
∑
i,j

dβ
(
Aij , Bij

)
.
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The NMF problem using the β-divergence, which we refer to as β-NMF, is the following: Given
X ∈ Rm×n

+ and r, solve
min

W∈Rm×r
+ ,H∈Rr×n

+

Dβ(X,WH). (5.4)

The three best-known and most widely used β-divergences are the Frobenius norm (β = 2), the
KL divergence (β = 1), and the IS divergence (β = 0).

From Figure 5.1, we observe that, for β ≤ 1, dβ(z, y) goes to infinity as y goes to zero
(because of the term yβ−1). This is related to our observation in Section 5.1.1: in the presence
of Poisson noise (β = 1), a positive entry (here z = 1) cannot be approximated by zero. On
the other hand, as β increases, the β-divergences for y ≤ z decreases. This means that β-NMF
for β ≤ 1 tends to overapproximate the entries of the input matrix, that is, the entries of the
solution WH will be on average larger than those of X , because approximating X by smaller
entries has a larger cost. For β ≥ 1, the opposite behavior is observed and β-NMF will tend to
underapproximate the input matrix. This is illustrated in the following example.

Example 5.1 (Over-/underapproximations). Let us examine how the value of the parameter β
used in the β-divergence to measure dissimilarity affects the entries of the estimated solution,
WH . For each of 100 independent trials with β = 0 and with β = 2, we generate a new
X using the function sprand(100,100,0.5) of MATLAB and compute a β-NMF (W,H) for
r = 10 via 100 iterations of the MU technique that will be described in Section 8.2; see [Matlab
file: Example51.m]. For β = 0 (IS-NMF), we observe that in all cases

∥max(0,WH −X)∥F
∥X −WH∥F

≥ 99.86% while
∥max(0, X −WH)∥F
∥X −WH∥F

≤ 2.03%,

so that WH overapproximates X in all cases as most entries of WH are larger than X . For
β = 2 (ℓ2-NMF), we observe that in all cases

∥max(0,WH −X)∥F
∥X −WH∥F

≤ 60.21% while
∥max(0, X −WH)∥F
∥X −WH∥F

≥ 79.83%,

so that WH is more balanced around X although it tends to underapproximate it.
In fact, it can be proved that any stationary point (W,H) of ℓ2-NMF satisfies the inequality

∥WH∥F ≤ ∥X∥F [194, Theorem 11]; see Section 8.1.2 for the proof. Note that, for β = 1
(KL-NMF), any stationary point (W,H) preserves the row sum and the column sum of X , that
is, WHe = Xe and e⊤WH = e⊤X; see Theorem 6.9 in the next chapter. This implies
that stationary points (W,H) have entries balanced around X since (X − WH)e = 0 and
e⊤(X −WH) = 0.

Domain of dβ(z, ·) and its derivative It is important to note that dβ(z, ·) for z = 0 is
not defined for all values of β:

dβ(0, y) =

{
not defined for β ≤ 0,

1
β y

β for β > 0.

This means that, for NMF, one should use β-divergences for β ≤ 0 only when the input ma-
trix is positive. Table 5.2 provides the domain of dβ(z, y), that is, the values of y such that
dβ(z, y) is defined, depending on the values of β and z. In the context of NMF, Table 5.2 im-
plies, for example, that for β ≤ 1 all positive entries of X must be approximated by positive
entries: Xi,j > 0 implies (WH)i,j > 0, because otherwise dβ(Xi,j , (WH)i,j) is not defined as
dβ(Xi,j , (WH)i,j) goes to infinity as (WH)i,j goes to zero when Xi,j > 0; see also the dis-
cussion in Section 5.1.1 about the Poisson distribution and KL divergence (page 161), and see
Figure 5.1.
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Table 5.2. Domain of dβ(z, ·) depending on the values of β and z.

β ≤ 0 β ∈ (0, 1] β > 1

z = 0 ∅ R+ R+

z > 0 R++ R++ R+

Let us now consider the derivative of dβ(z, y) with respect to y, denoted d′β(z, y); it will
play an instrumental role in designing algorithms and deriving optimality conditions for NMF in
Chapter 8. We have

d′β(z, y) =
∂dβ(z, y)

∂y
= yβ−1 − zyβ−2 for z > 0

and

d′β(0, y) =

{
not defined for β ≤ 0,

yβ−1 for β > 0.

Table 5.3 provides the domain of d′β(z, ·) depending on the values of β and z. The domain of
d′β(z, ·) is contained in the domain of dβ(z, ·); however, they differ when β ∈ (0, 1) and z = 0,
or when β ∈ [1, 2) and z > 0: in these cases, y has to be positive for d′β(z, y) to be defined,
which is not the case for dβ(z, y).

Table 5.3. Domain of d′β(z, ·) depending on the values of β and z.

β ≤ 0 β ∈ (0, 1) β ∈ [1, 2) β ≥ 2

z = 0 ∅ R++ R+ R+

z > 0 R++ R++ R++ R+

5.2 Model-order selection
The choice of the factorization rank, also known as model-order selection, is a long-standing
problem, studied well before NMF was introduced. This is not a problem specific to NMF. Most
data models face this issue; see for example [435] and the references therein. It is beyond the
scope of this book to review this topic. We refer the interested reader to [445, 432, 325] and the
references therein for model-order selection specifically designed for NMF.

Let us briefly mention some model-order selection strategies:

• Expert insight. In some applications, the domain experts might have prior information
on the value of r. This is typically the case when the factors W and H have a physical
meaning. For example, in analytical chemistry (Section 1.4.1), the chemists usually know
the number of chemical components present in the chemical reaction (or at least have
a small range of possible values). Similarly, in hyperspectral unmixing (Section 1.3.2),
the number of materials present in a scene can be estimated. For airborne hyperspectral
images, the materials present in large proportion can sometimes be identified with the
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naked eye. In audio source separation (Section 1.3.4), the model order can also sometimes
be known; for example, in a piano recording, it corresponds to the number of notes used
in the piece.

• Cross validation. For machine learning–related applications, such as facial feature extrac-
tion, text mining (see Section 1.3), or recommender systems (see Section 9.5), the model
order, like the choice of objective function, is typically estimated using cross validation.
Part of the data set is hidden, and the models with different values of r are compared in
terms of how well they predict the hidden entries. In the same spirit, if NMF is used as
a preprocessing step for another data analysis task (for example, classification of faces or
documents), then one can choose the model order that leads to the best performance for
that particular task.

• Statistical approaches. For PCA, numerous approaches exist to select the factorization
rank, for example by looking at the decay of the singular values of the input data matrix.
Again, as for the choice of the objective function, different scores can be used to compare
different models, such as the maximum likelihood; see [435] and the references therein.

5.3 Regularizations
Over the years, numerous regularizations have been proposed in the NMF literature. It is not
possible to list them all and we present here some of the most widely used ones. We refer the
interested reader to [98, 478] and the references therein for more examples. As explained in the
introduction of this chapter, the main motivation behind these regularizations is identifiability:
the goal is to use prior information to refine the NMF model and hence obtain better estimates of
the factors. By design, these regularizers are application dependent, should be carefully thought
of by the practitioners, and should be validated on synthetic and real data sets. As for the choice
of the error measure and the factorization rank, this issue is not specific to NMF; regularizations
for inverse problems date back to Tikhonov [453] (1963).

A class of NMF models that is frequently used is the following:

min
W≥0,H≥0

D(X,WH) + αW fW (W ) + αHfH(H),

where fW (W ) and fH(H) are regularizers that promote solutions with a specific structure, and
αW and αH are positive penalty parameters. If only one of the two factors is regularized (that is,
αW = 0 or αH = 0), these models should be used in combination with some normalization of
W or H; otherwise, because of the scaling degree of freedom, one of the two factors will tend to
zero for most regularizers. For example, for min-vol NMF in Section 4.3.3, we used H⊤e = e,
He = e, or W⊤e = e.

Let us mention a few important examples:

• Minimum-volume. As discussed in length in Section 4.3.3, it makes sense to look for a
factor W that is as close as possible to the data points. This can be achieved by promoting
solutions W with small volume. The most natural regularizer is fW (W ) = det(W⊤W ),
but others are also used, for example fW (W ) = logdet(W⊤W + δIr), fW (W ) =∑

i<j ∥W (:, i) −W (:, j)∥22 [452], or fW (W ) = tr(W⊤(Ir − 1
r ee

T )W ) [367]; the last
two have the advantage of being convex.

• Sparsity. The importance of sparse factors W and H was discussed in Section 4.3.4.
The most widely used regularizer for sparsity is the ℓ1 norm, that is, fW (W ) = ∥W∥1
and/or fH(H) = ∥H∥1 [277]. However, one has to be careful when using such penalty
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terms. Consider the case where we want to promote sparsity in H . This would be, for
example, particularly meaningful for the four applications described in Section 1.3; see
the discussion in Section 4.3.4. As mentioned above, we need to normalize W to avoid
pathological solutions where the entries of H tend to zero and the entries of W tend to
infinity. For example, we could enforce the constraint45 ∥W (:, k)∥2 ≤ 1 for all k. Note
that we prefer not to impose an equality constraint (namely, ∥W (:, k)∥2 = 1 for all k)
in order to keep the feasible set convex. Moreover, the sparsity promoting ℓ1 penalty on
H combined with the scaling degree of freedom of the rank-one factors, W (:, k)H(k, :)
for 1 ≤ k ≤ r, implies that these inequality constraints will be active at optimality. It is
rather common in practice to have rank-one factors that have rather different norms (see
for example the discussion on page 142). For example, if

∥W (:, p)H(p, :)∥2 ≫ ∥W (:, ℓ)H(ℓ, :)∥2 for some p, ℓ,

then ∥H(p, :)∥2 ≫ ∥H(ℓ, :)∥2. Therefore, one should not use the same penalty parameter
for all rows of H , as is done implicitly when using ∥H∥1 =

∑r
k=1 ∥H(k, :)∥1, especially

if one is looking for rows of H with similar sparsity levels. Hence, one should rather use a
penalty term on the norm of the rows of H , such as

∑r
k=1 λk∥H(k, :)∥1 for some penalty

parameters λk > 0 (1 ≤ k ≤ r); see for example [186], where such parameters are tuned
automatically to achieve a desired level of row sparsity. One could also be interested in
having columns of H with a given sparsity level (as is standard in dictionary learning;
see also Section 4.3.4), in which case a penalty of the form

∑n
j=1 λj∥H(:, j)∥1 would be

meaningful.

• Orthogonality. To promote the features W and/or the activations H to overlap as little
as possible, orthogonality can be used. More precisely, one can impose the columns of
W or the rows of H to be orthogonal via the penalty terms fW (W ) = ∥W⊤W − Ir∥2F
and fH(H) = ∥HH⊤ − Ir∥2F , respectively; see also Section 4.3.2. This regularization
encourages the columns of W and/or the rows of H to be as different as possible, which
is the opposite goal of minimum-volume regularizers. When the constraint HH⊤ = Ir is
enforced, NMF becomes a clustering problem; see Sections 4.3.2 and 5.5.3.

• Smoothness. In many applications, the columns of W and/or rows of H are discretizations
of (piecewise) smooth functions; for example, in hyperspectral images, the columns of W
are the spectral signatures of the pure materials [262], and, in audio source separation, the
rows of H provide the activations of the sources over time [157]. In that case, one could,
for example, use a regularizer such as fW (W ) =

∑r
k=1

∑m−1
i=1

(
W (i, k)−W (i+1, k)

)2
,

and similarly for the rows of H .

More specific shapes can also be considered, for example unimodal functions [65, 9] or
polynomials [122, 234]. This can also be achieved using dictionaries W = DY , where D
is a dictionary of functions; see Section 5.4.2.

• Spatial information. When NMF is used for feature extraction among a set of images,
these images are typically first vectorized and stacked next to each other as the columns
or rows of X; see for example Section 1.3 for facial and hyperspectral images. Hence,
the spatial information is lost; see also Remark 4.3 (page 137). Regularizers can be used
to incorporate this information: since the columns of W (or rows of H) should represent
basis images, they should have some spatial coherence. In order to keep the sharp edges

45We could also normalize H , for example using ∥H(k, :)∥∞ = 1 for all k, but this leads to a nonconvex problem in
H even when W is fixed.
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present in images, ℓ1-based regularizers are more suitable; for example, total variation is
often used and has the form

fW (W ) =

r∑
j=1

∑
(i,ℓ)∈E

|W (i, j)−W (ℓ, j)|,

where E is the set of neighboring pixels in the image [255]. This regularization can be
interpreted as a type of smoothness regularizer.

• Graph-based regularization. Assume we want to respect the geometry of the input data
points when they are mapped in the low-dimensional subspace spanned by the columns of
W . In other words, we would like the distances between the columns of H to match, as
best as possible, the distances between the columns of X , that is, if ∥X(:, i) −X(:, j)∥2
is small, we expect ∥H(:, i)−H(:, j)∥2 to be small as well, and vice versa. This can be
achieved using the regularizer

fH(H) =
∑
i,j

P (i, j)∥H(:, i)−H(:, j)∥22,

where P (i, j) is inversely proportional to the distance between the data points i and j.
The matrix P can be computed in different ways, a standard choice being P (i, j) =
e−α∥X(:,i)−X(:,j)∥2 for some parameter α > 0. The entries in the matrix P can be in-
terpreted as the weights in a graph that connects the data points, which explains the name
of this regularized NMF model: graph-regularized NMF [71].

Another setting where this regularizer is useful is when some label information is available
(for example, for a set of facial images, we know subsets of images that contain the same
person), and one can, for example, use P ∈ {0, 1}n×n where P (i, j) = 1 if and only if the
data points i and j have the same label. Such approaches taking into account partial label
information are referred to as semisupervised NMF [305], in contrast with NMF which is
unsupervised.

On top of designing proper regularizers, one also has to tune the values of the parameters
αW and αH . Possible approaches are similar as for the choice of the objective function and
factorization rank (see Sections 5.1.2 and 5.2), for example cross validation, the use of expert
insight, or statistically motivated approaches. Other strategies have also been designed to auto-
matically tune such parameters; see for example the work of Bobin and collaborators for sparse
decompositions [50, 391, 274] and see [516] for min-vol NMF.

5.4 NMF variants
As discussed in this chapter, the standard NMF model can be modified by the choice of error
measure, or the inclusion of constraints or regularizers on the factors. NMF variants are models
that adapt the standard NMF formulation to be more suitable for specific scenarios or applica-
tions. Numerous such variants have been proposed in the literature, and we review here only
some of the most influential ones. Moreover, we do not investigate these models in detail; we
simply present them and explain in which situations they are meaningful. For example, we do
not delve into the important issues of identifiability or complexity; note, however, that some of
these results can be derived from the identifiability and complexity results for NMF, for example,
identifiability results for symNMF (see Section 4.2.6).

In this section, we present several NMF variants that are summarized in Table 5.4 (page 186).
We illustrate their usefulness on several applications, including feature extraction in images,
blind HU, community detection, and topic modeling.
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5.4.1 Orthogonal and projective NMF

As already presented in Section 4.3.2, ONMF requires H⊤H = Ir. This implies that each
column of H has at most a single positive entry, hence each data point is approximated using a
single column of W : ONMF is a clustering problem; see Section 5.5.3 for the details.

Interestingly, if H is fixed in ONMF, the optimal W can be easily computed.

Lemma 5.2. If HH⊤ = Ir, then argminW ∥X −WH∥2F = XH⊤.

Proof. The necessary and sufficient first-order optimality conditions of the convex quadratic
problem minW ∥X −WH∥2F are given by

∇W ∥X −WH∥2F = 2(X −WH)H⊤ = 0,

and hence W = XH⊤ at optimality since HH⊤ = Ir.

Note that Lemma 5.2 does not require W , H , or X to be nonnegative. Of course, if H ≥ 0
and X ≥ 0, then W = XH⊤ ≥ 0. Lemma 5.2 shows that, in ONMF, the columns of W are
linear combinations of the data points. Since H has orthogonal rows, each data point is used in
the linear combination of a single column of W , and the columns of W can be interpreted as
cluster centroids.

Lemma 5.2 implies that ONMF using the Frobenius norm can be equivalently formulated as

min
H≥0,HH⊤=I

∥X −XH⊤H∥F .

This motivated Yuan and Oja [497] and Yang and Oja [490] to introduce projective NMF by
relaxing the orthogonality constraint on this reformulation:

min
H≥0

∥X −XH⊤H∥F .

Projective NMF is an NMF variant with the constraint W = XH⊤. Projective NMF allows data
points to be assigned to more than one cluster and hence can be interpreted as a soft clustering
model. The entries of H in projective NMF provide dual information. On the one hand, H(k, j)
tells us the importance of the kth cluster or label to the jth data point, that is, how well the jth
column ofX is represented by the kth column ofW = XH⊤. On the other hand,H(k, j) is also
the weight of the jth data point in the linear combination used to construct the kth centroid. Pro-
jective NMF was shown to provide much sparser solutions than NMF and was used successfully
for clustering tasks [490].

Figure 5.2 provides an illustration of projective NMF applied on the Urban hyperspectral
image. As opposed to ONMF (see Figure 4.10, page 137), projective NMF allows data points
to belong to several clusters. In particular, the last three clusters (second row of Figure 5.2)
correspond to the dirt and two types of grass, and we observe that many pixels contain more than
one of these three endmembers (some pixels contain dirt and grass, many contain the two types
of grass).

Figure 5.3 provides an illustration on the CBCL data set. We observe that projective NMF
obtains a solution that is much sparser than NMF (see Figure 1.2, page 7) but denser than ONMF
as it allows some overlap between features (see Figure 4.11, page 138).

Projective NMF can also be interpreted as a projection operator applied on the rows of X ,
namely, H⊤H projects X onto XH⊤H (hence the name). The rows of X are projected onto
an r-dimensional subspace; this is closely related to nonnegative PCA (see Section 5.5.2). If
the data is streaming or not all samples are observed simultaneously, incoming samples can be
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Figure 5.2. Illustration of projective NMF with r = 6 on the Urban hyperspec-
tral image (see Figure 1.6). We used the MU of Yang and Oja [490] initialized with SPA; see
[Matlab file: projectiveNMF.m]. Each cluster shown above corresponds to a row of H ,
reshaped as an image. The first cluster corresponds to the trees, the second to road and dirt, the
third to roof tops, the fourth to dirt, and the last two to two different types of grass. [Matlab
file: ProjectiveNMF_Urban.m].

projected directly onto this r-dimensional subspace via the projector computed from the previ-
ously observed samples, H⊤H , since X(j, :) ≈ X(j, :)H⊤H for all j.

5.4.2 Dictionary-based, convex and separable NMF

Dictionary-based NMF requires W = DC ≥ 0 where D is a given dictionary. For example,
in hyperspectral imaging, there exist libraries of spectral signatures from which the columns of
W can be constructed from [256, 101]. Another example is the use of Gaussian radial basis
functions to construct Raman spectra [500].

Convex NMF [133] is a self-dictionary NMF model with D = X and requires the basis el-
ements, W , to be conic combinations46 of the data points, that is, W = XC for some C ≥ 0.
Convex NMF is equivalent to archetypal analysis [110] with the additional constraint that the
linear combinations are convex, that is, C⊤e = e. Convex NMF is a rather restrictive model.
However, it has the advantage of being more easily interpretable as each basis vector is a linear
combination of data points. This model can be relaxed, allowing C to contain small negative
entries so that W can extend beyond cone(X) [118]. Convex NMF is closely related to con-
cept factorization where the input matrix is not required to be nonnegative; see [506] and the
references therein.

46The name convex NMF may be confusing since the linear combinations are not convex but conic. However, we keep
the name introduced in [133].
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Figure 5.3. Illustration of projective NMF with r = 49 applied on the transpose of
the pixel-by-face CBCL data set with r = 49 (see Figure 1.2, page 7). We used the MU of Yang
and Oja [490] initialized with SPA; see [Matlab file: projectiveNMF.m]. The basis vectors
shown on the image were extracted by projective NMF applied onX⊤; hence the computed basis
vectors W satisfy W ≥ 0 and X ≈WW⊤X . [Matlab file: CBCL_projectiveNMF.m].

Separable NMF, which we have discussed previously in Section 4.3.1, is a special case of
convex NMF where the conic combinations of data points have only one nonzero weight. That
is, W = X(:,K) for some index set K, so that the columns of W are extreme rays of the conical
hull of the columns of X; see Chapter 7 for more details.

5.4.3 Semi-nonnegative matrix factorization

Semi-nonnegative matrix factorization (semi-NMF) is a variant of NMF where the nonnegativity
constraints on the factor W are relaxed, that is, semi-NMF only requires the factor H to be
nonnegative in the decomposition X ≈ WH [133]. Hence semi-NMF can be meaningfully
applied to an input matrix X with negative entries. Like NMF, semi-NMF approximates the
columns of X with conic combinations of the columns of W since H ≥ 0; see Section 2.1.
From a complexity point of view, this problem is rather different from NMF for at least two
reasons. First, the semi-nonnegative rank of a matrix can be bounded by a function of its rank.
This is not true for the nonnegative rank of a matrix; see Chapter 3. The semi-nonnegative rank
is defined as the smallest r such that an exact semi-NMF ofX exists, that is, X =WH for some
W with r columns and H ≥ 0 with r rows. It turns out that the semi-nonnegative rank is equal
to the rank or the rank plus one and can be computed in polynomial time [92, 203]. Moreover,
the semi-nonnegative rank of a nonnegative matrix X is always equal to its rank.47 Second, for
a nonnegative matrix X , the semi-NMF problem using the Frobenius norm as the error measure
can be solved in polynomial time using a simple transformation of the truncated SVD. Recall
that a nonnegative square matrix A is irreducible if and only if the directed graph induced by A

47Simply construct a factorization X = WH where H is made of rank(X) linearly independent rows of X .
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(meaning that A is the adjacency matrix of that graph) is strongly connected, that is, there is a
path between every pair of vertices.

Theorem 5.3. [203, Corollary 3.5] Let X ≥ 0 and X⊤X be irreducible. Then an optimal
solution to

min
W,H
∥X −WH∥2F such that H ≥ 0 (5.5)

can be computed in polynomial time.

Proof. Let (Ur, Vr) ∈ Rm×r × Rn×r be such that UrV
⊤
r is an optimal rank-r approximation

of X . The pair (Ur, Vr) can be computed in polynomial time via the truncated SVD; see the
Eckart–Young theorem in the next chapter (Theorem 6.3). Moreover, recall that in the truncated
SVD the columns of Ur (resp. Vr) are the eigenvectors of XX⊤ (resp. X⊤X). Since X⊤X is
irreducible, we can assume w.l.o.g. that Vr(:, 1) > 0 using the Perron–Frobenius theorem [38]:
the eigenvector of an irreducible matrix X⊤X corresponding to the largest eigenvalue has only
positive entries (or only negative ones).

Then, using a simple transformation of (Ur, Vr), let us construct (W,H) such that H ≥ 0
and WH = UrV

⊤
r , which will conclude the proof. We let H(1, :) = Vr(:, 1)

⊤ > 0 and, for
2 ≤ k ≤ r, we let αk be sufficiently large so that

H(k, :) = Vr(:, k)
⊤ + αkVr(:, 1)

⊤ ≥ 0.

The simplest choice is to take the smallest αk’s such that H(k, :) ≥ 0, that is, for 2 ≤ k ≤ r,
take

αk = max
{i|Vr(i,k)<0}

−Vr(i, k)
Vr(i, 1)

.

Then let W (:, k) = Ur(:, k) for 2 ≤ k ≤ r, and

W (:, 1) = Ur(:, 1)−
r∑

k=1

αkUr(:, k),

which gives WH = UrV
⊤
r .

In contrast to the above result, when the input matrix X is allowed to have negative entries,
semi-NMF (5.5) is NP-hard, even for r = 1 [203, Theorem 4.1]. This is also the case for NMF;
see Theorem 6.5 in the next chapter.

Theorem 5.3 shows that, for a nonnegative input matrix, semi-NMF is essentially equivalent
to the truncated SVD. Moreover, the solution obtained following the construction of Theorem 5.3
will in general have a single zero entry in each row of H (except for the first row which is
positive), meaning that almost all data points are reconstructed using all basis vectors. Hence,
like the SVD, semi-NMF does not bring a sparse or an easily interpretable decomposition. For
this reason, it makes more sense to consider regularized or constrained semi-NMF models [203].
In Section 4.3, we discussed four such important models: separable, orthogonal, min-vol, and
sparse NMF. In these four cases, we do not require the matrix W to be nonnegative to obtain
identifiability results but require additional structure on W and/or H (see Table 4.2, page 155).

Figure 5.4 displays the basis vectors of semi-NMF computed from the transpose of the CBCL
data set as described in Section 1.3.1 (where the columns are vectorized gray-level facial images),
leading to a decomposition X ≈ WH where W ≥ 0. Since X ≥ 0, an optimal solution can be
computed via the construction of Theorem 5.3, and we can see that it is dense, like the SVD.
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Figure 5.4. Basis vectors extracted by semi-NMF applied on the transpose of the
pixel-by-faces CBCL data set with r = 49 (see Figure 1.2). These basis vectors W ≥ 0 are
obtained via a simple translation of the truncated SVD basis vectors; see Theorem 5.3. [Matlab
file: CBCL_semiNMF.m].

5.4.4 Sparse NMF

Sparse NMF is one of the NMF models that has attracted the most attention. Numerous models
exist, and regularization is the most common approach to obtain sparser NMF solutions, typically
using the ℓ1 norm; see Section 5.3. In his seminal paper, Hoyer [243] (2004) introduced a sparse
NMF model with the following additional constraints:

spar(H(k, :)) ≥ sH and spar(W (:, k)) ≥ sW for k = 1, 2, . . . , r,

where spar(.) ∈ [0, 1] is a measure of sparsity defined in (4.32) (see page 150) that uses the ratio
of the ℓ1 norm to the ℓ2 norm, and sH and sW are constants in the interval [0, 1] that impose
a minimal sparsity level to the rows of H and the columns of W , respectively. Compared to
the model based on the ℓ0 norm presented in Section 4.3.4, the sparsity measure spar(.) has the
advantage of being continuous; see [449] for a discussion. For example, spar([1, 10−6, 10−6]) >
spar([1, 1, 0]), which makes sense numerically as [1, 10−6, 10−6] is very close to the 1-sparse
vector [1, 0, 0]. Also, spar(x) is invariant to scaling, that is, spar(x) = spar(αx) for any α ̸= 0.
Moreover, it is easy to project a vector onto the closest vector with a given sparsity, that is, to
solve

min
x
∥x− y∥2 such that spar(y) ≥ s,

for a given vector y and sparsity level s.
A possible drawback of Hoyer’s sparse NMF model is that all of the rows ofH must have the

same sparsity level, and all of the columns of W must have the same sparsity level. Of course,
the sparsity level can be chosen to be different for each of these vectors. However, this leads
to a large number of parameters to be tuned. Instead, one can also impose an average sparsity
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Figure 5.5. Illustration of the basis vectors extracted by NMF versus sparse NMF on
the CBCL facial image data set with r = 49. We used the algorithm from [207] (see [Matlab
file: sparseNMF.m]) with SPA as an initialization. For sparse NMF, the columns of W are
imposed to have an average Hoyer sparsity of 85%. The solution of NMF has average Hoyer
sparsity of 69%. The relative error of NMF is ∥X −WH∥F /∥X∥F = 8.07% and of sparse
NMF is 9.33%. Hence for an increase of 1.26% relative error, the sparsity increases by 16%.
[Matlab file: CBCL_sparseNMF.m].

level on the rows of H and columns of W . It turns out one can also efficiently project onto this
set [207]. Figure 5.5 illustrates sparse NMF on the CBCL facial images. Note that the sparsity
measure of Hoyer has been used in other contexts, for example in dictionary learning [449] and
deep neural networks [487].

5.4.5 Affine NMF and nonnegative matrix underapproximation

As we have seen in Section 4.2.5, sparsity on the input matrix may lead to identifiability. Affine
NMF [299], also known as NMF with offset, tries to leverage this observation by considering the
model

X ≈WH + we⊤,

where w is an offset vector that is used to reconstruct all columns of X (because of the vector e
of all ones). If we⊤ is computed before the NMF (W,H) is computed, it makes sense to look
for w such that X − we⊤ ≥ 0, which leads to

w(i) = min
i
X(i, j) for all i.

This implies that Y = X − we⊤ ≥ 0 has at least one zero entry per row, hence the NMF of
Y is more likely to admit a unique NMF; see Section 4.2.5. A similar preprocessing can be
performed on the rows. A different form of preprocessing was proposed in [186]. The data
matrix X is multiplied by a matrix Q such that XQ ≥ 0 is sparse while the inverse of Q is
nonnegative, that is, Q−1 ≥ 0. Hence an NMF of the preprocessed matrix XQ = WH directly
provides an NMF for X =W (HQ−1).

Affine NMF is related to NMU [195], which is an NMF model with the constraintWH ≤ X .
There are two main reasons to consider NMU:

1. NMU provably leads to sparser decompositions since X(i, j) = 0 implies (WH)i,j = 0.
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2. NMU allows NMF to be solved sequentially, like PCA, by computing a single rank-one
matrix each step. The recursive method sets R1 = X and computes

Rk+1 = Rk −W (:, k)H(k, :) ≥ 0 for k = 1, 2, . . . , r,

where W (:, k)H(k, :) is a rank-one NMU of Rk, that is, W (:, k)H(k, :) ≤ Rk. We
refer the interested reader to Section 8.7.1 for more details; see also [Matlab file:
recursiveNMU.m].

For example, Figure 5.6 shows the basis elements extracted sequentially by rank-one NMU
on the CBCL facial images. We observe that NMU extracts more localized factors as the factor-
ization unfolds, because the residual matrices Rk are getting sparser and sparser and so are the
rank-one matrices W (:, k)H(k, :).

Figure 5.6. Basis vectors extracted sequentially by NMU from the CBCL facial
image data set with r = 49; see Figure 5.5 for a comparison with NMF. [Matlab file:
CBCL_NMU.m].

NMU has also been shown to be useful for blind HU [284, 76], medical imaging [286], and
climate data and clustering tasks [447].

5.4.6 Convolutive NMF

One property that is not taken into account by the standard NMF model is the possible corre-
lation between data points. For example, in audio source separation, adjacent columns of X
correspond to the frequency response of an audio signal for adjacent time windows and hence
are highly correlated. This correlation can be accounted for using regularization; see the previ-
ous section. Moreover, correlation can also exist between nonadjacent time windows in audio
signals, because sources typically activate in similar ways over time (possibly with different in-
tensities); for example, a piano note in a piece; see Figure 1.8 (page 11). Figure 5.7 shows the
spectrogram of a bird song containing several repeated patterns in the spectrogram.

Convolutive NMF [423, 424] requires that the sources are activated in the same way over
time. More precisely, it attempts to find r matrices Wℓ ∈ Rm×p

+ (1 ≤ ℓ ≤ r) and a matrix
H ∈ Rr×n

+ such that

X ≈
r∑

ℓ=1

p∑
k=1

Wℓ(:, k)
[
01×(k−1) H(ℓ, 1 : n− k + 1)

]
.
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Figure 5.7. Spectrogram of a bird song [336]; x-axis is time, y-axis is frequency.

The factors H(ℓ, :) (1 ≤ ℓ ≤ r) move toward the right, putting zeros on their left-hand side. This
means that the patterns given in the matrices Wℓ identify the way each source activates over time
and always appear as a block in the data matrix; see Figure 5.8 for an illustration. The parameter
p indicates the maximum time duration of a source when it is activated (p = 3 in Figure 5.8).
Note that for p = 1, NMF and convolutive NMF coincide, hence convolutive NMF generalizes
NMF.

Figure 5.8. Illustration of NMF (r = 5) versus convolutive NMF (r = 2, p = 3).

5.4.7 Symmetric NMF

SymNMF requires W = H⊤, that is, X ≈ WW⊤. SymNMF makes sense only when the input
matrix is symmetric since WW⊤ is symmetric. Let us try to interpret this decomposition. When
a nonnegative matrix X ∈ Rn×n

+ is symmetric, it can be thought of as the adjacency matrix of
a graph where X(i, j) = X(j, i) indicates the strength of the link between nodes i and j. The
simplest case is whenX is binary which corresponds to an unweighted graph. A key task in graph
theory is to find subsets of nodes that are highly connected. In particular, finding subsets of nodes
that are all connected to one another is the celebrated clique problem. More generally, subsets of
nodes that are densely connected are referred to as communities. Finding these communities is a
central problem in large graphs and networks; see for example the survey [167].

SymNMF allows us to perform such a task. SymNMF decomposes X as follows:

X ≈ WW⊤ =

r∑
k=1

W (:, k)W (:, k)⊤;

hence X is decomposed as the sum of r symmetric and nonnegative rank-one matrices
W (:, k)W (:, k)⊤ for k = 1, 2, . . . , r. The nonzero entries of these rank-one matrices correspond
to square submatrices that connect subsets of nodes in the graph. This follows from the additive
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nature of symNMF. In the exact case, when X = WW⊤, X is decomposed into r cliques. This
is similar to the interpretation that Exact NMF decomposes a biadjacency matrix, X , into bi-
cliques; see Section 3.4.4. In summary, each rank-one matrix W (:, k)W (:, k)⊤ in a symNMF of
X corresponds to a subset of nodes that are highly connected. Hence symNMF allows a matrix
to be decomposed into (possibly overlapping) communities. For example, if X(i, j) indicates
the similarity between pixels in an image, performing a symNMF of X provides a soft clustering
of the pixels into homogeneous regions. If X(i, j) indicates the similarity between documents
in a corpus, symNMF classifies these documents into subsets of documents discussing similar
topics; see also [235, 290, 271, 356] and the references therein.

Example 5.4 (Zachary’s karate club). Let us illustrate the capacity of symNMF to split the
nodes of a graph into different communities on a simple example using the Zachary’s karate club
data set [498]. Zachary is a researcher who studied the relationships between the members of a
karate club. Each edge in the graph represents the friendship between two members of the club.
There are 34 members and 78 friendship links. During his study, Zachary observed a dispute
between the administrator and the instructor of the club, which resulted in the instructor leaving
the club to start a new one, taking about half of the original club’s members with him. Apply-
ing symNMF with r = 2 to the symmetric adjacency matrix of this graph, X ∈ {0, 1}34×34,
allows two communities to be identified, where each column of W represents a community.
Note that X(i, j) represents the affinity between i and j, and hence we set X(i, i) = 1 for
i = 1, 2, . . . , n. Figure 5.9 illustrates this decomposition. Using the W computed with [Matlab
file: symNMF_karate], one can easily split the graph into two disjoint communities by assign-
ing node j to cluster 1 if W (j, 1) > W (j, 2) and to cluster 2 otherwise. We obtain

K1 = {1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 17, 18, 20, 22},

which is the instructor’s faction (node 1), and

K2 = {9, 10, 15, 16, 19, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34},

which is the administrator’s faction (node 34). This clustering is consistent with the two groups
within the club; see also [213].

Recall that symNMF leads to a soft clustering: some vertices belong to the two communi-
ties with different intensities. For example, node 9 is rather central in the graph and is shared
among the two communities, with W (9, 1) = 0.32 and W (9, 2) = 0.54. This node is actu-
ally the only one “misclassified” by symNMF in the sense that the person represented by node
9 left the club with the instructor (node 1), not with the administrator (node 34). Note that
Zachary’s analysis based on network flows [498] led to the same classification as symNMF,
namely K1 and K2 as shown above. As expected, W (1, 1) = 1.37 > W (1, 2) = 0.04, indicat-
ing that the instructor (node 1) belongs mostly to the first community, and W (34, 1) = 0.08 <
W (34, 2) = 1.38, which confirms that the administrator (node 34) belongs much more to the
second community.

Completely positive matrices As already pointed out in Section 3.4.8, symNMF is
closely related to the set of completely positive matrices

Cn
+ = {A ∈ Rn×n | A = BB⊤ for some B ≥ 0}.

It is beyond the scope of this book to discuss this very rich topic. We refer the interested reader
to [39, 36] and the references therein.



180 Chapter 5. NMF models

≈ ≈

+ +

Figure 5.9. Illustration of symNMF [461] with r = 2 on the Zachary karate club data
set. On the left: representation of the decomposition in terms of graphs. Edges are represented
using the weights of X (top), W (:, 1)W (:, 1)⊤ (middle), and W (:, 2)W (:, 2)⊤ (bottom). The
width of the edges corresponds to their values in the corresponding matrices, and values smaller
than 0.1 are represented by red edges. On the right: representation of the decomposition in
terms of matrices: X (top),W (:, 1)W (:, 1)⊤ (middle), andW (:, 2)W (:, 2)⊤ (bottom). [Matlab
file: symNMF_karate].
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5.4.8 Nonnegative matrix trifactorization

The NMF model with three factor matrices, referred to as nonnegative matrix trifactorization
(tri-NMF), is the following: Given X ∈ Rm×n

+ , r1, and r2, find W ∈ Rm×r1
+ , S ∈ Rr1×r2

+ , and
H ∈ Rr2×n

+ such that
X ≈WSH.

To make things more concrete, let us interpret this model on a user-by-movie matrix X . Let us
assume that the entries of the matrix X are binary and defined as follows: each row corresponds
to a user and each column to a movie, and X(i, j) = 1 if user i has watched movie j. Applying
NMF on this matrix provides r rank-one matrices W (:, k)H(k, :) (1 ≤ k ≤ r). Each rank-one
matrix identifies a subset of users and a subset of movies that highly interact with each other,
that is, its positive entries correspond to a rectangular submatrix of X with many ones. Tri-
NMF instead finds separately r1 subsets of movies that are watched together (the columns of
W ) and r2 subsets of users that behave similarly (the rows of H), while the matrix S tells us
how these subsets interact together. More precisely, S(k, j) > 0 indicates that the jth subset of
users, corresponding to the positive entries of H(j, :), watches the movies from the kth subset of
movies, corresponding to the positive entries of W (:, k). In fact, in tri-NMF, X is approximated
as follows:

X ≈
r1∑
k=1

r2∑
j=1

W (:, k)S(k, j)H(j, :).

In other words, tri-NMF identifies communities of users that have a similar behavior (in the
sense that they watch the same movies) and communities of movies that are similar (in the sense
that they are watched by the same people), while connecting these communities through the
nonnegative matrix S. Another application of tri-NMF is text mining (see Section 1.3.3), where
it finds subsets of documents containing the same words (the columns ofW ) and subset of words
appearing in the same documents (the rows of H) and links these subsets via the matrix S.

Tri-NMF does not in general have a unique solution. For example, letting r1 ≥ r2, we have

WSH =
(
WS 0m×(r1−r2)

)︸ ︷︷ ︸
W ′

(
Ir2

0(r1−r2)×r2

)
︸ ︷︷ ︸

S′

H︸︷︷︸
H′

for any tri-NMF (W,S,H). Hence tri-NMF needs additional constraints or regularizations such
as sparsity. In Section 5.4.10, we briefly discuss deep NMF, which is a generalization of tri-NMF.

Tri-ONMF A particular tri-NMF variant that has attracted attention is orthogonal nonnega-
tive matrix trifactorization (tri-ONMF) [132], where W is required to have orthogonal columns
and H is required to have orthogonal rows. In other words, the factors are constrained so that
W⊤W = Ir1 and HH⊤ = Ir2 . Recall that orthogonality together with nonnegativity implies
that the columns of W and the rows of H have disjoint supports; see Lemma 4.39. In the con-
text of the user-by-movie matrix, this means that tri-ONMF imposes that each user and each
movie belongs to a single subset: tri-ONMF finds disjoint communities of users and movies, and
connects them through the matrix S; see for example [82].

5.4.9 Symmetric nonnegative matrix trifactorization

Symmetric nonnegative matrix trifactorization (tri-symNMF) enriches the symNMF model with
a third factor matrix S: Given a symmetric nonnegative matrix X ∈ Rm×m

+ and a factorization
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rank r, it looks for a nonnegative matrix W ∈ Rm×r
+ and a symmetric nonnegative matrix

S ∈ Rr×r
+ such that

X ≈ WSW⊤.

The interpretation of this model is a combination of the interpretations of symNMF and tri-NMF.
As for symNMF, the columns of W identify communities, that is, highly correlated items in the
data set. As for tri-NMF, tri-symNMF allows these communities to interact via the factor S. The
entry W (j, k) can be interpreted as the membership indicator of item j for community k. The
entry S(k, ℓ) is the strength of the connection between communities k and ℓ. We have

X(i, j) ≈ W (i, :)SW (j, :)⊤ =

r∑
k=1

r∑
k=1

W (i, k)S(k, ℓ)W (j, ℓ)

so that the value X(i, j) reflects the memberships of items i and j in the different communities
and how these communities interact together [475, 503].

5.4.9.1 Topic modeling

Let us discuss further the tri-symNMF model in the context of topic modeling. In this application
area, the word-by-document matrix X is typically far from a low-rank matrix, and it does not
follow the NMF model X ≈ WH very closely. Let us briefly explain why. In the NMF model,
an observed document X(:, j) ∈ Rm for j ∈ {1, 2, . . . , n} is a vector of word counts, that is,
X(i, j) is the number of times word i appears in this document. The vector X(:, j) is a sample
of a random variable x̃j ∈ Rm. The distribution of x̃j is such that E(x̃j) = Ŵ Ĥ(:, j) where
(Ŵ , Ĥ) are deterministic but unknown parameters to be estimated; see Section 5.1.1.

In the context of topic modeling, these parameters can be interpreted as follows:

• The columns of Ŵ correspond to topics. Assuming w.l.o.g. that the entries in each column
of Ŵ sum to one, Ŵ (i, k) is the probability of picking the word i when discussing the
topic k.

• The vector Ĥ(:,j)

||Ĥ(:,j)||1
indicates the proportion of each topic discussed in the jth document,

while ||Ĥ(:, j)||1 equals the number of words present in the document.

This model is closely related to PLSA/PLSI. In fact, we show in Section 5.5.4 the equivalence
between PLSA/PLSI and NMF based on the KL divergence. Such models make sense for long
documents, so that, for all j, the standard deviation of x̃j is not too large and ĥj can be estimated
accurately. However, most documents do not use many of the words associated with a topic
they discuss, and hence X(:, j) ≈ Ŵ Ĥ(:, j) is not satisfied for most documents. In particular,
short documents (for example, tweets) cannot be well-approximated in this way, even when they
discuss only one topic.

However, even short documents provide an important piece of information, namely, they
indicate the words that occur together. This information can be found in the word co-occurrence
matrix XX⊤. The entry (XX⊤)i,j is equal to the number of different combinations of the
words i and j appearing in the same document. The symmetric matrix XX⊤ can be interpreted
as the weighted adjacency matrix of a graph connecting nodes corresponding to the words in the
dictionary. The communities in the graph should correspond to topics, that is, sets of words that
are highly connected.

Let us briefly explain why applying tri-symNMF on XX⊤ makes sense for a certain class of
probabilistic topic models. Let the matrix Ŵ ∈ Rn×r

+ be a deterministic, but unknown, word-
by-topic matrix whose entry at position (i, k) contains the probability for word i to be used in
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topic k. Observe that Ŵ plays the same role as for NMF. Let the vector h̃ be a random variable
corresponding to the proportions of the topics discussed within a document. Then the columns
of X are assumed to be generated as follows: for j = 1, 2, . . . , n,

1. let the vector H(:, j) ∈ ∆r be a sample of the random variable h̃;

2. X(:, j) is the sample of a multinomial distribution of parameters ŴH(:, j), that is, the
probability to pick the ith word in the dictionary is given by (ŴH(:, j))i. The number of
words sampled per document is not important, as long as there are least two words picked
within each document.

There are two key differences of the above model with NMF:

• The columns of X are sampled from the same distribution with the same parameters;
for example, h̃ could follow a Dirichlet distribution, as in the latent Dirichlet allocation
model [47].

In NMF, the columns of X are sampled from the same distributions but with different
parameters, namely with parameters Ŵ Ĥ(:, j) for the jth column of X .

• When the number of words sampled in the j document, e⊤X(:, j), is not sufficiently large,
we will not have

X(:, j)

e⊤X(:, j)
≈ ŴH(:, j). (5.6)

This means that, as opposed to NMF, the above model does not need (5.6) to be satisfied,
because it does not require the number of words in each document to be sufficiently large
to make sense.

Finally, as the number n of sampled documents goes to infinity, XX⊤ gets closer to
E(Ŵ h̃h̃⊤Ŵ⊤), up to a constant factor: we have

lim
n→∞

XX⊤

e⊤XX⊤e
= E

(
Ŵ h̃h̃⊤Ŵ⊤

)
= Ŵ E

(
h̃h̃⊤

)
︸ ︷︷ ︸

=S

Ŵ⊤,

where S ∈ Rr×r is the topic-by-topic matrix, which is the second-order moment of h̃. If the
number of documents observed is sufficiently large, the use of the tri-symNMF,

XX⊤

e⊤XX⊤e
≈ ŴSŴ⊤,

is justified by the probabilistic topic models as described above. We refer the interested reader
to [14] for more details.

We will see in Section 7.8 how the matrices Ŵ and S can be recovered fromX in polynomial
time under the separability assumption. Separability requires that, for each topic, there exists a
so-called anchor word associated only to that topic. An anchor word has a positive probability to
be observed for only one topic. Mathematically, it requires Ŵ⊤ to be separable (Definition 4.10,
page 107), that is, for each topic k, there exists a word i such that Ŵ (i, k) > 0 while Ŵ (i, p) = 0
for all p ̸= k.

The idea of working with XX⊤ instead of X can be extended to higher-order statistics by
considering the tensors of the co-occurrences of more than two words. We refer the interested
reader to [260] for more on this topic.
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Other applications Tri-symNMF is also particularly meaningful for the identification
of hidden Markov models [170] and for detecting overlapping and correlated communities in
graphs [246]. Tri-symNMF is closely related to the mixed membership stochastic block model
[5] where the observation X is binary, and X(i, j) is a Bernoulli distribution of parameter
(WSW⊤)ij [340, 374, 1, 246]. We also refer the interested reader to the discussion in the
survey paper [170], and the references therein.

5.4.10 Multilayer/deep NMF

Let us provide another interpretation of tri-NMF. A tri-NMF of X ≈ WSH can be interpreted
as two NMFs: X ≈ W ′H = WH ′ with W ′ = WS and H ′ = SH . Each NMF has a
different basis, namely W versus WS, and different activations, namely, SH versus H . The
basis elements W ′ =WS are constructed as nonnegative linear combinations of the columns of
W . Hence the columns ofW ′ are denser than that ofW (except for columns ofW ′ corresponding
to columns of S with a single nonzero entry); see Figure 5.10 for an illustration on the CBCL
face data set. The columns of W can be interpreted as the atoms of a dictionary, and W ′ is
constructed with this dictionary. Hence tri-NMF can also be interpreted as a dictionary-based
NMF model (see Section 5.4.2) where the dictionary is learned from the data.

Figure 5.10. Illustration of tri-NMF (deep NMF with three factor matrices) X ≈
WSH with r1 = 49 and r2 = 25 on the CBCL face data set: on the left, W ∈ R361×49

+ ; on
the right, W ′ = WS ∈ R361×25

+ . Since W ′ = WS, features on the right (W ′) are obtained
via nonnegative linear combinations of features from the left (W ). A similar figure can be found
in [496, Figure 2], where three layers are used. [Matlab file: CBCL_triNMF.m].

Deep NMF, also know as multilayer NMF, generalizes tri-NMF by considering more than
three factors matrices:

X ≈WH1H2 . . . Ht.

This allows several layers of features to be extracted, namely W , WH1, WH1H2, . . . , that be-
come denser and denser as the factorization unfolds. Hence W contains rather localized features
which are combined progressively within the layers of deep NMF to construct the final high-
level features WH1 . . . Ht−1 that linearly reconstruct the data set with the weight factor Ht.
As noted above for tri-NMF, such models are typically highly nonunique and require additional
constraints or regularizations such as sparsity [228] (sparse NMF was used to construct the solu-
tion in Figure 5.10). We refer the interested reader to the recent survey [117] for more details on
deep NMF.
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5.4.11 Other variants

Other NMF variants include the following:

• Binary and Boolean NMF. For a binary input matrix, binary and Boolean NMF impose
that W and H have binary entries [504]. Moreover, Boolean NMF, also known as the
discrete basis problem [344], uses a Boolean sum, that is, a ⊕ b = max(a, b), so that
Boolean NMF requires one to approximate X with min(WH, 1) where the entries of W
and H are binary. This problem is closely related to the rectangle covering problem and
the Boolean rank; see Sections 3.4.3 and 3.4.4.

• Interval-valued NMF. The entries of X are intervals rather than scalars [314, 282], and
the goal is to compute WH whose entries fall into these intervals.

• Kernel NMF. Inspired by kernel methods, NMF is applied to a nonlinear transformation
of the data points, Φ(X(:, j)) for all j [501, 67].

• Bilinear NMF. In blind HU (see Section 1.3.2), if the light hits two materials before being
measured, its spectral signature is equal to W (:, k) ◦W (:, ℓ), where W (:, k) and W (:, ℓ)
are the spectral signatures of these two materials. Taking this nonlinear effect into account
leads to the NMF model

X(:, j) ≈
r∑

k=1

W (:, k)H(k, j) +
∑
k<ℓ

(
W (:, k) ◦W (:, ℓ)

)
H◦(k, ℓ, j) for all j,

where W,H ≥ 0, and H◦(k, ℓ, j) ≥ 0 is the intensity of the interaction between ma-
terials k and ℓ in pixel j. This model is referred to as the bilinear mixing model and is
closely related to the Nascimento model which was introduced in [362]. In blind HU, ad-
ditional sum-to-one constraints are typically imposed onH andH◦; see [136] for a survey
on nonlinear unmixing models. We refer the interested reader to [126] for a discussion
on the identifiability of this model and to [275] for a provably correct algorithm under a
separability-like assumption.

• Online NMF. It updates the factors of NMF taking into account continuously arriving data
samples, while not storing past data samples; see [507] and the references therein.

Moreover, there are many variants that are combinations of the above models; for example
sparse symNMF [30], sparse separable NMF [359], separable convolutive NMF [123], kernel
NMU [285], or separable tri-symNMF (Section 7.8), and regularizations can also be incorpo-
rated. There is a close link between regularizations and NMF variants. In particular, many
NMF variants are solved using penalty approaches which in turn amount to solving regular-
ized NMF models. For example, symNMF can be solved via NMF by adding the penalty term
∥W − H⊤∥2F [290]. Designing NMF models tailored to particular applications is still an ac-
tive area of research; see for example [463] for a recent model where a temporal NMF problem
with Wasserstein metric loss is proposed to tackle motion segmentation in biological imaging
scenarios, [166] where NMF is generalized for input matrices where the entries are quaternions
in order to deal with spectropolarimetric images, and [218] for designing an NMF model to deal
with ordinal data, that is, the entries of X belong to ordered categories such as movie ratings that
belong to {0, 1, . . . , 5} (0 means that the user did not watch the movie).

Table 5.4 summarizes the NMF variants we have discussed in this chapter.

5.5 Models related to NMF
In this section, we present several well-known data analysis models and explain how they are
related to NMF variants, namely PCA (Section 5.5.1), nonnegative PCA (Section 5.5.2), k-means
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Table 5.4. NMF variants for a given data matrix X ∈ Rm×n and a factorization rank
r. Unless specified otherwise, X ≈WH , W ∈ Rm×r, and H ∈ Rr×n.

Name Model

NMF W ≥ 0, H ≥ 0

ONMF W ≥ 0, H ≥ 0, HH⊤ = Ir

projective NMF W = XH⊤, H ≥ 0

convex NMF W = XC, C ≥ 0, H ≥ 0

separable NMF W = X(:,K) with |K| = r, H ≥ 0

dictionary NMF W = DC ≥ 0, D dictionary, H ≥ 0

semi-NMF H ≥ 0

sparse NMF W ≥ 0, H ≥ 0, W and/or H sparse

affine NMF X ≈WH + we⊤ , W ≥ 0, H ≥ 0, w ≥ 0

NMU WH ≤ X , W ≥ 0, H ≥ 0

convolutive NMF X ≈
∑r

ℓ=1

∑p
k=1Wℓ(:, k)

[
01×(k−1) H(ℓ, 1 : n− k + 1)

]
,

Wℓ ∈ Rm×p
+ (1 ≤ ℓ ≤ r), H ∈ Rr×n

+

symNMF W = H⊤ ≥ 0

tri-NMF X ≈WSH , W ∈ Rm×r1
+ , S ∈ Rr1×r2

+ , H ∈ Rr2×n
+

tri-ONMF tri-NMF & W⊤W = Ir1 , HH⊤ = Ir2

tri-symNMF tri-NMF & W = H⊤, S = S⊤

deep NMF X ≈WH1H2 . . . Ht, W ≥ 0, Hi ≥ 0 for all i

binary NMF W ∈ {0, 1}m×r, H ∈ {0, 1}r×n

Boolean NMF X ≈ min(WH, 1), W ∈ {0, 1}m×r, H ∈ {0, 1}r×n

interval-valued NMF (WH)i,j ∈ X(i, j) = [a(i, j), b(i, j)]

kernel NMF Φ(X) ≈WH , W ≥ 0, H ≥ 0

bilinear NMF W ≥ 0, H ≥ 0, H◦ ≥ 0

X(:, j)≈WH(:, j)+
∑

k<ℓ

(
W (:, k) ◦W (:, ℓ)

)
H◦(k, ℓ, j)

and spherical k-means (Section 5.5.3), PLSA and PLSI (Section 5.5.4), and neural network and
autoencoders (Section 5.5.5).

5.5.1 Unconstrained factorizations and PCA

For an Exact NMF of X of size r = rank(X), that is, X = WH with W ∈ Rm×r
+ and

H ∈ Rr×n
+ , we have that col(W ) = col(X) and col(H⊤) = col(X⊤); see Lemma 2.7. This

implies that for any exact unconstrained factorization of X = AB of size r with A ∈ Rm×r

and H ∈ Rr×n, we have col(W ) = col(A) and col(H⊤) = col(B⊤). Such unconstrained
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factorizations can be computed via the SVD (see Section 6.1.1) and are closely related to PCA
(see the introduction of the book). This observation implies that there exists an invertible matrix
Q such that

W = AQ and H = Q−1B; (5.7)

see in particular Theorems 2.21 and 4.4. When rank(X) = rank+(X), Exact NMF therefore
provides an invertible transformation (that is, the matrix Q) of unconstrained factorizations such
as PCA to make the factors nonnegative. In the presence of noise, the assumption (5.7) is typ-
ically violated, and hence NMF provides solutions which are not invertible transformations of
PCA solutions. However, some NMF algorithms are constructed explicitly to generate solutions
which are invertible transformations of unconstrained factorizations; see Section 8.7.3.

5.5.2 Nonnegative PCA

Let us reformulate the unconstrained LRMA problem

min
W,H

∥X −WH∥2F . (5.8)

In an unconstrained decomposition X ≈WH , we can assume w.l.o.g. that

• W and H⊤ have full column rank. If some columns of W and/or rows of H are linearly
dependent, they can be discarded to reduce the size of the factorization (since there are no
nonnegativity constraints).

• H has orthogonal rows, that is, HH⊤ = Ir. Since H has rank r, there exists an invertible
r-by-r matrix Q satisfying QQ⊤ = HH⊤ (use for example the Cholesky factorization).
Replacing W with WQ and H with Q−1H gives the results since Q−1HH⊤Q−⊤ = Ir
since HH⊤ = QQ⊤.

Under these assumptions, for H fixed, the optimal W is given by XH⊤: this follows from the
first-order optimality condition∇W ∥X −WH∥2F = 2(X −WH)H⊤ = 0 and the convexity of
∥X −WH∥2F with respect to W (for H fixed); see Lemma 5.2. Hence, (5.8) is equivalent to

min
H,HH⊤=Ir

∥X −XH⊤H∥2F .

This problem has the same objective function as projective NMF (Section 5.4.1) but has an
orthogonality constraint instead of a nonnegativity constraint for H . Let us further reformulate
this problem as follows:

∥X −XH⊤H∥2F = ⟨X,X⟩ − 2
〈
X,XH⊤H

〉
+
〈
XH⊤H,XH⊤H

〉
= ∥X∥2F − 2

〈
XH⊤, XH⊤〉+ 〈XH⊤, XH⊤〉

= ∥X∥2F − ∥XH⊤∥2F ,

where we used the facts that HH⊤ = Ir, ∥A∥2F = ⟨A,A⟩, and ⟨A,BC⟩ =
〈
AC⊤, B

〉
. Hence

(5.8) can be formulated as

max
H,HH⊤=Ir

∥XH⊤∥2F = tr
(
HX⊤XH⊤) .

For r = 1, we obtain
max

h∈Rn,∥h∥2=1
h⊤(X⊤X)h,
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which is the standard formulation for obtaining the first principal component of X⊤X (although
PCA usually first centers the data by removing the mean).

Nonnegative PCA solves the same problem with nonnegativity constraints on h:

max
h∈Rn

+,∥h∥2=1
h⊤(XX⊤)h; (5.9)

see for example [354] and the references therein. If X ≥ 0, the two problems are equivalent
because we can assume w.l.o.g. that h ≥ 0. Moreover, (5.9) is equivalent to rank-one semi-
NMF; this follows from the derivations above. This implies that (5.9) is NP-hard when X ≱ 0,
and can be solved in polynomial-time when X ≥ 0; see Section 5.4.3.

Adding the assumption that the rows of H are mutually independent leads to nonnegative in-
dependent component analysis; we refer the interested reader to [383] and the references therein.

5.5.3 k-means and spherical k-means

Let {X(:, j)}nj=1 be a set of n data points in dimension m. The goal of k-means is to find k
centroids {W (:, ℓ)}kℓ=1 such that the sum of the squared Euclidean distances between the data
points and their closest centroid is minimized. To be consistent with the terminology of k-means,
we make an exception in this section and use k instead of r to denote the number of columns of
W . The k-means problem can be formulated as follows: Given X ∈ Rm×n and k,

min
W∈Rm×k

n∑
j=1

(
min

1≤ℓ≤k
∥X(:, j)−W (:, ℓ)∥22

)
. (5.10)

Note that if X ≥ 0, then w.l.o.g. W can be assumed to be nonnegative. Let us reformulate
k-means in a form that resembles NMF:

min
W ∈ Rm×k

+

H ∈ {0, 1}k×n

n∑
j=1

∥X(:, j)−WH(:, j)∥22 such that HH⊤ is diagonal, H⊤e = e. (5.11)

By Theorem 4.39, HH⊤ is diagonal if and only if its rows have disjoint supports if and only if
each column has at most a single positive entry. The constraint H⊤e = e ensures that each data
point is associated with a centroid, with a weight of one. Without this constraint, there would be
a subtle difference: data points would be allowed to be approximated by zero. In other words,
the vector of zeros would be a “hidden” centroid in (5.11), and H(:, j) = 0 would mean that the
jth data point, X(: j), was attached to the hidden centroid. Interestingly, the diagonal entries of
HH⊤ indicate the number of data points associated with each cluster, that is, (HH⊤)ℓℓ is the
number of data points in the ℓth cluster (1 ≤ ℓ ≤ k).

If we relax the constraint H ∈ {0, 1}k×n to H ≥ 0, and remove the constraint H⊤e = e, we
obtain ONMF:

min
W∈Rm×k

+ ,H∈Rk×n
+

∥X −WH∥2F such that HH⊤ = Ik, (5.12)

In (5.12), we assume w.l.o.g. that HH⊤ = Ik because of the scaling degree of freedom: For any
pair W and H such that HH⊤ is diagonal, we have

W diag(t)︸ ︷︷ ︸
W ′

diag(t)−1H︸ ︷︷ ︸
H′

, with H ′H ′⊤ = Ik
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by taking tℓ =
√
H(ℓ, :)H(ℓ, :)⊤ =

√
(HH⊤)ℓ,ℓ for ℓ = 1, 2, . . . , k. These derivations show

that ONMF is a relaxation of k-means, where data points are approximated by multiples of the
columns of W .

It turns out that ONMF is more closely related to spherical k-means. Spherical k-means
aims at finding k directions {W (:, ℓ)}kℓ=1 such that the sum of the cosines of the angles between
the data points and their closest direction is maximized; see (5.14) below. To show this, let us
observe the following simple fact. For two vectors a and b,

argminα∈R ∥a− αb∥22 =
a⊤b

∥b∥22
,

so that

min
α∈R
∥a− αb∥22 = ∥a∥22 − 2αa⊤b+ α2∥b∥22 = ∥a∥22 −

(a⊤b)2

∥b∥22
.

Let us use this observation for the jth column of X , with a = X(:, j), b = W (:, ℓ), and α =

H(ℓ, j). Let ℓ∗=argmax1≤ℓ≤k
(X(:,j)⊤W (:,ℓ))2

∥W (:,ℓ)∥2
2

. SinceH(:, j) minimizes ∥X(:, j)−WH(:, j)∥22
in ONMF, the nonzero entry of H(:, j) is H(ℓ∗, j) = X(:,j)⊤W (:,ℓ∗)

∥W (:,ℓ∗)∥2
2

. Note that H(:, j) = 0 if

and only if X(:, j)⊤W (:, ℓ) = 0 for all ℓ, which would require all columns of W to have their
support disjoint to that of X(:, j), since W and X are nonnegative. We can remove the variable
H from (5.12) to obtain the following equivalent problem (since ∥X(:, j)∥22 are constant terms):

max
W∈Rm×k

+

n∑
j=1

(
max
1≤ℓ≤k

(X(:, j)⊤W (:, ℓ))2

∥W (:, ℓ)∥22

)
. (5.13)

Let X̃(:, j) = X(:,j)
∥X(:,j)∥2

be the normalization of the jth data points (1 ≤ j ≤ n). Using the
scaling degree of freedom, we can assume w.l.o.g. that ∥W (:, ℓ)∥2 = 1 for ℓ = 1, 2, . . . , k, and
ONMF is equivalent to

max
W∈Rm×k

+

n∑
j=1

∥X(:, j)∥22
(

max
1≤ℓ≤k

(
X̃(:, j)⊤W (:, ℓ)

)2)
such that ∥W (:, ℓ)∥2 = 1 for ℓ = 1, 2, . . . , k.

Without the terms ∥X(:, j)∥22 and the square, this is the spherical k-means problem, which has
the following formulation:

max
W∈Rm×k

n∑
j=1

max
1≤ℓ≤k

(
W (:, ℓ)⊤X̃(:, j)

)
such that ∥W (:, ℓ)∥2 = 1 for ℓ = 1, 2, . . . , k. (5.14)

Hence ONMF is a weighted squared variant of spherical k-means; see [384] for more details and
discussions. ONMF gives more importance to data points with large norm, which is reasonable
in many applications as data points with small norm typically contain less information and are
more easily affected by noise. This would be the case, for example, in text mining where long
documents should be given more importance than short ones; see for example the discussion
in [294].

5.5.4 Probabilistic latent semantic analysis and indexing

Probabilistic latent semantic analysis (PLSA), also known as probabilistic latent semantic analy-
sis indexing (PLSI), is a probabilistic topic model. Let us briefly describe it here. In PLSA, the
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number of documents, n, is assumed to be fixed, while the dictionary contains m words. The
observation is a matrix of word counts, X ∈ Zm×n

+ , where X(i, j) is the number of times word i
appears in document j. The matrixX is also referred to as the co-occurrence matrix of the words
and documents. The total number of words observed in all of the documents is referred to as the
length of a set of documents and is equal to ℓ = e⊤Xe. Let us explain how an observation X is
generated according to PLSA. First, let us define

• the vector ŝ ∈ Rr
+ where ŝ(k) is the probability of a word sampled randomly to be associ-

ated to with the kth topic for k = 1, 2, . . . , r, with ŝ⊤e = 1,

• the matrix Â ∈ Rm×r
+ where Â(i, k) is the probability of using the ith word in the dictio-

nary assuming we are discussing the kth topic, for i = 1, 2, . . . ,m and k = 1, 2, . . . , r,
with Â⊤e = e, and

• the matrix B̂ ∈ Rr×n where B̂(k, j) is the probability of being within the jth document
assuming we are discussing the kth topic, for k = 1, 2, . . . , r and j = 1, 2, . . . , n, with
B̂e = e.

Then, PLSA assumes the word co-occurrence matrix X of length ℓ is a sample of a random
variable X̃ and is generated by sampling ℓ words as follows:

0. Set X(i, j) = 0 for i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

1. For p = 1, 2, . . . , ℓ

1.1 Pick a topic k ∈ {1, 2, . . . , r} with probability given by ŝ.

1.2 Pick a word i ∈ {1, 2, . . . , n} with probability given by Â(:, k).

1.3 Pick a document j ∈ {1, 2, . . . ,m} with probability given by B̂(k, :).

1.4 X(i, j) = X(i, j) + 1.

PLSA assumes that each word sampled in the data set is generated so that the words and docu-
ments are conditionally independent given the hidden topic. The above model implies that

1

ℓ
E
(
X̃
)

= Âdiag (ŝ) B̂

since 1
ℓE
(
X̃ij

)
=
∑r

k=1 ŝ(k)Â(i, k)B̂(k, j). As the number of words in the data set, ℓ, in-
creases, 1

ℓX gets closer to 1
ℓE
(
X̃
)
, and hence the factorization model

X ≈ ℓÂ diag (ŝ) B̂

makes sense, given that ℓ is sufficiently large. More precisely, this requires that the number of
words in each document is relatively large, since we need X(:, j) ≈ ℓÂdiag (ŝ) B̂(:, j) for all j.
This is a relatively strong assumption in practice; see also the discussion in Section 5.4.9.1.

Given X and r, the goal of PLSA is to estimate ŝ, Â, and B̂. To do so, PLSA assumes
X̃(i, j) follows a Poisson distribution of parameter (Â diag (ŝ) B̂)ij , similar to KL-NMF; see
Section 5.1.1. It then uses the maximum likelihood estimator for (Â, ŝ, B̂) which is obtained by
solving

max
(A,s,B)≥0

∑
i,j,k

Xij log(Adiag(s)B)ij such that s⊤e = 1, A⊤e = e and Be = e. (5.15)
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A solution (A, s,B) of (5.15) can be directly used to construct an NMF (W,H) of X , by
choosing W = A and H = ℓdiag(s)B so that

X ≈ ℓAdiag(s)B = WH.

The question is, To what NMF model does this decomposition correspond? In other words, is
there a particular NMF model for which we can construct a solution (A, s,B) of (5.15) from a
solution (W,H)? The main issue is that NMF solutions do not necessarily satisfy the sum-to-one
constraints. Let (W,H) be an NMF of X of size r. Let sw = W⊤e and sh = He. Assume
w.l.o.g. that sw > 0 and sh > 0; otherwise remove the factors equal to zero. Then, we construct

• A =W diag(s−1
w ) with A⊤e = diag(s−1

w )W⊤e = diag(s−1
w )sw = e,

• B = diag(s−1
h )H with Be = diag(s−1

h )He = diag(s−1
h )sh = e, and

• s = 1
ℓ sw ◦ sh where ◦ is the componentwise multiplication so

diag(s) =
1

ℓ
diag(sw) diag(sh).

This construction gives WH = ℓA diag(s)B with A⊤e = e and Be = e. However, there is
no guarantee in general that s⊤e = 1. Nevertheless, it turns out that PLSA is equivalent to
KL-NMF [182, 131]. Let us explain this result.

Recall that KL-NMF is the NMF problem minimizing the KL divergence (that is, the β-
divergence for β = 1) between X and WH:

min
W≥0,H≥0

D1(X,WH), (5.16)

where

D1(X,WH) =
∑
i,j

Xij log
Xij

(WH)ij
−Xij + (WH)ij

=
∑
i,j

(WH)ij −Xij log(WH)ij + c,

where c is a constant. It can be proved that any stationary point (W,H) of KL-NMF (5.16) pre-
serves the row and column sum ofX , that is,WHe = Xe and e⊤WH = e⊤X; see Theorem 6.9
in the next chapter. This means that at a stationary point, e⊤WHe = e⊤Xe = ℓ. Therefore,
constructing (A, s,B) as described above using a stationary point (W,H) of KL-NMF, we obtain

ℓ = e⊤WHe = e⊤ℓAdiag(s)Be = ℓe⊤ diag(s)e = ℓe⊤s,

and hence s satisfies the sum-to-one constraint. This implies that (A, s,B) is a feasible solution
to PLSA (5.15). Moreover, for any stationary point (W,H) of KL-NMF, we have

D1(X,WH) = ℓ−Xij log(WH)ij + c,

which shows that the objective functions of PLSA (5.15) and KL-NMF (5.16) coincide, up to
constant terms, given that WH = ℓA diag(s)B. In particular, this holds for optimal solutions
of (5.16) since they must be stationary points, and hence PLSA and KL-NMF are equivalent
in the sense that the optimal solutions of (5.15) and (5.16) coincide using the transformations
defined above.



192 Chapter 5. NMF models

Remark 5.1 (Algorithms for PLSA and KL-NMF). For both PLSA and KL-NMF, the algorithm
based on MU is the most popular; see Section 8.2. However, the MU for PLSA are not equivalent
to the MU for KL-NMF because they take the normalization constraints into account explicitly in
the updates, while KL-NMF achieves normalization only at the limit (assuming the MU converge
to stationary points; see Section 8.2.4). This may lead the MU of PLSA and of KL-NMF to
different solutions; see the discussion in [131] for more details.

Other topic models There exist numerous topic models. PLSA is an early and simple
model. It is a reasonable one in scenarios where the documents are long enough, because the
total number of words observed, ℓ, must be sufficiently large to be able to estimate B̂. This
implies that KL-NMF is also only well-suited in this scenario (as they are equivalent; see above).
For example, tri-symNMF applied on the word co-occurrence matrix XX⊤ is arguably more
reasonable. It does not require the data set to contain only long documents. Intuitively, with the
data set X , PLSA needs to estimate mr + r + nr parameters48 (namely, Â, ŝ, and B̂), while tri-
symNMF only needs to estimatemr+r2 parameters (namely, Ŵ and S). Tri-symNMF is closely
related to the latent Dirichlet allocation model [47]. Such models only require that sufficiently
many documents are available; see Section 5.4.9. We refer the interested reader to [46] and the
references therein for more information on probabilistic topic models.

5.5.5 Neural networks and autoencoders

Let us consider a neural network with one hidden layer to classify data points according to their
labels; see Figure 5.11 for an illustration. Let zi ∈ Rp be a p-dimensional input vector and let
yi ∈ Rm be the corresponding m-dimensional output labels, for i = 1, 2, . . . , n. Construct an
input data matrix by concatenating the n vectors, Z = [z1, z2, . . . , zn] ∈ Rp×n, and similarly
an output matrix Y = [y1, y2, . . . , yn] ∈ Rm×n. Note that if Z = Y then we obtain a so-called
autoencoder neural network which is useful to extract features automatically within the hidden
layer.

Figure 5.11. Illustration of a one-hidden-layer neural network, with p = 3, r = 4, and
m = 2.

Defining the weights between the input and hidden layers as A ∈ Rr×p, the hidden variables
are given by Azi for i = 1, 2, . . . , n. In the hidden neurons, a nonlinear function is applied to
the hidden variables that we denote h(·). We also define B ∈ Rm×r as the weights between the
hidden and output layers so that, in an ideal situation (no noise, correct labels),

yi = Bh(Azi) for i = 1, 2, . . . , n, or, in matrix form, Y = Bh(AZ),

where h(·) applied on a matrix is defined as applying h(·) columnwise to that matrix. Note that,
48There are actually fewer parameters, because of the sum-to-one constraints; however, for simplicity, they are not

taken into account here. The same comment applies to tri-symNMF.
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for simplicity, we have not considered in this model

• bias which can be taken into account using yi = Bh(Azi + c1) + c2 for all i for some
vectors c1 and c2,

• nonlinear activations on the output layer, in which case the model would be Y =
h
(
Bh(AZ)

)
.

Let us consider the rectified linear unit (ReLU) as the nonlinear function h, that is, h(x) =
max(0, x) = [x]+ (negative entries are set to zero). In practice, one has to compute the matrices
A and B in order to minimize some loss function. Using least squares, we obtain the following
optimization problem:

min
A,B

∥Y −B[AZ]+∥2F . (5.17)

To sum up, (5.17) optimizes the weights of a single-hidden-layer neural network with no bias
that uses ReLU as the nonlinear activation in the hidden layer and the Euclidean distance as the
error measure. There is a clear link between (5.17) and NMF, taking X = Y , W = B, and
H = [AZ]+. To have equivalence between the two models, we need B ≥ 0 in (5.17) while we
need H to have the form H = [AZ]+ in NMF. Interestingly, when considering an autoencoder
with Z = Y = X , we haveH = [AX]+ which is closely related to convex NMF (Section 5.4.2).
Convex NMF applied on the rows of X is the model

X ≈W (AX), where A ≥ 0,

so that the rows of H are nonnegative linear combinations of the rows of X . Hence (5.17) is
a generalization of convex NMF that could be very useful for several applications, including
hyperspectral unmixing, document analysis, and audio source separation [426]. The geometric
interpretation of NMF with H = [AX]+ is particularly interesting. While convex NMF and
archetypal analysis require A to be nonnegative, having negative entries in A in (5.17) allows
the rows of AX to be outside the convex cone generated by the rows of X . If we do not want
the rows of H to go too far away from this convex cone, we might want to change the constraint
A ≥ 0 to A ≥ −ϵ for some ϵ > 0. This idea was used in [118] and the corresponding problem
was referred to as near-convex archetypal analysis, closely related to min-vol NMF.

Extending the observations above from one to many hidden layers allows us to link deep
neural networks with deep NMF (Section 5.4.10).

5.6 Take-home messages
Choosing the right model for your data is a crucial aspect when using NMF in practice, as already
pointed out in the previous chapter when discussing the identifiability of NMF. In this chapter, we
have described various NMF models. As we have seen, there exist numerous NMF variants and
we have not reviewed them all; we refer the interested reader to [98, 382, 478] and the references
therein for more on this topic.

Interestingly, many NMF models are linked with existing problems in the literature. For
example, separable NMF is closely related to the column subset selection problem (see Chap-
ter 7), and tri-symNMF to the mixed membership stochastic block model (see Section 5.4.9).
In practice, knowledge of these connections is important in order to use the most appropriate
model for the data at hand. For example, in text mining, it is well-known that latent Dirichlet
allocation is arguably a more appropriate model than PLSA (hence KL-NMF) and should be
preferably used [47]. Also, as discussed in Section 5.4.9, it is more meaningful to apply NMF
on the word co-occurrence matrix XX⊤ via tri-symNMF, for which it provides state-of-the-art
results in topic modeling [14, 171]; see also Section 7.8, where it is shown how the factors of
tri-symNMF can be computed in polynomial time under the separability assumption.





Chapter 6

Computational
complexity of NMF

In Chapter 2, we have seen that Exact NMF is easily solvable when rank(X) ≤ 2 (Theorem 2.6),
and that it is NP-hard to check whether rank(X) = rank+(X) (Theorem 2.20). However, Exact
NMF can be solved in time O

(
(mn)r

2)
, implying it can be solved in polynomial time when the

factorization rank r is not part of the input, that is, when r is assumed to be a fixed constant.
However, this has not lead so far to practical algorithms for Exact NMF when r is small; see the
discussion that follows Theorem 2.21.

When there exists an Exact NMF of size r, solving NMF, that is, Problem 1.1 (page 4),
allows us to recover it because the objective function in NMF must satisfy the following property:
D(X,WH) = 0 if and only if X = WH; see the discussion after Problem 1.1. Therefore, any
hardness result that applies to Exact NMF applies to NMF.

Theorem 6.1. [465] NMF is NP-hard.

Proof. This follows from the NP-hardness result of Vavasis [465] for Exact NMF when r is part
of the input.

However, since Exact NMF can be solved in polynomial time when r is not part of the input,
it is worth discussing the complexity of NMF when r is small and not part of the input.

Organization of the chapter We first focus on NMF based on the Frobenius norm that
minimizes ∥X−WH∥2F (Section 6.1). It corresponds to the maximum likelihood estimator if the
noise added to WH is i.i.d. Gaussian noise; see Section 5.1.1. It is one of the most widely used
NMF objective functions. As we will see, it is possible to compute an optimal solution in the
case r = 1. We then discuss the KL divergence (Section 6.2) and the infinity norm (Section 6.3)
for which it is also possible to compute an optimal solution in the case r = 1. We then discuss
the weighted Frobenius norm which can be used in the context of missing data (Section 6.4),
and the componentwise ℓ1 norm which is more tolerant to outliers (Section 6.5). For these two
cases, it turns out that the problem is NP-hard even when r = 1. Finally, we briefly discuss the
complexity of NMF variants in Section 6.6. We conclude with some take-home messages.

6.1 Frobenius norm
In this section, we discuss the complexity of the NMF problem using the Frobenius norm (ℓ2-
NMF): Given X ∈ Rm×n

+ and r, solve

min
W∈Rm×r

+ ,H∈Rr×n
+

∥X −WH∥2F . (6.1)

195
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This section is organized as follows. We first review the well-known result of Eckart and Young
in the unconstrained case, that is, when W and H are not required to be componentwise non-
negative (Section 6.1.1). Then, we consider the special cases when r = 1 (Section 6.1.2), r = 2
(Section 6.1.3), and r ≥ 3 (Section 6.1.4).

6.1.1 The singular value decomposition

Let us state one of the most important theorems in numerical linear algebra.

Theorem 6.2 (SVD). [216] For X ∈ Rm×n with m ≤ n, there exist orthogonal matrices

U = [u1, u2, . . . , um] ∈ Rm×m and V = [v1, v2, . . . , vn] ∈ Rn×n

such that
U⊤XV = [Σ, 0m×n−m] = Σ∗ ∈ Rm×n,

where Σ is a diagonal m-by-m matrix whose diagonal entries Σ(i, i) = σi for 1 ≤ i ≤ m are
such that σ1 ≥ σ2 ≥ · · · ≥ σm ≥ 0 and are called the singular values of X . Since UU⊤ = Im
and V V ⊤ = In, we also have that X = UΣ∗V ⊤, XV = UΣ∗, and X⊤U = V Σ∗⊤. The
columns of U (resp. V ) are the left (resp. right) singular vectors of X .

Using the SVD, the best rank-r approximation of a given matrix X can be computed as
follows.

Theorem 6.3 (Eckart–Young theorem). [141] Let X ∈ Rm×n and let (U,Σ, V ) be its SVD.
Let also r ≤ min(m,n) and Xr =

∑r
j=1 σjU(:, j)V (:, j)⊤ be the rank-r truncated SVD of X .

Then

min
rank(B)≤r

∥X −B∥2F = ∥X −Xr∥2F =

min(m,n)∑
j=r+1

σ2
j .

The matrix Xr is also optimal for any unitarily invariant norms, that is, for any norm invariant
under orthogonal transformations, such as the matrix ℓ2 norm.

The SVD can be computed up to any precision ϵ in time polynomial inm, n, andO(log(1/ϵ));
see [464, 456] and the references therein.

Why is the unconstrained low-rank matrix approximation in the Frobenius
norm tractable? Similar to the NMF formulation (6.1), the unconstrained best rank-r ap-
proximation can be formulated as follows: Given X ∈ Rm×n and r, solve

min
W∈Rm×r,H∈Rr×n

∥X −WH∥2F . (6.2)

This is a nonconvex optimization problem. However, surprisingly, it has a very nice property:
every local minimum is global, and all other stationary points are saddle points. The set of
stationary points can be characterized using the SVD. Let (U,Σ, V ) be the SVD of X . The
solution (W,H) is a stationary point of (6.2) if and only if

WH =
∑
i∈S

σiU(:, i)V (:, i)⊤,

where S ⊆ {1, 2, . . . ,min(m,n)} and |S| = r; see for example [239, Chapter 1.3] and also [143].
Moreover, (6.2) can be formulated as a convex semidefinite optimization problem using the Ky
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Fan 2-k norm [134]. Interestingly, (6.2) retains his nice properties as long as the optimization
problem is not modified significantly; see [515, 229] and the references therein. For example,
in the presence of missing entries, the objective function is modified to

∑
(i,j)∈Ω(X −WH)2ij

where Ω is the set of observed entries. If the missing entries are not too numerous and their
position is picked randomly, the problem remains tractable [515].

However, the nonnegativity constraints completely destroy the nice geometric properties
of (6.2) and make the problem NP-hard in general (Theorem 6.1). The global minimum (W,H)
is in general not located within the nonnegative orthant (orthogonality and nonnegativity of the
columns of a matrix imply they have disjoint supports; see Chapter 4.3.2), so that the nonnega-
tivity constraints generate in general numerous spurious local minima and saddle points on the
boundary of the nonnegative orthant.

6.1.2 Case r = 1

Let us make the following simple observation. Let X ∈ Rm×n
+ , w ∈ Rm, and h ∈ Rn. We have∥∥X − wh⊤∥∥

F
≥

∥∥X − ∣∣wh⊤∣∣∥∥
F
=
∥∥X − |w||h|⊤∥∥

F
,

where |A| denotes the componentwise absolute value of matrix A. In fact, for a nonnegative real
number x and any a, (x− a)2 ≥ (x− |a|)2. This implies the following.

Theorem 6.4. NMF (6.1) with r = 1 can be solved in polynomial time.

Proof. Let u1σ1vT1 be the rank-one truncated SVD of X , which can be computed in polynomial
time (Theorem 6.3). Then w =

√
σ1|u1| and h =

√
σ1|v1| is an optimal solution of NMF (6.1)

with r = 1, by Theorem 6.3.

Let us make a few comments.

• The first rank-one terms (u1, σ1, v1) computed by the SVD are not necessarily nonnega-
tive. When using MATLAB, we often observe that u1 ≤ 0 and v1 ≤ 0, and hence it is
important to take their absolute value to obtain an NMF solution; see also the discussion
in [64].

• If the matrix X⊤X or XX⊤ is not irreducible (see page 173 for the definition) and
σ1(X) = σ2(X), there might exist optimal solutions of the rank-one unconstrained matrix
approximation problem with negative entries. This is related to the Perron–Frobenius the-
orem, which states that the largest eigenvalue of an irreducible matrix is simple and that
the entries of the corresponding eigenvector are nonzero and have the same sign [38]. The
simplest example is the 2-by-2 identity matrix I2 =

(
1 0
0 1

)
with σ1 = σ2 = 1. The

optimal rank-one approximations have the form(
λ21 λ1λ2
λ1λ2 λ22

)
for any λ21 + λ22 = 1.

For example, with λ1 = −λ2 =
√
2
2 , we obtain(

1/2 −1/2
−1/2 1/2

)
with negative entries. However, taking its absolute value leads to a nonnegative optimal
rank-one approximation (corresponding to λ1 = λ2 =

√
2
2 ).
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A somewhat surprising result is that if the input matrix X is not nonnegative, then the rank-
one NMF problem is NP-hard.

Theorem 6.5. [194, Corollary 1], [200, Corollary 1] Given X ∈ Rm×n, solving

min
w∈Rm

+ ,h∈Rn
+

∥X − wh⊤∥2F

is NP-hard.

Proof. [Sketch of the proof] Let us provide a sketch of the proof. We believe this might give
some more insight into NMF and its relationship with an important graph-theoretic problem,
namely the biclique problem. Let us describe this problem; see also Section 3.4.4, where its link
with the nonnegative rank was discussed.

A bipartite graph Gb is a graph whose vertices can be divided into two disjoint sets, V1 and
V2:

Gb = (V,E) =
(
V1 ∪ V2, E ⊆ (V1 × V2)

)
.

A biclique Kb is a complete bipartite graph, that is, a bipartite graph for which all the vertices of
V1 are connected to all the vertices of V2, that is, E = V1 × V2. The so-called maximum-edge
biclique problem in a bipartite graph Gb = (V,E) is the problem of finding a biclique Kb =
(V ′, E′) in Gb (that is, V ′ ⊆ V and E′ ⊆ E) maximizing its number of edges |E′| = |V ′

1 ||V ′
2 |.

The decision problem, Given B, does Gb contain a biclique with at least B edges?, has been
shown to be NP-complete [380].

Let Mb ∈ {0, 1}m×n be the biadjacency matrix of the unweighted bipartite graph Gb =
(V1 ∪ V2, E) with V1 = {s1, . . . sm} and V2 = {t1, . . . tn}, that is, Mb(i, j) = 1 if and only if
(si, tj) ∈ E. With this notation, the maximum-edge biclique problem in Gb can be formulated
as

min
w∈{0,1}m,h∈{0,1}n

∥∥Mb − wh⊤
∥∥2
F

such that wh⊤ ≤Mb,

wherew (resp. h) is the indicator vector for the vertices in V1 (resp. V2), that is, for all i,w(i) = 1
if and only if si is in the biclique, and similarly for h and t. The objective minimizes the number
of edges outside the biclique, which is equivalent to maximizing the number of edges contained
in the biclique. The constraint wh⊤ ≤ Mb ensures that (w, h) corresponds to a biclique since
Mb(i, j) = 0 ⇒ w(i) = 0 or h(j) = 0, that is, both of the two nonadjacent vertices cannot
belong to the biclique. The binary constraints on the variables w and h can be relaxed because
the constraints wihj ≤ Mb(i, j) for all i, j along with the objective imply that if wihj > 0 then
wihj = 1: if wihj is positive, then the best possible choice to minimize the objective is to take
wihj = 1 (recall that Mb is binary). This implies that any optimal solution (w∗, h∗) of

min
w∈Rm

+ ,h∈Rn
+

∥∥Mb − wh⊤
∥∥2
F

such that wh⊤ ≤Mb

is such that w∗h∗⊤ is binary. Then, the constraint wh⊤ ≤ Mb can be removed while replacing
the zero entries in Mb by a sufficiently large negative value −d for d > 0. Intuitively, replacing
the zero entries in Mb by large negative values penalizes wh⊤ to approximate zero entries in Mb

by positive ones. We end up with the following rank-one nonnegative factorization problem:

min
w∈Rm

+ ,h∈Rn
+

∥∥Md − wh⊤
∥∥2
F
, where Md =Mb − (1−Mb)d. (6.3)

It can be shown that for d ≥ max(m,n), optimal solutions of (6.3) are binary [200, Theorem 2],
implying NP-hardness of (6.3).
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Theorem 6.5 is not very encouraging. For example, given all the optimal rank-one factors in
an NMF decomposition but one, that is, W (:, k)H(k, :) for 1 ≤ k ≤ r− 1, there is no guarantee
that computing that last factor can be done efficiently as the residual X −

∑r−1
k=1W (:, k)H(k, :)

might have negative entries. This is in contrast with rank-one NMF that can be solved in poly-
nomial time (Theorem 6.4).

6.1.3 Case r = 2

For r = 2, we have the following result.

Theorem 6.6. Let X ∈ Rm×n and let X2 be the rank-two truncated SVD of X . If X2 ≥ 0, then
NMF (6.1) with r = 2 can be solved in polynomial time.

Proof. By Theorem 6.3, X2 is an optimal rank-two approximation of X . If X2 ≥ 0, its Exact
NMF with r = 2 can be computed in polynomial time (Theorem 2.6); see in particular Algo-
rithm 4.1.

Of course, there is no guarantee that X2 ≥ 0. In particular, if X contains many entries equal
to zero, X2 typically contains negative entries. However, since X2 approximates a nonnegative
matrix, most of its entries are nonnegative. Hence one can easily adapt Algorithm 4.1 when
X2 has negative entries: simply use max(X2, 0) (which is not necessarily a rank-two matrix)
as the input of Algorithm 4.1 to identify two extreme columns of X2 and construct W . Then
compute H∗ = argminH≥0 ∥X−WH∥F , which is a convex nonnegative least squares (NNLS)
problem (see Section 8.3). This strategy was proposed in [202] and performs well in practice;
see [Matlab file: Rank2NMF.m]. However, it comes with no optimality guarantee.

When the entries of X are all strictly positive, it is more likely for X2 to be nonnegative,
which can be formalized as follows.

Lemma 6.7. [202, Corollary 2] Let X ∈ Rm×n
+ and let X2 be the rank-two truncated SVD of

X . If xmin = mini,j X(i, j) ≥ σ3(X), then X2 ≥ 0.

Proof. By Theorem 6.3, ∥X −X2∥2 = σ3(X). If X2(i, j) < 0 for some (i, j), then

∥X −X2∥22 ≥ (X2 −X)2i,j > X(i, j)2 ≥ x2min ≥ σ2
3(X),

a contradiction.

Lemma 6.7 implies that if X is close to a rank-two matrix (that is, σ3(X) is small) and
X has large positive entries, then its best rank-two NMF can be computed in polynomial time
(Theorem 6.6).

However, as far as we know, there does not exist a polynomial-time algorithm that solves
NMF (6.1) with r = 2 in all cases.

6.1.4 Case r ≥ 3

As mentioned in the introduction of this section, since NMF allows us to solve Exact NMF, any
complexity result for Exact NMF applies to NMF. Hence, NMF is NP-hard when r is part of the
input.

For r ≥ 3, even if the rank-r truncated SVD is nonnegative, its nonnegative rank might be
large; see the paragraph “Rank-one perturbations can modify the nonnegative rank by more than
one” (page 60) for a discussion on matrices whose nonnegative rank is much larger than their
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rank. Hence, we cannot invoke the result of Arora et al. [15, 16], which states that Exact NMF
with r fixed can be solved in polynomial time to conclude that, in that case, one can solve NMF
of rank r in polynomial time. This is in contrast with the case r = 2.

Nevertheless, Arora et al. [15, 16] provided an algorithm polynomial in m and n for the
approximate problem but only up to some precision.

Theorem 6.8. [16, Theorem 6.1] Let X be an m-by-n nonnegative matrix such that there ex-
ists an NMF of size r with ∥X − WH∥F ≤ ϵ∥X∥F . Then there is an algorithm that pro-
duces a rank-r NMF solution (W ′, H ′) such that ∥X −W ′H ′∥ ≤ O

(
ϵ1/2r1/4

)
∥X∥F in time

2poly(r log(1/ϵ))poly(m,n).

Hence, as opposed to Exact NMF, it is an open problem to know whether NMF (6.1) can be
solved up to global optimality in polynomial time in m and n, while r is fixed and not part of the
input.

6.2 Kullback–Leibler divergence
Another widely used measure to assess the quality of NMF solutions is the KL divergence. It is
the maximum likelihood estimator when assuming i.i.d. Poisson noise and is the β-divergence
for β = 1; see Section 5.1. Given two nonnegative scalars x and y, the KL divergence between
x and y is defined as follows:

d1(z, y) =

{
x log z

y − z + y for z > 0,

y for z = 0.

The NMF problem using the KL divergence (KL-NMF) is the following: Given X ∈ Rm×n
+

and r,
min

W∈Rm×r
+ ,H∈Rr×n

+

D1(X,WH), (6.4)

where D1(X,WH) =
∑

i,j d1
(
Xi,j , (WH)ij

)
. An interesting property of KL-NMF is that any

stationary point preserves the row sum and the column sum of X . In the case r = 1, it allows us
to prove that KL-NMF can be solved in polynomial time (Theorem 6.10).

Theorem 6.9. [240, Theorem 1] Given X ∈ Rm×n
+ and r, any stationary point (W,H) of

KL-NMF (6.4) satisfies

Xe =WHe and e⊤X = e⊤WH,

that is, WH preserves the row sum and the column sum of X .

Proof. Let us focus on the first-order optimality conditions forW . If (W,H) is a stationary point
of (6.4), then

W ◦ ∇WD1(X,WH) =W ◦
(
[WH −X]

[WH]

)
H⊤ = 0;

see page 263 in Chapter 8.1.2. Rearranging the terms, we obtain

W ◦
(
ee⊤H⊤) =W ◦

(
[X]

[WH]
H⊤

)
. (6.5)

Let us multiply both sides by e from the right. Observe that, given two matrices A,B ∈ Rm×n,
we have

(A ◦B)e = diag(AB⊤).
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For the left-hand side of (6.5), we obtain using this equivalence twice(
W ◦

(
ee⊤H⊤)) e = diag(WHee⊤) =

(
(WH) ◦ (ee⊤)

)
e = (WH)e.

Similarly, for the right-hand side, we obtain(
W ◦

(
[X]

[WH]
H⊤

))
e = diag

(
WH

(
[X]

[WH]

)⊤
)

=

(
(WH) ◦ [X]

[WH]

)
e = Xe.

This implies (WH)e = Xe, that is, the column sum of WH and X coincide. By symmetry, the
same observation holds for the row sum of X , that is, e⊤(WH) = e⊤X , using the optimality
conditions for H .

6.2.1 Case r = 1

It turns out that, for r = 1, an optimal solution of (6.4) can be computed in polynomial time, as
for the Frobenius norm, although this result is not as well-known.

Theorem 6.10. [240, Theorem 1] Given X ∈ Rm×n
+ with X ̸= 0, the unique optimal solution

of (6.4) for r = 1 is, up to scaling,

w∗ =
Xe√
e⊤Xe

and h∗ =
X⊤e√
e⊤Xe

.

Proof. Let (w, h) be a stationary point of (6.4) for r = 1. By Theorem 6.9, Xe = wh⊤e and
e⊤X = e⊤wh⊤. Since X ̸= 0, w ̸= 0 and h ̸= 0. Assume w.l.o.g. that h⊤e = 1. Then
w = Xe and h = X⊤e

e⊤w
= X⊤e

e⊤Xe
, which coincides with the solution (w∗, h∗), up to scaling.

Since all the stationary points (which include the optimal solutions) have this form and have the
same objective function value, they are all optimal solutions.

Note that, forX = 0, the solution is not unique since any solution of the form (w, 0) or (0, h)
is optimal.

We refer the reader to [249], where the above results are extended to tensors, that is, the
authors show that the sums along all modes of the input tensor are preserved by stationary points.
Some numerical experiments are also presented.

6.2.2 Case r ≥ 2

For r fixed and r ≥ 2, the complexity of KL-NMF (6.4) is unknown. Recall that KL-NMF (6.4)
would solve Exact NMF and hence is NP-hard when r is part of the input; see Theorem 6.1.
As far as we know, even the unconstrained problem, in which W and H are not required to be
nonnegative, has not been studied much and its complexity is unknown. Studying the complexity
of KL-NMF (6.4) for r ≥ 2 is a topic of future research.

As opposed to ℓ2-NMF (6.1), X and its approximation WH have to be nonnegative because
the KL divergence used in KL-NMF (6.4) is defined only for nonnegative inputs. In other words,
KL-NMF (6.4) where the nonnegativity constraint on W and H is discarded has a hidden non-
negativity constraint, namely WH ≥ 0.

6.2.3 Other β-divergences

For other β-divergences, complexity issues have not been studied much. For example, β = 0
corresponds to the IS divergence, associated to multiplicative Gamma noise particularly mean-
ingful in audio source separation; see Section 5.1.3. The complexity is unknown even for
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r = 1, as far as we know. Moreover, the optimization problem in W for H fixed, that is,
minW≥0D0(X,WH), is not convex for the IS divergence, as opposed to β-divergences for
β ∈ [1, 2]. Hence it is even unknown whether the subproblem in W for H fixed can be solved in
polynomial time, and similarly for H when W is fixed by symmetry.

6.3 Infinity norm
Let us now consider NMF in the infinity norm (ℓ∞-NMF), that is,

min
W∈Rm×r

+ ,H∈Rr×n
+

∥X −WH∥∞, (6.6)

where ∥X −WH∥∞ = maxi,j |X −WH|ij . ℓ∞-NMF is the maximum likelihood estimator
when assuming i.i.d. uniform noise added to WH; see Section 5.1.1.

As for the Frobenius norm and the KL divergence, the problem can be solved efficiently
when X ≥ 0 and r = 1.

Theorem 6.11. [209, Corollary 1] For r = 1, X ≥ 0 and given the scalar c ≥ 0, checking
whether the optimal value of (6.6) is smaller than c can be done in polynomial time.

Proof. Checking whether the optimal value of (6.6) for r = 1 is smaller than c is equivalent to
checking whether there exist w ∈ Rm

+ and h ∈ Rn
+ such that

−c ≤ wihj −Xi,j ≤ c for all i, j. (6.7)

First, notice that if the ith row of X (resp. jth column of X) has all its entries smaller than c,
we can take wi = 0 (resp. hj = 0). This means that we can assume w.l.o.g. that every column
and row of X have at least one entry larger than c, by discarding rows and columns for which all
entries are smaller than c. Then, all rows and columns of X must be approximated by a positive
entry: for Xi,j > c, we must have wihj > 0, otherwise (6.7) cannot be satisfied. Hence we
can assume w.l.o.g. that w > 0 and h > 0. Moreover, by the scaling degree of freedom, we can
assume w.l.o.g. that w ≥ e. Rearranging the terms of (6.7), we obtain

Xi,j − c ≤ wihj ≤ Xi,j + c for all i, j.

Let us denote si = 1
wi
≤ 1 for i = 1, 2, . . . ,m and multiply both sides of the above inequalities

by si to obtain
si(Xi,j − c) ≤ hj ≤ si(Xi,j + c) for all i, j.

Together with the constraints 0 ≤ s ≤ 1 and h ≥ 0, this is a linear system of inequalities that
can be solved in polynomial time [342].

Surprisingly, the unconstrained low-rank matrix approximation problem in the infinity norm
is NP-hard, even for r = 1 [209, Theorem 3]. This is in contrast with the Frobenius norm for
which the unconstrained low-rank matrix approximation problem can be solved in polynomial
time for any input matrix and any value of r (Theorem 6.3). The difference with (6.6) is that
when X ≱ 0, we cannot assume w.l.o.g. that w ≥ 0 and h ≥ 0, which is key in the proof of
Theorem 6.11.

As for the KL divergence, the case r ≥ 2 has not been studied much and the same comments
apply; see the first part of Section 6.2.2.
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6.4 Weighted Frobenius norm
Another important norm that is often used in practice is the weighted Frobenius norm; see for
example [179, 434, 239]. The corresponding NMF problem, referred to as weighted NMF (which
is a variant of WLRA) is the following: Given X ∈ Rm×n

+ , P ∈ Rm×n
+ , and r, solve

min
W∈Rm×r

+ ,H∈Rr×n
+

∑
i,j

Pij(X −WH)2ij . (6.8)

The two main cases for which weighted NMF is particularly useful is when data is missing
(P (i, j) = 0 if X(i, j) is missing) and when the variance of the Gaussian noise is different
among the entries of X (the noise is not identically distributed); see Section 5.1.1.

Interestingly, if rank(P ) = 1, the problem can be reduced to standard NMF. In that case,
there exists u and v such that P (i, j) = u2i v

2
j for all i, j so that∑

i,j

P (i, j)(X −WH)2ij =
∑
i,j

u2i v
2
j (X −WH)2ij

=
∑
i,j

(Xijuivj − (WH)i,juivj)
2

=
∑
i,j

(X ′ −W ′H ′)2ij ,

where X ′(i, j) = X(i, j)uivj , W ′(i, k) = W (i, k)ui, and H ′(k, j) = H(k, j)vj for all i, j, k.
Otherwise, the problem is hard in general.

Theorem 6.12. [196, Theorems 1.1 and 1.2] For r = 1, weighted NMF (6.8) is NP-hard. This
holds whether P has only positive entries or if P is binary (missing data) and whether X is
nonnegative or not.

Proof. [Sketch of the proof] Let us focus on the case when P has positive entries (the case P
binary is more difficult to analyze). In this case, the proof relies on the reduction of weighted
NMF from the maximum-edge biclique problem, as in Theorem 6.5. Taking X = Mb where
Mb is the biadjacency matrix of a bipartite graph, and P = Mb + d(1 −Mb) where d is suf-
ficiently large, weighted NMF approximates X by giving much more importance to the zero
entries of Mb since Pij = d when Mb(i, j) = 0; otherwise Pij = 1. Hence, for d suffi-
ciently large, the optimal solution corresponds to the largest biclique in Mb which is NP-hard to
compute [380].

In the unconstrained case, there exist approximation algorithms; we refer the reader to [393,
20] and the references therein.

6.5 Componentwise ℓ1 norm
In the presence of outliers, the Frobenius norm typically performs poorly. In that case, the com-
ponentwise ℓ1 norm is known to perform better [273]. It is the maximum likelihood estimator
when assuming i.i.d. Laplacian noise; see Section 5.1.1. The NMF problem using the compo-
nentwise ℓ1 norm (ℓ1-NMF) is defined as

min
W∈Rm×r

+ ,H∈Rr×n
+

∥X −WH∥1, (6.9)
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where ∥X − WH∥1 =
∑

i,j |X − WH|ij . This problem is closely related to robust PCA;
see [212] and the discussion therein. As for the weighted norm, the corresponding NMF problem
is NP-hard.

Theorem 6.13. [212, Theorem 3] For r = 1, ℓ1-NMF (6.9) is NP-hard.

Proof. [Sketch of the proof] The proof of this result contains two main steps. The first and
most difficult step is to prove that if the input matrix X is binary, then there always exists an
optimal binary solution to ℓ1-NMF (6.9). This result is rather intriguing because it proves that,
for r = 1 and X ∈ {0, 1}m×n, the optimal solution of ℓ1-NMF (6.9) without any constraint49

can be assumed w.l.o.g. to be binary.
The second step is to prove that finding the best rank-one binary approximation of a binary

input matrix is NP-hard. This is a combinatorial problem, related to finding the densest subgraph
in a bipartite graph.

NP-hardness also holds in the unconstrained case. As for the weighted Frobenius norm,
approximation algorithms have been developed [428] and are a direction of future research in the
context of NMF. Similar observations hold for componentwise ℓp norms; we refer the interested
reader to [19].

6.6 Other NMF models
So far, we have not discussed the complexity of NMF models that were presented in Sections 4.3
and 5.4. Not surprisingly, most of these models are NP-hard. Let us discuss three of the most
important models.

• Separable NMF in the presence of noise can be formulated as follows: find an index set
K of cardinality r and a nonnegative matrix H such that the quantity D

(
X,X(:,K)H

)
is

minimized. Without any assumption on the input matrixX and no nonnegativity constraint
on H , the problem is NP-hard [77, 78]; it is a particular column subset selection problem.
Note that the number of possible solutions is

(
n
r

)
: once the index set K is selected, H

can be computed efficiently in most cases. For example, for the Frobenius norm, this is a
NNLS problem; see Chapter 8.3.1. Hence, the problem can be solved in polynomial time
when r is not part of the input since

(
n
r

)
= O(nr) by using a brute-force approach (that is,

enumerating all solutions).

However, if the input matrix X is close to a matrix of the form WH where H is separable
(see Chapter 4.3.1), then separable NMF can be solved efficiently. Designing provably
correct algorithms for separable NMF, even in the presence of noise, is the topic of the
next chapter.

• Min-vol NMF is NP-hard for general input matricesX; see the discussion in Chapter 4.3.3.
This is not surprising as it generalizes separable NMF. However, an important open ques-
tion is to determine whether min-vol NMF can be solved in polynomial time under some
additional assumptions on X , in particular when X = WH where H is sufficiently scat-
tered. (If the input matrix X is close to a matrix of the form WH where H is separable,
then it can be solved efficiently via separable NMF as both problems coincide.)

49Even the nonnegativity constraints can be removed since nonnegativity of W and H can be assumed w.l.o.g. when
X ≥ 0, as for the Frobenius norm; see Section 6.1.2.
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• Sparse NMF is also hard. For most NMF models, if one is given one of the two factors W
or H , the corresponding subproblem is convex and efficiently solvable. This does not hold
for sparse NMF: estimating H with a given sparsity level (say, k-sparse columns) for W
fixed is NP-hard [363].

Other NMF models that have been shown to be NP-hard include NMU (Sections 5.4.5
and 8.7.1) and semi-NMF (Section 5.4.3), even when r = 1.

6.7 Take-home messages
NMF is at least as hard as Exact NMF, which is NP-hard when r is part of the input. Moreover,
we have seen that for some error measures, even the problem for r = 1 is NP-hard (namely,
for the weighted Frobenius norm and the componentwise ℓ1 norm). Therefore, unless the input
matrix satisfies additional assumptions (as done in Chapter 7, where we analyze separable NMF),
one typically relies on heuristic algorithms to tackle NMF; these are presented in Chapter 8.

The same observations hold true for most constrained LRMA models, or LRMA models
with other objective functions: as soon as the error measure D(X,WH) is not the Frobenius
norm or the feasible domain has constraints, LRMA problems become difficult in most cases.
An active direction of research is developing approximation algorithms for such problems; see
for example [19] and the references therein. Deriving such algorithms dedicated to NMF is a
direction of future research.

NMF for r = 1 can be solved in some cases in polynomial time (namely, for the Frobenius
norm, the KL divergence, and the ℓ∞ norm). Hence it is tempting to build higher rank NMFs
sequentially, one rank-one factor at a time. Another motivation is that, in the unconstrained
case, this approach using deflation leads to an optimal solution (this follows directly from Theo-
rem 6.3). However, for NMF, implementing this idea is not straightforward because after the first
rank-one factor wh⊤ is computed, the residualX−wh⊤ typically contains roughly half negative
and half positive entries and hence can no longer be easily and meaningfully approximated by
nonnegative rank-one factors. We refer the reader to Chapter 8.7.1, presenting such approaches.





Chapter 7

Near-separable NMF

As we have discussed in detail in the previous chapters, two key issues when facing NMF prob-
lems are the following:

1. NP-hardness: Exact NMF and NMF are NP-hard, and being able to compute efficiently
globally optimal decompositions for these problems in general is unlikely, even when r is
relatively small; see Section 2.3 and Chapter 6.

2. Identifiability: Most matrices X do not admit a unique NMF unless some additional con-
straints are imposed on the NMF factors (W,H). In other words, NMF is in general
ill-posed, and the factors (W,H) are in most cases not identifiable; see Chapter 4.

These two issues can be overcome by assuming that the input matrix X has the form X = WH
where H is separable. Separability of H requires that all unit vectors are hidden among the
columns of H , up to scaling (Definition 4.10, page 107). Because of the scaling degree of
freedom in the decomposition X = WH , separability of H is equivalent to assuming that there
exists an index set K such that W = X(:,K). This means that the columns of W appear as
columns of X; see Figure 7.1 for an illustration.

Figure 7.1. Illustration of X ≈ WH where H satisfies the separability assumption or,
equivalently, where W = X(:,K) for some index set K.

In practice, the input matrix X does not in general admit an exact separable NMF decompo-
sition (because of noise and model misfit), and we focus in this chapter on the separable NMF
problem in the presence of noise, referred to as near-separable NMF and defined as follows.

207
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Problem 7.1 (Near-separable NMF). Given a matrix X ∈ Rm×n, a factorization
rank r, and a distance measure D(., .), solve

min
K⊆{1,2,...,n},H∈Rr×n

+

D
(
X,X(:,K)H

)
such that |K| = r.

Let us make a few comments about near-separable NMF:

• The input matrix X is not required to be nonnegative, as for separable NMF, as discussed
already in Section 4.3.1.

• Separable NMF is identifiable under the assumption that the input matrix has the form
X = X(:,K)H where H ≥ 0 and rank(X) = r; see Theorem 4.37 and the discussion
that follows. The identifiability of the factor W = X(:,K) only requires that the columns
of X(:,K) are distinct extreme rays of cone(X).

• Near-separable NMF is NP-hard in general; see Section 6.6. However, under the assump-
tion that the input matrix X can be well-approximated with a decomposition of the form
X(:,K)H with H ≥ 0 (see Assumption 7.1 for a formal description), then polynomial-
time and provably efficient algorithms can be designed, even in the presence of noise. This
is the main topic of this chapter.

Organization of the chapter In Section 7.1, we review the context of near-separable
NMF, several applications, and problems closely related to separable NMF. In Section 7.2, we
present the model assumptions, define the notion of robustness to noise in the context of near-
separable NMF in which the conditioning of W plays a central role, and discuss preprocessing
of the input data. The next four sections present near-separable NMF algorithms. We start by
analyzing an idealized algorithm that computes an optimal solution of near-separable NMF (Sec-
tion 7.3). It allows us to provide the best possible achievable error bounds for any near-separable
NMF algorithm; in other words, it provides the performance limits in terms of robustness to noise
of any near-separable NMF algorithm. Then, we present the three most important classes of near-
separable NMF algorithms: greedy algorithms (Section 7.4), heuristic algorithms (Section 7.5),
and convex-optimization-based algorithms (Section 7.6). We summarize the computational cost,
robustness to noise, and practical performances of near-separable NMF algorithms in Section 7.7.
In Section 7.8, we explain how separability can be used to tackle another NMF model, namely
tri-symNMF (see Section 5.4.9), which led to an important breakthrough in topic modeling by
Arora et al. [14] (2013). We conclude this section with pointers to further readings (Section 7.9)
and take-home messages (Section 7.10).

7.1 Context and applications
The terminology separability was first introduced by Donoho and Stodden [138] (2004). In their
paper, Donoho and Stodden also make other strong sparsity assumptions to obtain an identifia-
bility theorem for the standard NMF model. The same concept was used by Laurberg et al. [298]
(2008) but was referred to as the sufficiently spread condition. It was later used and popular-
ized in the seminal paper by Arora et al. [15] (2012) on the complexity of NMF and is now the
standard terminology in the machine learning community.

However, separability has a long history in blind HU. In this context, each column of the ma-
trix X is the spectral signature of a pixel, each column of the matrix W is the spectral signature
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of an endmember (a “pure” material), and each column of H gathers the abundances of the
endmembers in a pixel; see Section 1.3.2 for more details. In the literature on blind HU, the
separability assumption is referred to as the pure-pixel assumption: for each endmember, there
must exist a pixel that contains only that endmember. Mathematically, for each 1 ≤ k ≤ r, there
exists i such that W (:, k) = X(:, i). Equivalently, for each 1 ≤ k ≤ r, there exists i such that
H(:, i) = ek, which means that H is separable, and we have WH(:, i) = Wek = W (:, k) =
X(:, i). The notion of pure pixels was introduced by Boardman, Kruse, and Green [49] (1995),
who proposed an algorithm referred to as the pure-pixel index (PPI); see Section 7.5.1. If the spa-
tial resolution of the input hyperspectral image is sufficiently high, this assumption is reasonable
and has been used successfully and extensively for blind HU. Even if separability is not satisfied,
near-separable NMF algorithms, referred to as pure-pixel search algorithms in the blind HU lit-
erature, are used extensively to initialize more sophisticated approaches such as min-vol NMF
and nonlinear mixture models [136]. This is a very rich topic in blind HU with many algorithms,
and we present in this chapter only a few of them, with a focus on algorithms that have theoret-
ical guarantees to be robust to noise. We refer the interested reader to the surveys [45, 334] for
comprehensive historical backgrounds and detailed discussions on blind HU under the pure-pixel
assumption and beyond.

Applications Let us review the three applications, besides blind HU, described in the in-
troduction (Section 1.3), and discuss whether the separability assumption makes sense in their
context.

1. Feature extraction in a set of images. The input matrix X is a pixel-by-image matrix, the
columns of W represent common features found across all images, and H indicates which
feature belongs to which image. Separability of H requires that there are images in the
data set containing a single feature: this is not a reasonable assumption. For example, for
facial feature extraction (see Figure 1.2, page 7, for an illustration of NMF on the CBCL
data set), we would need an image in the data set for each feature, which are nose, eyes,
and lips. By construction, facial images contain more than one feature. Another example
is the swimmer data set (see Figure 1.3) where this assumption is not satisfied as all images
are combinations of five features. Separability of W⊤ is more realistic and requires that
each feature contains a pixel that does not belong to any other feature. In other words, no
feature is fully overlapped by the other features. Mathematically, for each feature W (:, k)
(1 ≤ k ≤ r), there exists i such that W (i, k) > 0 while W (i, ℓ) = 0 for ℓ ̸= k, that is,
W (i, :) = αe⊤k for some α > 0. This is a realistic assumption in many image data sets,
and it has been used successfully, for example, in [81] to unmix images.

Let us in particular consider the two image data sets presented in Section 1.3.1, namely
the CBCL data set and the swimmer data set. Figure 7.2 shows the basis elements ex-
tracted for the CBCL facial images by SPA, a workhorse near-separable NMF algorithm
(see Section 7.4.1). Recall that each column of X is a vectorized facial image, and near-
separable NMF applied on X⊤ provides a decomposition X ≈ WH where H = X(K, :)
andW ≥ 0. We observe that separable NMF provides basis images similar to that of NMF
(see Figure 1.2). Note that this explains why we used SPA applied on the transpose of X
to initialize the NMF models on the CBCL face data set in Chapter 5.

The transpose of the swimmer data set satisfies the separability assumption perfectly: each
body part contains at least one pixel that does not belong to any other body parts. There-
fore separable NMF applied on the transpose of the swimmer data set identifies the true
underlying factors shown in Figure 1.4, namely the body and each limb in four positions
[Matlab file: Swimmer.m].
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Figure 7.2. Basis vectors extracted by SPA (a near-separable NMF algorithm; see
Section 7.4.1) on the transpose of the CBCL facial image data set with r = 49. [Matlab
file: CBCL_sepNMF.m].

2. Text mining. The input matrix X is a word-by-document matrix, W is a word-by-topic
matrix, and H is a topic-by-document matrix. Separability of H requires that for each
topic there is a document in the data set that discussed only that topic. Separability of W⊤

requires that for each topic there is a word associated only to that topic; Arora et al. [14]
referred to these words as anchor words. It appears that the anchor word assumption is
more reasonable [14]. Moreover, because of probabilistic considerations, it is preferable
to use the word co-occurrence matrix (see Section 5.4.9), in which case separability of
W⊤ can be used to recover it; see Section 7.8, where we describe this particular scenario.

3. Audio source separation. The matrix X is a frequency-by-time matrix, the factor W is
a frequency-by-source matrix whose columns are the frequency content of the sources,
and H is a source-by-time matrix indicating which source is active at which time window.
Separability of H requires that for each source there is a time window where only that
source is active. This assumption is not often satisfied in practice for complicated audio
signals, especially when some sources (for example, a human voice) are represented by
more than one rank-one factor. Separability of W⊤ requires that for each source there is a
frequency where only that source is active. Again, for relatively complicated signals, this
is not reasonable. Note, however, that the simple example from Figure 1.8 satisfies both
assumptions: the piano notes are active at different time windows while their main peaks
in the frequency response do not overlap. However, as far as we know, the separability
assumption has not been considered much for audio source separation.

Other applications of separable NMF include community detection [374, 246, 339], crowd-
sourcing that aims at producing accurate labels via integrating noisy and nonexpert labeling from
annotators [253], time-resolved Raman spectra analysis [331] (see Section 9.3), blind source
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separation in nuclear magnetic resonance [148], video summarization, classification and outlier
rejection [145], foreground-background separation in a video sequence [293], and the recov-
ery of the joint probability of discrete random variables [252]. Moreover, as we will discuss
in Section 8.6, near-separable NMF algorithms are particularly well-suited to initialize more
sophisticated NMF algorithms.

Link with other problems Near-separable NMF is closely related to the column subset
selection problem in numerical linear algebra; see for example [55] and the references therein.
The only difference is the constraint on H: the column subset selection problem does not require
H to be nonnegative in the decomposition X ≈ X(:,K)H . Nonnegativity makes these two
problems rather different. For example, in the exact case, that is, when X = X(:,K)H , any
subset of r = rank(X) linearly independent columns of X provides a solution to the column
subset selection problem, and hence the solution is trivial to compute and highly nonunique (in
general, most subsets of r columns provide an exact decomposition). This does not hold true for
separable NMF for which the solution is unique (Section 4.3.1) and not as easy to compute.

Near-separable NMF is a special case of convex NMF where W = XC for some C ≥ 0;
see Section 5.4.2. Hence, near-separable NMF algorithms are particularly suitable to initialize
convex NMF algorithms [118].

7.2 Preliminaries
In this section, we discuss several important aspects of the near-separable NMF problem that
will be used throughout the chapter, namely the model and assumptions (Section 7.2.1), the
normalization of the input matrix (Section 7.2.2), the robustness to noise of near-separable NMF
algorithms (Section 7.2.3), the conditioning of the factor W (Section 7.2.4), and pre- and post-
processing (Section 7.2.5).

7.2.1 Model and assumptions

Throughout this chapter, we denote the input data matrix X̃ , instead of X , which denotes the
noiseless input matrix, and assume it satisfies the following assumption.

Assumption 7.1 (Near-separable factorization). The matrix X̃ ∈ Rm×n admits a near-
separable factorization if it has the form

X̃ = X +N with X = X(:,K∗)︸ ︷︷ ︸
=W

H,

where

(i) |K∗| = r equals the number of nonzero vertices of conv([X, 0]), that is, the columns of W
are the nonzero vertices of conv([X, 0]),

(ii) maxk ∥W (:, k)∥p = 1 for some p ≥ 1,

(iii) H ∈ Rr×n
+ and H⊤e ≤ e, and

(iv) ∥N(:, j)∥p ≤ ϵ for all 1 ≤ j ≤ n for some ϵ ≥ 0 and p ≥ 1.
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Let us observe the following:

• Item (i) implies thatK∗ has the smallest possible cardinality among the sets satisfyingX =
X(:,K∗)H for some H satisfying (iii). The columns of X(:,K∗) are the nonzero vertices
of conv([X, 0]), hence, by definition, they cannot be represented as convex combinations
of other data points within conv([X, 0]).

• Item (ii) can be assumed w.l.o.g. by multiplyingX by a positive constant. It is made for the
simplicity of the presentation as it allows us to get rid of the parameter maxk ∥W (:, k)∥p
that appears in most robustness analysis of near-separable NMF algorithms.

• The value of p in items (ii) and (iv) will be either p = 1 or p = 2. Current near-separable
algorithms have been proven to be robust to noise in these two cases.

Of course, any matrix X̃ admits a near-separable factorization (taking ϵ sufficiently large).
Also, any randomly generated matrix X with m ≥ n admits a near-separable factorization with
r = n and ϵ = 0 with probability one, since X = XIn and rank(X) = min(m,n) = n with
probability one. We focus on the case when r and ϵ are small; otherwise the problem is either
trivial (when r = n) or NP-hard (for ϵ large; see the introduction of this section).

7.2.2 Normalization/scaling of the input matrix

The assumptionH⊤e ≤ e in item (iii) of Assumption 7.1 requires that the entries in each column
ofH sum to at most one, that is, each column ofH belongs to the convex hull of the unit simplex
∆r and the origin which we denote as

Sr =

{
h ∈ Rr

∣∣∣ h ≥ 0,

r∑
i=1

hi ≤ 1

}
= conv ([∆r, 0]) .

This assumption can be made w.l.o.g., which we explain below. A reason to make this assumption
a priori is that it simplifies the analysis. In fact, the noise added to each column of X needs to be
proportional to the norm of that column because columns with smaller norm deviate more easily
from the data distribution. In other words, if no scaling is assumed, we would need to replace
the the assumption ∥N(:, j)∥p ≤ ϵ for all j by ∥N(:, j)∥p ≤ ϵαj where αj is a quantity related
to the norm of the jth column of X .

Let us explain why this assumption can be made w.l.o.g. Let v be a vector such that v⊤X > 0.
Such a vector exists if the columns of X belong to the interior of the half space {x|v⊤x ≥ 0},
where v is the normal vector of that half space. For example,

• for X ≥ 0, the nonzero columns of X are within the interior of the half space defined
by {x|e⊤x ≥ 0} that contains the nonnegative orthant; this normalization was used in
Section 2.1.2 to transform the interpretation of Exact NMF in terms of nested cones to the
interpretation in terms of nested convex hulls (see in particular Lemma 2.1);

• for X = WH , H ≥ 0 with no zero column and rank(W ) = r, such a vector v always
exists: take a solution of the system W⊤v = e; for example v = (W †)⊤e where W † is
the left-inverse of W (that is, W †W = Ir) for which

v⊤X = v⊤WH = e⊤H > 0,

since H ≥ 0 and H does not have zero columns. Because rank(W ) = r is a typical
assumption in practice, normalizing X is typically not an issue.
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Since we do not knowW , a possible way to compute v is, for example, to solve the convex
quadratic optimization problem

min
v
∥v∥22 such that v⊤X ≥ e,

which is always feasible under the conditions rank(W ) = r, H ≥ 0 and X does not have
zero columns (since v = α(W †)⊤e is feasible for α sufficiently large).

Note that, in some degenerate cases, such a v might not exist, for example taking three vectors
in two dimensions that are not within the same half space, such as

X =

(
1 0 −1
0 1 −1

)
.

When such a v has been identified, each column of X can be projected onto the affine space{
x|v⊤x = 1

}
by dividing each column X(:, j) by the constant αj = v⊤X(:, j) > 0 for j =

1, 2, . . . , n. After this transformation,

e⊤ = v⊤X = v⊤ (X(:,K)H) = e⊤H;

hence H⊤e = e since all columns of X belong to the same affine subspace,
{
x|v⊤x = 1

}
.

Note that zero columns of X need to be removed (or not scaled) as in Lemma 2.1.
Let us make a few observations:

• Since the normalization described above leads to H⊤e = e, one may wonder why we only
assume H⊤e ≤ e in Assumption 7.1. The reason is that it makes the model more general.
In particular, some real data sets satisfy naturally this condition (hence there is no need for
normalization) while they could violate the condition H⊤e = e. This is, for example, the
case for hyperspectral images for which the illumination across the pixels in the image is
not uniform. Avoiding column normalization, if possible, is usually preferable as it does
not intensify the noise present in columns with small norms (for example, background
pixels in hyperspectral images).

• Under this normalization, near-separable NMF is closely related to the so-called simplex-
structured matrix factorization problem, which looks for a factorization of the type WH
where the columns of H lie on the unit simplex [321, 192, 2].

• Since the normalization described above simply scales the columns of the input matrix,
any column of W that is an extreme ray of cone(X) remains an extreme ray, by definition.

However, a column of W that is a vertex of conv([X, 0]) might not remain a vertex of
conv([X, 0]) after the normalization. The reason is that being a vertex of conv([X, 0])
does not guarantee being an extreme ray of cone(X). A simple example is the matrix

W =

(
1 0 1
0 1 1

)
.

The point (1,1) is not in the convex hull of (1,0), (0,1) and the origin but is not an extreme
ray of cone(W ). Hence, in such cases, the matrix X from Assumption 7.1 would be im-
pacted by the normalization: any column of W that is not an extreme ray of cone(X) will
be lost in this procedure (in the sense that it will be projected onto the convex hull of other
columns of W ). However, in practice, we typically do not want to recover these columns:
they do not allow us to reduce the error in the original near-separable NMF formulation as
they are nonnegative linear combinations of other columns of W ; see Problem 7.1. More-
over, this situation can happen only when rank(W ) < r, which is usually not the case in
practice.
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7.2.3 Robustness to noise

Let us first briefly recall the geometric interpretation behind separable NMF; see Figure 4.9 for
an illustration (page 134). In the noiseless case, separable NMF is equivalent to identifying the
extreme directions of cone(X). After normalization of the columns of X , separable NMF is
equivalent to identifying the vertices of conv(X). This is a rather simple geometric problem for
which many algorithms exist. Most near-separable NMF algorithms (in particular in the blind
HU literature) are based on concepts from convex geometry.

In the presence of noise, the problem becomes more challenging. The question can be asked
as follows:

Given a certain noise level ϵ, can we quantify the error between the recovered factor
X̃(:,K) and the ground truth W = X(:,K∗)?

To quantify the error, let us define the following error measure:

qp(K) = max
1≤k≤r

min
j∈K
∥W (:, k)− X̃(:, j)∥p, (7.1)

which quantifies the quality of a solution. We only focus on the recovery ofW because, whenW
is rank deficient, the corresponding matrix H is not necessarily unique. This is the standard in
the literature on near-separable NMF. In particular, robustness theorems will have the following
form: given that X̃ satisfies Assumption 7.1 and that ϵ is sufficiently small, the algorithm outputs
a solution K such that q(K) ≤ δ for some δ. The difficulty is to quantify ϵ and δ. This allows us
to compare the behavior of different algorithms in the presence of noise.

The noise is assumed to be adversarial: we do not make any assumption on the noise except
that it is bounded; see item (iv) in Assumption 7.1. Most analysis of near-separable NMF algo-
rithms uses this model, and a direction for future research is to provide noise robustness results
under specific noise distributions.

7.2.4 Conditioning of W

A key parameter in the analysis of near-separable NMF algorithms is the conditioning of W =
X(:,K∗). It will influence the bounds on the noise level ϵ allowed by near-separable NMF
algorithms along with the error qp(K) they can achieve. In this section, we use two parameters:
the rth singular value of W , that is, σr(W ), and γp(W ) defined as

γp(W ) = min
1≤k≤r

min
h∈Sr−1

∥∥W (:, k)−W (:, k̄)h
∥∥
p
,

where k̄ = {1, 2, . . . , r}\{k}. The quantity γp(W ) is the smallest distance between a column
of W and the convex hull of the other columns of W and the origin. For p = 2 and an m-by-r
matrix W , the quantity γ2(W ) is always larger than σr(W ).

Lemma 7.1. For any matrix W ∈ Rm×r,

γ2(W ) ≥ σr(W ).

Proof. For any k ∈ {1, 2, . . . , r},

{x | x(k) = 1, ∥x(k̄)∥1 ≤ 1, x ≥ 0} ⊂ {x | ∥x∥2 ≥ 1};

hence, by virtue of relaxation, we have for all k ∈ {1, 2, . . . , r}

σr(W ) = min
x,∥x∥2≥1

∥Wx∥2 ≤ min
h∈Sr−1

∥W (:, k)−W (:, k̄)h∥2;

hence γ2(W ) ≥ σr(W ).



7.2. Preliminaries 215

Under Assumption 7.1 which requires maxk ∥W (:, k)∥2 = 1, γ2(W ) ≤ 1 (take h = 0 in the
definition above) so that σr(W ) ≤ γ2(W ) ≤ 1.

An upper bound on the noise ϵ Let us start with a simple example. Assume that r = 3
and take

W =

(
1 1 0
0 1 1

)
.

The columns of W are the vertices of a triangle in the plane. Moving the second column of
W toward the middle of the segment joining the other two, it will become harder and harder to
distinguish that column from the data points within conv([W, 0]) in the presence of noise (the
triangle becomes flatter). In particular, using N(:, 2) = −1/2 e makes the second columns of X̃
belong to the convex hull ofW (:, [1, 3]). This means that the second column ofW “disappeared”
(in the sense that it cannot be distinguished from a point in the convex hull of the other columns).
This shows that the noise level has to be smaller than the distance between each column of W
and its projection onto the convex hull of the other columns and the origin, that is, ϵ < γp(W ).

Another example is when W has the form

W =

(
W ′ 0
0 σ

)
.

We have σr(W ) = min (σr−1(W
′), σ). Let us assume that σr−1(W

′) > σ so that σr(W ) = σ.
In order to be able to recover the last column of W via near-separable NMF, the noise level ϵ has
to satisfy ϵ < σr(W ), otherwise the last column of W can be set to zero by properly choosing
the noise matrix N (take

(
0

−σ

)
for the column of N corresponding to the last column of W ) and

hence cannot be recovered under Assumption 7.1. In other words, the matrix X̃ can be made
near-separable with |K∗| = r − 1.

Comparison of σr(W ) and γ2(W ) As we will see in this chapter, some near-separable
NMF algorithms rely on the condition that σr(W ) > 0, while others rely on the weaker assump-
tion that γp(W ) > 0. For near-separable NMF, it is not necessary that σr(W ) > 0 (that is,
rank(W ) = r) to be able to recover W . In other words, we might have σr(W ) = 0 while
still being able to recover the columns of W in the presence of noise. For this to be possible, it
suffices that each column of W does not belong to the convex hull of the other columns and the
origin, that is, γp(W ) > 0.

For well-conditioned matrices W ∈ Rm×r with m ≥ r, we have that γ2(W ) ≈ σr(W ), and
the distinction between σr(W ) and γ2(W ) is not crucial. Under Assumption 7.1, σr is close to
one since

1 ≈ κ(W ) =
σ1(W )

σr(W )
≥ maxj ∥W (:, j)∥2

σr(W )
= σ−1

r (W ),

while σr(W ) ≤ γ2(W ) ≤ 1 (Lemma 7.1). For example, we have randomly generated 1000
matrices W of dimension 100-by-10 using the uniform distribution (rand(100,10) in MAT-
LAB) which generates well-conditioned matrices with high probability, and divided all entries
by maxj ∥W (:, j)∥2 to satisfy Assumption 7.1. The average value and standard deviation of
σr(W ) is 0.35± 0.02 and of γ2(W ) is 0.43± 0.02.

When W is ill-conditioned (resp. rank(W ) < r), γ2(W ) can be significantly larger than
zero while σr(W ) can be arbitrarily close to zero (resp. equal to zero). For example, we
have randomly generated 1000 matrices of dimension 10-by-20 using the uniform distribution
(rand(10,20) in MATLAB) and divided all entries by maxj ∥W (:, j)∥2 to satisfy Assump-
tion 7.1. While σr(W ) = 0 in all cases since m < r, the average value and standard deviation
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of γ2(W ) is 0.13± 0.03. We refer the reader to Section 7.4.6 (page 245) for a similar numerical
example in the ill-conditioned case for which 0 < σr(W )≪ γ2(W ).

7.2.5 Pre- and postprocessing

It is standard in the blind HU literature to assume H⊤e = e. Therefore it makes sense to pre-
process the data set by identifying the (r−1)-dimensional affine subspace that best approximates
the columns of X; see for example [334]. Another similar approach is to use the truncated rank-
r SVD of X̃ [361]. Both these approaches filter the noise and provide a cleaner data set. It is
also possible to randomly project the data points within a smaller dimensional subspace. This is
particularly useful when m is very large [35].

Another useful preprocessing step is to identify and remove outliers. This may be particularly
crucial for near-separable NMF since outliers are outside conv(W ) and hence are extracted by
most near-separable NMF algorithms. Similarly, postprocessing can be used to identify outliers
extracted by near-separable NMF algorithms.

We will not discuss this data processing further as it falls outside the range of near-separable
NMF. However, it is important to keep in mind that using such approaches might be important in
practice, and they are embedded in some near-separable algorithms.

In the next sections, we review three classes of important near-separable NMF algorithms:
greedy, heuristic, and convex-optimization-based algorithms. We do not follow the chronological
order in which these methods were introduced. Note that greedy algorithms can be seen as a
special case of heuristic algorithms; however, because this subclass of heuristics is of particular
interest, we present it separately. Before presenting and analyzing these three types of algorithms,
we first present an idealized algorithm. It will provide bounds on the maximum allowed noise
level ϵ and minimal achievable error qp(K) for any near-separable NMF algorithm.

7.3 Idealized algorithm
An optimal solution of near-separable NMF can be computed using brute force: for all possible
index sets K of size r, compute

d(K) = min
H≥0

D
(
X̃, X̃(:,K)H

)
,

which is a convex optimization problem if D(·, ·) is convex in its second argument, and keep
the best solution K, that is, the solution that minimizes d(K). This approach requires trying(
n
r

)
= (n−r)!

n!r! possible index sets K, and hence it is impractical for large n, even when r is small.
For example, even for r = 2, it requires testing O(n2) index sets. For each index set, one needs
to solve an optimization problem that requires Ω(mnr) operations since computing X̃(:,K)H
requires O(mnr) operations, for a total of Ω(mrn3) operations. This would be too expensive,
for example, for hyperspectral images for which n is typically in the order of millions.

However, it could be interesting to investigate clever ways to explore the
(
n
r

)
possible index

sets, using strategies such as branch and bound. However, as far as we know, no such techniques
have been developed so far for near-separable NMF; this could be an interesting direction of
research.

The goal of this section is to analyze an idealized algorithm that computes the best index set
K. More precisely, we consider the algorithm that outputs an optimal solution of

min
K,|K|=r

f(K), with f(K) = max
1≤j≤n

min
h∈Sr

∥∥∥X̃(:, j)− X̃(:,K)h
∥∥∥
2
. (7.2)
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Let us make two observations:

• For simplicity we chose the ℓ2 norm, although the analysis we provide below can be
adapted to other norms such as the ℓ1 norm.

• The problem (7.2) minimizes the largest approximation error among all data points: this
choice is rather natural if the goal is to approximate the true W = X̃(:,K∗), that is, to
minimize q2(K) as defined in (7.1). Intuitively, to approximate well the columns of W
(which are among the columns ofX), K has to correspond to columns near the columns of
W : the columns ofW are the vertices of conv(X) and hence cannot be well-approximated
with convex combinations of other columns (by definition). This is quantified via the
parameter γ2(W ) > 0 which is the smallest distance between a column of W and convex
combinations of other columns of W and the origin.

The reason we analyze this idealized algorithm is twofold:

• Analyzing the robustness to noise of this idealized algorithm is relatively simple, at least
compared to the other algorithms presented in the following sections and for which we
will not provide robustness proofs (such proofs are lengthy and rather technical). Hence
this analysis allows the reader to get insights and intuitions on such robustness proofs at a
higher level.

• It provides limits in terms of performance for any near-separable NMF algorithm. The
intuition is that any polynomial-time algorithm has to perform worse than this brute-force
idealized algorithm.

If you are not interested in these theoretical derivations, you can skip this part and go directly
to “Take-home message from the idealized algorithm” (page 222).

The developments of this section follow closely the paper50 [192].

7.3.1 Robustness to noise

In this section, we prove robustness to noise of an optimal solution of (7.2) to solve the near-
separable NMF problem. The first lemma shows that the solutionK∗ (which contains the indices
corresponding to the columns of W ) achieves an error f(K∗) of at most 2ϵ.

Lemma 7.2. [192, Lemma 1] Let X̃ satisfy Assumption 7.1 with p = 2. Then f(K∗) ≤ 2ϵ where
f is defined in (7.2).

Proof. By Assumption 7.1, we have for all j that

X̃(:, j) = X(:, j) +N(:, j) = X(:,K∗)H(:, j) +N(:, j),

where H(:, j) ∈ Sr, and we also have X̃(:,K∗) =W +N(:,K∗). Therefore, using the triangle
inequality, we have for all j that

min
h∈Sr

∥X̃(:, j)− X̃(:,K∗)h∥2 = min
h∈Sr

∥X(:, j) +N(:, j)−Wh−N(:,K∗)h∥2

≤ min
h∈Sr

∥X(:, j)−Wh∥2 + ∥N(:,K∗)h∥2 + ∥N(:, j)∥2

≤ ∥X(:, j)−WH(:, j)∥2︸ ︷︷ ︸
=0

+∥NH(:, j)∥2 + ϵ

≤ max
h∈Sr

∥Nh∥2 + ϵ ≤ 2ϵ,

50We have clarified the presentation providing more details, improved some bounds (in particular for Theorem 7.6),
and corrected some errors.
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where we used

max
h∈Sr

∥N(:,K∗)h∥2 = max
j∈K∗

∥N(:, j)∥2 ≤ max
j
∥N(:, j)∥2 ≤ ϵ,

which follows from Assumption 7.1.

The second lemma provides a lower bound on the error for any feasible solution K.

Lemma 7.3. [192, Lemma 2] Let X̃ =WH +N = X +N satisfy Assumption 7.1 with p = 2.
Let K be an index set of size r and let B = H(:,K) ∈ Rr×r so that X(:,K) = WB, and let
α = mink maxj B(k, j) ≤ 1. Then

f(K) ≥ (1− α)γ2(W )− 2ϵ. (7.3)

Proof. Before providing the proof, let us interpret the value of α. The matrix B contains the
weights necessary to reconstruct X(:,K) using the columns of W . The kth row of B indicates
the importance of the kth column of W to reconstruct X(:,K). The largest entry of B(k, :) is
the largest proportion of W (:, k) in the columns of X(:,K). In particular, if ∥B(k, :)∥∞ = 1,
then one of the columns of X(:,K) is equal to W (:, k) since B(:, j) ∈ Sr (Assumption 7.1).
Therefore α = mink ∥B(k, :)∥∞ is the smallest proportion of a column ofW used to reconstruct
the columns of X(:,K).

Let us now prove the lemma. Clearly, (7.3) holds for α = 1 since f(K) ≥ 0 for any K (in
this case, B is the identity matrix, up to permutation, that is, W = X(:,K), up to permutation).
Otherwise, α < 1 and let k be such that α = maxj B(k, j). Let us denote W̃ = X̃(:,K∗), and
let us lower bound f(K) by focusing on the error of the approximation of W̃ (:, k) which is one
of the columns of X̃ . We have, using a similar derivation as in Lemma 7.2, that

f(K) ≥ min
h∈Sr

∥∥∥W̃ (:, k)− X̃(:,K)h
∥∥∥
2
≥ min

h∈Sr
∥W (:, k)−X(:,K)h∥2 − 2ϵ.

Let us use the notation k̄ = {1, 2, . . . , r}\{k}. We have

min
h∈Sr

∥W (:, k)−X(:,K)h∥2 = min
h∈Sr

∥W (:, k)−WBh∥2

= min
h∈Sr

∥∥(1− (Bh)k)W (:, k)−W (:, k̄)(Bh)k̄
∥∥
2

≥ min
h∈Sr

(1− (Bh)k)

∥∥∥∥W (:, k)−W (:, k̄)
(Bh)k̄

(1− (Bh)k)

∥∥∥∥
2

≥ (1− α)γ2(W ).

The last inequality follows from the definition of γ2(W ) and because (Bh)k̄
(1−(Bh)k)

∈ Sr−1 since
Bh ∈ Sr and (Bh)k ≤ α < 1. In fact,Bh ∈ Sr implies

∑
j(Bh)j =

∑
j ̸=k(Bh)j+(Bh)k ≤ 1

so that ∑
j ̸=k

(Bh)j
1− (Bh)k

≤ 1.

Robustness without duplicates and near-duplicates Under Assumption 7.1, the
matrix H in X =WH can be written as

H = [Ir, H
′] Π (7.4)
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for some permutation matrix Π and someH ′ ≥ 0 withH ′⊤e ≤ e. If the entries ofH ′ are strictly
smaller than one, then no column of H ′ is a unit vector and there are no duplicated columns of
W in the data set. Under this condition and if the noise level ϵ is sufficiently small, then the
optimal solution of (7.2) is K∗ which recovers W up to the noise level ϵ.

Theorem 7.4. [192, Theorem 1] Let X̃ = X + N = WH + N satisfy Assumption 7.1 with
p = 2 where H = [Ir, H

′]Π has the form (7.4). Let us assume that β := maxi,j H
′(i, j) < 1,

and

ϵ <
(1− β)γ2(W )

4
.

Then the optimal solution of (7.2) coincides with the true index set K∗ for which

q2(K∗) = max
1≤k≤r

min
j∈K∗

∥∥∥W (:, k)− X̃(:, j)
∥∥∥
2
≤ ϵ.

Proof. Let K be a solution distinct from K∗, X(:,K) = WH(:,K), B = H(:,K), and α =
mink maxj B(k, j). Since K ≠ K∗, at least one column of B corresponds to a column of H ′.
Since the entries in H ′ are smaller than β, this implies that α as defined in Lemma 7.3 is smaller
than β: there is at least one row of B whose maximum entry is strictly smaller than one since
there are at most r− 1 columns of B being columns of the identity matrix. That maximum entry
has to be smaller than β since, except for the unit vectors, all entries in H are smaller than β.
Therefore, using Lemma 7.3, any solution K ̸= K∗ has error q2(K) at least (1− β)γ2(W )− 2ϵ.

By Lemma 7.2,K∗ has error at most 2ϵ. Therefore,K∗ is the unique optimal solution of (7.2)
as long as (1 − β)γ2(W ) − 2ϵ > 2ϵ, that is, as long as ϵ < (1−β)γ2(W )

4 , while K∗ leads
to an error on W smaller than ϵ since X̃(:,K∗) = W + N(:,K∗) and maxj ∥N(:, j)∥2 ≤ ϵ
(Assumption 7.1).

The bound of Theorem 7.4 is tight since it is not possible to have q2(W ) smaller than ϵ,
because every column of N could potentially have a norm of ϵ; see Assumption 7.1.

Unfortunately, in most practical settings, there are near-duplicated columns of W in the data
set, that is, nearby data points. For example, in hyperspectral images satisfying the pure-pixel
assumption, there is usually more than one pure pixel per endmember, and many pixels contain
mostly one material.

Robustness in the presence of duplicates and near-duplicates In the pres-
ence of near-duplicated columns of W , we have the following robustness result when solv-
ing (7.2).

Theorem 7.5. [192, Theorem 2] Let X̃ satisfy Assumption 7.1 with p = 2, and let us assume
that ϵ < γ2(W )

4 . Then any optimal solution K of (7.2) satisfies

q2(K) ≤
8ϵ

γ2(W )
+ ϵ.

Proof. Let K be an optimal solution of (7.2), X(:,K) = WB with B = H(:,K), and α =
mink maxj B(k, j) ≤ 1 (as in Lemma 7.3). We have

2ϵ ≥
Lem. 7.2

f(K∗) ≥
K optimal

f(K) ≥
Lem. 7.3

γ2(W )(1− α)− 2ϵ.

This implies that γ2(W )(1−α) ≤ 4ϵ, and henceα ≥ 1− 4ϵ
γ2(W ) . By definitionα ≤ maxj B(k, j)

for all k, and hence for each row of B there is at least one entry with value at least 1 − 4ϵ
γ2(W ) ,
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that is, for each k there exists jk such that B(k, jk) ≥ 1− 4ϵ
γ2(W ) . Hence for all k there exists jk

such that

∥W (:, k)−WB(:, jk)∥2 = ∥W (:, k)−W (:, k)B(k, jk)−W (:, k̄)B(k̄, jk)∥2
= ∥(1−B(k, jk))W (:, k)−W (:, k̄)B(k̄, jk)∥2

≤ 4ϵ

γ2(W )
∥W (:, k)∥2 +

4ϵ

γ2(W )
max

h∈Sr−1
∥W (:, k̄)h∥2

≤ 8ϵ

γ2(W )
max

i
∥W (:, i)∥2 =

8ϵ

γ2(W )
.

The first inequality follows from the triangle inequality and the facts that B(:, jk) ∈ Sr and
B(k, jk) ≥ 1 − 4ϵ

γ2(W ) , which implies ∥B(k̄, jk)∥1 ≤ 4ϵ
γ2(W ) ; hence

(γ2(W )
4ϵ

)
B(k̄, jk) ∈ Sr−1.

The last equality follows from Assumption 7.1(ii), that is, maxi ∥W (:, i)∥2 = 1. This concludes
the proof since

X̃(:,K) = X(:,K) +N(:,K) =WB +N(:,K);

hence, for all k the jkth column of X̃(:,K) is at distance at most 8ϵ
γ2(W ) + ϵ from W (:, k), that

is, q2(K) ≤ 8ϵ
γ2(W ) + ϵ.

A natural question is whether the bound of Theorem 7.5 is tight. In the following, we prove
a lower bound on the best possible accuracy achievable by solving (7.2). This proves that the
bounds in Theorem 7.5 are tight up to a multiplicative factor of two for the leading term in ϵ

γ2(W ) .

Theorem 7.6. [192, Theorem 3] There exists a class of near-separable matrices X̃ satisfying
Assumption 7.1 with p = 2 and ϵ < γ2(W )

4 such that the optimal solution K of (7.2) satisfies

q2(K) > 4
ϵ

γ2(W )
+ 4ϵ.

Proof. Let us construct a matrix X̃ satisfying Assumption 7.1. For that, we need to construct W ,
H , and N . The construction is illustrated in Figure 7.3.
Construction of W . Let

W =

(
1 0 1

2 +
√
2
2 γ

0 1 1
2 +

√
2
2 γ

)
,

where 0 < γ ≤ 1 −
√
2/2 so that maxk ∥W (:, k)∥2 = 1. Let us show that γ2(W ) = γ. By

convexity and symmetry of the problem miny ∥W (:, 3) −W (:, 1 : 2)y∥2, an optimal solution
is y∗ = (0.5, 0.5) for which ∥W (:, 3) −W (:, 1 : 2)y∗∥2 = γ. In fact, if y1 and y2 are optimal
solutions of a convex optimization problem, so is ηy1 + (1− η)y2 for any η ∈ [0, 1]). The
optimal solution of

min
y
∥W (:, 1)−W (:, 2 : 3)y∥2

is achieved for y(1) = 0 as W (:, 1) and W (:, 2) are orthogonal, while y(2) = W (1, 3)−1 such
that W (:, 3)y(2) = (0.5, 0.5)⊤ with error

√
2/2 ≥ γ. The same reasoning applies to W (:, 2) by

symmetry.
Construction of H . Let H = [I3, h] where h⊤ = (0, 1− λ, λ) for some λ ∈ [0, 1] to be defined
later. This means that K∗ = {1, 2, 3} and that the fourth column of X = WH is a linear
combination of the second and third columns of W , that is,

X(:, 4) = (1− λ)W (:, 2) + λW (:, 3) = (λ/2 + γλ/
√
2, 1− λ/2 + γλ/

√
2).
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0 0.5 1

0

0.5

1

Figure 7.3. Illustration of the construction from Theorem 7.6 with γ = 0.2 and λ = 6/7.

Construction of N . We do not add noise to the first, second, and fourth columns of X , that is,
N(:, [1, 2, 4]) = 0. We add noise to the third column of X as follows:

N(:, 3) = − ϵ√
2
e,

with ∥N(:, 3)∥2 = ϵ, where e is the vector of all ones of appropriate dimension.
In the following, we show that, for a suitable choice of λ, the optimal solution of (7.2) is

{1, 2, 4} for some ϵ < γ
4 and that ∥W (:, 3)− X̃(:, 4)∥2 >

√
2 ϵ
γ +
√
2ϵ, which will conclude the

proof.
The intuition is as follows. Let K = {1, 2, 4}. We are going to choose λ such that X̃(:, 3)

belongs to the convex hull of X̃(:,K), hence f(K) = 0, since N(:,K) = 0. On the other hand,
f(K∗) > 0 since X̃(:, 4) does not belong to the convex hull of X̃(:, [1, 2, 3]) (see Figure 7.3).
Choice of λ such that f(K) = 0. Let us construct the vector

v = µX(:, 4) + (1− µ)W (:, 1)

on the segment joining X(:, 4) and W (:, 1) (see Figure 7.3) with µ = 1
2−λ so that v = (v1, v2)

with v1 = v2 = 1
2 + γλ√

2(2−λ)
. The vector v approximates X(:, 3) =W (:, 3) using a convex

combination of X(:, 2) and X(:, 4). We have

W (:, 3)− v =
γ√
2

(
1− λ

2− λ

)
e =

γ√
2

1− λ
2− λ

e.

Hence, for ϵ = γ 1−λ
2−λ ,

W̃ (:, 3) =W (:, 3) +N(:, 3) =W (:, 3)− ϵ√
2
e = v,

implying f(K) = 0.
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Value of q2(K). We have

q2(K) = ∥W (:, 3)− X̃(:, 4)∥2 = ∥W (:, 3)−X(:, 4)∥2
= ∥W (:, 3)− (1− λ)W (:, 2)− λW (:, 3)∥2
= (1− λ)∥W (:, 3)−W (:, 2)∥2

>
1√
2
(1− λ),

since

∥W (:, 3)−W (:, 2)∥2 =

∥∥∥∥(1

2
+

γ√
2
,
1

2
− γ√

2

)∥∥∥∥
2

=

√
1 + γ2

2
.

This implies that q2(K) >
√

1+γ2

2 (1− λ).
Finally, let us choose for example λ such that ϵ = γ 1−λ

2−λ = γ
8 <

γ
4 , that is, λ = 6/7. We have

ϵ

γ
=

1

8
,

so that

q2(K) >
√

1 + γ2

2
(1− λ) ≥ 1

2
+
γ

2
= 4

ϵ

γ
+ 4ϵ,

where we used51
√

1+γ2

2 > 1
2 +

γ
2 for 0 < γ < 1. Note that since γ < 1, this does not contradict

Theorem 7.5 since 4 ϵ
γ + 4ϵ < 8 ϵ

γ .

Optimality of the idealized algorithm Let us explain why the idealized algorithm
achieves optimal bounds, up to constant multiplicative factors. This essentially follows from
the construction of Theorem 7.6 where the “wrong” solution K = {1, 2, 4} leads to a perfect
reconstruction of X̃ while q2(K∗) > O(ϵ/γ).

First, the condition ϵ < γ2(W ) is a necessary condition; otherwise a column of X̃(:,K∗)
could belong to the convex hull of the other columns and hence is not identifiable; see Sec-
tion 7.2.4.

Second, using the construction of Theorem 7.6 but with a smaller noise level, we can con-
struct X̃ such that

X̃ = X(:, [1, 2, 3])H +N = X(:, [1, 2, 4])H ′ +N ′,

where maxj ∥N(:, j)∥2 = maxj ∥N ′(:, j)∥2, while the distance between X(:, 4) and W (:, 3) is
in O(ϵ/γ). This means that the optimal solution of the near-separable NMF algorithm is non-
unique (both solutions lead to the same reconstruction error). This is an important observation:
for the solution of near-separable NMF to be unique, ϵ must be sufficiently small. Moreover,
the distance between these solutions is in O(ϵ/γ). Hence, whatever solution is returned by an
algorithm, it has an error in O(ϵ/γ) compared to the other one. We refer the interested reader
to [187, Theorem 3.1] for further discussions on such an example.

Take-home message from the idealized algorithm The main take-home message
from this section is that an idealized near-separable NMF algorithm achieves the optimal bounds

ϵ ≤ O
(
γ2(W )

)
⇒ q2

(
K
)
≤ O

(
ϵ/γ2(W )

)
.

51The function
√

1+γ2

2
is convex, and 1+γ

2
is its first-order Taylor approximation at γ = 1.
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This result holds when the ℓ2 norm is replaced with any ℓp norms with p ≥ 1, replacing γ2(W )
by γp(W ) in the bounds above. In fact, the proofs of the lemmas and theorems can be adapted
accordingly as most of the steps only rely on the triangle inequality.

It is important to keep these bounds in mind to compare them with the bounds derived in this
section for polynomial-time near-separable NMF algorithms.

7.4 Greedy/sequential algorithms
Greedy algorithms construct the solution K of near-separable NMF by identifying one index at
a time. Most of them can be put in the following general framework. After initializing the index
set to K = ∅ and the residual to R = X̃ , they consist of two main steps:

1. Selection step: select an index to add to K based on some criterion using the residual
matrix R.

2. Projection step: update the residual matrix R by projecting its columns on a subspace
taking into account the newly extracted column of X̃ .

Both steps can be implemented in different ways leading to different algorithms.
Greedy algorithms are the most popular near-separable NMF algorithms: they are fast and

scale well (typically running inO(mnr) operations), they are easy to understand and implement,
and some of them come with provable guarantees even in the presence of noise. In this section,
we review the most important near-separable NMF greedy algorithms with provable guarantees,
namely

• SPA, which is based on orthogonal projections (Section 7.4.1),

• fast anchor words (FAW) that refine SPA with a second optimization phase (Section 7.4.2),

• vertex component analysis (VCA), which is closely related to SPA and is very popular in
the blind HU literature (Section 7.4.3), and

• SNPA (Section 7.4.4), which takes into account nonnegativity in the projection step.

Then we discuss three different preconditionings that allow us to make greedy algorithms more
robust to noise (Section 7.4.5). Finally, we perform some numerical experiments comparing
greedy near-separable NMF algorithms and provide some take-home messages (Section 7.4.6).

7.4.1 The successive projection algorithm

SPA is the workhorse greedy near-separable NMF algorithm. It is arguably the simplest while
having robustness guarantees (see Theorem 7.10 below). For the selection step, it picks the
columns of the residual with the largest52 ℓ2 norm. The rationale behind this choice is that the
ℓ2 norm is always maximized at a vertex of the convex hull of a set of points. Moreover, this
property holds under linear projections (see Theorem 7.9 for a formal proof). Once a column is
selected, the residual is updated by performing a projection onto the orthogonal complement of
the extracted column. This implies that the extracted column is projected onto zero and will not
be extracted in the following steps. Algorithm 7.1 provides the pseudocode for SPA. It requires
r as an input, or it can be terminated when the norm of the residual is below a certain threshold.

52In case of a tie, any column with maximum ℓ2 norm can be picked. To break the ties, [210] for example uses the
column that maximizes the ℓ2 norm of the unprojected data set X̃ (in case of another tie, one such column is picked
randomly).
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Algorithm 7.1 Successive projection algorithm (SPA) [13] [Matlab file: SPA.m]

Input: The matrix X̃ that admits a near-separable factorization (Assumption 7.1), the number r
of columns to extract, and/or a relative error δ to achieve (by default, δ = 0).

Output: Set of r indices K such that X̃(:,K) ≈W (up to permutation).

1: Let R = X̃ , K = {}, k = 1.

2: while k ≤ r and

∥∥R∥∥
F∥∥X̃∥∥
F

≥ δ do

3: p = argmaxj ∥R:j∥2. % Selection step
4: K = K ∪ {p}.

5: R =

(
I − R:pR

⊤
:p

∥R:p∥2
2

)
R. % Projection step

6: k = k + 1.
7: end while

This section on SPA is organized as follows. We first prove the ability of SPA to extract
the correct solution in the absence of noise (Section 7.4.1.1) and state the robustness result in
the presence of noise (Section 7.4.1.2). Then we provide a geometric interpretation of SPA: it
is a greedy algorithm to find a subset of columns with maximum volume (Section 7.4.1.3). In
Section 7.4.1.4, we discuss the computational cost of SPA, in particular providing an efficient
implementation for sparse matrices which does not require the computation of the residual ma-
trix. In Section 7.4.1.5, we list the pros and cons of SPA, while in Section 7.4.1.6, we review
when and how SPA came about in different research fields.

7.4.1.1 Correctness of SPA in the absence of noise

Before proving the correctness of SPA in the absence of noise, let us show the following simple
lemma, and a corollary.

Lemma 7.7. For any two vectors w1 ̸= w2 ∈ Rm and 0 < α < 1,

∥αw1 + (1− α)w2∥2 < max
i∈{1,2}

∥wi∥2. (7.5)

Proof. If w1 and w2 are not multiples of one another, (7.5) follows from the Cauchy–Schwarz
inequality

w⊤
1 w2 < ∥w1∥2∥w2∥2 ≤ max

i∈{1,2}
∥wi∥22

and

∥αw1 + (1− α)w2∥22 = α2∥w1∥22 + 2α(1− α)w⊤
1 w2 + (1− α)2∥w2∥22

< max
i∈{1,2}

∥wi∥22,

since α(1− α) ̸= 0.
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If w1 and w2 are multiples of one another, that is, w2 = λw1 for some |λ| < 1 (w.l.o.g., since
the case |λ| > 1 follows by exchanging the role of w1 and w2),

∥αw1 + (1− α)λw1∥2 = |α+ λ(1− α)| ∥w1∥2
≤ (α+ |λ|(1− α)) ∥w1∥2
< (α+ (1− α)) ∥w1∥2 = ∥w1∥2. (7.6)

Corollary 7.8. For any matrix W ∈ Rm×r and h ∈ Sr,

∥Wh∥2 ≤ max
1≤k≤r

∥W (:, k)∥2 .

Moreover, if the columns of W are distinct and h is not a unit vector (that is, h ̸= ek for
1 ≤ k ≤ r), then the inequality is strict.

Proof. The first part of the lemma follows from the triangle inequality and h ∈ Sr:

∥Wh∥2 =

∥∥∥∥∥
r∑

k=1

W (:, k)h(k)

∥∥∥∥∥
2

≤
r∑

k=1

∥h(k)W (:, k)∥2

=

r∑
k=1

h(k) ∥W (:, k)∥2

≤ max
1≤k≤r

∥W (:, k)∥2 . (7.7)

For the second part, let h ∈ Sr which is not a unit vector. Let us define the set K =
{k|h(k) > 0} and let us use induction. If |K| = 2, that is K = {k, j} for some k,j, the result
follows from Lemma 7.7, taking w1 =W (:, k), w2 =W (:, j), and α = h(k).

Now assume the result holds when |K| = p ≥ 2 and show that it implies it holds when |K| =
p+ 1. Let k be some index in K, and let us denote J = K\{k} and h′ = h(J )/∥h(J )∥1 ∈ ∆|J |

which is not a unit vector (since all entries of h(K) are nonzero). By the induction step,

∥W (:,J )h(J )∥2 = ∥h(J )∥1∥W (:,J )h′∥2 < ∥h(J )∥1 max
j∈J
∥W (:, j)∥2.

Finally,

∥Wh∥2 ≤ h(k)∥W (:, k)∥2 + ∥
∑
j∈J

h(j)W (:, j)∥2

< h(k)∥W (:, k)∥2 + (1− h(k)) max
j∈K\{k}

∥W (:, j)∥2

≤ max
1≤k≤r

∥W (:, k)∥2 ,

where we used ∥h(J )∥1 = 1− h(k).

We can now prove correctness of SPA in the absence of noise.

Theorem 7.9. Let X = X(:,K∗)H = WH be a matrix satisfying Assumption 7.1 with p = 2,
N = 0, and r = rank(W ). Then SPA (Algorithm 7.1) returns a set of indices K such that
X(:,K) =WΠ where Π is a permutation matrix.
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Proof. Let us prove the result by induction.
First step. This follows from Corollary 7.8: the ℓ2 norm can only be maximized at a column of
X corresponding to a column of W , that is, for a column X(:, j) =WH(:, j) where H(:, j) is
a unit vector.
Induction step. Assume that SPA has already extracted columns of X corresponding to the
columns of W in the set L with |L| ≥ 1. Let us denote by Y = W (:,L) these columns, and let
P⊥
Y be the projection onto the orthogonal complement of the columns of Y so P⊥

Y W (:,L) = 0.
We have, for all 1 ≤ j ≤ n,

P⊥
Y X(:, j) = P⊥

Y WH(:, j) =

r∑
k=1

P⊥
Y W (:, k)H(k, j) =

∑
k/∈L

P⊥
Y W (:, k)H(k, j).

Since W is full column rank, the columns {P⊥
Y W (:, k)}k/∈L are different from zero and distinct.

Therefore, by Assumption 7.1 and Corollary 7.8, SPA identifies at the next step a column of W
not extracted yet, which concludes the proof.

7.4.1.2 Robustness to noise

A main feature of SPA is that it is robust in the presence of noise.

Theorem 7.10. [210, Theorem 3] Let X̃ = X+N = X(:,K∗)H+N =WH+N be a matrix
satisfying Assumption 7.1 with p = 2 and

ϵ = max
j
∥N(:, j)∥2 ≤ O

(
σ3
r(W )√
r

)
.

Then SPA (Algorithm 7.1) returns a set of indices K such that

q2(K) ≤ O
(

ϵ

σ2
r(W )

)
,

where q2(K) measures the distance between X̃(:,K) and the ground truthW ; see (7.1) page 214.

We do not provide the proof, which is rather long and technical, and refer the interested
reader to [210]. The bound can also be obtained from the results of Arora et al. [14]; see the
discussion in Section 7.4.2.

Let us discuss briefly the bounds of Theorem 7.10. In Assumption 7.1, maxk ∥W (:, k)∥2 = 1;
hence σr(W ) ≤ 1. If this assumption is removed, and denoting K(W ) = maxk ∥W (:, k)∥2, the
bounds in Theorem 7.10 are replaced by [210, Theorem 3]

ϵ = max
j
∥N(:, j)∥2 ≤ O

(
σ3
r(W )

K(W )2
√
r

)
and q2(K) ≤ O

(
ϵK(W )2

σ2
r(W )

)
.

Since K(W )
σr(W ) ≤ κ(W ), the bounds above have sometimes been replaced by

ϵ = max
j
∥N(:, j)∥2 ≤ O

(
σr(W )√
rκ(W )2

)
and q2(K) ≤ O

(
ϵκ(W )2

)
.

Hence the noise level ϵ must be rather small for SPA to be provably robust, being proportional to
1

κ(W )2 . However, it is important to keep in mind that this is a worst-case analysis and, as we will
see in the numerical experiments in Section 7.4.6, SPA can identify the correct set of indices on
randomly generated data for higher noise levels.
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7.4.1.3 Geometric interpretation: volume maximization

SPA can be interpreted as a greedy algorithm that maximizes the volume of conv([X̃(:,K), 0]).
Let us explain this result which was reported in [77, 80, 439]. The volume of conv([Y, 0])
within the subspace spanned by Y is equal to det(Y ⊤Y ) given that Y has full column rank; see
Lemma 4.41. At the first step, the column of X̃ that maximizes the volume of conv([X̃(:, j), 0])
is the one that maximizes ∥X̃(:, j)∥2, because [X̃(:, j), 0] is a segment of length ∥X̃(:, j)∥2.
Now, let Y = X̃(:,L) be the columns of X̃ already extracted by SPA, and let y = X̃(:, j) be the
next column to be selected. What is the column y that maximizes the volume of conv([Y, y, 0]),
that is, that maximizes det([y, Y ]⊤[y, Y ])? It turns out it is the column that has maximal ℓ2 norm
after projection onto the orthogonal complement of col(Y ). This follows from the following
lemma.

Lemma 7.11. Let Y ∈ Rm×r with rank(Y ) = r and let y ∈ Rm. Then

det([y, Y ]⊤[y, Y ]) = det

(
y⊤y y⊤Y
Y ⊤y Y ⊤Y

)
= det(Y ⊤Y )∥y⊥∥22,

where
y⊥ =

(
Im − Y (Y ⊤Y )−1Y ⊤)︸ ︷︷ ︸

P⊥
Y

y,

and P⊥
Y is the projector onto the orthogonal complement of col(Y ).

Proof. This follows from the Schur formula: given four matrices A, B, C, and D with appropri-
ate dimensions and with D invertible, it states that

det

(
A B
C D

)
= det(D) det(A−BD−1C),

where A−BD−1C is the Schur complement of [A B;C D]. Since Y is full column rank, Y ⊤Y
is positive definite, hence

det

(
y⊤y y⊤Y
Y ⊤y Y ⊤Y

)
= det(Y ⊤Y ) det

(
y⊤y − y⊤Y (Y ⊤Y )−1Y ⊤y

)
= det(Y ⊤Y ) det

(
y⊤(I − Y (Y ⊤Y )−1Y ⊤)y

)
= det(Y ⊤Y ) det

(
y⊤P⊥

Y y
)

= det(Y ⊤Y )∥P⊥
Y y∥22 = det(Y ⊤Y )∥y⊥∥22,

since (P⊥
Y )⊤ = P⊥

Y and P⊥
Y P

⊥
Y = P⊥

Y .

Lemma 7.11 implies that SPA is a greedy algorithms that selects the columns of X̃ so that
the volume of the convex hull of the selected columns and the origin is maximized.

7.4.1.4 Computational cost

Let us explain how to implement the different steps of SPA in an efficient way. First, it is key not
to compute the residual matrixR explicitly. At the first step, we only need to compute ∥X̃(:, j)∥22
for all j, which can be done in 2mn operations. Then, for the next steps, to avoid forming R
explicitly, one should use the following formula sequentially: for any u, x ∈ Rm with ∥u∥2 = 1,

∥(I − uu⊤)x∥22 = ∥x− u(u⊤x)∥22
= ∥x∥22 − 2(u⊤x)2 + (u⊤x)2∥u∥22
= ∥x∥22 − (u⊤x)2.
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Denoting uk the normalized column of X̃ extracted at the kth step of SPA and projected onto the
orthogonal complement of [u1, u2, . . . , uk−1], we obtain

∥(I − uku⊤k ) . . . (I − u1u⊤1 )x∥22 = ∥(I − u1u⊤1 − · · · − uku⊤k )x∥22
= ∥x∥22 − (u⊤1 x)

2 − · · · − (u⊤k x)
2,

since u⊤i uj = 0 for i ̸= j. Applying this formula to the columns of X̃ to compute the norms of
the columns of the residualR leads to a computational cost of 2mnr+O(mr2) operations. At the
kth step, the main cost is to first project uk onto the orthogonal complement of [u1, u2, . . . , uk−1]
which requires O(mk) operations, and then compute u⊤j X̃ which requires 2mn operations.

This implementation also handles sparse matrices efficiently, as it requires O(r nnz(X̃))
operations where nnz(X̃) is the number of nonzero entries in X̃ . This is not the case of the
naive implementation of Algorithm 7.1 that computes the residual explicitly and requires 2mnr
operations; see Example 7.16 for a numerical experiment comparing the two implementations.
This makes SPA extremely fast: its main computational cost is equivalent to one matrix-matrix
product U⊤X̃ where U is an r-by-m matrix.

7.4.1.5 Pros and cons of SPA

The mains advantages of SPA are the following:

• It is very fast, running in 2mnr + O(mr) operations for a dense input matrix X̃ and in
O(r nnz(X̃)) operations for a sparse input matrix X̃ .

• There is no parameter to tune: one only needs to choose the number of columns of X̃ to
extract, or the residual error to achieve.

• Even if the input matrix X̃ does not satisfy Assumption 7.1, SPA will extract r columns
that are well-spread within the data set.

However, SPA also has several drawbacks:

• It is not very robust to noise. The error bounds in Theorem 7.10 are rather poor; in particu-
lar ϵ ≤ O

( σr(W )
rκ(W )2

)
means that the columns of N must have a very small norm, especially

when W is ill-conditioned. In real-world scenarios, this bound will be violated in most
cases. However, this is a worst-case analysis and SPA typically leads to good practical
performances.

• It is not applicable when r > rank(W ).

• Like most near-separable NMF algorithms, it is sensitive to outliers. This can be leveraged
via pre- and postprocessing; see Section 7.2.

Another weak point of SPA is that it focuses on the vertices of conv(X̃): it does not leverage
the knowledge of many data points within conv(X̃). In other words, it does not take the data
fitting term ∥X̃ − X̃(:,K)H∥F into account in the selection step. In order to overcome this
drawback, a variant, referred to as robust SPA [193], identifies several columns of X̃ in the
selection step (instead of just one in SPA) and picks the one that decreases the data fitting error
the most.
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7.4.1.6 History

SPA has been discovered many times and in different contexts. As far as we know, its first use in
the context of NMF and blind source separation is in the paper [13] (2001), where it is referred
to as the successive projections algorithm and is applied on spectrophotometric data. However,
it did not draw much attention initially (the citation number increased significantly after 2010).
SPA has been rediscovered many times in different application areas:

• Ren and Chang [396] (2003) called it the automatic target generation process. They used
it for blind HU.

• Jiang, Liang, and Ozaki [264] (2003) called it SIMPLEX1 and used it in the context of
SMCR (see Sections 1.4 and 9.3).

• Chan et al. [80] (2011) called it the successive volume maximization algorithm. They
proved that SPA is a greedy algorithm to maximize the convex hull of the extracted col-
umns of X̃ (see Lemma 7.11). The same observation was also made in [77] (2009) in a
rather different context (see the second bullet point below).

• Sun et al. [439] (2013) focused on the volume interpretation and the use of the formula
from Lemma 7.11. They referred to their algorithm as the fast Gram determinant based
algorithm and applied it on hyperspectral images.

Moreover, SPA has been discovered and used in other contexts:

• Numerical linear algebra—QR with column pivoting. Golub and Businger [69] construct
QR factorizations of matrices by performing, at each step of the algorithm, the House-
holder reflection with respect to the column of X̃ whose projection onto the orthogonal
complement of the previously extracted columns has maximum ℓ2 norm, exactly as in
SPA. Hence SPA can be interpreted as a modified Gram–Schmidt algorithm with column
pivoting.

• Theoretical computer science—maximum-volume submatrix. Çivril and Magdon-Ismail
[77, 78] showed that SPA is a good greedy heuristic for the problem of identifying a subset
of columns of a given matrix whose convex hull has maximum volume. More precisely,
unless P=NP, they proved that the approximation ratio guaranteed by SPA is within a log-
arithmic factor of the best possible achievable ratio by any polynomial-time algorithm.

• Compressive sensing—orthogonal matching pursuit. Fu et al. [175] showed that SPA can
be interpreted as a greedy algorithm to solve a convex-optimization-based near-separable
model (see Section 7.6). This interpretation shares some similarity with orthogonal match-
ing pursuit, which is a greedy algorithm widely used in compressive sensing to solve least
squares problem under sparsity constraints.

Variants of SPA Let us briefly mention a few variants of SPA:

1. TRI-P [7] generalizes SPA by replacing the ℓ2 norm in the selection step by the ℓp norm
for p > 1.

2. FastSepNMF [210] generalizes SPA by replacing the ℓ2 norm in the selection step by any
strongly convex function f such that f(0) = 0. In particular, Lemma 7.7 applies to any
such function. SPA remains robust to noise under this generalization, and it is shown that
the ℓ2 norm leads to the best bounds (in the worst case) when p = 2 in Assumption 7.1.
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3. FAW [14] sweeps one more times over the indices extracted by SPA in order to improve
its solution; see the next section.

4. SNPA [188] uses a projection onto the convex cone spanned by the columns extracted so
far and the origin, instead of an orthogonal projection; see Section 7.4.4.

7.4.2 Fast anchor words

Arora et al. [14] designed a SPA-like algorithm, FAW, under the assumption that H⊤e = e.
They used it in the context of topic modeling; see Section 7.8. FAW has two main phases. The
first phase is very similar to SPA, while the second one goes through the extracted indices once
more in order to improve the solution. Hence FAW is not a fully greedy algorithm: it is a greedy
algorithm with one round of local search.

First phase of FAW The only difference between SPA and the first phase of FAW is that
the orthogonal projections of FAW are performed with respect to the affine subspace spanned by
the extracted vertices, instead of their linear subspace as in SPA. This means that FAW relies on
the assumption H⊤e = e (as many near-separable NMF algorithms). The first column extracted
by FAW is the same as SPA, that is, the one with the largest ℓ2 norm. After the first column is
extracted, say X̃(:, k), all data points are translated by −X̃(:, k), so that X̃(:, k) is translated to
the origin. After this first step, FAW runs exactly the same steps as SPA. In particular, the second
extracted column will be the one the farthest away from the origin, that is, the farthest away from
X̃(:, k). Under the assumption H⊤e = e, FAW performs slightly better than SPA as it uses one
less orthogonal projection than SPA. Therefore, it can extract one more column of X̃ , that is, it
can extract up to rank(X̃) + 1 columns, as opposed to SPA, which can only extract rank(X̃)
columns. In particular, if r = m + 1 (for example, the columns of W form a triangle in the
plane; see Figure 7.3, page 221, for an illustration), FAW will be able extract the r columns of
W , while SPA will only be able to extract r − 1 of them.

For FAW to handle the caseH⊤e ≤ e, it suffices to perform the orthogonal projection starting
at the first step: the first phase of FAW is SPA. Equivalently, one can add the zero vector within
the data set, which is a vertex of conv([X̃, 0]). If the zero vertex is extracted as one of the first
two vertices in FAW (or if one modifies FAW so that the zero vertex is extracted in the first step),
then SPA and the first phase of FAW are the same algorithm. Since the theoretical analysis of
these algorithms does not depend on the order in which the vertices are extracted, any result for
SPA applies to the first phase of FAW and vice versa.

As we focus in this chapter on the assumption H⊤e ≤ e, we consider FAW adapted to the
case H⊤e ≤ e using projections with respect to the linear subspace spanned by the extracted
columns of X̃ , instead of their affine subspace; see Algorithm 7.2, where SPA is used in the first
phase of FAW.

Second phase of FAW After the first phase has identified K, FAW goes through each
index k in K (in the same order in which they were extracted) and checks whether this index k
corresponds to the column of X̃ which is the farthest away from the affine hull spanned by the
other extracted columns X̃(:,K\{k}). Again, to deal with the relaxed assumption H⊤e ≤ e,
we adapt this step by looking at the distance to the linear subspace spanned by these columns.
The column extracted in the first phase is replaced with the one that maximizes that quantity
which increases the volume of conv([X̃(:,K), 0]); see Lemma 7.11. Algorithm 7.2 described this
procedure. The second phase could be applied multiple times to improve the solution further; this
would be equivalent to a local search heuristic used in combinatorial optimization and this idea
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Algorithm 7.2 Fast anchor words (FAW) [14] adapted to the assumption H⊤e ≤ e [Matlab
file: FastAnchorWords.m]

Input: The matrix X̃ that admits a near-separable factorization (Assumption 7.1), the number r
of columns to extract, and/or a relative error δ to achieve (by default, δ = 0).

Output: Set of indices K such that X̃(:,K′) ≈W (up to permutation).

1: % First phase of FAW
2: K = SPA(X̃, r, δ). % See Algorithm 7.1
3: % Second phase of FAW
4: for k ∈ K do
5: Compute R, the projection of X̃ onto the orthogonal complement of X̃(:,K\{k}).
6: K ← K \ {k} ∪ argmaxj ∥R(:, j)∥2.
7: end for

was already proposed in the blind HU literature: it is the spirit behind the NFIND-R algorithm;
see Section 7.5.2. However, this does not improve the theoretical robustness to noise of FAW.

Robustness to noise Because of its second phase, FAW is slightly more robust to noise
than SPA: although the upper bound on the noise level ϵ is the same,53 it provides a more accurate
estimation of W , from an error of order O

(
ϵ

σ2
r(W )

)
to an error of order O

(
ϵ

σr(W )

)
.

Theorem 7.12. [14, Theorem 4.3] Let X̃ = X + N = X(:,K∗)H + N = WH + N be a
matrix satisfying Assumption 7.1 with p = 2, and let

ϵ = max
j
∥N(:, j)∥2 ≤ O

(
σ3
r(W )√
r

)
.

Then FAW (Algorithm 7.2) returns a set of indices K such that

q2(K) ≤ O
(

ϵ

σr(W )

)
.

Note that, in [14, Theorem 4.3], the bound on ϵ is proportional to 1
r ; however, it can be

improved to 1√
r

using the analysis of SPA [210, Theorem 3].

Tightness of the bounds As for SPA, the bound on ϵ is weak and requires the noise level
to be rather low for Theorem 7.12 to apply. However, for well-conditioned matrices, the bound
on q2(K) is close to being on par with the idealized algorithm (Theorem 7.5). As discussed in
Section 7.2.4, for well-conditioned matrices W ∈ Rm×r with m ≥ r, γ2(W ) ≈ σr(W ), in
which case the bound on q2(K) of FAW matches the bound of the idealized algorithm given that
the noise is sufficiently small.

Computational cost FAW essentially costs r times the cost of SPA because the second
phase requires projecting all data points onto each subset of r − 1 extracted columns, for a total
cost of O(r2 nnz(X̃)) operations.

53Although the analysis of SPA in [210, Theorem 3] and of the first phase of FAW in [14, Lemma 4.4] are rather
different, they lead to similar bounds; see the discussion in [211].



232 Chapter 7. Near-separable NMF

7.4.3 Vertex component analysis

VCA was proposed by Nascimento and Bioucas-Dias [361] (2005); see [Matlab file: VCA.m].
It differs from SPA in only two aspects:

1. It has a built-in preprocessing which consists in using the truncated SVD to filter the noise
(Theorem 6.3).

2. It uses the following selection step: First it generates a random vector c, then selects the
column of R that maximizes the linear function f(x) = c⊤x. As for the ℓ2 norm in
SPA, a linear function is also maximized at a vertex of the convex hull of a set of points.
However, this property is only true with probability one when c is generated randomly:
if c is parallel to the normal vector of a facet, then any interior point of that facet also
maximizes that function.

In terms on computational cost, the core of VCA has exactly the same cost as SPA, while the
preprocessing step allows one to filter the noise but can be used prior to any near-separable NMF
algorithm; see Section 7.2.

Because of its selection step based on linear functions, VCA is not robust to noise: for
an arbitrarily small noise level (that is, any ϵ > 0 in Assumption 7.1), it is easy to construct
examples for which VCA fails. In particular, take a data point in the middle of a segment whose
endpoints are two columns of W . Then add noise to this data point such that it goes toward
the outside of conv(W ). More precisely, letting X(:, j) be this data point, it suffices to take
N(:, j) = δ (X(:, j)− w̄) where w̄ = We/r is the average of the columns of W . For any δ > 0,

X̃(:, j) = X(:, j) +N(:, j)

is outside conv(W ) and there is a positive probability for this point, which is far from any vertex,
to be extracted by VCA. This adversarial setting will be tested in the numerical experiments in
Section 7.4.6.

Therefore SPA should be preferred to VCA. However, VCA has been extensively used in the
blind HU literature and many researchers still use it. We believe the reasons are that (i) VCA is
one of the first greedy algorithms proposed in this application area, (ii) the authors provided an
efficient code to run VCA, and (iii) the concept (and proofs) of robustness to noise were only
later brought to light by Arora et al. [15] (2012).

7.4.4 The successive nonnegative projection algorithm

A main drawback of SPA, FAW, VCA, and any algorithm relying on orthogonal projections is
that they require rank(W ) = r. In some real settings, this assumption might be violated. This
is, for example, the case for multispectral images which have only a few spectral bands m (from
5 to 30) so that it may happen that m < r, in which case rank(W ) ≤ m < r.

To get rid of this assumption and only require γp(W ) > 0 to successfully recover W , one
should instead use a projection onto the convex hull of the extracted columns and the origin. This
simple and natural idea leads to SNPA [188]; see Algorithm 7.3. For example, if the columns
of W are the vertices of a triangle in the plane (W ∈ R2×3; see Figure 7.3, page 221, for an
illustration), SPA can only extract two columns (the residual is equal to zero after two steps
because rank(W ) = 2), while, in most cases, SNPA is able to identify the three vertices. Even
when rank(W ) = r, SNPA is more robust to noise because Theorem 7.10 applies to SNPA [188,
Theorem 3.17]. Intuitively, performing orthogonal projections decreases the norm of the residual
faster, and hence more information is lost within the projection steps of SPA than of SNPA; we
will observe this behavior on ill-conditioned matrices W (Section 7.4.6).
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Algorithm 7.3 Successive nonnegative projection algorithm (SNPA) [188] [Matlab file:
SNPA.m]

Input: The matrix X̃ admits a near-separable factorization (Assumption 7.1), the number r of
columns to extract, and/or a relative error δ to achieve (by default, δ = 0).

Output: Set of r indices K such that X̃(:,K) ≈W (up to permutation).

1: Let R = X̃ , K = {}, k = 1.

2: while k ≤ r and

∥∥R∥∥
F∥∥X̃∥∥
F

≥ δ do

3: p = argmaxj ∥R:j∥2. % Selection step
4: K = K ∪ {p}.
5: H = argminY≥0,Y ⊤e≤e ∥X̃ − X̃(:,K)Y ∥2F .

6: R = X̃ − X̃(:,K)H . % Projection step
7: k = k + 1.
8: end while

This section on SNPA is organized as follows. In Section 7.4.4.1, we provide several def-
initions that will be used in the analysis in SNPA. The correctness of SNPA in the absence of
noise is presented in Section 7.4.4.2 and in the presence of noise in Section 7.4.4.3, where it
is compared with SPA. In Section 7.4.4.4 we discuss the computational cost of SNPA and in
Section 7.4.4.5 its connection with another algorithm dubbed XRAY.

7.4.4.1 Preliminaries

Under which conditions does SNPA identify the correct set of columns of X? To answer this
question, we need to define the quantity β(W ). To do so and simplify the notation, let us first
define the projection operatorRB(.): For a vector x ∈ Rm and a matrix B ∈ Rm×r,

RB(x) = x−Bh∗, where h∗ = min
h∈Sr

∥x−Bh∥2.

For a matrix X ∈ Rm×n, we letRB(X):,j = RB

(
X(:, j)

)
for all j, that is,RB(X) is obtained

by applyingRB(.) columnwise on the matrixX . Hence, the residual matrixR in step 6 of SNPA
is equal to R = RW (:,K)(X).

Given W ∈ Rm×r, we define

β(W ) = min

(
γ2(W ),

1√
2
ν(W )

)
.

where
ν(W ) = min

1 ≤ i, j ≤ r, i ̸= j
J ⊆ {1, 2, . . . , r}\{i, j}

∥∥RW (:,J )(wi)−RW (:,J )(wj)
∥∥
2
.

The quantity ν(W ) is the minimum among the distances between the residuals of two columns
of W when projected on any subset of the other columns of W . The quantity β(W ) is the
minimum between ν(W ) multiplied by the constant 1√

2
, and γ2(W ). Note that, in most cases,

ν(W ) > 0 because it is unlikely for the residual of two columns of W after projections onto
other columns to be exactly equal to one another (this happens with probability zero if W is
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generated randomly). However, there exist some pathological cases. For example, the matrix

W =

(
4 1 3
0 1 1

)
satisfies β(W ) = 0 while γ2(W ) > 0, and any data point on the segment [W (:, 2),W (:, 3)]
could be extracted at the second step of SNPA because

RW (:,1)

(
W (:, 2)

)
= RW (:,1)

(
W (:, 3)

)
=

(
0
1

)
.

Note, however, that β(W ) ≥ σr(W ) [188, Lemma 3.19]. In particular, for matrices W such that
rank(W ) < r, σr(W ) = 0, hence SPA will fail, while SNPA will succeed if β(W ) > 0. For
example, let the columns of W be located on the unit circle within the nonnegative orthant in
two dimensions so that rank(X) = m = 2 < r. In this case, SPA can only identify two vertices.
However, γ2(W ) > 0 since no point on the unit circle is within the convex hull of other points on
the unit circle and the origin. Moreover, we will generically have that ν(W ) > 0 so that SNPA
will be able to extract all r vertices.

7.4.4.2 SNPA in the absence of noise

Before proving SNPA works in the absence of noise, let us show the following lemma.

Lemma 7.13. [188, Lemma 3.1] For any matrices A ∈ Rm×r and B ∈ Rm×p, and any vector
h ∈ Sr,

∥RB(Ah)∥2 ≤ ∥RB(A)h∥2 .

Proof. Let us denote Y (:, j) = argminy∈Sp ∥A(:, j)−By∥2 for all j, that is,RB(A) = A−BY .
We have

∥RB(Ah)∥ = min
y∈Sp

∥Ah−By∥2 ≤ ∥Ah−BY h∥ = ∥RB(A)h∥ .

The inequality follows from Y h ∈ Sp, since Y (:, j) ∈ Sp for all j and h ∈ Sr.

We can now prove the correctness of SNPA in the absence of noise.

Theorem 7.14. [188, Theorem 3.2] LetX = X(:,K∗)H =WH be a matrix satisfying Assump-
tion 7.1 with p = 2, N = 0, and β(W ) > 0. Then SNPA (Algorithm 7.3) returns a set of indices
K such that X(:,K) =WΠ where Π is a permutation matrix.

Proof. We prove the result by induction.
First step. The first step is the same as SPA; see the proof of Theorem 7.9.
Induction step. Assume SNPA has extracted some indices K corresponding to columns of W ,
that is,X(:,K) =W (:, I) for some I. Let us show that the next extracted index will be a column
of W different from the extracted columns W (:, I). For any h ∈ Sr,

∥∥RW (:,I)(Wh)
∥∥
2

≤
(Lemma 7.13)

∥∥RW (:,I)(W )h
∥∥
2
=

∥∥∥∥∥
r∑

k=1

h(k)RW (:,I)(W (:, k))

∥∥∥∥∥
2

≤
r∑

k=1

h(k)
∥∥RW (:,I)(W (:, k))

∥∥
2

≤ max
k

∥∥RW (:,I)(W (:, k))
∥∥
2
.
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Finally, the residual R after |I| steps of SNPA is equal toRW (:,I)(X). Moreover,

• RW (:,I)(W (:, k)) = 0 for all k ∈ I,

• RW (:,I)(W (:, k)) ̸= 0 for all k /∈ I since γ2(W ) > 0 as β(W ) > 0,

• The nonzero columns ofRW (:,I)(W ) are distinct since ν(W )>0 as β(W )>0.

By Corollary 7.8, this implies that the second inequality above is strict unless h = ej for some j.
Hence SNPA identifies a column of W not extracted yet, that is, it extracts W (:, k) for some
k /∈ I.

7.4.4.3 Robustness to noise

Let us state the robustness result for SNPA.

Theorem 7.15. [188, Theorem 3.22] Let X̃ = X + N = X(:,K∗)H + N = WH + N be a
matrix satisfying Assumption 7.1 with p = 2 and β(W ) > 0, and let

ϵ = max
j
∥N(:, j)∥2 ≤ O

(
β(W )4

)
.

Then SNPA (Algorithm 7.3) returns a set of indices K such that

q2(K) ≤ O
(

ϵ

β(W )3

)
.

As for SPA, the proof of robustness to noise is rather technical and we refer the interested
reader to the corresponding paper. As for SPA, these error bounds are not known to be tight and
could possibly be improved; this is a direction for future research.

Comparison with SPA It has to be noted that the robustness proof of SPA applies to
SNPA [188, Theorem 3.17]. For well-conditioned matrices W ∈ Rm×r with m ≥ r, we have
γ2(W ) ≈ σr(W ) (see the discussion after Theorem 7.12), in which case the bound of SPA
and SNPA will be similar and both algorithms will perform similarly. In fact, if W is well-
conditioned, σr(W ) is close to one so is β(W ) (since σr(W ) ≤ β(W ) ≤ 1), and β(W )4

will not be significantly larger than σ3
r(W )√

r
as long as r is not too large. However, if W is ill-

conditioned or rank(W ) < r, then β(W ) can be arbitrarily larger than σr(W ), in which case
SNPA outperforms SPA. These observations will be confirmed in the numerical experiments
reported in Section 7.4.6.

7.4.4.4 Computational cost

The main computational cost of SNPA is to compute H (step 5), which is a linearly constrained
least squares problem. Using a first-order method, the main cost resides in the computation of
the gradient, given by

X̃(:,K)⊤
(
X̃(:,K)Y − X̃

)
=
(
X̃(:,K)⊤X̃(:,K)

)
Y − X̃(:,K)⊤X̃,

for a total of 2mr2+2nr2+2r nnz(X̃) operations when |K| = r; see Section 8.3 for more details
on the NNLS problem. Hence SPA and SNPA have the same asymptotic computational cost,
namely O(r nnz(X̃)) operations, and SNPA is a constant factor slower than SPA. For example,



236 Chapter 7. Near-separable NMF

using 100 iterations of a first-order method to computeH makes SNPA roughly 100 times slower
than SPA (one gradient computation has roughly the same cost as running SPA when |K| = r).

As in SPA, the residual R should not be computed explicitly. To compute H using a first-
order method, one only needs the matrix-matrix product (see above). To compute the norm of
the columns of the residual R, let us denote A = X̃(:,K). We have

∥R(:, j)∥22 = ∥X̃(:, j)−AH(:, j)∥22
= ∥X̃(:, j)∥22 − 2X̃(:, j)⊤AH(:, j) + ∥AH(:, j)∥22
= ∥X̃(:, j)∥22 − 2X̃(:, j)⊤AH(:, j) +H(:, j)⊤A⊤AH(:, j),

where A⊤A can be computed once for all columns of R. Hence, to compute the norms of the
columns of R, we need

• the norms of the columns of X̃ which require O(nnz(X̃)) operations,

• the products X̃(:, j)⊤AH(:, j) which requireO(r nnz(X̃)+rn) operations (first compute
X̃⊤A), and

• the products H(:, j)⊤(A⊤A)H(:, j) which require O(mr2) operations to compute A⊤A,
and O(nr2) operations to compute H(:, j)⊤(A⊤A)H(:, j) for all j.

This way of computing the norm of the columns of R is also efficient when X̃ is sparse, as R is
never formed explicitly.

Example 7.16 (Sparse data set). Let us apply SNPA on the “20 Newsgroups” document data
set with r = 20. It is a 19949× 43586 matrix with 99.82% of its entries equal to zero.

SNPA requires about 25 seconds to extract 20 indices, while its naive implementation that
forms R explicitly requires about 6 minutes. For larger data sets, the naive implementation will
go out of memory.54

As a comparison, SPA requires about 0.3 seconds (about 100 faster than SNPA, as expected
since we used 100 iterations of a first-order method to compute H in the projection steps), while
the naive implementation forming R explicitly requires about 3 minutes.

FAW requires about 6 seconds, which is also consistent as it should be about r = 20 times
slower than SPA.

7.4.4.5 XRAY, a closely related algorithm

XRAY [294] is an algorithm very similar to SNPA and was proposed before SNPA. It also uses
the nonnegativity constraint in the projection step. However, it does not rely on the assumption
that H⊤e ≤ e, and its goal is to extract the extreme directions of cone(X̃). The projection step
is a projection onto the conical hull of the columns extracted so far (it is the same as SNPA where
the constraint H⊤e ≤ e is removed), while the selection step is given by

argmaxk
R(:, i)⊤X̃(:, j)

p⊤X̃(:, j)
,

where i is chosen in different ways; for example i = argmaxℓ ∥X̃(:, ℓ)∥2. In some sense,
the scaling is built in within the algorithm by the use of the denominator p⊤X̃(:, j). In our
experience, XRAY performs very similarly as SNPA although it does not perform as well in
difficult scenarios when W is ill-conditioned or rank(W ) < r; see the comparison in [188].
Moreover, XRAY has not been proven to be robust to noise.

54The initial implementation of SNPA that I provided with the paper [188] is the naive one. The implementation
provided in the MATLAB code of this book is the efficient one, not computing the residual explicitly.
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7.4.5 Preconditioning

Given any matrix X̃ = WH + N admitting a near-separable factorization (Assumption 7.1),
premultiplying X̃ by a matrix P generates another matrix

Ỹ = PX̃ = (PW )H + PN =W ′H +N ′

that admits a near-separable factorization. This operation simply premultiplies W and N by P .
In SPA, the key parameter that controls the robustness to noise is the smallest singular value

of W (or the condition number of W if it is not normalized). In particular, if rank(W ) = r and
one is given its left inverse P = W †, we would have W ′ = PW = Ir with σr(W ′) = 1. Of
course, the left inverse of W is unknown (otherwise near-separable NMF would be solved), but
it turns out it can be estimated, up to orthogonal transformations (see Section 7.4.5.2) . Note that
SPA is not affected by premultiplying the input matrix by an orthogonal matrix which amounts
to rotating the data points (the ℓ2 norm is invariant under such transformations). In the following,
we present three preconditionings for near-separable NMF.

7.4.5.1 Preconditioning I: truncated SVD

Let (Ur,Σr, Vr) be the rank-r truncated SVD of X̃; see Section 6.1.1. Replacing X̃ with
UrΣrV

⊤
r ≈ X̃ allows us to filter the noise prior to using a near-separable NMF algorithm.

Since Ur has orthogonal columns, it does not influence algorithms based on orthogonal projec-
tions such as SPA. In other words, applying SPA on the matrix UrΣrV

⊤
r or on ΣrV

⊤
r returns the

same index set K. The columns of ΣrV
⊤
r are the coordinates of the columns of X̃ within the

orthogonal basis Ur. This preprocessing is equivalent to using the preconditioning P = U⊤
r . Let

X̃ = UrΣrV
⊤
r + U⊥

r Y where U⊥
r is the orthogonal complement of Ur so that U⊤

r U
⊥
r = 0 and

(U⊥
r )⊤U⊥

r = I so that Y = (U⊥
r )⊤X̃ . We have

PX̃ = U⊤
r X̃ = U⊤

r

(
UrΣrV

⊤
r + U⊥

r Y
)
= ΣrV

⊤
r ;

see [Matlab file: lindimred.m].
This preprocessing/preconditioning does not much influence the conditioning of W (in the

noiseless case, it does not affect the input matrix). In the next two subsections, we present two
approaches that are able to reduce the conditioning of W .

Remark 7.1 (Prewhitening). One may be tempted to use prewhitening, that is, replace X̃
with V T

r using the preconditioning P = Σ−1
r U⊤

r . However, this does not guarantee reducing
the conditioning of W : it depends on how the data points are distributed within conv(W ). In
unbalanced cases (for example, most data points are located close to one of the columns of
W so that the corresponding row of H has large norm), this preconditioning might increase
significantly the conditioning of W ; see the discussion in [206].

7.4.5.2 Preconditioning II: minimum-volume ellipsoid

Assume rank(W ) = r and m = r. Under these assumptions, W † = W−1 and the question is
how to estimate this matrix.

It turns out that this can be done by solving a minimum-volume ellipsoid (MVE) problem.
Before providing a formal construction, let us give some geometric intuition. All columns of X
are contained in conv

(
[W, 0]

)
, while we expect the MVE centered at the origin and containing

conv
(
[W, 0]

)
to have the columns of W on its border, while all the other columns of X will

be strictly inside the MVE. In that case, we can identify the columns of W as the columns on
the border of the MVE. This intuition was used in [347] to directly identify the columns of W .
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However, in the presence of noise, more than r columns of X̃ might belong to the border of the
MVE and it is unclear how to select among them—SPA was used in [347].

Let us now formally describe the preconditioning based on the MVE. An ellipsoid E centered
at the origin in Rr is described via a PSD matrix A ∈ Sr++:

E = { x ∈ Rr | x⊤Ax ≤ 1 }.

The axes of the ellipsoid are given by the eigenvectors of A, while their length is equal to the in-
verse of the square root of the corresponding eigenvalue. The volume of E is equal to det(A)−1/2

times the volume of the unit ball in dimension r. Given a matrix X̃ ∈ Rr×n of rank r, the MVE
centered at the origin and containing the columns of matrix X̃ can be formulated as follows:

min
A∈Sr+

log det(A)−1 such that X̃(:, j)⊤AX̃(:, j) ≤ 1 for j = 1, 2, . . . , n. (7.8)

This problem is representable using semidefinite programming [56, p. 222]. We can now show
that, under the separability assumption, the MVE allows us to compute W−1, up to orthogonal
transformations.

Theorem 7.17. [211, Theorem 2.3] Let X̃ = X + N = X(:,K∗)H + N = WH + N be a
matrix satisfying Assumption 7.1 with p = 2, m = r, N = 0, and rank(W ) = r. Then the
optimal solution of (7.8) is given by A∗ = (WW⊤)−1.

Proof. The matrix A∗ = (WW⊤)−1 is a feasible solution of the primal (7.8): for all j,
X(:, j) =WH(:, j) so that

X(:, j)⊤AX(:, j) = H(:, j)⊤W⊤W−TW−1WH(:, j) = ∥H(:, j)∥22 ≤ ∥H(:, j)∥21 ≤ 1.

The dual of (7.8) is given by [56, p. 222]

max
y∈Rn

log det

 n∑
j=1

yjX(:, j)X(:, j)⊤

− e⊤y + r such that y ≥ 0. (7.9)

One can check that y∗ ∈ Rn
+ defined as

y∗(j) =

{
1 for j ∈ K∗

0 otherwise for j = 1, 2, . . . , n,

is a feasible solution of the dual. We have
n∑

j=1

yjX(:, j)X(:, j)⊤ =

r∑
j=1

W (:, j)W (:, j)⊤ =WW⊤ ≻ 0,

and e⊤y = r. Hence its objective function value coincides with that of the primal solution
A∗ = (WW⊤)−1 which is therefore optimal by duality.

Given the optimal solution A∗ = (WW⊤)−1 = W−⊤W−1 of (7.8), we can compute a
symmetric factorization of the formA∗ = P⊤P (for example, using the Cholesky factorization).
The matrix P will be equal to W−1, up to an orthogonal transformation, so that κ(PW−1) = 1
and SPA will perform significantly better in the presence of noise.

Algorithm 7.4 provides the pseudocode to compute the MVE preconditioning for near-
separable NMF.
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Algorithm 7.4 Minimum-volume ellipsoid (MVE) preconditioning for near-separable
NMF [211] [Matlab file: minvolell.m]

Input: A matrix X̃ ∈ Rr×n that admits a near-separable factorization (Assumption 7.1).
Output: A preconditioning P ≈W−1 ∈ Rr×r (up to orthogonal transformations).

1: Solve the MVE problem (7.8) for X̃ to obtain the optimal solution A∗.
2: Compute P such that A∗ = P⊤P using for example the Cholesky factorization.

Robustness to noise Using Algorithm 7.4 to precondition SPA provides the following
robustness result which was first proved in [211, Theorem 2.9] with the bound ϵ ≤ O

(σr(W )
r
√
r

)
,

and later improved to ϵ ≤ O
(σr(W )√

r

)
in [348, Theorem 3].

Theorem 7.18. [211, Theorem 2.9], [348, Theorem 3] Let

X̃ = X +N = X(:,K∗)H +N =WH +N

be a matrix satisfying Assumption 7.1 with p = 2, m = r, rank(W ) = r, and

ϵ = max
j
∥N(:, j)∥2 ≤ O

(
σr(W )√

r

)
.

Then MVE-SPA [Matlab file: MVESPA.m], that is, SPA (Algorithm 7.1) applied on PX̃ where
P is the MVE preconditioning (Algorithm 7.4), returns an index set K such that

q2(K) ≤ O
(

ϵ

σr(W )

)
.

Tightness of the bounds The bounds of Theorem 7.18 are significantly better than for
plain SPA (Theorem 7.10) and FAW (Theorem 7.12). Moreover, for well-conditioned matrices
for which σr(W ) ≈ γ2(W ), these bounds are close to being on par with the bounds of the
idealized algorithm (neglecting the hidden constants). For the noise level ϵ, this is tight up to the
factor 1/

√
r; for the error q2(K), it is tight.

How to reduce the dimensionality for MVE-SPA Algorithm 7.4 requires m = r.
If m > r, one can use any LDR technique to reduce the dimension from m to r. The truncated
SVD seems to be a natural choice (this is, for example, the approach chosen by VCA). One might
be tempted to believe that the truncated SVD is even the appropriate choice in the presence of
Gaussian noise, and this is in fact the method used in the first papers considering the MVE
preconditioning [347, 211, 348].

However, the truncated SVD and most other LDR techniques (such as random projections)
are blind to the separable structure of the input matrix. It turns out that using a projection based
on the basis matrix extracted by a near-separable NMF algorithm works better. For example,
using the LDR that premultiplies X̃ by X̃(:,K)† where K is extracted by SPA55 works better in
practice [349], especially in difficult scenarios where W is ill-conditioned. Figure 7.4 illustrates
this observation, namely that truncated SVD and random projections56 perform worse than the

55This preconditioning corresponds to the SPA preconditioning presented in the next section.
56We simply premultiply X̃ with P ∈ Rr×m where each entry of P is generated using the Gaussian distribution of

mean 0 and variance 1.
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Figure 7.4. Average accuracy of MVE-SPA (that is, SPA preconditioned with MVE)
preprocessed with three different LDR techniques: truncated SVD, random projections, and SPA.
The data set was generated using m = 40, r = 20, n = 200, ill-conditioned W (κ(W ) = 106),
Dirichlet distribution for H , and Gaussian noise for N ; see Section 7.4.6. For each noise level,
the figure reports the average accuracy (the percentage of correctly identified columns of W )
over 10 randomly generated matrices. [Matlab file: compare_LDR_MVESPA.m].

SPA-based LDR on a numerical example with ill-conditioned W , the Dirichlet distribution for
H , and Gaussian noise for N (see Section 7.4.6 for more details on how these data sets are
generated). Note that the truncated SVD performs slightly better than random projections (in
particular, for δ = 10−5, truncated SVD has 100% average accuracy while random projections
have 95.5% average accuracy). Note also that for well-conditioned W , the three approaches
would provide similar results.

Computational cost We first need to reduce the dimensionality which typically requires
O(mnr) operations; this is the case for the truncated SVD, SPA, and random projections. The
MVE preconditioning requires solving the semidefinite program (7.8) with r2 variables (the ma-
trix A) and n constraints. Using an interior-point method requires O(r6 + n3) operations per
iteration (a linear system in O(r2 + n) variables has to be solved, like in the Newton’s method).
The term n3 is not reasonable in most applications; for example, in hyperspectral unmixing, n is
the number of pixels in the image, and in text mining, n is the number of words (or documents).
Luckily, only a few constraints will be active at optimality (a subset of at most r(r+1)

2 constraints
is enough to solve the problem [265]) and active-set methods are very efficient to tackle such
problems [440]. In practice, a very small number of iterations is required within the active-set
method, and the algorithm rather behaves as O(r6) (there are O(r2) constraints active), which
is typically negligible as r ≪ n. For example, in [211], the authors apply it on a hyperspectral
image with n = 1.6 105 and r = 16 for which the semidefinite program (7.8) is solved in less
than 10 seconds on a standard laptop.

7.4.5.3 Preconditioning III: SPA

Let us briefly discuss a third preconditioning based on SPA (Algorithm 7.5):
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1. Run SPA on X̃ to obtain K.

2. Compute the preconditioning P = X̃(:,K)†.

Algorithm 7.5 SPA preconditioning for near-separable NMF [206]

Input: A matrix X̃ ∈ Rm×n that admits a near-separable factorization (Assumption 7.1), and
the number r of columns to extract.

Output: A preconditioning P ≈W † ∈ Rr×m.

1: Run SPA (Algorithm 7.1) on X̃ with r to obtain K.
2: Let P = X̃(:,K)†.

Surprisingly, preconditioning SPA with itself allows us to improve its robustness to noise and
obtain error bounds similar to FAW (recall that FAW is essentially SPA where a second phase
is used to improve the solution; see Algorithm 7.2), by removing a factor σr(W ) in the error
q2(K).

Theorem 7.19. [206, Theorem 4.1] Let X̃ = X + N = X(:,K∗)H + N = WH + N be a
matrix satisfying Assumption 7.1 with p = 2, and let

ϵ = max
j
∥N(:, j)∥2 ≤ O

(
σ3
r(W )√
r

)
.

Then SPA-SPA, that is, SPA (Algorithm 7.1) preconditioned with SPA (Algorithm 7.5), returns a
set of indices K such that

q2(K) ≤ O
(

ϵ

σr(W )

)
.

Further discussions and readings As far as we know, preconditionings have been
analyzed only in the case rank(W ) = r. It would be rather interesting to develop preconditioners
and their analysis in the rank-deficient case. For example, we can use the MVE preconditioning
with SNPA (computing the MVE in dimension rank(W ) < r). However, there is no analysis
in this case, and it is unclear how the robustness of SNPA is affected by such a preconditioning,
and in particular how it affects the parameter β(W ).

There exist other preconditionings for near-separable NMF. This includes prewhitening (Re-
mark 7.1) and approaches based on random projections and randomized low-rank approxima-
tions. We refer the interested reader to [206, 349] for more details.

7.4.6 Numerical comparison and discussion

In this section, we perform numerical experiments on synthetic data sets in order to illustrate
some key differences between greedy near-separable NMF algorithms. The goal is not to perform
an extensive comparison (these can be found in the corresponding papers) but rather to highlight
the properties and compare the different algorithms. For example, we will see that VCA is not
robust to noise in difficult scenarios (as pointed out in Section 7.4.3) and that preconditioned SPA
is more robust than plain SPA.

7.4.6.1 Synthetic data sets

We generate X̃ ∈ Rm×n following Assumption 7.1 with

X̃ = WH +N = W [Ir, H
′]Π +N,
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where W ∈ Rm×r, H ′(:, j) ∈ ∆r for j = 1, 2, . . . , n′ = n − r, and N ∈ Rm×n are generated
in different ways. The matrix Π ∈ {0, 1}n×n is a randomly generated permutation matrix.

We consider two types of distributions for H ′:

1. Dirichlet. Each column of H ′ is sampled following a Dirichlet distribution with its r
parameters equal to θ. For θ = 1, this distribution generates points uniformly within
conv(W ). As θ decreases, the columns ofH ′ become sparser and sparser. We use θ = 0.5
in our numerical experiments. Note that the Dirichlet distribution is a standard choice in
the hyperspectral imaging literature [360].

2. Middle point. The columns ofH ′ contain all possible combinations of two nonzero entries
equal to 1/2. This means that H ′ has

(
r
2

)
= r(r−1)

2 columns, and WH ′ contains all the
points located between two columns of W . For example, for r = 20, which is the value
we use, H ′ has

(
20
2

)
= 190 columns.

To generateN , we also consider two types, each of them associated with one of the two ways
H ′ is generated:

1. Gaussian. This is used when H ′ is generated using the Dirichlet distribution. Each entry
of N is first generated using the normal distributionN (0, 1). Then, given the parameter δ,
N is scaled as follows:

N ← δ N
∥X∥F
∥N∥F

.

This means that ∥X̃ −X∥F = δ∥X∥F , and δ is the relative noise level.

2. Adversarial. This is used when H ′ is generated using the middle point setting. The col-
umns of W are untouched, while the middle points are moved outward conv(X). More
precisely, let w̄ = We/r be the average of the columns of W . Given the parameter δ, we
take

X̃(:, j) = X(:, j) + δ (X(:, j)− w̄) .

Figure 7.5 illustrates this data generation for r = 3.

Figure 7.5. Illustration of the middle point experiment in the case r = 3 (shown in a
two-dimensional space, for simplicity). The noise moves each middle point, located between a
pair of columns of W , outward conv(W ).
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To generate W , we consider two cases:

1. Well-conditioned. Each entry of W is generated using the uniform distribution in the
interval [0, 1], that is, U(0, 1).

2. Ill-conditioned. The factor W is first generated using the uniform distribution as above.
Then the compact SVD of W = UΣV ⊤ is computed and W is replaced with W =
UΣ′V ⊤ where Σ′ is a diagonal matrix where the diagonal entries are between the param-
eter κ < 1 and 1 using a logarithmic scale, that is,

log10(Σ
′(i, i)) = log10(κ) +

i− 1

r − 1
(1− log10(κ)) for i = 1, 2, . . . , r;

in MATLAB notation, logspace(log10(κ),0,r). This implies that κ(W ) = κ. We
use κ = 10−6 in the experiments. Note that this transformation of W does not preserve
nonnegativity, which is not an issue as this assumption is not required for near-separable
NMF algorithms (nonnegativity of H is); see Assumption 7.1.

Finally, there are four ways to generate the data matrices: well-conditioned or ill-conditioned
W , and Dirichlet associated with Gaussian noise or middle point associated with adversarial
noise for H .

Remark 7.2 (Rank-deficient case). We do not consider the case rank(W ) < r in our exper-
iments (for example, by taking m < r). In this scenario, only SNPA is able to extract a set of
r indices (the residual in SPA and related methods is equal to zero after m steps). We refer the
interested reader to the numerical experiments in [188], where SNPA is compared to XRAY.

7.4.6.2 Comparison metrics

Since there are no duplicated columns of W in the synthetic data sets we generate,57 it makes
sense to count the number of correct indices (meaning indices corresponding to columns of W )
extracted by an algorithm. Given the true locationK∗ of the columns ofW and the setK returned
by an algorithm with |K| = r, we define to the accuracy of K as

accuracy(K) =
|K ∩ K∗|
|K∗|

∈ [0, 1].

It would also make sense to report q2(K) and/or the

relative error(K) =
minH≥0 ∥X̃ − X̃(:,K)H∥F

∥X̃∥F
,

which are standard choices in the literature. However, these metrics are highly correlated and, in
most cases when there are no (near-)duplicated columns of W , if one algorithm performs better
than another one for a metric, it also does for the other ones; see for example the numerical
experiments in [204, 205]. Therefore, for the sake of simplicity, we show in this book only the
accuracy.

7.4.6.3 Numerical experiments

We choose to compare the following algorithms:

• SPA: this is Algorithm 7.1.
57For the Dirichlet distribution of parameter θ = 0.5 and r = 20, the average of the largest value in a column of H′

is about 1/4. Moreover, we have generated 106 such columns and all values of H′ were smaller than 0.8. In other words,
the probability for a column of W to have a proportion larger than 0.8 in a data point is very small.



244 Chapter 7. Near-separable NMF

• VCA: this is SPA where the selection step is replaced by selecting the column of X̃ that
maximizes a randomly generated linear function, while the truncated SVD is used as a
preprocessing step.

• FAW: this is SPA with a second phase refining the solution; see Algorithm 7.2.

• SNPA: this is Algorithm 7.3. We used 500 iterations of a fast gradient method to compute
H for the projection step (for ill-conditioned W , it is important for these subproblems to
be solved with relatively high precision).

• SPA-SPA: SPA preconditioned with SPA (Algorithm 7.5).

• MVE-SPA: SPA preconditioned with MVE (Algorithm 7.4), and where SPA is used as a
preprocessing to reduce m to r. (This algorithm could be referred to as SPA-MVE-SPA,
but we prefer MVE-SPA for simplicity.)

We use the values m = 40, r = 20, n = 220 (for Dirichlet), cond(W ) = 106 (for ill-
conditioned). For each noise level δ, we generate 20 such matrices, and Figures 7.6 and 7.7
report the average accuracy for the Dirichlet and the middle point experiments, respectively.

Table 7.1 reports the computational times. Table 7.2 reports the largest values of δ so that an
algorithm achieved an accuracy of 100% and 95%.

Table 7.1. Total computational time in seconds to compute K for the 600 randomly
generated data sets. The letter W corresponds to well-conditioned, I to ill-conditioned, D to
Dirichlet, and M to middle point.

Experiment SPA VCA FAW SNPA MVE-SPA SPA-SPA
W-D 0.77 3.59 10.4 110 1687 4.08
I-D 0.92 3.42 9.81 2069 1592 4.64
W-M 0.95 4.00 9.2 170 1462 4.11
I-M 0.72 3.41 8.86 2840 1392 3.83

Table 7.2. Robustness defined as the maximum value of δ (the noise level) such that the
algorithm has extracted on average 100% or 95% of the columns of W .

Experiment SPA VCA FAW SNPA MVE-SPA SPA-SPA
W-D 100% 0.18 0.13 0.18 0.31 0.18 0.18

95% 0.31 0.22 0.31 0.40 0.31 0.31
I-D 100% 2.59 10−5 0 2.59 10−5 4.89 10−3 2.59 10−5 1.61 10−5

95% 4.52 10−4 0 2.81 10−4 8.53 10−2 4.52 10−4 1.74 10−4

W-M 100% 0.14 0 0.22 0.14 0.43 0.41
95% 0.22 0 0.27 0.22 0.43 0.41

I-M 100% 4.82 10−3 0 2.32 10−2 1.00 10−3 0.415 0.145
95% 3.92 10−2 0 5.10 10−2 1.37 10−2 0.415 0.415

We observe the following:

• For well-conditioned Dirichlet (Figure 7.6, top), all algorithms perform well. This is a
relatively simple scenario. However, VCA performs worse, while SNPA performs best.
All SPA variants perform similarly.
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Figure 7.6. Comparison of greedy separable NMF algorithms with the Dirichlet dis-
tribution for H and Gaussian noise for N . On the top: well-conditioned W . On the bottom:
ill-conditioned W . [Matlab file: compare_greedy_sepNMFalgo.m].

• For ill-conditioned Dirichlet (Figure 7.6, bottom), VCA fails completely. The reason is
that it has a built-in preprocessing step that uses the truncated SVD that estimates the
noise level automatically. For low noise levels and ill-conditioned cases, this preprocessing
underestimates the dimension of the subspace spanned by X so that the truncated SVD
thresholds the small singular value of X to zero, making it impossible for VCA to extract
enough columns. Again, SPA variants perform similarly. This is somewhat unexpected.

SNPA outperforms all other approaches. The reason is that when W is ill-conditioned,
σr(W ) is very close to zero, making SPA-based approaches very sensitive to noise
(see the robustness theorems), while β(W ) can be significantly larger. For example,
generating 1000 ill-conditioned matrices W (as described above) and dividing them by
the quantity maxk ∥W (:, k)∥2, the average value and standard deviation of σr(W ) is
2.1 10−6 ± 2.4 10−7, while for β(W ) it is 0.01± 4.5 10−3.
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Figure 7.7. Comparison of greedy near-separable NMF algorithms for the middle point
selection for H and adversarial noise for N . On the top: well-conditioned W . On the bottom:
ill-conditioned W . [Matlab file: compare_greedy_sepNMFalgo.m].

• For the middle point experiments (Figure 7.7), the algorithms behave very differently than
for the Dirichlet experiment. As expected, VCA fails as soon as the noise level is positive;
see the discussion in Section 7.2. MVE-SPA outperforms all other approaches. The reason
is that the generated matrices have a very particular form. The columns of X(:,K) are
not affected by the noise. Hence the MVE containing all columns of X̃ remains the same
as long as the middle point remains inside the MVE; see Figure 7.5 for an illustration for
r = 3. This explains the sharp phase transition of MVE-SPA: as long the columns of X̃
are within the MVE enclosing conv(W ), MVE-SPA performs perfectly. Once the middle
points get outside the MVE enclosing conv(W ), the MVE changes drastically and MVE-
SPA fails to identify any columns ofW . Interestingly SPA-SPA performs almost as well as
MVE-SPA (while being computationally much cheaper), while FAW performs better than
SPA but worse than SPA-SPA. Finally, rather surprisingly, SNPA performs worse than
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SPA, especially in the ill-conditioned cases. This is explained by the adversarial nature of
this data set. For some reason, the orthogonal projections of SPA allow it to avoid middle
points slightly more efficiently. This reminds us that the robustness proofs provided in this
chapter are worst-case analysis and cannot explain the behavior of these algorithms on all
data sets.

• In terms of computational time, SPA is the fastest, followed by VCA, SPA-SPA, and FAW,
which are all rather fast (less than 0.02 seconds on average to output a solution). In well-
conditioned cases, SNPA is also fast (less than 0.3 seconds on average to output a solution).
However, in ill-conditioned cases, it is much slower (about 4 seconds to output a solution).
The reason is that the iterative algorithm computing H ≥ 0 in the projection step can
stop early if it has converged. When W is well-conditioned, convergence is attained much
faster, while in the ill-conditioned cases, 500 iterations are performed. MVE-SPA is rela-
tively slow and takes on average about 2.5 seconds to output a solution.

7.4.6.4 Take-home messages from the numerical experiments

In real-world scenarios, like hyperspectral images or document data sets, the columns of H
rather follow a Dirichlet distribution and the noise is not adversarial. In such cases, SNPA
performs the best in terms of solution quality (although its computational cost is higher than
the other greedy separable NMF algorithms) especially in ill-conditioned scenarios. In other
cases, such as the adversarial middle point experiment, using preconditioning might improve
the solution quality drastically. In practice, it is difficult to know which method will perform
best, hence a standard approach is to run several algorithms and keep the solution K for which
minH≥0 ∥X̃ − X̃(:,K)H∥F is the smallest.

7.5 Heuristic algorithms
Many heuristics have been proposed for near-separable NMF, in particular in the hyperspectral
unmixing literature. This includes approaches inspired by combinatorial optimization heuristics
such as evolutionary algorithms [510] and particle-swarm optimization [333]. As mentioned
in the introduction of this chapter, it is beyond the scope of this book to review this important
literature; we refer the interested reader to [45, 334] and the references therein. In this section,
we review only the two historically most important ones, namely PPI and N-FINDR.

7.5.1 Pure-pixel index

Boardman, Kruse, and Green [49] (1995) were the first to propose a pure-pixel search algorithm,
PPI, within the hyperspectral unmixing literature. PPI uses the fact that, within a polytope, ran-
domly generated linear functions (that is, functions f(x) = c⊤x where c ∈ Rm is generated
randomly) attain their minima and maxima on the vertices of that polytope with probability one.
Recall that this idea is the one used in VCA to identify a vertex at each step (Section 7.4.3). How-
ever, as opposed to greedy near-separable NMF algorithms, PPI does not perform projections.
It randomly generates a large number of linear functions and identifies the columns of X̃ max-
imizing and minimizing these functions. Under the separability assumption, these columns are,
with probability one, the vertices of the convex hull of the columns of X̃ , that is, the columns of
W . (Note that PPI assumes H⊤e = e, as do many pure-pixel search algorithms.) By generating
a large enough number of linear functions, PPI will identify, with high probability, the columns
of W ; see [111]. In the presence of noise, PPI assigns a score to each column of X̃ which is
equal to the number of times that column minimized or maximized the randomly generated lin-
ear functions, and returns the r columns of X̃ with the largest score. In terms of computational
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cost, denoting K the number of generated linear functions, we have to evaluate K times linear
functions over n columns in dimensionm for a total computational cost ofO(Kmn) operations.
PPI has many drawbacks, including the following:

1. It is not guaranteed to work, even in the absence of noise, unless K goes to infinity. Even
if K goes to infinity, it is not robust to noise for the same reason as VCA: linear functions
can be maximized at any vertex of the convex hull of a set of points, and the noise can
potentially make any column of X̃ a vertex of conv(X̃).

2. In the presence of (near-)duplicated columns of W , the score of these columns will be
typically small (the score of these columns is split among them), while an isolated column
which does not correspond to a column of W could potentially have a higher score and
hence be extracted. Moreover, PPI might extract columns of X̃ corresponding to the same
column of W .

For these reasons, PPI performs typically much worse than greedy algorithms such as SPA;
we refer the interested reader to [210], for example, for some numerical experiments.

7.5.2 N-FINDR

In 1999, Winter [482] proposed N-FINDR. The goal of N-FINDR is to solve

max
K,|K|=r

volume
(
conv

(
X̃(:,K)

))
, (7.10)

that is, to find the index set K such that conv
(
X̃(:,K)

)
has maximum volume (see Section 4.3.3

for a definition of this quantity). To find a solution to this problem, N-FINDR first initializes K
randomly. Then, as long as the volume increases, it loops over each index in K and replaces it
with the index j /∈ K such that

volume
(
conv

(
X̃(:,K\{k} ∪ {j})

))
is maximized. This procedure is not the most efficient way to identify the index j to replace k
as it requires computing the volumes of n− r matrices of size m-by-r. Identifying the best j to
replace k can be performed by projecting X̃ onto the orthogonal complement of X̃(:,K\{k}),
and then picking the column with the largest residual; see Lemma 7.11.

The main contribution of Winter is not so much the algorithm N-FINDR but rather the
model (7.10) based on volume maximization. The majority of pure-pixel search algorithms rely
on this insight [45, 334]. For example, SPA is a greedy algorithm to solve (7.10), while FAW is
equivalent to performing one loop of N-FINDR using SPA as an initialization for K.

7.6 Convex-optimization-based algorithms
In this section, we summarize another class of methods that are based on convex optimization
algorithms and not relying on projections. As we will see, these algorithms have the advan-
tage of being more robust to noise in ill-conditioned or rank-deficient cases. However, they
are computationally more demanding, requiring Ω(mrn2) operations. We first present the first
near-separable NMF algorithm which was proved to be robust to noise (Section 7.6.1), and then
present four closely related models using the notion of self-dictionary (Sections 7.6.2 to 7.6.5).
In Section 7.6.6, we discuss the computational cost of these methods and discuss their practical
performances.
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7.6.1 Multiple linear programs

In their seminal paper on the complexity of NMF, Arora et al. [15] proposed the first near-
separable NMF algorithm provably robust to noise. It is rather simple and natural and is closely
related to ideas already present in the blind source separation literature [358]. However, they
were the first to prove that their approach is robust in the presence of noise.

Let us present their algorithm, which we refer to as multiple linear programs (MLPs), in a
high-level way focusing on the intuition behind it; see the paper [15] for the details. As before,
let X̃ ∈ Rm×n satisfy Assumption 7.1. For δ ≥ 0 and j ∈ {1, 2, . . . , n}, let us define

Lδ
j =

{
ℓ
∣∣ min

α

∥∥X̃(:, ℓ)− αX̃(:, j)
∥∥
1
> δ
}
.

The set Lδ
j contains the indices of all columns of X̃ that are sufficiently far way from the cone

generated by X̃(:, j). In particular, the set L0
j contains the indices of all columns of X̃ that are

not multiples of X̃(:, j). MLP solves one linear optimization problem for each data point: for
j = 1, 2, . . . , n, it computes

ζj = min
h≥0

∥∥X̃(:, j)− X̃(:,Lδ
j)h
∥∥
1
,

which can be solved via LP. In the noiseless case, δ = 0 is used and, by definition, X̃(:, j) is an
extreme ray of cone(W ) if and only if ζj > 0, that is, if and only if X̃(:, j) cannot be written
as the conic combination of other columns of X̃ . Hence, any columns of X̃ whose index is in
K = {j | ζj > 0} is a column of W , up to scaling.

In the presence of noise, one needs to use δ > 0. The reason is that if a column of W is
duplicated in the data set and/or there are nearby data points (which we refer to as near-duplicated
columns), we might have ζj arbitrarily small because of the presence of noise, and hence that
column could not be identified. The set of candidate indices is given by

K = {j | ζj > η}

for some η sufficiently large. Intuitively, the reason is that some data points could have ζj > 0
while being far from a column of W . This is, for example, the case in our middle point exper-
iment as the noise moves the middle points on the segment joining two columns of W outward
conv(W ); see Figure 7.5. It can be shown that for well-chosen values of δ and η, any index in K
corresponds to a columns of X̃ nearby a column of W , given that the noise is sufficiently small
(see Theorem 7.20 below). Finally, because of possible near-duplicated columns of W , a post-
processing step is necessary to cluster the columns corresponding to the indices in K to recover
the r columns of W . Because the r clusters are well-separated and located around the columns
of W , this step is not difficult and can be performed, for example, using spherical k-means
(Section 5.5.3).

Let us provide the robustness theorem for MLP.

Theorem 7.20. [15, Theorem 5.7] Let X̃ = X + N = X(:,K∗)H + N = WH + N be a
matrix satisfying Assumption 7.1 with p = 1 and γ1(W ) > 0, and let

ϵ = max
j
∥N(:, j)∥1 ≤ O

(
γ1(W )2

)
.

Then MLP returns a set of indices K such that

q1(K) ≤ O
(

ϵ

γ1(W )

)
.
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The condition on ϵ does not match, up to constant factors, the optimal bound ϵ ≤ O(γ1(W ));
see Section 7.3.1. However, the error bound on q1(K) matches the optimal bound. For ill-
conditioned or rank-deficientW , these bounds would outperform SPA variants that depend on the
parameter σr(W ). Compared to SNPA, the bounds are also much stronger since SNPA depends
on the parameter β(W ) ≤ γ2(W ), where ϵ ≤ O(β(W )4) for an error q2(K) ≤ O(ϵ/β(W )3).
However, for well-conditioned matrices for which σr(W ) ≈ γ2(W ), MVE-SPA provides better
bounds since it only requires ϵ ≤ O(σr(W )/

√
r) for an error q2(K) ≤ O(ϵ/σr(W )).

7.6.2 Self-dictionary I: exact model

We now present several closely related models that solve near-separable NMF in a global fashion,
considering all data points simultaneously. They are based on the concept of self-dictionary, that
is, using X as a dictionary to approximate the columns of X with itself.

Let us first consider the noiseless case, and let us introduce the set

Y = {Y ∈ Rn×n
+ | X = XY }.

The set Y contains all nonnegative matrices that can be used to reconstruct X with itself. Note
that In ∈ Y , which is not a very insightful decomposition. To recover a separable factorization,
Y ∈ Y should have as few nonzero rows as possible. In fact, a row of zeros in the matrix Y
means that the corresponding column in X is not used in the decomposition since

X = XY =

n∑
j=1

X(:, j)Y (j, :).

We have the following lemma.

Lemma 7.21. Let X = X(:,K∗)H ∈ Rm×n satisfy Assumption 7.1 with ϵ = 0. Let also

Y ∗ ∈ argminY ∈Y ∥Y ∥row,0, (7.11)

where ∥Y ∥row,0 counts the number of nonzero rows of Y . Then, |K∗| = ∥Y ∗∥row,0, and defining

KY ∗ = {k ∈ {1, 2, . . . , n} | Y ∗(k, :) ̸= 0},

we have X(:,KY ) = X(:,K∗) up to permutation and scaling, and

X = X(:,KY ∗)Y ∗(KY ∗ , :)

provides a separable factorization of X .

Proof. By item (i) of Assumption 7.1, the columns of X(:,K∗) are distinct vertices of the set
conv([X, 0]). Hence, the only possible way to reconstruct X(:,K∗) using columns of X is to
select X(:,K∗) themselves, or duplicated columns (up to scaling). This implies that for each
column of X(:,K∗), there exists a nonzero row of Y corresponding to a column of X which
is equal to X(:,K∗), up to scaling, since X = XY . This implies that ∥Y ∥row,0 ≥ r for any
feasible solution of (7.11) and that r nonzero rows correspond to the columns of X(:,K∗). By
Assumption 7.1, there exists a feasible solution Y with ∥Y ∥row,0 = r, namely take Y (K∗, :) = H
while setting the other rows to zero (all columns of X are convex combinations of the columns
of X(:,K∗) and the origin). The result then follows from the optimality of Y ∗ which uses as few
nonzero rows as possible.
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Let us make two observations that follow from Lemma 7.21. First, the model (7.11) does not
need r as an input. As we will see, self-dictionary models can detect r automatically. Second,
the near-separable NMF problem (Problem 7.1) can be formulated as

min
Y ∈Y

D(X,XY ) such that ∥Y ∥row,0 = r.

This motivates the self-dictionary models presented in the next sections.

7.6.3 Self-dictionary II: ℓ1,q relaxations

As briefly discussed in Section 5.4.2, the self-dictionary model X = XY is closely related to
archetypal analysis and convex NMF. However, the first to use this model in the context of near-
separable NMF were Esser et al. [148] (2012) and Elhamifar, Sapiro, and Vidal [145] (2012).
More precisely, both papers develop the following model.

Since minimizing the number of nonzero rows of Y is a difficult problem of combinatorial
nature, they instead minimize the convex surrogate

∥Y ∥1,q =

n∑
i=1

∥Y (i, :)∥q,

which is the ℓ1,q norm of Y . It is the ℓ1 norm of the vector whose entries are the ℓq norms of the
rows of Y . Note that this is a norm only for q ≥ 1. For near-separable NMF, q should be chosen
such that q > 1 because choosing q = 1 leads to a convex optimization problem but does not
lead to row sparsity as it would be equivalent to minimizing ∥Y ∥1, which would make Y sparse
but not row sparse [145].

In practice, because of the presence of noise, the constraint X = XY is replaced with
D(X,XY ) ≤ δ for some appropriate distance measure D(X,XY ) and some parameter δ > 0.
Another standard approach is to add D(X,XY ) as a penalty in the objective function and solve
the convex optimization problem

min
Y≥0

∥Y ∥1,q + λD(X,XY ) (7.12)

for some well-chosen parameter λ > 0. Esser et al. [148] (resp. Elhamifar et al. [145]) designed
an algorithm based on the alternating direction method of multipliers (ADMM) to tackle the
model (7.12) using the squared Frobenius norm D(X,XY ) = ∥X −XY ∥2F and q = ∞ (resp.
q = 2); see Section 8.3.5 for more details on ADMM. Esser et al. applied it on hyperspectral
images and in nuclear magnetic resonance spectroscopy, with comparisons with VCA, NFIND-
R, and SPA (which they refer to as QR), and Elhamifar et al. for video summarization (which
consists in identifying key frames within a video sequence), classification using representatives,
and outlier rejection.

Elhamifar et al. proved the correctness of the model for any q > 1 in the noiseless case (Esser
et al. showed it for q = ∞), in the absence of duplicated columns of X , and in a normalized
setting where H⊤e = e is assumed. Let us prove the result for q = ∞ (which is slightly
simpler).

Theorem 7.22. [148, Lemma III.1], [145, Theorem 1] Let X̃ = X + N = WH + N satisfy
Assumption 7.1 with N = 0 and where the columns of X(:,K∗) are not duplicated. Then any
optimal solution Y ∗ of

min
Y ∈Y
∥Y ∥1,∞ (7.13)
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satisfies

KY ∗ = {k ∈ {1, 2, . . . , n} | Y ∗(k, :) ̸= 0} = K∗;

hence X = X(:,KY ∗)Y ∗(KY ∗ , :).

Proof. First, note that the solution Y f defined as

Y f (K∗, :) = H

and Y f (j, :) = 0 for j /∈ K∗ is feasible, and ∥Y f∥1,∞ = r since H(K∗, :) = Ir and H ≤ 1
(Assumption 7.1). Second, as the columns of X(:,K∗) cannot be approximated with other col-
umns and are not duplicated, we must have

Y (K∗,K∗) = Ir

for any feasible solution Y of (7.13), and hence ∥Y ∥1,∞ ≥ r for any feasible solution Y . This
implies that Y f is optimal. Finally, since Y ∗(K∗,K∗) = Ir and having a nonzero entry in any
other row of Y ∗ makes the objective function strictly larger than r, we must have KY ∗ = K∗ for
any optimal solution.

In the papers [148, 145], their algorithm is used as a heuristic in the sense that no robustness
result are provided.

In [174] robustness of the model with q = ∞ was proved but in the absence of near-
duplicated columns of W . We will present in Section 7.6.5 a stronger robustness result allowing
near-duplicated columns of W . As we will see, the solutions of these convex models are highly
sensitive to duplicated and near-duplicated columns of W . In order to obtain robustness results
without this strong and unrealistic assumption, the solution Y has to be postprocessed with care.
The reason is that the optimal solution Y will in general not be row sparse, and some clustering of
its rows are necessary, similarly as for the MLP approach presented in the previous section. Let
us explain why Y is not row sparse in the presence of duplicates and near-duplicates. Assume the
noiseless case, and assume each column of W is duplicated once. This implies that there exist
2r separable factorizations: for each column of W , we have the choice between two different
columns of X to represent it. Let Yi (1 ≤ i ≤ 2r) be the corresponding 2r solutions of (7.13)
with r nonzero rows (see the proof of Theorem 7.22). By convexity, the solutions Yα =

∑
i αiYi

for any α ∈ ∆r such that αi ̸= 0 for all i are also optimal and have 2r nonzero rows. In the
presence of noise, the behavior is worsened.

Link with multiple measurement vectors It is worth noting that the self-dictionary
model and the relaxations based on ℓ1,q norms were already used in another context, where
Y is not required to be nonnegative. This is the so-called problem of multiple measurement
vectors, where usually the considered model is more general with X = DY where D is any
dictionary (not necessarily D = X). The theoretical results are rather different and closely
related to the compressive sensing literature, where the assumptions on the dictionaryD relate to
incoherence conditions. We refer the interested reader to [107, 83] and the references therein for
more details. Interestingly, one of the proposed greedy algorithms for the multiple measurement
vectors problem, closely related to orthogonal matching pursuit [477], turns out to be equivalent
to SPA [175].
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7.6.4 Self-dictionary III: Hottopixx, an LP-based model

In [395] (2012), Recht et al. proposed the following self-dictionary model for near-separable
NMF: given a matrix X̃ satisfying Assumption 7.1, a vector v ∈ Rn, and a noise level δ > 0,
solve

min
Y ∈Rn×n

v⊤ diag(Y )

such that max
j
∥X̃(:, j)− X̃Y (:, j)∥1 ≤ δ,

tr(Y ) = r, (7.14)
0 ≤ Y (i, j) ≤ Y (i, i) ≤ 1 for all i, j.

This model, referred to as Hottopixx, can be solved via LP. It can be interpreted as follows:
we have to assign a value in the interval [0,1] to each diagonal entry of Y (0 ≤ Y (i, i) ≤ 1
for all i) for a total weight of r since tr(Y ) = r. Moreover, we cannot use a column of X̃ to
reconstruct another column of X̃ with a weight larger than the corresponding diagonal entry of
Y (because Y (i, j) ≤ Y (i, i) for all i, j), while we have to guarantee that the approximation
error is sufficiently small. For a matrix satisfying Assumption 7.1, in the noiseless case and
in the absence of duplicated columns of W , it is easy to show that any feasible solution Y
of (7.14) satisfies Y (i, i) = 1 if and only if i ∈ K∗. The proof is essentially the same as that of
Theorem 7.13. The main difference with the models based on the ℓ1,q norms is that r is part of
the input, while the objective function involves the vector v which allows breaking the symmetry
of the near-separable NMF problem and hence allows us to deal with duplicated columns. In
particular, in the noiseless case, if the entries of v are distinct (it was recommended in [395] to
pick them at random), then the optimal solution of (7.14) is unique and has r nonzero rows.

Theorem 7.23. [395, Theorem 3.1] Let X̃ = X =WH satisfy Assumption 7.1 with N = 0, and
let the entries of v be distinct. Then the optimal solution Y ∗ of (7.13) with δ = 0 satisfies

X(:,KY ∗) = X(:,K∗) =W,

up to permutation.

Proof. Let k ∈ K∗ so that X(:, k) is a column of W . Let also

Jk = {j | X(:, j) = X(:, k)}.

Since X(:, k) is a vertex of conv([W, 0]), we must have tr(Y (Jk,Jk)) ≥ 1 for all k to be able
to reconstruct X(:, k) exactly. Together with the constraint tr(Y ) = r and the fact that the
sets Jk do not intersect (since W (:, i) ̸= W (:, j) for i ̸= j by Assumption 7.1(i)), this implies
tr(Y (Jk,Jk)) = 1 for all k. For k ∈ K∗, let i = argminj∈Jk

v(j). The optimal way to assign
the weights to the diagonal entries of Y (Jk,Jk) is with Y (i, i) = 1 and Y (j, j) = 0 for all
j ∈ Jk\{i}, since the objective function is v⊤ diag(Y ) =

∑n
i=1 v(i)Y (i, i).

In their paper, Recht et al. [395, Theorem 3.2] also provided a robustness proof in the absence
of near-duplicated columns of W . It was later improved in [187, Theorem 3.2], getting rid of a
factor γ1(W )2 in the bound for ϵ.

Theorem 7.24. [187, Theorems 2.3 and 2.4] Let X̃ = X+N =WH+N satisfy Assumption 7.1
with p = 1 where H = [Ir, H

′]Π as in (7.4). Let us assume that β := maxi,j H
′(i, j) < 1 and

ϵ <
(1− β)γ1(W )

9(r + 1)
.
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Then picking the r largest entries of an optimal solution Y ∗ of (7.14) to form K guarantees
K = K∗, and hence

q1(K) ≤ ϵ.

Moreover, the bound on ϵ in Theorem 7.24 is tight up to constant factors.

Unfortunately, in the presence of noise and near-duplicated columns of W , the analysis is
more complicated and simply solving (7.14) and picking the r largest diagonal entries of Y does
not allow us to obtain a robustness result. However, performing an appropriate postprocessing
of the diagonal entries of Y ∗ allows us to resolve this issue. The idea is similar to that of
MLP: the diagonal entries of Y ∗ are clustered together depending on the distances between
the corresponding columns of X̃—this is a k-means problem with weights; see [187] for more
details. This leads to the following robustness theorem, without the assumption on the absence
of duplicates.

Theorem 7.25. [187, Theorem 3.5] Let X̃ satisfy Assumption 7.1 with p = 1. If

ϵ <
ω(W )γ1(W )

99(r + 1)
,

where ω(W ) = mini ̸=j ∥W (:, i) −W (:, j)∥1, then the index set K extracted by a proper post-
processing of the optimal solution of (7.14) satisfies

q1(K) ≤ 49(r + 1)
ϵ

γ1(W )
+ 2ϵ.

Compared to the idealized algorithm, the above bounds are tight up to the factor ω(W )/r for
ϵ and up to the factor r for q1(K). Compared to MLP, the bound on ϵ is better when γ1(W ) ≤
O(ω(W )/r), while the error q1(K) is worse; this is not very satisfactory. However, in their paper,
Recht et al. [395] showed that Hottopixx performs better than MLP on several synthetic data
sets.

7.6.5 Self-dictionary IV: LP-based model, toward optimal bounds

Beyond having suboptimal error bounds, Hottopixx has another important drawback: the factor-
ization rank r and the noise level δ have to be estimated. If these values are not well-chosen,
(7.14) could be infeasible. In [204], these issues were resolved by proposing the following
slightly modified LP-based model, which we refer to as self-dictionary via linear programming
(SD-LP):

min
Y ∈Rn×n

v⊤ diag(Y )

such that max
j
∥X̃(:, j)− X̃Y (:, j)∥1 ≤ δ, (7.15)

0 ≤ Y (i, j) ≤ Y (i, i) ≤ 1 for all i, j,

where v ∈ Rn has positive entries. In practice, it is recommended to choose these values of v
distinct but close to one so that v⊤ diag(Y ) ≈ tr(Y ) while allowing one to deal with duplicated
columns. As for Hottopixx, the model is exact in the absence of noise (Theorem 7.23 and almost
the same proof apply to this new model). The problem (7.15) is always feasible as Y = In is
a feasible solution. Moreover, it detects the factorization rank automatically; without going into
the details, we have r ≈ tr(Y ) under Assumption 7.1 for ϵ sufficiently small and δ ≈ ϵ.

In the setting without near-duplicated columns ofW , we have the following robustness result.
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Theorem 7.26. [204, Theorem 3.2] Let X̃ = X + N = WH + N satisfy Assumption 7.1
where H = [Ir, H

′]Π as in (7.4), and let δ = ρϵ for some ρ > 0. Let us assume that β :=
maxi,j H

′(i, j) < 1 and

ϵ <
(1− β)γ1(W )min(1, ρ)

5(ρ+ 2)
.

Then picking the r largest entries of an optimal solution Y ∗ of (7.14) to form K guarantees
K = K∗, and hence

q1(K) ≤ ϵ.

The bound of Theorem 7.26 allows δ to be different from ϵ, and hence it does not need to
be estimated perfectly. The value of δ that leads to the best bound for ϵ is when ρ = 1. In
that case, the bound on ϵ is (1−β)γ1(W )

15 and it matches the bound of the idealized algorithm,
namely ϵ < (1−β)γ2(W )/4, up to a small constant factor. This is rather nice: a polynomial-time
algorithm can tackle near-separable NMF as well as the idealized algorithm, in the absence of
near-duplicated columns of W .

Unfortunately, in the presence of near-duplicated columns of W , the robustness analysis
cannot be improved compared to Hottopixx: Theorem 7.25 applies when solving (7.15) instead
of (7.14). We believe that the bound can be improved by removing the factor r (which is not
possible for Hottopixx [187]): this is a topic for future research.

Frobenius norm variant and fast gradient method In the paper [205], the follow-
ing model is considered:

min
Y ∈Z

tr(Y ) + λ∥X̃ − X̃Y ∥2F ,

where
Z = {Y ∈ Rn×n | 0 ≤ Y (i, j) ≤ Y (i, i) ≤ 1}.

It is the same model as SD-LP except that the data fitting term is put in the objective and the
Frobenius norm is used as an error measure. The advantage of this model is that the objective
function is smooth, and the authors propose a projected fast gradient method (see Section 8.3.4
for more details on this optimization scheme) that runs in O(n2 max(m, log n)) operations.
The main algorithmic contribution is the design of a projection on the set Z which requires
O(n2 log n) operations.

Equivalence with the ℓ1,∞ norm model An interesting observation is that, under
Assumption 7.1, SD-LP (7.15) is equivalent to the ℓ1,∞ norm model [205, Theorem 2]. More
precisely, let us define

min
Y ∈Rn×n

+

∥Y ∥1,∞

such that max
1≤j≤n

∥X̃(:, j)− X̃Y (:, j)∥2 ≤ ϵ, (7.16)

and let us take v = e and δ = ϵ in (7.16). We have that

• at optimality, the objective function values of (7.15) and (7.16) coincide,

• any optimal solution of (7.15) is an optimal solution of (7.16), and

• any optimal solution of (7.16) can be easily transformed into an optimal solution of (7.15).
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This result essentially follows from the observation that, for v = e,

e⊤Y = tr(Y ) = ∥Y ∥1,q
for any feasible solution of (7.15) since Y (i, j) ≤ Y (i, i) for all i, j so that ∥Y (i, :)∥∞ = Y (i, i)
for all i.

7.6.6 Computational cost and practical performances

Convex-optimization-based methods are appealing in theory, being more robust to noise (in the
worst-case setting). On synthetic data sets similar to the ones used in Section 7.4.6, they perform
in general better than greedy algorithms; see the numerical experiments in [204, 205]. However,
they have several important drawbacks:

• All the models presented in this section involve solving convex optimization problems in
O(n2) variables, or n linear programs in O(n) variables for MLP. Hence even first-order
methods do not scale well. It is possible to use stochastic-based methods working on
subsamples of the data set at each iteration, but such methods converge rather slowly; this
is a strategy proposed for Hottopixx in [395]. In our experience, even when using first-
order methods, the convergence can be slow; hence many iterations are needed to obtain
high-quality solutions.

• In our experience, convex-optimization-based methods heavily rely on separability. If this
assumption is highly violated (which often happens in practice), then the solution Y will
typically not be row sparse and it will be difficult to identify the most important columns of
X̃ . On the contrary, greedy algorithms are better suited in these situations and will return
subset of columns well-spread in the data set.

• Convex-optimization based methods rely on parameter tuning, namely λ for ℓ1,q relax-
ations (7.12), δ and r for Hottopixx (7.14), and δ for SD-LP (7.15). This is a highly
nontrivial task, and greedy algorithms do not have this issue. In practice, it may take some
time to properly fine-tune these methods.

For these reasons, convex-optimization-based methods have not been been used much in practice
so far.

A way to partially resolve the above drawbacks and obtain good performances in practice is
to select a (small) subset of rows of Y to be nonzero, that is, to select initially important columns
of X̃ . This can be done, for example, using greedy near-separable NMF algorithms. In other
words, convex-optimization-based methods can be used to aggregate solutions of simpler and
faster methods. In the same spirit, the strategy proposed in [205] is to preselect columns of X̃
using a hierarchical clustering of the columns of X̃ and, for each cluster, choose a representative
column of X̃ . This was shown to outperform greedy algorithms for hyperspectral imaging.
Another advantage of selecting a well-chosen subset of columns is that it resolves the issue of
near-duplicated columns of W (since a well-chosen subset should typically not contain nearby
columns), which deteriorates the performance of convex-optimization-based methods (see the
discussions in the previous sections, in particular Theorem 7.26, and the discussion that follows).

7.7 Summary of provably robust near-separable NMF
algorithms

Table 7.3 compares the different robustness recovery results for the different provably correct
algorithms described in this chapter.
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Table 7.3. Comparison of robust near-separable NMF algorithms applied on a dense
m-by-n matrix X̃ satisfying Assumption 7.1. Note that SNPA also achieves the bounds of
SPA [188].

Algorithm Cost Noise level (ϵ) Error (qp(K))

Idealized [192]
(
n
r

)
O(mnr) γ2(W )

4 8 ϵ
γ2(W ) + ϵ

SPA [210] 2mnr +O(mr2) O
(

σ3
r(W )√

r

)
O
(

ϵ
σ2
r(W )

)
FAW [14] O(mnr2) O

(
σ3
r(W )√

r

)
O
(

ϵ
σr(W )

)
SNPA [188] O(mnr) O

(
β(W )4

)
O
(

ϵ
β(W )3

)
MVE-SPA [211] O(mnr + r6) O

(
σr(W )√

r

)
O
(

ϵ
σr(W )

)
SPA-SPA [206] O(mnr2) O

(
σ3
r(W )√

r

)
O
(

ϵ
σr(W )

)
MLP [15] Ω(mn2) O

(
γ1(W )2

)
O
(

ϵ
γ1(W )

)
Hottopix [395, 187]

and SD-LP [204]
Ω(mn2) O

(
γ1(W )ω(W )

r

)
O
(

rϵ
γ1(W )

)

For well-conditioned matrices W for which σr(W ) ≈ γ2(W ), MVE-SPA is the provably
most robust algorithm. Note, however, that the analysis of SD-LP might not be tight, and the
factor r could potentially be removed, in which case SD-LP would be provably more robust,
performing almost as well as the idealized algorithm (this holds true in the absence of near-
duplicated columns of W ; see Theorem 7.26). For ill-conditioned (σr ≈ 0) or rank-deficient
matrices (σr = 0), SNPA or SD-LP should be preferred, as SPA variants either perform badly or
are not even able to extract sufficiently many columns (for example, when m < r).

For large-scale data sets, where n is of the order of thousands or millions, greedy algorithms
are the methods of choice. However, convex-optimization-based algorithms can be used as a
post-processing to select columns among a smaller subset of candidates; see for example [205].
This is particularly meaningful because it appears that convex-optimization-based algorithms
tend to underperform on real data for which (1) the noise level is high, (2) there are many near-
duplicated columns, and (3) the data set violates the model assumptions.

Finally, it is important to keep in mind that it is often possible to improve solutions by ap-
plying various heuristics that locally look for better solutions, as in the second phase of FAW
(Algorithm 7.2), in the spirit of NFINDR.

7.8 Separable tri-symNMF
In Section 5.4.9.1, we presented the tri-symNMF model of Arora et al. [14] for topic modeling:
Given the word-by-document matrix X , it considers the following decomposition:

A = XX⊤ ≈ WSW⊤.

The matrix A is the word co-occurrence matrix, the matrix W is the word-by-topic matrix such
that W (i, k) is the probability for word i to be picked under the topic k, and the matrix S is
a topic-by-topic matrix that accounts for the interactions between the topics. The tri-symNMF
problem is to recover (W,S) from A.
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In topic modeling, the following separability assumption makes sense: for each topic, there
exists an anchor word, that is, a word that is only used by that topic. This is equivalent to requir-
ing that the matrixW⊤ is separable, that is, there existsK such thatW (K, :) is a diagonal matrix.
As explained in the next paragraph, (W,S) can be extracted from A under the separability as-
sumption, in polynomial time and even in the presence of noise. Hence separable tri-symNMF
is identifiable and solvable in polynomial time with provably robust algorithms, as for separa-
ble NMF. This is in contrast to most topic models, such as collapsed Gibbs sampling or latent
Dirichlet allocation, that do not come with such guarantees. Moreover, separable tri-symNMF
provides state-of-the-art results compared to these approaches [14].

Computation of W and S under the separability assumption For simplicity,
let us assume the noiseless case, that is, A = WSW⊤, and let us assume that W⊤ is separable.
We refer to [14] for the analysis in noisy settings.

Since W⊤ is separable, applying a separable NMF algorithm on A = (WS)W⊤ allows us
to identify an index set K such that

W (K, :) = diag(z) for some z ∈ Rr
++.

Note that, by symmetry of tri-symNMF, the matrix W⊤ of tri-symNMF plays the role of the
matrixH in separable NMF. Therefore, givenA, separable NMF algorithms will identifyK such
that

A(:,K) = (WS)W (K, :)⊤ = (WS) diag(z).

Hence A(:,K) is equal to WS, up to scaling of the columns. However, as opposed to separable
NMF, it is not necessarily the case that A(:,K) = W , up to scaling, since S is usually not
diagonal. (If S is diagonal, this is the symNMF model for which separability was also considered
in [271] but is rather unrealistic as A needs to contain a diagonal matrix as a submatrix.)

By using the scaling degree of freedom in tri-symNMF, we may assume w.l.o.g. W⊤e = e.
Note that this makes sense when interpreting W in terms of probabilities; see Section 5.4.9.1.
Let us define q = A(K, :)e; we have

q = A(K, :)e =W (K, :)SW⊤e =W (K, :)Se = diag(z)Se. (7.17)

Moreover,

A(K,K) =W (K, :)SW (K, :)⊤ = diag(z)S diag(z);

hence

S = diag(z)−1A(K,K) diag(z)−1. (7.18)

Putting (7.18) in (7.17), we obtain

q = A(K,K) diag(z)−1e = A(K,K)
(
[e]

[z]

)
,

where [.]/[.] is the componentwise division. Therefore, z can be computed by solving a linear
system. Once z is recovered, we obtain S via (7.18), while W is obtained by solving the linear
system

A(K, :) =W (K, :)SW⊤ = diag(z)SW⊤ = A(K,K) diag(z)−1W⊤.



7.9. Further readings 259

Algorithm 7.6 Tri-symNMF under the separability assumption [14] [Matlab file:
septrisymNMF.m]

Input: The matrix A ≈WSW⊤ ∈ Rm×m where W⊤ ∈ Rr×m is separable.
Output: The matrices W ∗ and S∗, up to permutation and scaling, so that A ≈W ∗S∗W ∗⊤.

1: Using a separable NMF algorithm, extract K from A so that A(:,K) contains the r extreme
rays of cone(A).

2: Let
y∗ = argminy∈Rr

+
D
(
A(K, :)e,A(K,K)y

)
,

where D(·, ·) is an error measure such as a β-divergence; see Section 5.1.3. (The quantity
y∗ plays the role of [e]

[z] in the notation in the text, so that diag(y∗) = diag(z)−1.)
3: Let

S∗ = diag(y∗)A(K,K) diag(y∗).

4: Obtain W ∗ by solving

min
W∈Rn×r

+

D
(
A(K, :), A(K,K) diag(y∗)W⊤) .

In the presence of noise, to recover z and W , one should instead solve optimization problems
under nonnegativity constraints (such as NNLS problems); see Arora et al. [14] for the details
where the KL divergence is used to estimate W as it is better suited for word count data sets; see
Section 5.1.1. Algorithm 7.6 summarizes this procedure; for a numerical example, see [Matlab
file: septrisymNMF_example.m].

Minimum-volume tri-symNMF Min-vol NMF relies on a relaxed condition of separa-
bility, namely the SSC; see Section 4.3.3. Similarly, the separability assumption in tri-symNMF
can be relaxed to the SSC, which does not require the presence of anchor words. In this case,
one should solve a minimum-volume tri-symNMF problem, that is, approximate A = XX⊤

with WSW⊤ where W has a small volume [171]. Numerical results showed that min-vol tri-
symNMF outperforms separable tri-symNMF; see also [170] for a discussion and some numeri-
cal examples.

7.9 Further readings
Let us briefly mention a few works closely related to separable NMF. Liu and Tan [326] use
the link between ONMF and separable NMF to obtain algorithms with identifiability guarantees
for ONMF in the presence of noise. The authors in [123] generalized separability to tackle
convolutive NMF (Section 5.4.6), providing provably correct algorithms in the presence of noise.
Finally, separable NMF has recently been generalized as follows: Given X and r, find the index
sets K and L such that |K|+ |L| = r and

X = X(:,K)P1 + P2X(L, :) with P1 ≥ 0 and P2 ≥ 0.

This allows selecting both columns and rows ofX to reconstruct itself. For example, in text min-
ing, this means that for each topic, we need only a pure document or an anchor word. However,
this model is still not well-understood, even in the noiseless case. An issue is that, as opposed to
separable NMF, it is not always identifiable; see [373] for more details.
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7.10 Take-home messages
Near-separable NMF is a powerful NMF model as it is identifiable and can be solved efficiently,
even in the presence of noise. We have presented in this chapter a variety of algorithms al-
lowing one to perform this task; see Table 7.3 (page 257) for a summary of provably robust
near-separable NMF algorithms. However, it relies on a relatively strong assumption. Neverthe-
less even if separability is not approximately satisfied by the input matrix, near-separable NMF
algorithms can be used as an initialization for iterative NMF algorithms; see Section 8.6. This
is particularly meaningful for ONMF (see for example Figures 4.10 and 4.11) or min-vol NMF
algorithms as these problems are closely related to separable NMF; see Section 4.3.5. If no bet-
ter option is available, we recommend in general to initialize NMF algorithms with a fast greedy
near-separable NMF algorithm, such as SPA or SNPA applied on X or its transpose depending
on the application; see the discussion in Section 7.1.



Chapter 8

Iterative algorithms for
NMF

In this chapter, we present several optimization strategies to tackle the standard NMF problem
(Problem 1.1, page 4), that is, given X ∈ Rm×n

+ and r, solve

min
W ∈ Rm×r

+ ,
H ∈ Rr×n

+

D(X,WH), (8.1)

where D(X,WH) is an error measure between X and WH , such as the Frobenius norm of
the residual X − WH; see Section 5.1 for more examples. Recall that (8.1) is NP-hard in
general (Chapter 6); hence the algorithms presented in this chapter are iterative local optimization
schemes converging to local solutions (in general, they are guaranteed to converge to stationary
points; see Section 8.1). Such algorithms come with no global optimality guarantee.

Most iterative NMF algorithms optimize alternatively over the variable W for H fixed and
over the variable H for W fixed. This is a two-block coordinate descent (2-BCD) method where
the subproblems can be solved exactly or approximately; see Algorithm 8.1. This approach is
also referred to as alternating optimization.

Algorithm 8.1 Two-block coordinate descent framework of most NMF algorithms

Input: Input nonnegative matrix X ∈ Rm×n
+ and factorization rank r.

Output: (W,H) ≥ 0: A rank-r NMF of X ≈WH .

1: Generate some initial matrices W (0) ≥ 0 and H(0) ≥ 0; see Chapter 8.6.
2: for t = 1, 2, . . . † do
3: W (t) = update

(
X,H(t−1),W (t−1)

)
, typically such that

D(X,W (t)H(t−1)) ≤ D(X,W (t−1)H(t−1)).

4: H(t)⊤ = update
(
X⊤,W (t)⊤, H(t−1)T

)
, typically such that

D(X,W (t)H(t)) ≤ D(X,W (t)H(t−1)).

5: end for
†See Chapter 8.5 for stopping criteria.
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There are at least two reasons for this. First, for most error measures, these subproblems
are convex and hence have many nice properties and are typically efficiently solvable. This is
the case for D(X,WH) = ∥X −WH∥ for any norm ∥.∥: norms are convex functions while
X − WH is a linear function in W for H fixed and vice versa. Another important class of
measures that are convex are the β-divergences for β ∈ [1, 2]. Second, by symmetry of the
problem, X = WH if and only if X⊤ = H⊤W⊤ so that D(X,WH) = D(X⊤, H⊤W⊤) for
most error measures. Therefore deriving an update for one of the factors, W or H , directly leads
to an update for the other factor; see Algorithm 8.1. These two observations make the design
of NMF algorithms based on 2-BCD much easier than trying to optimize the variables (W,H)
simultaneously. As far as we know, there exist very few such approaches58 and they have not
been very successful so far. Therefore, we consider in this chapter only 2-BCD, so that, by the
symmetry of the problem, the main focus will be on the following nonnegatively constrained
optimization problem: Given X ∈ Rm×n

+ and W ∈ Rm×r
+ , solve

min
H≥0

D(X,WH). (8.2)

There are many algorithms designed to tackle (8.2), and they are not specific to NMF. In this
chapter, we present such algorithms and see how to embed them in the 2-BCD strategy.

Moreover, the focus of this chapter is on error measuresD(X,WH) based on β-divergences,
that is, Dβ(X,WH), and, in particular, β = 2, which corresponds to the Frobenius norm, that
is, D2(X,WH) = 1/2∥W −WH∥2F . Although we will discuss a few important NMF models
(such as orthogonal, sparse, and min-vol NMF), we present mostly optimization strategies for
the standard NMF formulation (8.1). However, the techniques described in this chapter apply to
other objective functions and other NMF models. This is important to keep in mind because of
the following two reasons:

• There exist many other measures including weighted norms,59 componentwise ℓp norms,
α-divergences, and Bregman divergences; see Chapter 5.1.

• As discussed in Section 4.3 and Chapter 5, using regularizers in the objective and/or ad-
ditional constraints to the NMF model is often crucial in practice. The main motivation is
to obtain solutions that better satisfy the structure of the sought solution and hence lead to
identifiability.

Organization of the chapter We start by presenting notions that will be useful through-
out this chapter, namely the structure of the NMF problem, the first-order optimality condi-
tions, the majorization-minimization (MM) framework, and convergence of BCD methods (Sec-
tion 8.1). MM includes in particular the MU that are presented for β-divergences in Section 8.2.
In Section 8.3, we focus on the case where D(X,WH) is the Frobenius norm of X − WH ,
which is arguably the most studied objective function for NMF. Moreover, it is a situation where
the MU are outperformed by other strategies. In Section 8.4, we explain how to choose the num-
ber of inner iterations of NMF algorithms, as well as acceleration techniques. In Section 8.4.3,
we provide a numerical comparison of the algorithms for the Frobenius norm on dense and
sparse data sets and discuss their practical performances. In Sections 8.5 and 8.6, we discuss the
stopping criteria and the initialization schemes of NMF algorithms, respectively. In Section 8.7,
we present several other approaches to tackle NMF which are not solely based on a well-chosen

58We refer the interested reader to [357] for a recent gradient-based nonalternating approach for constrained low-rank
matrix approximation problems. However, in their numerical experiments with NMF, their approach does not compete
with a gradient-based BCD approach.

59An algorithm for weighted NMF will be presented in Section 9.5 in the context of recommender systems. It is a
simple extension of an algorithm presented in this chapter, namely hierarchical alternating least squares (Section 8.3.3).
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optimization strategy applied on (8.1). In Section 8.9 we provide the link to online resources con-
taining NMF codes. We conclude with further readings and take-home messages in Sections 8.8
and 8.10, respectively.

8.1 Preliminaries
In this section, we first briefly discuss the structure of the NMF problem (Section 8.1.1). Then we
present three important tools used throughout this chapter, namely the first-order optimality con-
ditions of NMF (8.1) (Section 8.1.2), the MM framework which is used to design optimization
algorithms (Section 8.1.3), and the convergence theory of various BCD schemes (Section 8.1.4).

8.1.1 Structure of the NMF problem

As mentioned in the introduction, the NMF problem (8.1) is symmetric in variables W and H ,
as long as D(X,WH) = D(X⊤, H⊤W⊤), which holds true for most error measures. Let us
look at the subproblem (8.2) in variable H , which is a linear regression problem. In most cases,
it can be decoupled into n independent problems. More precisely, solving (8.2) is equivalent to
solving

min
H(:,j)≥0

D
(
X(:, j),WH(:, j)

)
, (8.3)

for j = 1, 2, . . . , n, as long as

D(X,WH) =

n∑
j=1

D
(
X(:, j),WH(:, j)

)
,

which holds true for most error measures such as the β-divergences Dβ(·, ·). In particular it
holds true for error measures of the form D(A,B) =

∑
i,j d(Ai,j , Bi,j) for some scalar error

function d(·, ·). However, in practice, these problems should not be solved independently as
they share information, namely, the matrix W , which can be used to reduce the computational
load significantly. For example, for the Frobenius norm, the gradient requires computingW⊤W ,
which can be done once for all subproblems.

8.1.2 First-order optimality conditions

Assume the objective functionD(X,WH) is differentiable, and let us denote∇HD(X,WH) ∈
Rr×n the gradient of D(X,WH) with respect to H in matrix form, that is, for all k, j

[∇HD(X,WH)]k,j =
∂D(X,WH)

∂H(k, j)
.

For the β-divergences (see page 165 for their definition),

∇HDβ(X,WH) = W⊤
(
(WH)◦(β−2) ◦ (WH −X)

)
, (8.4)

where ◦ is the componentwise multiplication, and A◦a is the componentwise exponent of matrix
A by the scalar a, that is, A◦a(i, j) = A(i, j)a for all i, j. For example, for the Frobenius norm
(β = 2), we obtain

∇H
1

2
∥X −WH∥2F = W⊤(WH −X),
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and, for the KL divergence, we obtain

∇HD1(X,WH) = W⊤
(
[WH −X]

[WH]

)
,

where [·]
[·] is the componentwise division between two matrices. At this point, it is important to

recall that ∇HDβ(X,WH) is not defined everywhere depending on the values of X and β; see
Section 5.1.3. The domain of the gradient ∇HDβ(X,WH) of β-divergences can be obtained
directly from Table 5.3 (page 167):

• For β ≤ 0: if X has an entry equal to zero, the domain is empty. Otherwise, for X > 0, it
requires (WH)i,j > 0 for all i, j.

• For 0 < β < 1: it requires (WH)i,j > 0 for all i, j.

• For β ∈ [1, 2): it requires (WH)i,j > 0 for all i, j such that Xi,j > 0.

• For β ≥ 2: there is no condition beyond the nonnegativity of WH .

The point (W,H) satisfies the first-order optimality condition of (8.1), also known as the
Karush–Kuhn–Tucker (KKT) conditions, if (W,H) satisfies

H ≥ 0, ∇HD(X,WH) ≥ 0, ⟨H,∇HD(X,WH)⟩ = 0,

W ≥ 0, ∇WD(X,WH) ≥ 0, ⟨W,∇WD(X,WH)⟩ = 0,
(8.5)

and if D is differentiable at (W,H). Such a point is referred to as a (first-order) stationary point
of (8.1). The equation ⟨H,∇HD(X,WH)⟩ = 0 implies that for all k, j

H(k, j) = 0 or [∇HD(X,WH)]k,j = 0,

which are the complementary slackness conditions. As we will see, most NMF algorithms are
first-order methods, that is, methods that compute only the gradient at each iterate, and only
convergence to stationary points can be achieved (such methods are stuck at stationary points).
A stationary point is either a local minimum, a local maximum, or a saddle point (which is a
point for which there exists a direction in which the objective function goes down and a direction
in which the objective function goes up; hence the term “saddle”).

The KKT conditions can be leveraged in several ways:

• To assess whether a given solution is a stationary point and, if not, quantify the violation
of the conditions. This is often used as a stopping criterion for optimization algorithms;
see Section 8.5.

• To design algorithms, for example based on fixed-point iterations. One of the most widely
used class of NMF algorithms, namely the MU, can be interpreted in this way; see Sec-
tion 8.2.

• To characterize and identify properties of stationary points. For example, for the KL diver-
gence, we have seen that any stationary point (W,H) preserves the row and column sum
of the input matrix, that is, WHe = Xe and e⊤WH = e⊤X; see Theorem 6.9. For the
Frobenius norm, it can be easily shown that for any stationary point (W,H), we have

argminα ∥X − αWH∥2F =
⟨X,WH⟩
⟨WH,WH⟩

= 1,
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which implies

∥X −WH∥2F = ∥X∥2F − 2 ⟨X,WH⟩+ ∥WH∥2F = ∥X∥2F − ∥WH∥2F ,

since ⟨WH,WH⟩ = ∥WH∥2F ; see [194, Theorem 11]. A consequence of this observation
is that, at stationarity, ∥WH∥F ≤ ∥X∥F ; see also Example 5.1 for a discussion.

8.1.2.1 Trivial saddle points

It is interesting to note, and this will have implications when studying convergence of NMF
algorithms, that if (W,H) is a stationary point of (8.1), then adding p zero columns to W and
p zero rows to H generates another stationary point

(
[W, 0m×p], [H; 0p×n]

)
of (8.1) where r

is increased by p. The reason is that the gradient of H is also added p zero rows when p zero
columns are added to W and p zero rows to H , because when W (:, k) = 0, the variables H(k, :)
do not appear in the objective function; by symmetry, the same observation applies to W . In
particular,

(
0m×r, 0r×n

)
is a stationary point for any r.

Such stationary points are always saddle points unless X = WH . Let us show this by de-
noting the residual R = X − WH . If Ri,j > 0 for some (i, j), then the objective function
strictly decreases in the direction defined by replacing a zero column of W by ei and the cor-
responding zero row of H by R(i,j)e

⊤
j so that the residual at position (i, j) goes to zero (while

the other entries are untouched) as the solution moves toward this direction [239]. Moreover,
R = X −WH ≤ 0 is not possible for stationary points of NMF based on β-divergences (unless
R = 0) since otherwise the gradient defined in (8.4) cannot be nonnegative. Another way to
show this is to see that if R ≤ 0 and R ̸= 0, then (−W, 0) and (0,−H) are descent directions.
Such situations can be easily identified and escaped.

Another type of trivial saddle points are rank-deficient solutions. For example, if (w, h) is
a rank-one stationary point, then ([w,w], [h/2;h/2]) is a rank-deficient stationary point of (8.1)
for r = 2. In most data analysis applications, W and H are expected to have rank r, and hence
such situations can also be easily identified and escaped, by monitoring the numerical ranks of
W and H .

8.1.3 Majorization-minimization framework

The MM framework covers a large class of optimization methods. In this section, we give a brief
overview of MM. For more details, we refer the reader to [441, 408] and the references therein.

Assume we want to minimize the function f(h) over the setH, that is, we want to solve

min
h∈H

f(h).

MM algorithms are iterative algorithms. Let us denote h̃ ∈ H the current iterate. At each
iteration, MM uses a two-step strategy:

1. Majorization. The goal is find a function g
(
h, h̃

)
such that

(i) g
(
h, h̃

)
≥ f(h) for all h ∈ H, and

(ii) g
(
h̃, h̃

)
= f

(
h̃
)
.

The function g
(
h, h̃

)
is called an auxiliary function for or a majorizer of f at h̃: it is larger

than f everywhere and is equal to f at the current iterate h̃.
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2. Minimization. Instead of minimizing f , one minimizes the function g. The next iterate h+

needs to be chosen such that

g
(
h+, h̃

)
≤ g

(
h̃, h̃

)
. (iii)

In many cases, g is chosen simple enough so that one can compute a global minimizer of
g(h, h̃) in closed form. A possible way to achieve this goal is to choose g as a separable60

function, that is,
g
(
h, h̃

)
=
∑
i

gi
(
hi, h̃

)
, (8.6)

for some functions gi’s, so that minimizing g(h, h̃) requires solving independent univariate
subproblems. This is a typical choice in the NMF literature. However, this is not neces-
sary. Finally, any update that decreases g(h, h̃) leads to an algorithm that monotonically
decreases f(h). This follows directly from the properties of g. We have

f(h+) ≤
(i)

g
(
h+, h̃

)
≤
(iii)

g
(
h̃, h̃

)
=
(ii)

f
(
h̃
)
.

Figure 8.1 (page 276) illustrates one step of an MM algorithm applied on minimizing the scalar
IS divergence miny≥0 d0(1, y) where the current iterate is ỹ = 2.

Example 8.1. Many standard algorithms belong to the MM framework. A notable example is
gradient descent for smooth convex optimization which uses the update

h+ = h̃− 1

L
∇f
(
h̃
)
,

where L is the Lipschitz constant of the gradient of f , that is, for all x, y,

∥∇f(h)−∇f(y)∥2 ≤ L∥h− y∥2. (8.7)

Using the majorizer

g
(
h, h̃

)
= f

(
h̃
)
+∇f

(
h̃
)⊤(

h− h̃
)
+
L

2

∥∥h− h̃∥∥2
2
≥ f(h),

we obtain the above update by minimizing exactly the quadratic function g
(
h, h̃

)
.

The main difficulty in designing MM algorithms is the choice of the function g which should
be a good approximation of f while being easy to optimize. In particular, having a closed-form
formula for the minimizer of g is of particular interest as it prevents parameter tuning (no step
size to tune) and is easy to implement.

8.1.4 Convergence to stationary points

In this section, we present a few convergence results for block coordinate descent (BCD) meth-
ods. It is beyond the scope of this book to dig deep into this technical and still very active area
of research, in particular the recent results based on the Kurdyka–Łojasiewicz property; see for
example [238] and the references therein. Hence we only focus on presenting relatively simple
results that imply the convergence of some of the methods presented in this chapter.

60The term separable here has nothing to do with separable NMF.
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8.1.4.1 Monotone algorithms and convergent subsequence

Most algorithms presented in this chapter are monotonically decreasing the objective function
which is bounded below. This implies the convergence of the objective function values

f (t) = D
(
X,W (t)H(t)

)
for t = 1, 2, . . . ,

where
(
W (t), H(t)

)
is the tth iterate of the algorithm.

Moreover, if the feasible set is compact, then there exists at least one converging subsequence
of the iterates (Bolzano–Weierstrass theorem). In NMF, because of the scaling degree of freedom
of the rank-one factors, we might have thatW (t)H(t) converges but not

(
W (t), H(t)

)
. Moreover,

the feasible set of NMF, namely, (W,H) ≥ 0, is not compact since it is not bounded. The level
sets {(W,H) ≥ 0 |D(X,WH) ≤ c} for some constant c are not compact either, because of the
scaling degree of freedom. However, adding a constraint that fixes the scaling degree of freedom,
for example imposing w.l.o.g. that

∥W (:, k)∥2 = ∥H(k, :)∥2 for k = 1, 2, . . . , r,

can be used to guarantee compactness. Let us focus on the Frobenius norm for simplicity. Letting(
W (0), H(0)

)
be the initial iterate, we have, by monotonicity of the algorithm, that all iterates

(W,H) satisfy ∥∥X −WH
∥∥
F
≤
∥∥X −W (0)H(0)

∥∥
F
.

Moreover,
∥X −WH∥F ≥ ∥WH∥F − ∥X∥F ,

by the triangle inequality, and

∥WH∥F ≥ ∥W (:, k)H(k, :)∥F = ∥W (:, k)∥2∥H(k, :)∥2 = ∥W (:, k)∥22 = ∥H(k, :)∥22,

for all j, because of the nonnegativity of (W,H). Finally, putting these inequalities together, we
have for all k and any iterate (W,H) that

∥W (:, k)∥22 = ∥H(k, :)∥22 ≤ ∥X∥F + ∥X −W (0)H(0)∥F ,

which is a compact set. Note that this is not a convex set, so one may prefer to use the constraints

∥H(k, :)∥22 ≤ ∥X∥F + ∥X −W (0)H(0)∥F for all k,

and similarly for W . Another typical rescaling used in practice is ∥W (:, k)∥1 = 1 for all k
(or similarly for the rows of H), for example when the columns of W can be interpreted as
probabilities, which is the case, for example, in topic modeling (Section 5.4.9); see also the
introduction of Chapter 9 for a discussion.

The above trick to make the feasible set compact can be used for most other error measures,
as long as they are coercive, that is, as long as D(X,WH) goes to infinity as ∥WH∥ goes to
infinity.

8.1.4.2 Exact two-block coordinate descent method

If the subproblems in steps 3 and 4 of Algorithm 8.1 are solved exactly, that is, an optimal
solution is used for W (t) and H(t), Algorithm 8.1 is the so-called exact 2-BCD method for
which we have the following convergence guarantee.
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Theorem 8.2. [222, Corollary 2] The limit points of the iterates of an exact 2-BCD algorithm
are stationary points provided that the following two conditions hold:

1. the objective function is continuously differentiable, and

2. each block of variables is required to belong to a closed convex set.

For NMF and Algorithm 8.1, the second condition is satisfied since the nonnegative orthant is
a closed convex set. The first condition is met for many objective functions such as the Frobenius
norm. However, this condition is not met by β-divergences for β < 1, that is, dβ(z, ·) is not
continuously differentiable at zero. Moreover, for β < 2, the derivative of dβ(z, ·) is not defined
at zero when z > 0; see Table 5.3 (page 167).

8.1.4.3 Exact block coordinate descent method

As we will see, it might be powerful to use updates in steps 3 and 4 of Algorithm 8.1 that are
based on exact BCD. This amounts to solving NMF with an exact BCD method with more than
two blocks of variables, in which case the following convergence results can be used.

Theorem 8.3. [42, 41, Proposition 2.7.1] The limit points of the iterates of an exact BCD algo-
rithm are stationary points provided that the following conditions hold:

1. the objective function is continuously differentiable,

2. each block of variables is required to belong to a closed convex set,

3. the minimum computed at each iteration for a given block of variables is uniquely attained,
and

4. the objective function values in the interval between all iterates and the next (which is
obtained by updating a single block of variables) is monotonically decreasing.

Condition 4 can be dropped if each block of variables belongs to a convex and compact set.
The order in which the blocks are updated is arbitrary, as long as each block is updated at

least once every K iterations, where K is a fixed constant; this is referred to as the essentially
cyclic block update.

Compared to Theorem 8.2, Theorem 8.3 requires that the minimum is uniquely attained and
that the objective function is monotonically decreasing between two iterates. This holds true, for
example, if the subproblems in one block of variables are strongly convex.

There exist counterexamples of exact BCD not converging to stationary points when the
assumptions of Theorem 8.3 are not met; see [385, 242] and [28, Chapter 14].

8.1.4.4 Block successive upper-bound minimization

Razaviyayn, Hong, and Luo [392] introduced the block successive upper-bound minimization
(BSUM) framework. It is a BCD method where the subproblems in one block of variables are
solved using an MM framework (Section 8.2.3). More precisely, for each block of variables, a
majorizer is constructed which has more properties than in the MM framework. Recall that MM
requires the majorizer to be a global upper bound of the objective function and be tight at the
current iterate (see Section 8.2.3). On top of that, BSUM requires that the directional derivatives
of the majorizers and of the objective function coincide at the current iterate for each block of
variables (intuitively, their tangents need to exist and coincide), while the majorizers should be
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continuous functions in all the variables. Moreover, in the BSUM framework, the majorizers are
minimized exactly, while an essentially cyclic block update is used. We refer the reader to [392]
for more details.

Theorem 8.4. [392, Theorem 2] Convergence of BSUM can be guaranteed in the following two
scenarios:

• If the majorizers are quasi-convex61 and their minimum is uniquely attained, then every
limit point of the sequence of iterates generated by BSUM is a stationary point.

• If the level sets of the majorizers are compact and the subproblems have a unique solution
for all blocks but one, then the sequence of iterates generated by BSUM converges to the
set of stationary points.

Let us mention two examples that will be encountered in this chapter and for which Theo-
rem 8.4 can be used; we refer the interested reader to the survey [242] for more examples.

Example 8.5. Assume you are using an exact BCD scheme where the objective function is con-
tinuous and differentiable, and the subproblems in one block of variables are convex but not
strongly convex. Let us denote minh∈H f(h) the convex subproblem in one block of variables.
Because the subproblems are not strongly convex, unicity of the optimal solution of the subprob-
lems is not guaranteed and Theorem 8.3 does not apply. An example that will be of particular
interest to us is the NNLS problem minh≥0 ∥Wh − x∥2 when W is not full column rank, in
which case that problem is not strongly convex and does not admit a unique solution.

The update of exact BCD
h+ = argminh∈H f(h)

can be replaced with

h+ = argminh∈H f(h) + µ
∥∥h− h̃∥∥2

2
,

where h̃ is the current iterate. The majorizer f(h) + µ
∥∥h − h̃∥∥2

2
of f(h) at h = h̃ is strongly

convex when f is convex and µ > 0. Moreover, the directional derivatives of
∥∥h − h̃∥∥2

2
w.r.t. h

at h = h̃ is zero, so that the directional derivatives of f(h) and of the majorizer coincide. There-
fore, the above regularized BCD scheme falls within the BSUM framework and convergence to
stationary points is guaranteed by Theorem 8.4. The regularization term

∥∥h − h̃∥∥2
2

is known as
a proximal term: it prevents the algorithm from going too far away from the current iterate h̃. In
particular, it prevents the current iterate from moving if it is a globally optimal solution, while the
original exact BCD scheme could move away from an optimal solution toward another optimal
solution (when it is nonunique, which is always the case for NMF because of the scaling and
permutation ambiguity).

Example 8.6. In a BCD scheme, assume the subproblems in one block of variables cannot be
solved easily in closed form but are convex with Lipschitz gradient with constant L (see Equa-
tion (8.7)) and have the form minh f(h) where h is one block of variables. As in Example 8.1,
we have

f(h) ≤ f
(
h̃
)
+∇f

(
h̃
)⊤(

h− h̃
)
+
L

2

∥∥h− h̃∥∥2
2
.

61A function u is quasi-convex if the level sets {x | u(x) ≤ c} are convex, for any constant c. A convex function is
always quasi-convex. An example of a quasi-convex function which is not convex is

√
|x|.
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Using the right-hand side as the majorizer of f(h) at h̃ in the BSUM framework, assumptions
of Theorem 8.4 are satisfied and convergence to stationary points is guaranteed. The majorizer
above is minimized exactly at

h+ = h̃− 1

L
∇f
(
h̃
)
,

which is a gradient descent update with step size 1/L. Hence BSUM applies to block coordinate
gradient descent, given that the subproblems in each block are convex with Lipschitz continuous
gradients.

The convergence results above generalizes to other cases such as the so-called block coor-
dinate proximal gradient method (where only part of f is linearized as above; for example if
the objective function contains a nondifferentiable term such as ∥x∥1, it is kept as is in the ma-
jorizer), as well as in the constrained case (see [242] for more details). This is closely related to
the proximal alternating linearized minimization algorithm [52]; see also [28].

8.2 The multiplicative updates
The MU algorithms consist in simple updates for W and H that take the form of componentwise
multiplications, that is,

H ← H ◦ G(X,W,H),

where G(X,W,H) is nonnegative when X , W , and H are. A first advantage of such updates
is that they are easily implemented and do not require any parameter tuning. Moreover, for β-
divergences corresponding to values of β smaller than two, such as the KL and IS divergences,
the MU perform very well and are competitive with other approaches; see for example the recent
survey [237] on NMF with the KL divergence.

Brief history For the KL divergence, the MU were derived by Richardson [397] (1972) and
Lucy [332] (1974), who used them for image restoration and for rectification and deconvolution
in statistical astronomy, respectively. They considered the linear regression problem

min
h≥0

KL(x,Wh)

for some given matrixW and vector x. The motivation to use the KL divergence (instead of least
squares) comes from statistical considerations (see also Section 5.1.1). This algorithm was later
referred to as the Richardson–Lucy algorithm.

For the Frobenius norm, the MU were proposed by Daube-Witherspoon and Muehllehner
[116] (1986) and referred to as the iterative space reconstruction algorithm (ISRA). They used it
for solving inverse problems in imaging.

The Richardson–Lucy algorithm and ISRA were shown to belong to the class of MM al-
gorithms by De Pierro [121] (1993). Later, Lee and Seung rediscovered these updates in the
context of NMF [303, 304] (1999, 2001). For the IS divergence, Cao, Eggermont, and Terebey
[74] (1999) developed MU as well; see also [158]. These approaches were later generalized by
Févotte and Idier [160] (2011) as MM algorithms (see Section 8.2.3). We refer the interested
reader to their paper for more historical background on the MU.

The MU are the most popular in the NMF literature. In our opinion, the reason is at least
fourfold:

1. They were proposed for the first time in the context of NMF in the seminal paper of Lee
and Seung which can be considered as the “big bang” of NMF; see Section 1.4.9.
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2. They can be easily derived and implemented (Section 8.2.1) and hence are easily adaptable
to many NMF models (Section 8.2.7).

3. The MU are first-order methods (Section 8.2.2) so that they scale well when the dimensions
of the input matrix increase (namely they scale linearly with the input dimensions and the
factorization rank; see Section 8.2.6).

4. In some cases, the MU compete with state-of-the-art algorithms; this is the case, for ex-
ample, for the KL divergence [237]. For some NMF models, they are the only available
algorithm. However, for the Frobenius norm, they perform rather poorly compared to the
state of the art (Section 8.3).

This section is organized as follows. In the next three sections, we present different ways to
derive and interpret the MU, namely as

1. the ratio of the positive to the negative parts of the gradient which is an intuitive and
heuristic approach often used in the literature (Section 8.2.1),

2. a rescaled gradient descent which is a quasi-Newton method where the Hessian is approx-
imated by a diagonal matrix (Section 8.2.2), and

3. an MM algorithm which allows us to derive MU for any β-divergence with the guarantee
that the objective function is nonincreasing (Section 8.2.3).

We then discuss the convergence of the MU (Section 8.2.4), the zero locking phenomenon
that prevents the MU from modifying zero entries in the factors W and H and a modified variant
that fixes this issue (Section 8.2.5), the computational cost of the MU (Section 8.2.6), and the
flexibility of the MU (Section 8.2.7).

8.2.1 MU obtained via the gradient ratio heuristic

Let us focus on β-divergences for which the gradient is given in (8.4). Denoting

∇HD
+
β (X,WH) = W⊤(WH)◦(β−1)

and
∇HD

−
β (X,WH) = W⊤

(
(WH)◦(β−2) ◦X

)
,

we obtain
∇HDβ(X,WH) = ∇HD

+
β (X,WH)−∇HD

−
β (X,WH). (8.8)

Moreover, the KKT conditions for H in (8.5) are H(k, j) = 0 or [∇HDβ(X,WH)]k,j = 0
for all k, j, while these two quantities are nonnegative. This implies that, at stationarity, when
H(k, j) > 0, we must have[

∇HD
+
β (X,WH)

]
k,j

=
[
∇HD

−
β (X,WH)

]
k,j
. (8.9)

If [∇HDβ(X,WH)]k,j > 0 (resp. < 0), a sufficiently small decrease (resp. increase) of
H(k, j) decreases the objective function. Therefore, it makes sense to decrease H(k, j) if[
∇HD

+
β (X,WH)

]
k,j

>
[
∇HD

−
β (X,WH)

]
k,j

, and vice versa. This is the intuitive idea be-
hind the MU that update H as follows:

H ← H ◦

[
∇HD

−
β (X,WH)

]
[
∇HD

+
β (X,WH)

] . (8.10)
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For example, for the Frobenius norm, we obtain

H ← H ◦
[
XH⊤]

[W⊤WH]
,

and, for the KL divergence,

H ← H ◦

[
W⊤ [X]

[WH]

]
[W⊤1m×n]

,

where 1m×n is the m-by-n matrix of all ones.
The MU keep H(k, j) unchanged if and only if H(k, j) = 0 or if (8.9) holds. With the MU,

H should be initialized with positive entries because the MU cannot modify an entry of H equal
to zero; this is the so-called zero locking phenomenon (see Section 8.2.5). If the entry H(k, j)
is initialized at zero, then the condition [∇HDβ(X,WH)]k,j ≥ 0 is not taken into account in
the MU and hence could be violated. The MU (8.10) can be seen as a fixed-point iteration of the
KKT conditions. Assume that H is initialized with positive entries and that the MU converge to
a fixed point Hf (see Section 8.2.4 for a discussion on convergence). There are two cases:

• If Hf (k, j) > 0, then we must have
[
∇HDβ(X,WHf )

]
k,j

= 0, otherwise Hf is not a
fixed point.

• If Hf (k, j) = 0, this means that[
∇HD

+
β (X,WHf )

]
k,j
≥
[
∇HD

−
β (X,WHf )

]
k,j
,

because the MU, by construction, cannot set an entry of H to zero, except at the limit. If[
∇HD

+
β (X,WHf )

]
k,j

<
[
∇HD

−
β (X,WHf )

]
k,j

, then in a open neighborhood around
Hf (k, j) (by continuity of the gradient), the MU increase the value of Hf (k, j), a contra-
diction. As we will see, this may cause some numerical issues when working with finite
floating point precision (see Section 8.2.4).

At this point, nothing guarantees the MU (8.10) will monotonically decrease Dβ(X,WH).
However, we will see in Section 8.2.3 that it holds true for β ∈ [1, 2], while, for β /∈ [1, 2],
similar MU can be obtained that ensure monotonicity of Dβ(X,WH); see Theorem 8.8.

8.2.2 MU viewed as a rescaled gradient descent method

Let us consider the following general optimization problem with nonnegativity constraints:

min
h≥0

f(h). (8.11)

The projected rescaled gradient descent method applied to (8.11) uses the update

h+ = P
(
h̃−B∇f(h̃)

)
,

where h̃ is the current iterate, h+ is the next iterate, B is a diagonal matrix with positive diagonal
elements, and P(h) = max(h, 0) is the projection onto the feasible set. This method is related
to quasi-Newton methods which use B as an approximation of the inverse of the Hessian of f .
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Let ∇+f(h) > 0 and ∇−f(h) > 0 be such that ∇f(h) = ∇+f(h) − ∇−f(h). Taking
B = diag

( [h̃]

[∇+f(h̃)]

)
leads to the following update for the projected rescaled gradient descent

method

h+ = h̃−
[
h̃
]

[∇+f
(
h̃
)
]
◦
(
∇+f

(
h̃
)
−∇−f

(
h̃
))

= h̃ ◦
[∇−f

(
h̃
)
]

[∇+f
(
h̃
)
]
, (8.12)

which is multiplicative. For the NMF in variable H , one may use the decomposition given
in (8.8), in which case we recover the MU (8.10) based on the gradient ratio. It is important to
note that the strict positivity of ∇+f(h) and ∇−f(h) is necessary; otherwise there is a division
by zero or a variable is directly set to zero.

Interestingly, the interpretation of the MU in terms of a rescaled gradient method allows us
to modify the MU to guarantee the monotonicity of the objective function. Since B has positive
diagonal entries, B∇f(h) is a descent direction. Therefore, for a sufficiently small α ∈ (0, 1],
the iterate

h+(α) = h̃− αB∇f(h̃) = h̃+ α(h+ − h̃) = (1− α)h̃+ αh+

decreases the objective function, while h+(α) remains nonnegative for any α ∈ [0, 1] since h̃ and
h+ are nonnegative. This means that embedding the MU within a line-search procedure allows
guaranteeing the nonincreasingness of the objective function; see for example [201]. However,
implementing a line-search procedure requires additional computations, in particular the values
of the objective functions for different values of α. In the next section, we show how to avoid
line search.

8.2.3 MU as an MM algorithm

In this section, we follow the work of Févotte and Idier [160], who proposed a nice general
framework to design MU based on the MM framework that are guaranteed to monotonically
decrease the objective function for β-divergences. The key resides in the design of the majorizer.

As the NNLS subproblem in H (8.2) can be decomposed into n independent subproblems
(see Section 8.1.1), we focus in the following on the problem for one column of H , which we
denote h ∈ Rr, and one column of X , which we denote x ∈ Rm. We end up with the following
regression problem: Given x ∈ Rm and W ∈ Rm×r, solve

min
h∈Rr

+

Dβ(x,Wh). (8.13)

Let us apply the MM framework (Section 8.1.3) to (8.13), and let us denote the current iterate
h̃. We need a majorizer g

(
h, h̃

)
for Dβ(x,Wh) with

g
(
h, h̃

)
≥ Dβ(x,Wh) for all h ≥ 0, and g

(
h̃, h̃

)
= Dβ

(
x,Wh̃

)
.

Recall that on top of the above two properties, majorizers should be easy to optimize. The
standard choice in the NMF literature is to have g

(
h, h̃

)
separable, as defined in (8.6), which

will be the case for the majorizers described in this section. The design of the MU by Févotte
and Idier [160] follows a three-step approach. The first two steps construct the majorizer for
f(h) = Dβ(x,Wh), while the last step exactly minimizes the majorizer.

Step 1. The first step decomposes the objective function into the sum of simpler terms, moti-
vated by the following observation.
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Lemma 8.7. Let f(h) =
∑p

i=1 fi(h), and let gi
(
h, h̃

)
be majorizers at h̃ of fi for i = 1, 2, . . . , p.

Then g
(
h, h̃

)
=
∑p

i=1 gi
(
h, h̃

)
is a majorizer for f at h̃.

Proof. This follows directly from the definition of a majorizer (Section 8.1.3).

The β-divergence dβ(z, y) between the scalars z and y (see page 165 for the definition) can
be decomposed as follows:

dβ(z, y) = d̆β(z, y) + d̂β(z, y) + d̄β(z, y), (8.14)

where d̆β(z, y) is convex in y, d̂β(z, y) is concave in y, and d̄β(z, y) is constant in y. This is
referred to as a convex-concave-constant decomposition of dβ(z, y) with respect to y. Table 8.1
reports such decompositions for all β-divergences.

Table 8.1. Scalar convex-concave-constant decomposition (8.14) of dβ(z, y) with re-
spect to variable y.

d̆β(z, y) d̂β(z, y) d̄β(z, y)

convex concave constant

β < 1, β ̸= 0 − 1
β−1zy

β−1 1
β y

β 1
β(β−1)z

β

β = 0 zy−1 log y z(log z − 1)

1 ≤ β ≤ 2 dβ(z, y) 0 0

β > 2 1
β y

β − 1
β−1zy

β−1 1
β(β−1)z

β

Since Wh is a linear function of h, it preserves convexity and concavity, implying that

Dβ(x,Wh) =

m∑
i=1

dβ(xi, (Wh)i)

=

m∑
i=1

d̆β(xi, (Wh)i) + d̂β(xi, (Wh)i) + d̄β(xi, (Wh)i) (8.15)

is a convex-concave-constant decomposition of Dβ(x,Wh) with respect to h.

Step 2. Using Lemma 8.7, the second step is to find majorizers for each term in the convex-
concave-constant decomposition (8.15):

• Constant part. There is no need to find a majorizer for the constant term d̄(xi, (Wh)i)
since it does not play any role when minimizing d(x,Wh) with respect to h.

• Concave part. Let us first analyze the scalar function d̂β(z, y): it is concave in y and
hence can be upper bounded with its first-order Taylor expansion at any point ỹ (that is, its
tangent at ỹ):

d̂β(z, y) ≤ d̂β(z, ỹ) + (y − ỹ) d̂′β(z, ỹ),
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where d̂′β(z, y) is the derivative of d̂β(z, y) with respect to y. Denoting x̃ = Wh̃, this
implies that, for i = 1, 2, . . . ,m,

d̂β(xi, x̃i) + (Wh− x̃)i d̂′β(xi, x̃i)

is a majorizer for d̂β(xi, (Wh)i) at x̃i. Moreover, this majorizer is linear in h and hence
separable in h.

• Convex part. For the convex part, let us introduce the matrix Λ ∈ Rm×r defined as follows:
for all i, k,

Λ(i, k) =
W (i, k)h̃k∑
kW (i, k)h̃k

=
W (i, k)h̃k

W (i, :)h̃
,

which does not depend on h. By construction,

Λ ≥ 0 and Λe = e.

In other words, each row of Λ belongs to the unit simplex. Note that Λ is well-defined
only when Wh̃ > 0. This condition can be met by assuming that W > 0 and h̃ > 0. This
makes sense since, as explained above, the MU should be initialized with positive matrices
and can set entries of W and H to zero only at the limit. In other words, if W and H are
initialized with positive entries, these entries remain positive throughout the executions of
the MU, although some entries may converge to zero (see Section 8.2.4 for a discussion).
Let us denote Si the support of the ith row of W and Λ, that is,

Si = {k |W (i, k) ̸= 0} = {k | Λ(i, k) ̸= 0} for i = 1, 2, . . . ,m,

which coincide by construction. We can now construct majorizers for d̆β (xi, (Wh)i) for
i = 1, 2, . . . ,m as follows:

d̆β (xi, (Wh)i) = d̆β

(
xi,
∑
k∈Si

W (i, k)hk

)

= d̆β

(
xi,
∑
k∈Si

Λ(i, k)
W (i, k)hk
Λ(i, k)

)

≤
∑
k∈Si

Λ(i, k) d̆β

(
xi,

W (i, k)hk
Λ(i, k)

)
,

where the inequality follows from convexity of d̆β with respect to its second argument
since rows of Λ define convex combinations; this is sometimes referred to as the Jensen’s
inequality.

Figure 8.1 shows an example for the IS divergence in the scalar case, namely d0(1, y) with
ỹ = 2 for which

d0(1, y) ≤
1

y︸︷︷︸
d̆0(1,y)

+ log 2 +
y − 2

2︸ ︷︷ ︸
d̂0(1,2)+(y−2)d̂′

0(1,2)

+ −1︸︷︷︸
d̄0(1,y)

,

and equality holds for y = ỹ = 2.
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Figure 8.1. Illustration of the majorizer at ỹ = 2 of dβ(z, y) for β = 0 (IS divergence)
and z = 1. The minimizer of the majorizer is denoted y+.

Step 3. The last step is to find a closed form for the optimal solution of the minimization of
the majorizer, that is,

min
h≥0

g(h, h̃).

Since g(·, h̃) is constructed such that it is convex and admits a Slater point (any h > 0), the
KKT conditions are necessary and sufficient so that the optimal solution satisfies hi = 0 or
[∇hg(h, h̃)]i = 0 for all i (see page 5). Moreover, since g(·, h̃) is separable, these equations
boil down to finding the roots of r independent univariate functions. It turns out these have
closed-form solutions, leading to the following theorem.

Theorem 8.8. [160] Given X ∈ Rm×n
+ , W ∈ Rm×n

++ , and H ∈ Rm×n
++ , the MU

H ← H ◦

([
W⊤ ((WH)◦(β−2) ◦X

)][
W⊤(WH)◦(β−1)

] )γ(β)

,

where

γ(β) =


1

2−β for β < 1,

1 for 1 ≤ β ≤ 2,
1

β−1 for β > 2,
(8.16)

do not increase the objective function Dβ(X,WH).

For β ∈ [1, 2], γ(β) = 1 so that the above MU coincide with (8.10) derived heuristically
(Section 8.2.1). For β /∈ [1, 2], γ(β) < 1, which implies that the above MU are more conservative
and modify H more slowly than the heuristic ones (8.10). However, they are guaranteed to
decrease the objective function, as they follow an MM framework. We refer the interested reader
to [160] and [491] for more details on the design of MU for NMF.
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8.2.4 Convergence

For β ≥ 2, the MU satisfy the BSUM framework and Theorem 8.4 applies, as long as the initial
iterate (W (0), H(0)) has only positive entries; see the discussion in [242], where the case β = 2
is described in detail.

For β < 2, convergence is more difficult to establish. In particular, β-divergences for β < 2
are not defined (nor differentiable) everywhere: the derivatives of β-divergences with respect
to their second argument are not defined for β < 2 at (WH)i,j = 0 when Xi,j > 0, while
most convergence results require the objective function to be differentiable everywhere, such as
BSUM (Theorem 8.4), and the analysis in [508]. A possible way to overcome this issue is to
use a small lower bound for the entries of W and H and consider the following modified NMF
problem:

min
W ∈ Rm×r,
H ∈ Rr×n

Dβ(X,WH) such that W ≥ ϵ and H ≥ ϵ, (8.17)

where ϵ ≥ 0 is a parameter. For ϵ = 0, this is standard NMF. This modification was proposed
in [194] to guarantee convergence of the MU to stationary points in the case β = 2, and the
analysis was provided for β = 1 in [444]. The so-called modified MU simply apply the operator
max(ϵ,H) to the MU. Using this modification, we obtain the following result.

Theorem 8.9. Let ϵ > 0 and let us define the modified MU as

H ← max

 ϵ , H ◦

([
W⊤ ((WH)◦(β−2) ◦X

)][
W⊤(WH)◦(β−1)

] )γ(β)  ,

where γ(β) is given in (8.16), and the update of W is obtained by symmetry. Then,

• the modified MU do not increase the objective function of (8.17), given that W ≥ ϵ and
H ≥ ϵ;

• for any initial matrices (W,H), every limit point of the modified MU that alternatively
update H and W converge to a stationary point of (8.17);

• for β ≥ 2, we may take ϵ = 0 (that is, the standard MU) and the same convergence result
as in the case ϵ > 0 applies given that the initial iterate has only positive entries.

Proof. Monotonicity follows from Theorem 8.8. In fact, all the derivations used in Section 8.2.3
apply directly to (8.17); the only difference is that the minimizer is obtained by taking the maxi-
mum with ϵ instead of zero.

For the convergence to stationary points,

• for ϵ > 0, this result was proved in [194, Theorem 2] and [444, Theorem 1] for β = 2,
and in [444, Theorem 3] for β = 1, and for the other values of β, the proof follows from
BSUM theory since the objective function is differentiable everywhere;

• for ϵ = 0 and β ≥ 2, this follows from BSUM theory; see [242], which analyzes the
particular case β = 2 in detail.

The MU from Theorem 8.9 are available from [Matlab file: betaNMF.m].
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Figure 8.2. Illustration of the zero locking phenomenon of the MU on a synthetic data
set X = sprand(500,1000,0.01), r = 40 and β = 2. The modified MU use a lower bound
of machine epsilon (ϵ = 2−52) which guarantees convergence (Theorem 8.9) and prevents the
MU from setting entries to zero, which allows both the convergence to stationary points and the
decrease of the objective function. [Matlab file: MU_vs_modifiedMU.m].

8.2.5 Zero locking phenomenon of the MU

In practice, even when β ≥ 2, we recommend using the modified MU with ϵ > 0 (more precisely,
to take ϵ as the machine epsilon). The reason is because of numerical issues and the zero locking
phenomenon of the MU (see Figure 8.2 for a numerical example). Some authors have argued that
using ϵ > 0 is not reasonable as one requires zeros in the factors W and H in many applications.
Although it is true that zeros are expected and desired in many applications (see for example
Sections 1.3, 4.3.4, and 5.4.4), we believe that having zero entries in W and H or having a value
that matches the machine epsilon makes no difference. After the modified MU have run, the user
is welcome to set the machine epsilon entries to zero, which does not affect the solution or the
objective function much; see [185, pp. 66–68], where this statement is quantified. Let us discuss
this interesting case where theory does not meet practice, because of finite machine precision.

As mentioned above, the initial iterates of the MU should be chosen positive. In theory, by the
nature of the MU, all iterates remain positive, and some entries may tend to zero at convergence.
However, numerically, some entries can be set to zero during the course of the MU (because
of finite precision) while the corresponding entry of the gradient becomes negative later in the
MU which prevents the MU to converge to a stationary point. This may also make the MU run
into numerical problems as some entries of the denominator might become equal to zero. This
numerical issue has been sometimes overlooked in the literature. Using a lower bound on the
entries of W and H (such as the machine epsilon) fixes this numerical issue, and this can have
an important impact on the behavior and performance of the MU, especially when W and H
are expected to be very sparse, which is the case, for example, for sparse input matrices [197].
Figure 8.2 illustrates this behavior on a randomly generated sparse data set with m = 500,
n = 1000, and 99% of the entries equal to zero (sprand(m,n,0.01) in MATLAB), and we
used β = 2 and r = 40. We run the MU and the modified MU with ϵ = 2−52 = 2.2204 10−16

(MATLAB machine epsilon) with the same positive initial matrices (W (0), H(0)) where each
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entry is randomly generated using the uniform distribution U [0, 1] (rand(m,r) and rand(r,n)
in MATLAB). In this example, we observe that, after only 100 iterations, the MU have set 3369
entries of W to zero (about 17% of its entries) and 14551 entries of H to zero (about 36% of its
entries). Since these entries are locked, some of the corresponding gradient entries may become
negative and convergence to a stationary point is not possible. It also prevents the corresponding
variables from reducing the objective function value by being increased. For example, out of
the 14551 zeros in H , 81 have a negative gradient (and this is only after 100 iterations), the
minimal entry of the gradient corresponding to a zero entry being −0.058 (which is far from
machine epsilon). This behavior is observed for most sufficiently sparse input matrix; see [197,
Figure 9] for an example on a real document data set. For dense input matrices X (for example
rand(m,n)), this behavior is typically less damaging as W and H are denser.

Another way around the zero locking phenomenon Lin [322] proposed another
way to avoid entries of W and H being stuck at zero while the corresponding entries of the
gradient are negative, which prevents convergence to stationary points (see the discussion above).
The idea was later slightly improved by Chi and Kolda [86]; let us describe it. For the entries of
W and H equal to zero, one can monitor whether the corresponding entries in the gradient are
negative (or, equivalently, monitor whether the multiplicative factors in the MU are larger than
one). If this is the case (such zeros are referred to as inadmissible), then the corresponding entries
are reinitialized at a small positive value (such as the machine epsilon). As for the lower bound
used in the previous paragraph, this trick leads to better numerical performances, especially for
sparse matrices; see [86, Figure 6.1] for an experiment on a randomly generated data set where
the behavior is similar to that in Figure 8.2. However, as far as we know, this scheme has not been
proved to converge to stationary points. Note that Lin [322] uses a lower bound for all the entries
of W and H whose corresponding entries of the gradient is negative. Moreover, Lin does not
treat this case in his convergence result (Lin considers W and H to remain positive throughout
the iterations, as done for Theorem 8.9 in the case ϵ = 0).

8.2.6 Computational cost

The MU are first-order methods: to apply the MU at a given iterate (W,H), one only needs to
compute the gradient as the MU require to take the ratio of the two terms within the gradient;
see (8.4). More precisely, for the update of H , we need to compute

W⊤(WH)◦(β−1) and W⊤
(
(WH)◦(β−2) ◦X

)
.

The first term W⊤(WH)◦(β−1) requires O(mnr) operations: compute WH , and then multiply
(WH)◦(β−1) by W⊤. However, there are two notable exceptions:

• For β = 1 (KL divergence), (WH)◦0 = 1m×n is the all-one matrix and the cost reduces
to O(mr) operations, namely to compute

W⊤1m×n =
(
W⊤1m×1

)
11×n.

• For β = 2 (Frobenius norm), W⊤(WH) = (W⊤W )H which can be computed in
O
(
(m + n)r2

)
operations, by computing first W⊤W . One should not compute WH ,

which requires O(mnr) operations.

The second term W⊤ ((WH)◦(β−2) ◦X
)

also requires O(mnr) operations as it also re-
quires the computation of WH (which can be computed only once). For β = 2, this term
reduces to W⊤X , which requires O(mnr) operations.
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Therefore, in total, the MU require O(mnr) operations for dense input matrices, regardless
of the β-divergence used, although the cost can be reduced for β = 1, 2 as the first and/or the
second terms can be computed with fewer operations.

For sparse input matrices, let us denote nnz(X) the number of nonzero entries of X . The
second term does not require O(mnr) operations but only O (r nnz(X)) operations since we
only need to compute the entries of WH corresponding to nonzero entries of X , while pre-
multiplying by W⊤ a matrix with nnz(X) nonzero entries requires O (r nnz(X)) operations.
For β ∈ {1, 2}, the first term can be computed in fewer than O (r nnz(X)) operations, as-
suming nnz(X) ≥ (m + n)r, which is reasonable as it assumes that (W,H) has fewer entries
than nnz(X) (otherwise no compression is achieved). Therefore, for sparse matrices, using
β ∈ {1, 2} leads to computationally much cheaper MU, namely from O(mnr) to O(r nnz(X))
operations, as mn can be much larger than nnz(X). For example, for document data sets, it is
common to have more than 99% of the entries equal to zero in a word-count matrix, in which
case the MU for β ∈ {1, 2} are at least 100 times faster than for the other β’s.

8.2.7 Flexibility of the MU

The MU are very flexible and can be adapted in most situations, in particular if using the gradi-
ent ratio heuristic (Section 8.2.1) to design them, which is straightforward (although it does not
necessarily guarantee monotonicity). The MU are used for almost all NMF models: sparse
NMF [96, 302], ONMF [132, 495], projective NMF [490], convolutive NMF [150], graph-
regularized NMF [150], and min-vol β-NMF [310], to cite a few. We refer the reader to [98]
for more examples and other error measures such as α-divergences.

8.3 Algorithms for the Frobenius norm
In this section, we focus on the β-divergence for β = 2, that is,

D2(X,WH) =
1

2
∥X −WH∥2F =

1

2

∑
i,j

(X −WH)2i,j ,

as the error measure for NMF. This is arguably the most widely used norm for NMF, because it
corresponds to Gaussian noise which is reasonable in many situations while allowing the design
of particularly efficient schemes. However, it is important to keep in mind that, for nonnega-
tive data, Gaussian noise does not necessarily make sense; this is especially true if the input
data is sparse; see the discussion in Section 5.1. However, the Frobenius norm offers avenues
for computationally much more efficient algorithms than the MU. We present in this section
the most standard and widely used algorithms, namely alternating nonnegative least squares
(ANLS), which is an exact 2-BCD method (Section 8.3.1), the alternating least squares (ALS)
heuristic (Section 8.3.2), hierarchical alternating least squares (HALS), which is a BCD method
(Section 8.3.3), a fast projected gradient method (FPGM) (Section 8.3.4), and the ADMM (Sec-
tion 8.3.5).

Implementation All algorithms presented in this section can be run using [Matlab file:
FroNMF.m]. Since all algorithms follow the 2-BCD framework of Algorithm 8.1, they differ in
the way the subproblems inW andH are solved. These subproblems are convex NNLS problems
with multiple right-hand sides. For example, whenW is fixed, the NNLS subproblem in variable
H is

min
H≥0
∥X −WH∥2F .
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The MATLAB code for NNLS using the different algorithms discussed in this section can be
run using [Matlab file: NNLS.m], where options.algo allows one to choose the desired
algorithm.

8.3.1 Alternating nonnegative least squares

Following the framework of 2-BCD (Algorithm 8.1), a first possibility is to solve the subprob-
lems in W and H up to global optimality. This is an exact 2-BCD approach for NMF and was
first proposed by Paatero and Tapper [371] (1994). By Theorem 8.2, this approach is guaranteed
to converge to stationary points. This 2-BCD approach for NMF is ANLS.

In practice, an efficient method to solve NNLS problems with high accuracy is active-set
methods. For simplicity, let us consider the case where X and H have a single column, denoted
x and h, respectively:

min
h≥0

f(h), where f(h) =
1

2
∥x−Wh∥2F . (8.18)

The KKT conditions are given by

h ≥ 0, ∇hf(h) =W⊤(Wh− x) ≥ 0 and h⊤∇hf(h) = 0;

see Section 8.1.2. Since (8.18) is convex and there exists a point in the relative interior of the
feasible domain (a Slater point), namely any h > 0, the KKT conditions are necessary and
sufficient for global optimality. Let us denote h∗ an optimal solution of the NNLS. Assume we
are given the set

I = {i | h∗i > 0}.

The complement of I is the so-called active set, where the corresponding constraints are active,
that is, the active set contains the indices i such that h∗i = 0. The nonzero entries of h∗ can be
computed by solving a linear system

[∇hf(h)]I = 0 ⇐⇒
[
W⊤(Wh− x)

]
I = 0

⇐⇒ W (:, I)⊤W (:, I)h(I) =W (:, I)⊤x.

These are the normal equations of the unconstrained least squares problem for h(I), that is,

min
h(I)
∥W (:, I)h(I)− x∥2.

Akin to the simplex method for linear optimization, active-set methods iteratively update the
active set via pivoting (that is, entering and removing variables from the active set) that guar-
antees the objective function to decrease; see [300] for more details. The MATLAB function
lsqnonneg implements this method. More aggressive strategies are possible by entering and
leaving more than one variable at a time. Moreover, in the context of NMF, one should use the
structure, namely, the multiple right-hand sides, which allows solving the linear systems more
efficiently, reusing some computations, such as the productsW (:, I)⊤W (:, I) and their inverses.
Kim, Kim, and Park62 have developed such dedicated active-set methods designed specifically
for NMF [277, 278, 280].

The computational cost of the active-set method for NNLS resides in two main steps: com-
pute W⊤X which requires O(nnz(X)r) operations, and solve the n NNLS problems in r vari-
ables which requires O(nr3s(r)) operations, where s(r) ≤ 2r is the number of active sets ex-
plored. In practice, s(r) is typically much smaller than 2r (like in the simplex method for linear

62https://www.cc.gatech.edu/~hpark/nmfsoftware.html.

https://www.cc.gatech.edu/~hpark/nmfsoftware.html
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optimization where the worst-case complexity is exponential, while the average case complexity
is polynomial [430]). Moreover, the coefficient n in front of r3s(r) is pessimistic because it
assumes the NNLS problems in the column of H are solved independently, not taking advantage
of the fact that they share the matrixW . For example, at the first step, the active sets are typically
initialized as the empty sets and the first ANLS iteration, if properly implemented as in [280], re-
quires solving unconstrained least squares which require computing the inverse W⊤W inO(r3)
operations, which is then multiplied by W⊤X in O(mr2) operations.

Finally, accounting for the update of W , ANLS requires, in the worst case, a total of
O(mnr + (m + n)r3s(r)) operations per iteration. For r rather small (more precisely, for
r2s(r) ≤ mn

m+n ≤ min(m,n)), NNLS requiresO(nnz(X)r) operations, like the MU, and should
be preferred as it solves the subproblems exactly. However, as r gets larger, NNLS tends to be
rather slow compared to more sophisticated iterative methods that do not attempt to solve the
NNLS subproblems exactly (see Section 8.4.3).

Another option for solving NNLS problems with high accuracy would be to use second-order
methods such as interior-point methods. However, these are typically more expensive in practice
and have not been used much in the context of NMF. Moreover, interior-point methods cannot
be easily warm started (this is a well-known drawback), as opposed to active-set methods. This
is an important feature within the ANLS framework.

Flexibility of ANLS ANLS based on active sets can be directly extended to any regularized
NMF model where the regularizer is quadratic inW andH , that is, as long as the subproblems in
W and H are NNLS problems. This is, for example, the case of sparse NMF using an ℓ1 penalty
since for a nonnegative matrix H , ∥H∥1 =

∑
k,j H(k, j) is linear [277]. However, as soon as

this structure is lost, and as soon as additional constraints are added, it is more difficult to solve
the subproblems in W or H exactly using active-set methods. (Note that interior-point methods
are more flexible in that respect.)

ANLS for ONMF An interesting exception is ONMF, that is,

min
W≥0,H≥0

∥X −WH∥F such that HH⊤ = Ir.

As shown in Lemma 5.2, for H fixed and HH⊤ = Ir, the optimal solution for W has a closed
form given by XH⊤. For W fixed, the problem in H amounts to assigning each data point to its
closest centroid (the columns of W ) where the distance is measured in terms of angles. Recall
that the constraint HH⊤ = Ir together with nonnegativity implies that H has a single positive
entry per column, and ONMF is similar to a spherical k-means problem; see Section 5.5.3.
Using this ANLS approach was described in [384] and referred to as EM-ONMF; see [Matlab
file: alternatingONMF.m].

8.3.2 Alternating least squares heuristic

Because the NNLS subproblem in ANLS is nontrivial to solve, some researchers have resorted
to a rather radical idea: solve the least squares problems without the nonnegativity constraints
and project the solution onto the nonnegative orthant. In other words, the NNLS solution is
approximated by using the update

max
(
0, argminY ∥X −WY ∥2F

)
for H , and similarly for W . In MATLAB, this is written very easily as max(0,W\X). This is the
ALS method.
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If one uses the normal equations63 (W⊤W )H =W⊤X to solve the least squares problem in
H , this requires O(r3 + r2m) operations, which is negligible for r ≪ min(m,n). In total, ALS
requires O

(
r nnz(X) + (m+ n)r2

)
operations per iteration, to compute W⊤X and XH⊤ and

solve the m and n least squares problem with the same Hessian matrix. Hence, in total, ALS has
the same cost as a first-order method such as the MU.

ALS is a easy to implement (given that a least squares solver is available) and sometimes
provides reasonable solutions, typically for sparse matrices; see for example Figure 8.4 in Sec-
tion 8.4.3. As for ANLS, it can be easily adapted to regularized NMF models where the regu-
larizer is quadratic in W and H . However, it comes with no theoretical guarantee and in fact
often diverges in practice, especially for dense input matrices; see Figure 8.3 in Section 8.4.3.
Therefore, ALS can be recommended only as a warm-start stage for theoretically better grounded
approaches [98].

Example 8.10 (Beware that MATLAB default NMF algorithm is ALS). As surprising as it
may be, ALS is currently the default NMF algorithm in MATLAB (function nnmf, version
R2019b). The other algorithm available is the MU for the Frobenius norm. Here is a numer-
ical example in MATLAB showing why you should not use ALS (see Section 8.4.3 for more
numerical experiments):
» rng(2020); X = rand(100); r = 50;
» [W,H] = nnmf(X,r); norm(X - W*H,’fro’)/norm(X,’fro’)*100
ans = 70.7262

» [W,H] = FroNMF(X,r); norm(X - W*H,’fro’)/norm(X,’fro’)*100
ans = 23.8642

FroNMF is our provided implementation with the default settings (which uses the extrapolated
A-HALS (E-A-HALS) algorithm described in Section 8.4.3). On a randomly generated matrix,
ALS provides a solution with relative error of 70.73%, while our default algorithm provides
23.86%. This is a reminder that one should be careful when using software blindly.

8.3.3 Hierarchical alternating least squares

HALS solves the NNLS subproblem using an exact BCD method, where the blocks of variables
are the rows of H . Two observations are key to the design of HALS:

1. The variables on a single row of H are independent in the NNLS problem: only entries in
the same column interact in the objective function since

∥X −WH∥2F =

n∑
j=1

∥X(:, j)−WH(:, j)∥2F ;

see Section 8.1.1. Because of that, HALS can also be interpreted as an exact coordinate
descent method which updates a single variable while keeping the others fixed at each
iteration.

2. Solving a univariate least squares problem over the nonnegative orthant has a closed-form
solution. More precisely, given x,w ∈ Rm

+ ,

argminh∈R+
∥x− wh∥22 = max

(
0,
w⊤x

∥w∥22

)
.

63Using the normal equations leads to a lower numerical accuracy as it squares the condition number [456]. However,
this is not crucial in our settings because (1) projecting the least squares solution is a very crude approximation of the
NNLS problem, and (2) in practice, because of the presence of noise, NMF problems typically do not need to be solved
to high accuracy.
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In fact, ∥x − wh∥22 = ∥x∥22 − 2hw⊤x + h2∥w∥22 is a quadratic function of h and has a
unique minimizer w⊤x

∥w∥2
2

, given thatw ̸= 0; otherwise any h is optimal. If this unconstrained
minimum is negative, the minimum over the nonnegative orthant is attained at zero because
of the convexity of the objective function.

Let us now put this in practice and focus on the ℓth row of H while all other variables are
kept fixed. We want to solve

min
H(ℓ,:)≥0

∥∥∥(X −∑
k ̸=ℓ

W (:, k)H(k, :)
)
−W (:, ℓ)H(ℓ, :)

∥∥∥2
F
. (8.19)

Denoting
Rℓ = X −

∑
k ̸=ℓ

W (:, k)H(k, :) = X −WH +W (:, ℓ)H(ℓ, :)

the residual with respect to the ℓth rank-one factor W (:, ℓ)H(ℓ, :), (8.19) can be written as

min
H(ℓ,:)≥0

∥Rℓ −W (:, ℓ)H(ℓ, :)∥2F .

We have

∥Rℓ −W (:, ℓ)H(ℓ, :)∥2F =

n∑
j=1

∥Rℓ(:, j)−W (:, ℓ)H(ℓ, j)∥2F

which is an n independent univariate least squares problem over the nonnegative orthant, with
the closed-form solution

argminH(ℓ,j)≥0 ∥X −WH∥2F = max

(
0,
W (:, ℓ)⊤Rℓ(:, j)

∥W (:, ℓ)∥22

)
for all ℓ, j,

which follows from the second observation above. In vector form, this gives

argminH(ℓ,:)≥0 ∥X −WH∥2F = max

(
0,
W (:, ℓ)⊤Rℓ

∥W (:, ℓ)∥22

)
for all ℓ.

HALS cyclically updates each row of H as above, and similarly for the columns of W ; see
Algorithm 8.2.

The computational cost of HALS is the same as the MU, namely, O(mnr) operations in
the dense case, and O(r nnz(X)) in the sparse case; the main computational cost is to compute
W⊤X , XH⊤, (W⊤W )H , and W (HH⊤). Note that the residuals Rℓ are not computed ex-
plicitly in Algorithm 8.2 (they were just used to simplify the presentation); otherwise, for sparse
input matrices, the algorithm would run in O(mnr) operations.

HALS was observed to converge significantly faster than the MU while having essentially
the same computational cost; see Section 8.4.3 for some numerical examples, and see [98, 197,
279] and the references therein. This can be explained theoretically as follows: the MU can be
interpreted as updating the rows of H and columns of W independently (since the majorizers are
separable) but do not use an optimal solution of these subproblems, as opposed to HALS [185,
p. 131]. Another reason why HALS works well is because W and H are expected to be sparse.
Therefore, the number of nonzero variables in the NNLS subproblems in (8.3) is typically smaller
than r.

In HALS (Algorithm 8.2), each row ofH is updated only once before updatingW . However,
HALS can be accelerated significantly by updating H several times before updating W [197], as
it allows us to reuse the computations of W⊤W and W⊤X; see Section 8.4, where this trick is
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Algorithm 8.2 Hierarchical alternating least squares (HALS)

Input: Input nonnegative matrix X ∈ Rm×n
+ and factorization rank r.

Output: (W,H) ≥ 0: A rank-r NMF of X ≈WH .

1: Generate some initial matrices W ≥ 0 and H ≥ 0; see Chapter 8.6.
2: for t = 1, 2, . . . do
3: % Update H
4: for ℓ = 1, 2, . . . , r do

5: H(ℓ, :)← max

(
0,

W (:,ℓ)⊤X−
∑

k ̸=ℓ(W (:,ℓ)⊤W (:,k))H(k,:)

∥W (:,ℓ)∥2
2

)
6: end for
7: % Update W
8: for ℓ = 1, 2, . . . , r do

9: W (:, ℓ)← max

(
0,

XH(ℓ,:)⊤−
∑

k ̸=ℓ W (:,k)(H(k,:)H(ℓ,:)⊤)
∥H(ℓ,:)∥2

2

)
10: end for
11: end for

described and can be applied to any first-order methods such as the MU. It can also be accelerated
by selecting the entries of H that are updated by HALS that will decrease the objective function
the most; this is referred to as a Gauss–Southwell-type rule [245]. The rationale is that many
entries ofW andH remain zero in the course of HALS, and it is more efficient to avoid updating
these entries.

Remark 8.1 (HALS is a block projected gradient descent method). Interestingly, HALS can
be interpreted as a block projected gradient descent method. The problem

min
H(ℓ,:)≥0

∥Rℓ −W (:, ℓ)H(ℓ, :)∥2F

is a convex optimization problem with Lipschitz continuous gradient with constantL= ∥W(:, ℓ)∥22
(see Example 8.1). Performing a gradient step with step size 1/L, we obtain

H(ℓ, :) − 1

L

(
W (:, ℓ)⊤ (W (:, ℓ)H(ℓ, :)−Rℓ)

)
=

W (:, ℓ)⊤Rℓ

∥W (:, ℓ)∥22
,

which is the HALS update, before the projection.
The aficionados of numerical linear algebra will also recognize that the update of HALS

is closely related to the power method, applied on the matrix Rℓ with a projection onto the
nonnegative orthant.

8.3.3.1 Convergence

HALS is an exact BCD method with 2r blocks of variables updated cyclically. To guarantee
convergence, Theorem 8.3 can be invoked and relies on four conditions. The first two conditions
are satisfied, as for ANLS. The third and fourth conditions (the objective is monotone between
two iterates, the subproblems admit a unique solution) are satisfied as long asH(ℓ, :) andW (:, ℓ)
are not set to zero in the course of the algorithm (in which case the HALS updates are not well-
defined, with a division by zero). At this point, it is important to point out that HALS might
be rather sensitive to initialization: for example, if WH ≫ X , then the first update of H(1, :)
will most likely set it to zero, running into numerical problems. To avoid this issue, one should
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properly scale the initial matrices (W,H) such that

argminα ∥X − αWH∥F =
⟨X,WH⟩
⟨WH,WH⟩

=

〈
W⊤X,H

〉
⟨W⊤W,HH⊤⟩

= 1;

see the discussions in, for example, [239, 185]. However, this does not guarantee that no rank-one
factor is set to zero in the course of HALS.

If a rank-one factor is set to zero, there are two options: it can be discarded, or it can be
reinitialized; see for example the strategy described in Section 8.1.2.1.

In order to guarantee the convergence to stationary points without the requirement that HALS
does not set any factor to zero, here are two options:

• One can resort to BSUM and in particular the trick described in Example 8.5, that is, solve
the subproblems

min
H(ℓ,:)≥0

∥∥Rℓ −W (:, ℓ)H(ℓ, :)
∥∥2
F
+ µ

∥∥H(ℓ, :)− H̃(ℓ, :)
∥∥2
2

for some µ > 0 and where H̃(ℓ, :) is the value of the current iterate. Because of the
regularizer, these subproblems are strictly convex, regardless of the fact that W (:, ℓ) ̸= 0,
and have the closed-form solution

H(ℓ, :) ← max

(
0,
W (:, ℓ)⊤Rℓ + µH̃(ℓ, :)

∥W (:, ℓ)∥22 + µ

)
.

However, this does not really resolve our issue because this modified HALS may also set
a factor to zero and could be stuck there (if W (:, ℓ) = 0, then H(ℓ, :) remains unchanged,
that is, it remains equal to H̃(ℓ, :)). From a theoretical point of view, this is fine since
this corresponds to a trivial saddle point (see Section 8.1.2.1). However, this is not very
satisfactory from a practical point of view and is equivalent to discarding that rank-one
factor. Hence we do not recommend this strategy.

• As for the MU, one can use a lower bound ϵ (such as the machine epsilon) for the entries
of W and H . This guarantees that HALS converges to a stationary point by Theorem 8.3;
see also [185, Theorem 4.3]. Moreover, this allows us to avoid trivial saddle points as, by
construction, these are absent from the feasible set since W ≥ ϵ and H ≥ ϵ.

An interesting observation is that if your current rank-r iterate has an error smaller than the
best possible rank-(r − 1) solution, then HALS cannot set any factor to zero as it monotonically
reduces the objective function. Therefore, as soon as you have an iterate that satisfies this con-
dition, you are guaranteed that HALS converges to a nontrivial stationary point (more precisely,
every limit point is a stationary point with nonnegative rank r). Of course, it is not possible to
check that condition since NMF is NP-hard; however, this could be guaranteed by checking that
your current rank-r solution has an error smaller than the rank-(r − 1) truncated SVD which is
a lower bound for the rank-(r − 1) NMF.

8.3.3.2 History

HALS has been rediscovered several times, originally in [97] (2007) (see also [95]), then as the
rank-one residue iteration in [239] (2008), as FastNMF in [313] (2009), and also in [324] (2012).
HALS was actually first described in Rasmus Bro’s thesis [63, pp. 161–170] in 1998, although it
was not investigated thoroughly (ANLS was preferred):
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to solve for a row of H it is only necessary to solve the unconstrained problem
and subsequently set negative values to zero. Though the algorithm for imposing
non-negativity is thus simple and may be advantageous in some situations, it is not
pursued here. Since it optimizes a smaller subset of parameters than the other ap-
proaches it may be unstable in difficult situations.

8.3.3.3 Flexibility of HALS

HALS can be generalized to other NMF models as long as the entries in the columns of W and
rows ofH do not interact in the objective function, and as long as the subproblems are solvable in
closed form. For example, for sparse NMF using an ℓ1 penalty (see Section 5.3), the suproblems
are

min
H(ℓ,:)≥0

1

2
∥Rℓ −W (:, ℓ)H(ℓ, :)∥2F + λℓ∥H(ℓ, :)∥1

for some parameter λℓ > 0. Since H ≥ 0, ∥H(ℓ, :)∥1 = H(ℓ, :)e is simply a linear term, and
hence the HALS update can be directly modified for sparse NMF as

H(ℓ, :) ← max

(
0,
W (:, ℓ)⊤Rℓ − λℓ
∥W (:, ℓ)∥22

)
,

which is reminiscent of the soft-thresholding operator used to solve ℓ1 penalized least squares
problem. The parameters λℓ can be tuned to achieve a desired level of sparsity [186] and to avoid
setting rows of H to zero.

HALS can be easily adapted to many other NMF models, including weighted NMF [239] (see
Section 9.5, where the update is given), symNMF via a penalty approach [290, 30], ONMF [315],
and tri-NMF [106].

8.3.4 Fast projected gradient method

Among the first methods proposed for NMF, after ANLS and the MU, was the projected gradient
method (PGM) by Lin [323]. Let us consider again the NNLS subproblem for one column of X
and H:

min
h≥0

1

2
∥x−Wh∥2F .

It is a quadratic optimization problem with nonnegativity constraints, whose Hessian is W⊤W .
Hence the gradient is Lipschitz continuous with constant L = λ1(W

⊤W ) = σ1(W )2 = ∥W∥22.
As explained in Example 8.1, the gradient update is given by

h ← max

(
0, h− 1

L
W⊤(Wh− x)

)
,

which guarantees the decrease of the objective function. In matrix form, this gives

H ← max

(
0, H − 1

L

(
(W⊤W )H −W⊤X

))
. (8.20)

This update has the same computational cost as the MU and HALS, the main cost being to
compute (W⊤W )H and W⊤X . PGM tends to perform better than the MU but worse than
HALS; see [197].
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Fast PGM If H is updated several times before W , the above scheme can be accelerated
by using an FPGM. Such methods introduce an additional sequence of iterates in order to add
momentum: Letting Y (0) = H(0), for t = 1, 2, . . . , FPGM uses the following updates:

H(t) = max

(
0, Y (t−1) − 1

L

(
(W⊤W )Y (t−1) −W⊤X

))
,

Y (t) = H(t) + βt

(
H(t) −H(t−1)

)
, (8.21)

where βt ∈ (0, 1] are properly chosen parameters. The update of Y (t) is also referred to as an
extrapolation step. This scheme allows us to reduce the objective function from the rate O(1/t)
for PGM to O(1/t2) for FPGM when rank(W ) < r, and from linear convergence with rate
(1 − µ/L) for PGM to rate (1 −

√
µ/L) for FPGM where µ = σr(W )2 > 0 (strongly convex

case) [364]. Note, however, that FPGM is not monotonically decreasing the objective function.
This was used in [225] to design the so-called Nesterov-NMF algorithm, which we prefer to refer
to as FPGM.

FPGM performs better than HALS because it updatesH several times before updatingW and
hence can reuse the computation of (W⊤W )H and W⊤X . FPGM typically performs slightly
worse than accelerated HALS (A-HALS; where H is updated several times before the update of
W , and vice versa); see Section 8.4.3 for some numerical experiments. However, FPGM is very
flexible: to extend it to other NMF models, it is only required that the subproblems in W and H
are smooth convex optimization problems. Let us describe an example on min-vol NMF.

Example 8.11 (Min-vol NMF via MM and FPGM). As we have seen in Chapter 4.3.3, min-
vol NMF is a key NMF model as it leads to identifiability under the rather mild condition that H
is sufficiently scattered. Let us describe at a high level an algorithm combining MM and FGM
for min-vol NMF; see [172, 309] for more details.

Let us consider the model

min
W≥0,H≥0,H⊤e≤e

∥X −WH∥2F + λν(W ),

where
ν(W ) = logdet

(
W⊤W + δI

)
.

The problem in H is the same as in NMF, except that the entries in each column have to sum
to at most one. Hence, in FPGM, we only need to replace the projection onto the nonnegative
orthant, namely, max(0, .), with the projection of the columns of H onto the set Sr which can
be performed efficiently; see for example [188, Appendix A].

The problem in W is nonconvex, because of the term ν(W ). Let us derive a smooth convex
majorizer for ν(W ), so that we can then apply PFGM on the majorizer—we keep the quadratic
term ∥X −WH∥2F unchanged. The function logdet(Q) is concave in Q ≻ 0 so that it can be
majorized locally by its first-order Taylor expansion, as was done for d̂β(z, y) to derive the MU
in Section 8.2.3. Denoting Q̃ ≻ 0 the point around which we perform the expansion, we have
for all Q ≻ 0 that

logdet(Q) ≤ logdet(Q̃) + tr
(
Q̃−1(Q− Q̃)

)
= tr

(
Q̃−1Q

)
+ logdet(Q̃)− r.

Replacing Q by W⊤W + δI , and denoting Q̃ = (W̃⊤W̃ + δI) ≻ 0, leads to the following
majorizer for ν(W ) at W̃ : for all W ,

ν(W ) ≤ g(W, W̃ ) = tr
(
Q̃−1

(
W⊤W

))
+ c =

〈
Q̃−1,W⊤W

〉
+ c,
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where c is a constant independent of W . The majorizer g(W, W̃ ) is strongly convex because
Q̃−1 ≻ 0. Its gradient is given by 2WQ̃−1, and FPGM can easily be applied on the majorizer,
that is, on

min
W≥0

∥X −WH∥2F + λg(W, W̃ ).

Interestingly, as in NMF, this objective function can be written as m independent problem in the
columns of W , so that HALS could also be used.

Scaling of the rank-one factors of WH As we have already discussed several
times, the objective function of NMF solutions is invariant to the scaling of the rank-one fac-
tors, that is, replacing W (:, k) by αkW (:, k) and H(k, :) by H(k, :)/αk for any scalars αk > 0,
k = 1, 2, . . . , r. However, it is key to notice that some NMF algorithms may be very sensitive
to this scaling. In particular, this is the case for PGM and FPGM as their theoretical conver-
gence depends on the conditioning of W⊤W when updating H (and of HH⊤ when updating
W ). Hence very badly scaled columns of W and rows of H might slow down convergence sig-
nificantly, for example when some columns of W have much larger norms than others. Let us
illustrate this on a toy example. Let

X =W =

(
1 0
0 1

)
and H =

(
0.1 0
0 0.1

)
.

Then, one can check that the PGM update (8.20) (which coincides with the first FPGM update)
gives H ← I2 after one iteration, leading to a perfect (trivial) NMF decomposition of X with
error zero. However, take now

W =

(
1 0
0 0.1

)
and H =

(
0.1 0
0 1

)
.

This gives to the same product WH = 0.1I2 as the initial factors above (we use the scalings
α1 = 1 and α2 = 0.1). One can check that the PGM update (8.20) of H becomes

H ←
(

1 0
0 1.09

)
so that WH =

(
1 0
0 0.109

)
with error ∥X −WH∥F = 0.891≫ 0.

There are many ways to scaleW andH . A good choice for PGM and FPGM is, for example,
to scale (W,H) such that ∥W (:, k)∥2 = 1 for all k before the update of H , and such that
∥H(k, :)∥2 = 1 for all k before the update of W . In our MATLAB code [Matlab file:
FroNMF.m], we scale (W,H) so that ∥W (:, k)∥2 = ∥H(k, :)∥2 for all k. The reason for this
choice is that we will also add momentum between NMF updates; hence we cannot scale (W,H)
between every update of W and H; see Section 8.4.2.

The other methods presented so far, namely ALS, ANLS, MU, and HALS, are not sensitive
to the scaling of the rank-one factors. Of course, if W and/or H are highly ill-conditioned, these
methods could run into numerical problems (for example, ALS and ANLS need to solve least
squares problems that depend on this conditioning); hence using a scaling is also recommended.

8.3.5 Alternating direction method of multipliers

The NNLS problem

min
h∈Rr

+

1

2
∥Wh− x∥22
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can be reformulated as

min
h∈Rr,y∈Rr

+

1

2
∥Wh− x∥22 such that y = h,

where y ∈ Rr
+ is an auxiliary variable. This reformulation allows us to decouple the least squares

term and the nonnegativity constraint in the NNLS problem. The augmented Lagrangian is given
by

L(h, y, z) = 1

2
∥Wh− x∥22 + z⊤(h− y) + ρ

2
∥h− y∥22,

where z ∈ Rr contains the Lagrange multipliers of the constraint y = h. ADMM uses such
reformulations to decouple difficult constraints and/or terms in the objective, and then solves
the reformulation by alternatively minimizing the augmented Lagrangian with respect to its vari-
ables. For NNLS,

• the problem in h is an unconstrained convex quadratic optimization problem whose solu-
tion is obtained by solving a linear system, namely,(

W⊤W + ρI
)
h =W⊤x− z − ρy,

which follows from making the gradient of the Lagrangian L with respect to h equal to
zero;

• the problem in y is a quadratic problem over the nonnegative orthant but where the Hessian
is the identity matrix, and the optimal solution is given by

argminy≥0 L(h, y, z) = max

(
0, h+

1

ρ
z

)
.

Finally, ADMM for NNLS consists in the following updates:

h← argminh L(h, y, z) =
(
W⊤W + ρI

)−1
(W⊤x+ ρy − z),

y ← argminy≥0 L(h, y, z) = max

(
0, h+

1

ρ
z

)
,

z ← z + ρ(h− y).

The update of z is also sometimes modified to z + α(h − y) where α is a step-size parame-
ter. If many ADMM iterations are performed, it is worth computing the inverse of the r-by-r
matrix

(
W⊤W + ρI

)
which is well-conditioned for ρ sufficiently large, instead of solving a

linear system at each iteration. This is especially true in the context of NMF since we have
to solve n such least squares problems with the same Hessian matrix. Moreover, the term(
W⊤W + ρI

)−1
W⊤x can also be precomputed. Computing the inverse of W⊤W + ρI re-

quires O(r3) operations, which is negligible for r ≪ min(m,n). In total, ADMM requires
O
(
r nnz(X) + (m+ n)r2

)
, as first-order methods. Typically, ADMM would initialize y = 0

and z = 0, so h is initially the solution of the unconstrained least squares problem with a
Tikhonov regularization. Interestingly, ADMM can be interpreted as an ALS variant where the
right-hand sides are adapted iteratively to achieve nonnegativity.

For smooth convex problems, ADMM is guaranteed to converge to an optimal solution, re-
gardless of the values of ρ > 0; see for example [28, Chapter 15] for more details.

ADMM is relatively easy to implement for NNLS. The only issue is to properly choose the
parameter ρ > 0, which is nontrivial. In [250], the authors use ρ = tr(W⊤W )/r, and α = 1
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in the update of z. Although any positive value guarantees convergence, this choice can have
an important impact in practice, especially in the context of NMF since only a few iterations
of ADMM are performed on the NNLS subproblems (see Section 8.4). In our experience, NMF
algorithms relying on ADMM are very sensitive to this parameter. Moreover, because the iterates
of ADMM are not feasible (feasibility of h is attained only at convergence), terminating ADMM
early typically results in bad performances within the alternating framework of Algorithm 8.1, for
example, with the objective function which is not monotonically decreasing (this is a similar issue
as for ALS). Hence ADMM should be used to solve the NNLS subproblems with relatively high
precision; for example, in [250], ADMM is stopped when ∥h − y∥2 ≤ δ∥h∥2 for δ sufficiently
small.

As for PGM and FPGM, ADMM is sensitive to the scaling of the columns of W and rows
of H since the update of h requires solving a linear system with matrix W⊤W + ρI; see the
discussion in the previous section.

The 2-BCD strategy (that is, Algorithm 8.1) using ADMM, referred to as AO-ADMM (where
AO stands for alternating optimization), is rather flexible and can be generalized to most NMF
models and other matrix factorization problems [250].

Remark 8.2 (ADMM directly on NMF). ADMM could be directly applied on the (nonconvex)
NMF problem, using the reformulation

min
W,H,U,V

∥X −WH∥2F such that U ≥ 0, V ≥ 0, U =W, and V = H;

see [502, 438, 230, 485]. However, in our experience, this appears to be less effective because
it does not allow us to reuse the computations of W⊤W and W⊤X when optimizing over H
(and similarly for W ), which are the most expensive computations. When applying ADMM on
the NNLS subproblems in W and H separately, this is done automatically; see the discussion
in Section 8.4 and the numerical experiments in [250]. Note, however, that one could design an
ADMM scheme where (H,V ) are optimized several times before (W,U) and vice versa.

8.4 Number of inner iterations and acceleration
Beyond the choice of the optimization method used to solve the NNLS subproblems in W and
H , a key tuning aspect in the design of 2-BCD for NMF is the number of inner iterations
used to solve these NNLS subproblems. In all the first-order methods, which include MU,
HALS, and (F)PGM, the main computational cost resides in computing the gradient. More pre-
cisely, to update H , we need to compute W⊤X in O(nnz(X)r) operations and (W⊤W )H in
O
(
(m+ n)r2

)
operations. For ADMM, the same terms also dominate the computational cost.

For ANLS, where the NNLS subproblems are solved exactly, there is a priori no need to choose
the number of inner iterations. However, when using active-set methods, the number of iterations
can potentially be large, and hence it is possible to use an upper bound on the number of active
sets explored; this is, for example, a strategy built into the code of Park and coauthors (they use
the default value of 5r).

Key observation As explained above, the first gradient computation when updating H
requires O(nnz(X)r + (m + n)r2) operations. This includes the computation of W⊤X in
O(nnz(X)r) operations, and W⊤W in O(mr2). As long as W is not updated, these (small)
matrices can be kept in memory, and the next gradient computations for H require only comput-
ing (W⊤W )H in O

(
nr2
)

operations. Therefore,

The first gradient computation is
(
1 + nnz(X)+mr

nr

)
times more expensive than the

next ones.
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Therefore, if nnz(X)+mr ≫ nr, the first gradient computation is much more expensive than the
next ones, and this should be leveraged. One should, in most cases, not update H only once; this
would be a waste of computation. For example, for dense input matrices with nnz(X) = mn,
the cost of the first gradient computation is more than m

r times more expensive than the next
ones, which is typically much larger than one since r ≪ min(m,n) in most applications.

Of course, it is not necessary to update H too many times because W will be modified at the
next iteration; hence a high accuracy solution of the NNLS problem is not really useful. It was
observed that the following heuristic works well in practice [197]:

• Perform at most 1 + αnnz(X)+mr
nr updates of H , where α ∈ [0.5, 1] works well.

• Stop the updates whenH is not modified much compared to the first update, more precisely
when

∥H(t) −H(t−1)∥2 ≤ δ∥H(0) −H(1)∥2,
where H(t) is the tth update of H in the current inner iteration of the NNLS problem, and
δ = 0.1 works well in practice.

Remark 8.3 (Number of inner iterations for other β-divergences). For other β-divergences,
the computation of the gradient (see Equation (8.4)) does not allow for much reuse of computa-
tions. The case β = 2 is very special because the term (WH)β−2 simplifies to the matrix of all
ones. Hence, for other β-divergence, updating W and H alternatively once is a good strategy.

8.4.1 Low-rank approximations and sketching

For dense matrices, the main cost to update H is to compute W⊤X in O(mnr) operations. To
update W , it is to compute XH⊤ on O(mnr) operations as well. In order to reduce this cost, a
popular approach is to compute a low-rank approximation of X ≈ UV , for example using the
truncated SVD of size p ≪ min(m,n) (typically, p is chosen equal to r). Although this initial
setup cost might be relatively high, it will reduce the cost of all NMF iterations since computing
(W⊤U)V requires only O(pr(m + n)) operations. This is particularly useful if both m and n
are large. In order to further reduce the computational cost, and since X is assumed to be of low
rank, sketching techniques can be used to compute a low-rank approximation of X at a lower
computational cost than the SVD; see [511, 146] and the references therein for more details on
such approaches.

In the same spirit, a multilevel approach can be used to compress structured data sets and ob-
tain good solutions much faster. For example, on images, one would apply NMF on compressed
versions of the images (for example, lower resolutions images) to obtain good solutions for the
original NMF problem [198].

8.4.2 Adding momentum

It is possible to add momentum between the updates of W and H in the 2-BCD algorithm for
NMF (Algorithm 8.1). More precisely, this can be done as follows: Given Y (0) = H(0) and
Z(0) =W (0), compute, for t = 1, 2, . . . ,

W (t) = update(X,Y (t−1), Z(t−1)),

Z(t) =W (t) + βt(W
(t) −W (t−1)),

H(t) = update
(
X⊤, Z(t)⊤, Y (t−1)⊤

)⊤
,

Y (t) = H(t) + βt(H
(t) −H(t−1)),
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where “update” is any iterative or exact method for NNLS, as in Algorithm 8.1. Because NMF is
nonconvex, tuning the parameter βt is nontrivial and various heuristic approaches are possible.
Moreover, convergence to stationary points is not yet understood for such schemes. However, the
nonincreasingness of the objective can be guaranteed by restarting the method when the objective
function increases. Other extrapolation strategies for NMF with strong convergence guarantees
were proposed in [486, 238]. However, these methods empirically converge in general more
slowly than the simple strategy described above. We refer the interested reader to [11, 10] for
more details.

8.4.3 Numerical comparison of NMF algorithms for the Frobenius
norm

Table 8.2 summarizes the NNLS algorithms covered in this chapter.

Table 8.2. Comparison of NMF algorithms for the Frobenius norm. Flexibility means
that the algorithm can be easily adapted to other NMF models, on a scale from! to!!!(see
the discussion in the section corresponding to each algorithm). Monotonicity means that the
algorithm monotonically reduces the objective function. Speed is the empirical convergence
speed of the algorithm, on a scale from% to!!!; see Figures 8.3 and 8.4 for some examples.
All algorithms run in O

(
r nnz(X) + (m+ n)r2

)
operations corresponding to computing the

gradient, that is, computing the termsWTW , WTX , XHT , andXHT , except ANLS, for which
O
(
(m+ n)r3s(r)

)
operations need to be added.

Algorithm Flexibility Monotonicity Speed

MU !!! ! %

A-MU !!! ! !

ANLS (active-set) ! ! !

ALS ! % %

HALS !! ! !

A-HALS !! ! !!

PGM !!! ! !

FPGM !!! % !!

AO-ADMM !!! % !!

E-A-HALS !! % !!!

We now compare various algorithms presented in this chapter:

• The MU of Lee and Seung [303] that update W (resp. H) once between two updates of H
(resp. W ).

• The accelerated MU (A-MU) that update W (resp. H) several times between two updates
of H (resp. W ).
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• ANLS with active set [280] described in Section 8.3.1.

• ALS described in Section 8.3.2.

• Accelerated HALS (A-HALS) that updates the rows of H several times before updating
the columns of W using the HALS update described in Section 8.3.3.

• E-A-HALS that adds momentum to A-HALS; see Section 8.3.3. Note that momentum can
be added to any method [10]; however, we only apply it to A-HALS for simplicity.

• FPGM described in Section 8.3.4.

• AO-ADMM described in Section 8.3.2, for which we use the parameters from [250], that
is, requiring ∥h− y∥2 ≤ δ∥h∥2 with δ = 0.01 to stop the inner iterations. However, with
this strategy, we observed in practice that, after sufficiently many iterations, this precision
might not be enough to guarantee the objective function to decrease. Hence, when the
objective function increases, we divide δ by 10.

For the methods that require choosing a number of inner iterations (namely A-MU, A-HALS,
E-A-HALS, and FPGM), we use the same strategy, namely the one described in Section 8.4
with α = 0.5 and δ = 0.1. To limit the number of tested algorithms, we do not report the
results of HALS, which is outperformed by A-HALS [197], or PGM, which is outperformed by
FPGM [225].

The goal of this section is to provide some general observations. Comparing such algorithms
and providing strong statements (such as “this algorithm outperforms this other algorithm”) is
typically not possible because the behavior of these algorithms depends on many parameters
including tuning parameters (such as α and δ for the number of inner iterations), the size of
the input matrix, the sparsity of the input matrix and of the factors, the factorization rank, the
machine used (for example, number of processors), the implementation used, and the software
used (for example, matrix multiplication is faster in MATLAB than in C, but using loops is much
slower).

8.4.3.1 Dense data sets

We first compare the algorithms on the most famous NMF data set from the Lee and Seung
paper [303], namely the CBCL data set withm = 361, n = 2429, and r ∈ {10, 49} (Figure 1.2).
We use r = 49 as in [303], while we use r = 10 to illustrate that ANLS performs better when r
is small; see the discussion in Section 8.3.1.

Figure 8.3 reports the evolution of the average of

∥X −WH∥F
∥X∥F

− ebest, (8.22)

where ebest is the smallest relative error ∥X−WH∥F/∥X∥F obtained by any algorithm and any
initialization. We run the algorithms for 30 seconds with the same 30 random initializations
using the uniform distribution U(0, 1) to generate all entries of W and H .

Before commenting on the results, it is important to properly interpret these figures based on
the measure (8.22). The use of this measure allows us to better visualize the differences between
the algorithms.64 However, one has to be careful about how such figures are interpreted:

64Plotting the average relative error ∥X−WH∥F
∥X∥F

does not allow us to see the differences as well since the relative
errors of most algorithms converge around 0.1% away from one another.
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Figure 8.3. Comparison of NMF algorithms on the CBCL dense data set with
m = 361, n = 2429, r = 49 (top), and r = 10 (bottom). [Matlab file:
FroNMF_algo_comparison.m].

• Looking at the right-hand side tells us which algorithm obtains on average the best so-
lution. Since NMF algorithms are rather sensitive to initialization (see Section 8.6), this
might change from one experiment to another. This is particularly true for sparse data sets
which are more sensitive to initialization; see the discussion in the next subsection.

• Looking at the left-hand side tells us which algorithm initially converges the fastest.

In Figure 8.3, we observe the following:

• Since the input matrices are dense, ALS performs very poorly; see Section 8.3.2.

• MU is rather slow, being the worse algorithm after ALS. This is consistent with all the ob-
servations made in the literature: MU with the Frobenius norm on dense data sets performs
poorly.
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• Adapting the number of iterations accelerates the MU, that is, A-MU outperforms MU.
Moreover, it converges initially almost as fast as ANLS, although it produces worse so-
lutions within the 30 seconds. A-MU performs worse than A-HALS, AO-ADMM, and
FPGM.

• ANLS is not very effective for CBCL with r = 49, while it performs among the best for
r = 10. The reason is that when r becomes large, the term O

(
(m+ n)r3s(r)

)
kicks in

(Table 8.2). For r larger, ANLS is less competitive.

• A-HALS performs better than FPGM, which performs similarly as AO-ADMM; however,
the difference in performance is not significant. (In the paper [250], it is reported that
AO-ADMM works better than A-HALS). In general, we have observed that, in the dense
case, there is no clear winner between these three methods depending on the many factors
influencing the performances of these methods (see the discussion above).

• E-A-HALS improves upon A-HALS and performs significantly better than the other algo-
rithms. Note that extrapolated variants of the other algorithms can also be implemented
(this can be done easily with our MATLAB code) and allows us to accelerate their conver-
gence as well; see the extensive numerical experiments in [10].

8.4.3.2 Sparse data sets

In our experience, sparse matrices are more difficult to factorize in the sense that the correspond-
ing optimization problem tends to have stationary points where the objective function has rather
different values. In other words, the objective function value gaps between stationary points tend
to be larger for sparse matrices. The intuitive reason is that NMF is looking for dense rank-
one submatrices corresponding to the nonzero entries of the rank-one factors W (:, k)H(k, :) for
k = 1, 2, . . . , r: when X is sparse, this amounts to finding clusters, which is known to be a hard
combinatorial problem, where the gap between local minima can be arbitrarily large. For exam-
ple, for a block diagonal matrix, any rank-one factor that identifies one of the blocks (which may
have different sizes) is a local minimum. Another difficulty is that such data sets are typically
not low-rank; see the discussion in the introduction of Chapter 9.

Hence, this makes the comparison of algorithms (even more) difficult because they converge
to different stationary points with different objective function values. Let us compare NMF
algorithms on two widely used data sets: the TDT2 data set with m = 9394, n = 19528, and
r = 30 with 99.37% of the entries equal to zero (TDT stands for topic detection task), and the
Classic data set [509] with m = 7094, n = 41681, and r = 30 with 99.92% of the entries equal
to zero. We use the same experimental settings as in the previous paragraph: algorithms are run
with the same 30 random initializations during 30 seconds, and Figure 8.4 reports the average
value of (8.22).

In our experience, most of the observations from the dense case are still valid for sparse data
sets since all algorithms adapt well to sparse matrices. However, a few notable differences can
be observed for sparse matrices:

• MU does not perform as bad; for example, it converges initially faster than ANLS.

• In general, the differences between the algorithms are less significant than in the dense
case.

• ALS performs much better: although it stagnates at a higher error than the other algo-
rithms, it is able to quickly decrease the objective function values. It is initially among the
fastest algorithms, and hence it especially makes sense to use it as a warm-start strategy
for sparse matrices.
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Figure 8.4. Comparison of NMF algorithms on sparse data sets: the TDT2 data set
with m = 9394, n = 19528, and r = 30 with 99.37% of the entries equal to zero, and on the
Classic data set with m = 7094, n = 41681, and r = 30 with 99.92% of the entries equal to
zero. [Matlab file: FroNMF_algo_comparison.m].

E-A-HALS still outperforms the other algorithms, and it is the default algorithm of [Matlab
file: FroNMF.m].

8.5 Stopping criteria
As for many aspects in this book (such as the choice of the objective function or of the factoriza-
tion rank), the choice of the stopping criterion is not specific to NMF and is a choice encountered
by any iterative (optimization) algorithm. Let us simply mention the most standard strategies:

• Iterations. An upper bound on the number of iterations of Algorithm 8.1 is chosen, typi-
cally between 200 and 5000.
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• Time. An upper bound on the time allotted to the algorithm is given. We recommend
to always use such an upper bound to guarantee the algorithm will stop in a reasonable
amount of time.

• Error. One can monitor the evolution of the error and stop the algorithm when no signifi-
cant changes are observed for T iterations. For example, one can use

|e(t− T )− e(t)| ≤ δ e(t), (8.23)

where e(t) = D
(
X,W (t)H(t)

)
is the error at iteration t, T ≥ 1, and 0 < δ ≪ 1. Using

values around T = 10 and δ = 10−4 is a good choice in practice; it means that the relative
error has not changed more than 0.01% within the last 10 iterations.

One has to be careful when using this stopping criterion as it can incur additional com-
putational cost. However, most algorithms involve computations that can be reused to
compute e(t) cheaply. For example, for β-divergence with β ̸= 1, 2, the term WH is
computed to update W or H even when X is sparse (see Section 8.2.6), and hence com-
puting D(X,WH) only requires O(mn) additional operations. For β = 2,

∥X −WH∥2F = ∥X∥2F − 2
〈
W⊤X,H

〉
+
〈
W⊤W,HH⊤〉 ,

where the term ∥X∥F can be computed once in nnz(X) operations, the terms W⊤X and
W⊤W are computed by any first-order method to update H . In the next update of W ,
HH⊤ is computed. Therefore, computing the error requires once nnz(X) operations,
and O(rn + r2) additional operations at each iteration, which is negligible for first-order
methods. For β = 1, to updateW andH , we need to compute the entries ofWH whereX
is positive (see Section 8.2.6). This allows us to compute

∑
(i,j),Xi,j ̸=0 d1(Xi,j , (WH)i,j)

in O(nnz(X)) operations. For the other terms in D1(X,WH), we obtain∑
(i,j),Xi,j=0

d1(Xi,j , (WH)i,j) =
∑

(i,j),Xi,j=0

(WH)i,j

=
∑
i,j

(WH)i,j −
∑

(i,j),Xi,j ̸=0

(WH)i,j ,

where
∑

i,j(WH)i,j = e⊤WHe = (e⊤W )(He) which can be computed inO(mr+nr)
operations, while the second term requires O(nnz(X)) operations (since these entries of
WH corresponding to positive entries of X are already computed).

• Iterates. A simple yet effective stopping criterion is to monitor the evolution of the iterates,
that is,

∥H(t) −H(t−T )∥F ≤ δ ∥H(t−T )∥F ,

and similarly for W . As for the error, using T = 10 and δ = 10−4 is a reasonable choice
in practice.

• KKT conditions. It is possible to use the KKT conditions. However, as pointed out in
[189], one has to be careful when using such criteria because they are not invariant to
the scaling of the rank-one factors W (:, k)H(k, :). Hence one has to be particularly care-
ful when using a criterion based on the KKT conditions. Let us consider the criterion
C(W,H) = CW (W ) + CH(H) where

CW (W ) = ∥min(W, 0)∥F︸ ︷︷ ︸
W≥0

+ ∥min(∇WD, 0)∥F︸ ︷︷ ︸
∇WD≥0

+ ∥W ◦ ∇WD∥F︸ ︷︷ ︸
W◦∇WD=0

, (8.24)
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where∇WD denotes the gradient of the objective function with respect toW , andCH(H)
is defined similarly for H . We have C(W,H) = 0 if and only if (W,H) is a stationary
point of (8.1). However, consider the following:

– C(W,H) is sensitive to scaling. For α > 0 and α ̸= 1, we have in general that

C(W,H) ̸= C(αW,α−1H),

since the terms in (8.24) are sensitive to scaling. For example, with the Frobenius
norm, multiplying W by α and dividing H by α multiplies ∇HD by α and divides
∇WD by α. If one solves the subproblem in H exactly (for example, with an active-
set method), CH(H) = 0 and this holds true for any scaling. However, the second
term in (8.24) can be made arbitrarily small by dividing H by a large constant which
divides ∇WD by the same constant. This issue can be handled with proper normal-
ization; for example, imposing ∥W (:, k)∥2 = ∥H(k, :)∥2 for all k [239].

– The value ofC(W,H) after the update ofW can be very different from the value after
an update ofH , in particular, if the scaling is bad or if |m−n| is large. Therefore, one
should be very careful when using this type of criteria to compare ANLS with other
algorithms such as the MU or HALS as the evolution of C(W,H) can be misleading.
A potential fix would be to scale the columns ofW and the rows ofH so thatCW (W )
after the update of H and CH(H) after the update of W have the same order of
magnitude, that is, use a scaling α such thatCW (αW ) = CH(H/α) (actually, such a
scaling should preferably be performed on each rank-one factor). Another possibility
would be to use a proper normalization of (W,H) and apply one step of ANLS
before evaluating the criterion (hence implicitly focusing on one of the two factors
since after an update of ANLS, one of the two terms, CW (W ) or CH(H), is equal to
zero).

– One has to be careful about trivial stationary points (see the discussion in Sec-
tion 8.1.2): convergence to such stationary points should be avoided, and one should
check within the algorithm if this happens (although, for reasonable initializations,
this usually does not happen). If your only goal is to find a stationary point quickly,
here is one: W = 0 and H = 0.

In [Matlab file: betaNMF.m] and [Matlab file: FroNMF.m], we have implemented
the first three possibilities. To stop the inner iterations of NNLS algorithms within NMF, we use
the stopping criterion based on the iterates.

8.6 Initialization
Since NMF is an NP-hard nonconvex optimization problem, iterative algorithms such as the ones
presented in this chapter are sensitive to the initial iterate (W (0), H(0)).

Random initialization The standard strategy in the literature is to use the uniform dis-
tribution U(0, 1) in the interval [0, 1] to generate the entries of (W (0), H(0)). This is typically
combined with a multistart heuristic that keeps the best solution obtained out of a certain num-
ber of random initializations; see the discussions in [98, 460]. Note that using distributions that
generate sparse factors as initial matrices (such as sprand in MATLAB) is sometimes a good
strategy as it allows us to explore the search space better: the uniform distributions generates
dense factors and hence does not attain local minima located close to the faces of the nonnega-
tive orthant; see [460] for a discussion and numerical experiments.
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In the following, we describe more sophisticated initialization strategies, which typically
have two advantages compared to random initializations:

1. They often allow one to identify better local minima as they use the structure of the input
data X to compute (W (0), H(0)).

2. They allow the iterative scheme to converge faster since they are initialized close to a
reasonable solution. However, the cost of the initialization scheme should be taken into
account for a fair comparison.

Figure 8.5 illustrates a typical behavior of a good initialization scheme (in this case, SNPA)
compared to a random initialization. However, without further assumptions (such as separa-
bility), such strategies do not come with theoretical guarantees because of the NP-hardness of
NMF.

0 1 2 3 4 5

0.1

0.2

0.3

0.4

Figure 8.5. Comparison of the relative error of the iterates generated by A-HALS ini-
tialized with SNPA and with a random initialization (using the uniform distribution U(0, 1) for
all entries of W and H) on the CBCL data set with m = 361, n = 2429, and r = 49. [Matlab
file: FroNMF_init_randvsSNPA.m].

SVD Let UV =
∑r

k=1 U(:, k)V (k, :) be an optimal unconstrained rank-r approximation
of X which can be computed via the truncated SVD; see Section 6.1. Each rank-one factor
U(:, k)V (k, :) might contain positive and negative entries, except for the first one, by the Perron–
Frobenius theorem given that the input matrix is irreducible; see Section 6.1.2. Denoting [x]+ =
max(x, 0), we have for all 1 ≤ k ≤ r that

U(:, k)V (k, :) = [U(:, k)]+[V (k, :)]+ + [−U(:, k)]+[−V (k, :)]+

− [−U(:, k)]+[V (k, :)]+ − [U(:, k)]+[−V (k, :)]+,

where the first two rank-one factors in this decomposition are nonnegative. Boutsidis and
Gallopoulos [54] replaced each rank-one factor in

∑r
k=1 U(:, k)V (k, :) with either

[U(:, k)]+[V (k, :)]+ or [−U(:, k)]+[−V (k, :)]+, selecting the one with larger norm and scaling
it properly. Observe that half of the information is lost when using this selection step. Motivated
by this observation, two alternative approaches were proposed:
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• In [388], the author simply replaces each rank-one factor by its absolute values, that is,
the proposed initialization is (|U |, |V |)). However, this creates an approximation |U ||V |
which is much larger than X as all the negative terms in (U, V ) are ignored.

• In order the reduce the computational cost of the initialization, and keep all of the infor-
mation of the SVD computation, the authors in [18] propose an initialization based on a
rank-r′ approximation of X where r′ = 1+

⌊
r
2

⌋
. The first factor U(:, 1)V (1, :) is nonneg-

ative and is kept as is, while the next rank-one factors U(:, k)V (k, :) for k ≥ 2 are split
into two parts, namely

([U(:, k)]+, [V (k, :)]+) and ([−U(:, k)]+, [−V (k, :)]+),

to initialize two columns of W and two rows of H . This initialization produces sparser
factors as the average sparsity of the generated factor is 50% for k ≥ 2, by construction.

Clustering As NMF is closely related to clustering techniques such as k-means and spherical
k-means (Section 5.5.3), it makes sense to use such techniques to initialize NMF. For example,
applying k-means on the columns of X , W can be initialized as the computed centroids, while
H as the membership indicator matrix (with a single nonzero entry per column). This approach
based on k-means and spherical k-means was proposed by Wild, Curry, and Dougherty [481];
see also [75] and the references therein for more sophisticated strategies based on other clustering
techniques.

Near-separable NMF As discussed at length in Chapter 7, near-separable NMF approx-
imates the matrix X as X(:,K)H where K ⊆ {1, 2, . . . , n} contains r indices and H ≥ 0.
This model not only makes sense in many applications, it also allows us to compute such de-
compositions in polynomial time, given that the input matrix admits a separable factorization.
Moreover, greedy algorithms such as SPA and SNPA can quickly produce an index set K such
that X(:,K)H ≈ X , even when X does not admit a separable factorization. Therefore, us-
ing near-separable NMF algorithms to initialize NMF algorithms especially makes sense, and,
if you do not know better, we recommend such an initialization scheme: if your input matrix
satisfies the separability assumption approximately, it provides a very good initialization. You
need to decide whether you apply such an algorithm on X or X⊤ depending on which of these
two matrices is more likely to admit a separable factorization; see the discussion in Section 7.1
for some examples. Most NMF solutions shown in this book were obtained with SPA or SNPA
initialization; see for example Figures 4.10, 4.11, 5.2, and 9.2.

Figure 8.5 compares a random initialization with SNPA on the CBCL data sets applied on
X⊤ (see Section 7.1) using A-HALS. We observe that SNPA allows faster convergence. SNPA
took 0.6 seconds to be computed, and hence the random initialization actually achieves a lower
error within that time limit (below 10% relative error, while SNPA produces an initial solution
with relative error about 12%). However, in the long run, SNPA is beneficial: using the stopping
criterion (8.23) based on the evolution of the error with T = 10 and δ = 10−3, A-HALS with
SNPA converges in 4.4 seconds while with the random initialization it converges in 8.6 seconds.

8.7 Alternative algorithmic approaches
In this section, we briefly review other approaches to solve NMF (8.1), beyond near-separable
NMF (Chapter 7), and nonlinear optimization schemes which we have focused on so far in this
chapter.
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8.7.1 Sequential approaches using deflation

Instead of trying to compute all rank-one factors simultaneously when solving (8.1), one could be
tempted to compute one rank-one factor at a time as this approach is optimal in the unconstrained
case; see Section 6.1. However, in the context of NMF, these rank-one factors should satisfy
some additional constraints. IfW (:, 1)H(1, :) minimizes ∥X−W (:, 1)H(1, :)∥F under only the
nonnegativity constraints ofW (:, 1) andH(1, :), the residualR1 = X−W (:, 1)H(1, :) obtained
after the first deflation will contain roughly half positive and half negative entries. These negative
entries cannot be approximated by any of the following rank-one factors.

The most natural approach is therefore to impose that W (:, 1)H(1, :) is an underapproxima-
tion of X , that is,

W (:, 1)H(1, :) ≤ X.

With this underapproximation condition, the residual R1 = X −W (:, 1)H(1, :) is nonnegative
and the next factor W (:, 2)H(2, :) can be computed as an underapproximation of R1, and then
W (:, 3)H(3, :) as an underapproximation of R2 = R1 −W (:, 2)H(2, :), etc.

This sequential strategy requires solving a rank-one nonnegative matrix underapproximation
(NMU) problem: given A ≥ 0, solve

min
w∈Rm

+ ,h∈Rn
+

∥A− wh⊤∥F such that wh⊤ ≤ A. (8.25)

This idea dates back to Levin [311] (1985), although he considers only one rank-one factor, and
does not use it within a deflation scheme. It was later used in the context of NMF in [184]
(2007) and in [195] (2010), where (8.25) is solved via a Lagrangian approach [Matlab file:
recursiveNMU.m]. We refer the interested reader to [447] for a more recent and efficient al-
gorithm for NMU based on ADMM. Figure 5.6 illustrates an NMU factorization result on the
CBCL data set (page 177) and Figure 1.4 on the Swimmer data set (page 7).

NMU has several nice properties:

• The factors do not need to be recomputed when r is modified.

• NMU provably generates sparser solutions than NMF [195]; for example, it is easy to
show that the residual R1 has a least one zero per row and per column, implying that
W (:, 2)H(2, :) will have zeros in the same locations. The rank-one factors tend to be-
come sparser as NMU unfolds because the residuals become sparser; see Figure 5.6 for an
illustration (page 177).

• It has a unique solution (up to scaling) under mild conditions [208]. For example, for a
binary matrix X , its optimal rank-one NMU is unique if and only if the largest submatrix
of all ones is unique. Considering X as the biadjacency matrix of a bipartite graph, this
requires its maximum biclique to be unique (see the proof of Theorem 6.5). Moreover,
algorithms can be meaningfully initialized with the best rank-one nonnegative approxima-
tion of the residual using the SVD (this follows from the Perron–Frobenius theorem as the
residuals are nonnegative).

However, the problem (8.25) is NP-hard in general [184] (see the proof of Theorem 6.5
that provides a reduction from the maximum-edge biclique problem). Moreover, because of its
sequential nature, NMU produces solutions with larger error than NMF.

Other similar strategies were later developed. For example, Biggs, Ghodsi, and Vavasis [44]
(2008) proposed to compute the rank-one factors using a power-like method enforcing sparsity.
Intuitively, their method tries to identify sequentially large and dense submatrices in X . Dong,
Lin, and Chu [137] (2014) also use a deflation idea but in the context of Exact NMF, and their
deflation is based on the Wedderburn rank reduction formula to compute the rank-one factors.
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8.7.2 Hierarchical/divide-and-conquer approaches

The rank-two NMF problem, that is, (8.1) with r = 2, is easier to solve; see the discussion in
Section 6.1.3. Hence a possible way to construct an NMF solution is via a hierarchical/divide-
and-conquer strategy. First, a rank-two NMF of X is computed, that is,

WH =W (:, 1)H(1, :) +W (:, 2)H(2, :) ≈ X.

Then the columns of X are divided into two clusters depending on the values of the entries of
H(1, :) and H(2, :). In its simplest form, this approach generates the clusters as

C1 = {j | H(1, j) > H(2, j)} and C2 = {j | H(1, j) ≤ H(2, j)},

after a proper scaling of WH (for example, ∥H(1, :)∥∞ = ∥H(2, :)∥∞ = 1). Then, the scheme
is applied recursively on X(:, C1) and/or X(:, C2). This constructs a binary tree structure of
the data where the clusters are split in two at each level. Figure 8.6 illustrate such a binary tree
structure for the Urban hyperspectral image using [Matlab file: hierclust2nmf.m] [202].

This idea has been used successfully for classification of pixels in medical [318, 406] and
hyperspectral images [202], as well as in document data sets [291, 139]. The algorithms proposed
in these papers differ in how the data points are split in the two clusters and in the criterion used
to select the cluster(s) to split.

Figure 8.6. Example of a hierarchical rank-two NMF solution on the Urban data set
(see Figure 1.6). At the first level, rank-two NMF splits pixels between the vegetation (on the
right) and the other materials (on the left). The vegetation is then split into grass and trees, while
the other materials, namely the two types of roof tops, the roads, and dirt, are split at lower levels
in the tree. Figure modified from [202]. [Matlab file: Urban.m].
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8.7.3 Transformations of unconstrained solutions

For Exact NMF, Theorem 2.21 showed that ifX =WH where rank(X) = rank+(X) = r, then
any NMF of X has the form

X = UQ︸︷︷︸
W≥0

Q−1V︸ ︷︷ ︸
H≥0

,

where Q is an r-by-r invertible matrix, and UV is an unconstrained decomposition of X ob-
tained, for example, via the SVD. Hence, given X = UV , it makes sense to try to find an invert-
ible r-by-r matrix Q such that UQ ≥ 0 and Q−1V ≥ 0. This problem has much fewer variables
than the original NMF problem, namely r2 instead of mr + nr. In noisy cases, UV can be re-
placed by the optimal rank-r approximation ofX obtained via the truncated SVD (Theorem 6.3).

This idea was already discussed by Paatero and Tapper [371] and has been investigated par-
ticularly in the SMCR literature where the goal is to compute all possible factorizations (see
Section 1.4.1 and [366]). In his seminal paper, Vavasis [465] discusses this approach and pro-
poses a local search heuristic.

However, as far as we know, outside the SMCR literature, this approach has not been much in-
vestigated nor been used successfully in practice. The reason is that finding Q such that UQ ≥ 0
and Q−1V ≥ 0 is difficult and is impossible when rank+(UV ) > rank(UV ). Finding a Q such
that UQ and Q−1V have mostly nonnegative entries, and then projecting this solution onto the
nonnegative orthant, that is, using max(0, UQ) and max(0, Q−1V ), may lead to reasonable so-
lutions. However, the projection step deteriorates the solution in a way that is not controlled and
hence typically leads to larger values of the objective function than standard NMF algorithms.
Also, computing an optimal unconstrained rank-r approximation requires some computational
effort (the computational cost is of the same order as that of first-order methods for NMF).

8.8 Further readings
We have covered in this chapter the most fundamental algorithms used for NMF, focusing on
first-order methods. The design of NMF algorithms is still a very active area of research; see
for example [238] for a recent efficient NMF algorithm using two extrapolation points with
strong convergence guarantees (including convergence rates), [446] for an algorithm specifically
designed for sparse NMF with similar convergence guarantees, and [247] for a recent second-
order method.

Moreover, we have not covered in this chapter stochastic algorithms, such as stochastic gra-
dient descent (SGD). Such techniques are important when dealing with large-scale problems.
The core idea is to use randomly chosen subsamples of the data set at each iteration. For exam-
ple, to update H , one could select only a subset I of the rows of X and W and use a gradient
direction of the objective function ∥X(I, :) −W (I, :)H∥F . In the dense case, this reduces the
cost of an iteration from O(mnr) to O(|I|nr); classic SGD uses |I| = 1. (Note that this idea
is related to sketching, briefly discussed in Section 8.4.1.) SGD and related methods have a very
rich theory and many strategies exist depending on the problem at hand. However, such methods
are typically difficult to tune and should be designed carefully. An example of such algorithms is
a BCD method combined with proximal SGD in the context of low-rank tensor decompositions
under various constraints including nonnegativity [173]. We refer the interested reader to the
survey [177] for details on recent advances on optimization techniques for structured low-rank
matrix and tensor decompositions, including BCD, SGD, and second-order methods.

Finally, we refer the interested reader to the paper [248], where the accuracy of the nonnega-
tive latent factor estimates of NMF algorithms are put to the test against the Cramér–Rao lower
bound.
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8.9 Online resources
Let us mention a few online resources containing codes for NMF algorithms in different lan-
guages:

• NIMFA [518]. This toolbox in Python is available from

http://nimfa.biolab.si/index.html.

It contains algorithms for several NMF models, including standard, separable, sparse, and
binary NMF. It also contains several initialization strategies, and numerical examples for
several applications, namely in bioinformatics, functional genomics, text analysis, image
processing, and recommendation systems.

• NMFLibrary by Hiroyuki Kasai. This toolbox in MATLAB is available from

https://github.com/hiroyuki-kasai/NMFLibrary.

It contains many algorithms (including ANLS, ALS, MU, A-MU, HALS, PGD, FPGD)
for many NMF models including standard, symmetric, sparse, robust, online, semi-, and
orthogonal NMF.

Another MATLAB toolbox focused on biological data mining is available from https:
//sites.google.com/site/nmftool/; see [317]. It contains not many algorithms
(namely MU and ANLS) but quite a few models, including standard, semi-, orthogonal,
sparse, convex, weighted, and kernel NMF.

• NMF Toolbox [328]. This toolbox in Python and MATLAB is available from

https://www.audiolabs-erlangen.de/resources/MIR/NMFtoolbox/.

It focuses on audio source separation, including algorithms for standard and convolutive
NMF.

• NMF package [181]. This toolbox in R is available from

http://renozao.github.io/NMF/.

It contains a few NMF algorithms, including several initialization strategies.

• libNMF [258]. This toolbox in C is available from

https://www.univie.ac.at/rlcta/software/.

It contains a few NMF algorithms for the standard NMF model and includes several ini-
tialization strategies.

8.10 Take-home messages
Over the years, numerous algorithms for various NMF models have been developed, in partic-
ular for the Frobenius norm. In this particular scenario, various highly efficient methods exist,
including ANLS, A-HALS, FPGM, ADMM, and E-A-HALS. For β-divergences with β ̸= 2,
not many algorithms have been developed beyond the MU, which are easy to implement and
flexible. Moreover, the MU are an effective optimization strategy for small β; see [237] for a
discussion on the case β = 1.

http://nimfa.biolab.si/index.html
https://github.com/hiroyuki-kasai/NMFLibrary
https://sites.google.com/site/nmftool/
https://sites.google.com/site/nmftool/
https://www.audiolabs-erlangen.de/resources/MIR/NMFtoolbox/
http://renozao.github.io/NMF/
https://www.univie.ac.at/rlcta/software/




Chapter 9

Applications

In Chapter 1, we presented four applications of NMF, namely feature extraction from a set of im-
ages, topic extraction from a set of documents, blind unmixing of hyperspectral images into their
constitutive materials, and blind audio source separation. Moreover, we have discussed applica-
tions in other sections, for example community detection in Section 5.4.7 and topic modeling in
Sections 5.4.9.1, 5.5.4, and 7.8.

Organization of the chapter We present three other applications of NMF: SMCR (Sec-
tion 9.3), gene expression analysis (Section 9.4), and recommender systems (Section 9.5). We
do not dig deep into these applications, that is, we do not discuss the specifics and which NMF
models and algorithms are the most appropriate. We rather focus on explaining why the NMF
model makes sense. Then, we provide a list of applications with useful references (Section 9.6).
Before doing so, we discuss two important aspects of the use of NMF in practice, namely the
scaling of the rank-one factors (Section 9.1) and whether your input matrix should be low-rank
for NMF to make sense in practice (Section 9.2).

9.1 Beware of scaling ambiguity
In most NMF applications, the matrix H corresponds to activation of the basis elements within
the data points. For example,

• in blind HU, H(k, j) is the abundance of endmember k in pixel j,

• in text mining, H(k, j) is the importance of topic k in document j,

• in audio source separation, H(k, j) is the intensity of source k during the time window j.

Therefore, it is important to properly postprocess the result of your factorization algorithm to
interpret it meaningfully. This (minor) issue is sometimes overlooked in the literature. Let us
discuss it briefly.

In some NMF models, there is no such ambiguity because the normalization is incorporated
within the model, for example NMF with the sum-to-one constraintH⊤e = e often used in blind
HU. Other NMF models do not have the scaling ambiguity such as projective NMF, ONMF,
convex NMF, separable NMF, binary NMF, and symNMF.

Normalizing the rows of H to have unit ℓ1 or ℓ2 norm is typically not a good idea: there is
in general no reason to believe that all the sources activate with the same total energy. Moreover,
such normalization could lead to ill-conditioned W ; see the discussion on page 142. What could

307



308 Chapter 9. Applications

make sense is to normalize the rows of H to have unit ℓ∞ norm, that is, given αk = ∥H(k, :)∥∞
for all k, use the normalization

H(k, :)← H(k, :)

αk
and W (:, k)← αkW (:, k).

Doing so, each row of H has an entry equal to one which corresponds to the data point that has
the largest activation for the corresponding basis element. This allows us to interpret the entries
of H easily: they are proportions of this highest possible activation.

However, in most cases, it makes more sense to normalize the columns of W to have unit ℓ1
or ℓ2 norm. Hence the entries of H can be directly interpreted as the importance of each column
of W to reconstruct each data point since the columns of W have the same norm.

9.2 Should your data set be approximately of low rank?
In some applications, the input matrix is not close to a low-rank matrix. Three typical examples
are word count data sets used in text mining (Sections 1.3.3, 5.5.4, and 5.4.9.1), evaluation ma-
trices used in recommender systems (Section 9.5), and adjacency matrices used for community
detection (Section 5.4.7). However, in all these applications, low-rank models have had tremen-
dous success [287, 14, 488]. The reason is that although the input matrix might have high rank,
it still makes sense to try to find a low-rank structure within it. For example, in recommender
systems, it makes sense to look for subsets of items that were appreciated by several users. In
text mining, although all documents might not be well-approximated by a small subset of top-
ics, it makes sense to look for topics, that is, subsets of words found simultaneously in different
documents. This amounts to finding a global behavior within the data set. As we have seen in
Chapter 7.8, a more appropriate model to achieve this goal might be to consider the tri-symNMF
of XX⊤. Similarly, in community detection, low-rank models are applied on other transforma-
tions of the data to obtain more powerful models [246]. In audio source separation, the short-time
Fourier transform is typically used to construct the input matrix X (see Section 1.3.4). However,
the transformation can be optimized to best fit a low-rank model [149]. In this section, we stick to
applications of the standard NMF model. In many applications, such as hyperspectral unmixing
or image analysis where the input matrices are in most cases close to being low rank, NMF is a
suitable and powerful model.

9.3 Self-modeling curve resolution
SMCR is one of the first areas of research where the NMF model has been used (Section 1.4.1)
and is closely related to blind HU (Section 1.3.2). As for blind HU, rows of the input matrix X
correspond to different wavelengths where light intensities are recorded. However, each column
sample corresponds not to a spatial location (that is, a pixel in the image) like in blind HU but
to a time point when the measure is taken. In SMCR, the evolution of the spectra of a chemical
reaction is measured over time, and the input matrix X is a wavelength-by-time matrix. Given
X , the goal is to find the spectra of the pure chemical components as the columns of W , and
their concentrations over time in the matrix H that evolve as the chemical reaction takes place.

Let us illustrate this application using the synthetic example of Luce et al. [331] inspired
from Raman spectroscopy. The reaction is made up of five components (A,B,C,D,E). Let us
denote h(t) ∈ R5

+ the vector of concentrations over time of these five components. The kinetics
of the reaction in this example is given by

h(t) = eKth0,
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where h0 ∈ R5
+ contains the initial concentrations, and eKt is the matrix exponential of Kt with

K =


−0.53 0.02 0 0 0
0.53 −0.66 0.25 0 0
0 0.43 −0.36 0 0.1
0 0.21 0 0 0
0 0 0.11 0 −0.1

 .

Graphically, the matrix K translates the following reaction coefficients:

A
0.53−−−⇀↽−−−
0.02

B
0.43−−−⇀↽−−−
0.25

C
0.11−−−⇀↽−−
0.1

Ey0.21

D

Assuming the spectrum of this reaction is measured every time step ∆t for a time period of
(n− 1)∆t starting at t = 0, the observed data matrix X satisfies, for all j = 1, 2, . . . , n,

X(:, j) =WH(:, j), where H(:, j) = h
(
(j − 1)∆t

)
,

and the columns of W are the five component spectra constructed as the spectra of various or-
ganic compounds. Figure 9.1 displays the matrix W and H of this example, with initial concen-
tration h0 = (1, 0, 0, 0, 0)⊤.

Although in spirit SMCR is the same problem as blind HU (except that spatial location is
replaced by time), the structure of the data sets is usually rather different, which plays a key role
when designing models and algorithms. For example,

• the concentrations in SMCR are typically not sparse because most components are present
at all times in the chemical reaction (in the example above, this is the case except when
t = 0); moreover, the concentrations are typically smooth functions of time (as in Fig-
ure 9.1) which can be leveraged using parametrized NMF models (see for example [234]);

• the spectra in SMCR can be rather sparse and peaky (as in Figure 9.1, but this is not
necessarily the case), which is typically not the case for airborne hyperspectral images
(see for example Figure 1.6).

A consequence of the two observations above is that H in SMCR typically does not satisfy
the separability condition or the SSC (see Chapter 4). However, the component spectra W⊤ may
satisfy the separability assumption or the SSC. In Figure 9.1, the spectra are separable as every
component contains a peak where the other spectra are equal to zero, and SNPA can be used to
decompose this particular data set; see [331].

Note also that typically in the SMCR literature, the goal is to compute all possible solutions
(which is of course highly nontrivial and becomes quickly impractical as r increases) so that the
chemist can then identify the one that makes more sense; see [366] and the references therein for
more details.

9.4 Gene expression analysis
Microarray data analysis aims to analyze gene expression data obtained using microarray experi-
ments to extract information among genes and across different conditions and different samples;
see [66, 277, 125, 147] and the references therein for more details. Standard microarrays are
gene-by-sample matrices (which we denote X , as usual) recording gene expression levels on
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Figure 9.1. On the top, spectral signatures of the components contained in W . On the
bottom, the concentrations over time contained in H . [Matlab file: Raman.m].

different samples. Decomposing such a data matrix X using NMF allows us to extract common
behavior among the genes: the columns of the matrix W are so-called metagenes and gather
subsets of genes displaying a similar behavior on a subset of the samples; the matrix H indicates
which metagene is active in which sample.

Let us illustrate this on a simple numerical example taken from65 Baranzini et al. [22]. The
data set collects gene expression levels about patients affected by multiple sclerosis and treated
during different time steps with the protein interferon β. Analyzing such data sets allows us to
understand the medical responses of the treatment. After some preprocessing [147], we obtain a
data set consisting of 52 genes measured for 27 patients over 7 time periods. For simplicity, we
concatenate these measures as a gene-by-sample matrixX ∈ R52×189. Performing an NMF with
r = 3 using A-HALS initialized with SNPA identifies three metagenes represented in Figure 9.2,
where we normalize the columns ofW so that ∥W (:, k)∥∞ = 1 for all k. Using a threshold of 0.2

65The data set is available online as supplementary material; see https://doi.org/10.1371/journal.pbio.
0030002.sd001.

https://doi.org/10.1371/journal.pbio.0030002.sd001
https://doi.org/10.1371/journal.pbio.0030002.sd001
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Figure 9.2. Heatmap of the matrix W ∈ R52×3
+ (white corresponds to 1, black

to 0) obtained by factorizing the gene-by-sample matrix X ∈ R52×189
+ . [Matlab file:

Microarray.m].

to decide whether a gene belongs to a metagene, the first metagene contains one gene (MIP1a
gene), the second metagene contains two genes (CD6 and RANTES), and the third metagene
contains three genes (RANTES, Tbet and IRF5). These genes are well-known in the literature to
play a key role in multiple sclerosis disease studies; see [147] and the references therein.

9.5 Recommender systems and collaborative filtering
The goal of collaborative filtering is to predict the preferences of users for some items (filtering),
based on the preferences or taste information from many users (collaborative). It has been used
extensively by electronic commercial sites as good recommendations increase the propensity of
a purchase.

The most famous example is the prediction of how much someone is going to like a movie
based on her/his movie ratings and the ratings of others. The Netflix prize competition was
launched in 2006 and aimed at improving by 10% the predictions of the Netflix collaborative fil-
tering algorithm with a reward of US$1,000,000. This prize launched a considerable research ef-
fort on this problem. The winners of the competition combined several models, one of the central
ones being low-rank models; see [287]. The rationale behind such models is that the behavior of
most users can be well-modeled as a linear combination of a few feature users, since the low-rank
model gives X(:, j) ≈

∑r
k=1W (:, k)H(k, j) for all j where X is the movie-by-user matrix.

Equivalently, looking at how the rows are reconstructed, that is, X(i, :) ≈
∑r

k=1W (i, k)H(k, :)
for all i, movie preferences can be explained via linear combinations of feature movies related to
genres (such as child oriented, thriller, and romantic). For example, performing a rank-two fac-
torization on the Netflix data set, Koren, Bell, and Volinsky [287, Figure 2] were able to identify
two main genres: male-oriented versus female-oriented movies (for example, Lethal Weapon ver-
sus The Princess Diaries), and serious versus escapist movies (for example, Braveheart versus
The Lion King).

Although nonnegativity is not often used in this context, it would make sense as it provides
easily interpretable feature movies and users; see [124, 85, 226] for some recent works. In
unconstrained factorizations, both factors are typically dense and contain both positive and nega-
tive entries; hence they cannot be easily interpreted. With NMF, it is easy to interpret the feature
users: W (i, k) is the preference of the kth feature user for the ith movie. It is also easy to in-
terpret the behavior of users as linear combinations of the feature users: H(k, j) quantifies how
much the jth user behaves as the kth feature user. Let us illustrate this through a simple example.
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Example 9.1. Let us consider the matrix

X =


2 3 2 ? ?
? 1 ? 3 2
1 ? 4 1 ?
5 4 ? 3 2
? 1 2 ? 4
1 ? 3 4 3

 ,

where each row corresponds to a movie, each column corresponds to a user, and each entry is
the score in {1, 2, 3, 4, 5} of a given user for a given movie. Let us define P ∈ {0, 1}m×n as

P (i, j) =

{
1 if X(i, j) is observed,
0 if X(i, j) = ?.

Most algorithms for NMF can be easily adapted to the NMF problem with missing data and,
more generally, to the weighted NMF problem, that is, to the problem

min
W≥0,H≥0

∑
i,j

Pi,j(X −WH)2i,j .

For example, for HALS, the optimal update for the ℓth column of W is given by

W (:, ℓ) ←
[
(Rℓ ◦ P )H(ℓ, :)⊤

][
P (H(ℓ, :)◦2)⊤

] ,

whereRℓ = X−
∑

k ̸=ℓW (:, k)H(k, :), and similarly for the rows ofH . The derivations of these
updates are obtained in the same way as HALS, and we leave it as an exercise for the interested
reader; see [Matlab file: WLRA.m].

Using r = 3 and a random initialization,66 weighted NMF provides the solution (displayed
with one digit of accuracy)

X =


2 3 2 ? ?
? 1 ? 3 2
1 ? 4 1 ?
5 4 ? 3 2
? 1 2 ? 4
1 ? 3 4 3

 ≈


1.5 1.7 1.8
2.3 0.4 0.3
0.0 5.0 1.2
2.4 0.1 5.0
5.0 0.0 0.0
2.8 2.4 0.0


 0.4 0.2 0.4 1.2 0.8

0.0 0.9 0.8 0.2 0.3
0.8 0.7 0.1 0.0 0.0



=


2.0 3.0 2.0 2.1 1.7
1.0 1.0 1.3 3.0 2.0
1.0 5.3 4.0 1.0 1.6
5.0 4.0 1.4 3.0 2.0
1.8 1.0 2.0 6.2 4.0
1.0 2.7 3.0 4.0 3.0

 ,

with small root-mean-square error, namely

1

∥P∥1

√∑
i,j

Pi,j(X −WH)2i,j = 1.9 10−6;

66Weighted NMF is even more sensitive to initialization than NMF because already the rank-one problem is NP-
hard [196]; see Section 6.4.
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see [Matlab file: RecomSys.m]. Based on this model, we should, for example, recommend
the fifth movie to the fourth user (with a prediction67 of 6.2), while we should not recommend
the fourth movie to the third user (with a prediction of 1.4).

We have scaled the factorization above so that ∥W (:, k)∥∞ = 5 for all k which allows us
to interpret the feature users (that is, the columns of W ) meaningfully. There are three feature
users (the columns of W ) with rather different behaviors, as they all have a different favorite
movie (that is, W has a single entry equal to 5 in each column). The users behave as different
linear combinations of these feature users. For example, the fourth user behaves mostly as the
first feature user with H(:, 4) = (1.2, 0.2, 0)⊤, and the first user behaves midway between the
first and third feature users with H(:, 1) = (0.4, 0, 0.8)⊤.

Low-rank matrix completion based on weighted NMF can be used in other contexts such as
image completion [404, 233].

9.6 Other applications
Other applications of NMF include the following:

• Identification of hidden Markov models [296].

• Community detection [386, 488, 246]: NMF finds subsets of rows and columns of X via
the rank-one factors W (:, k)H(k, :) that are highly connected; see also Sections 5.4.7 and
5.4.9, and in particular Figure 5.9 (page 180).

• Air quality control by identifying the compounds present in the atmosphere [371, 382].

• Explanation of contingency tables using as few independent variables as possible [120];
see also Section 1.4.6.

• Decomposition of various types of spectra into their constitutive materials such as in blind
HU (Section 1.3.2) and SMCR (Section 9.3). Other examples include gas chromatography-
mass spectrometry [371, 65], the analysis of time-resolved Raman spectra [331], and the
decomposition of medical images such as magnetic resonance (spectroscopic) imaging
[318, 406].

• Decomposition of temperature time series via the extraction of physical meaningful sources
[480].

• Decompositions of global spatio-temporal atmospheric chemistry data in order to ex-
tract major features of atmospheric chemistry, such as summertime surface pollution and
biomass burning activities [466].

• Discovering the signatures characterizing geothermal resources and favorable geothermal
systems sites from geothermal data sets [467].

• The problem of nonintrusive appliance load monitoring, which is the energy disaggrega-
tion of fixed and shiftable loads [346, 499]. For instance, daily energy consumption of
a household unit can be disaggregated into various loads such as refrigerators, air condi-
tioner, and lighting.

67Nothing prevents entries of WH from being larger than five nor smaller than one. Kannan, Ishteva, and Park [272]
have developed a bounded low-rank approximation model with the constraints l ≤ WH ≤ u for some parameters
l < u. One should use l = 1 and u = 5 for the Netflix prize, preventing predictions outside the admissible range.
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• Prediction of epileptic seizures using electroencephalographic signals [436].

• Identification of low-dimensional features within large-scale neural recordings [336].

• Computation of the temporal psychovisual modulation which is a paradigm of information
display [484].

We refer the reader to the book [98, Chapter 8] and the surveys [433, 40, 125, 382, 478, 425,
512, 189, 190, 170] and the references therein for other applications of NMF.

9.7 Take-home messages
Since the paper of Lee and Seung [303] in 1999, NMF and its variants have been used in many
different contexts. As soon as your data is nonnegative, it is worth considering such models. They
are easily interpretable and provide sparse and part-based representations. The basis matrixW is
nonnegative and hence can be interpreted in the same way as the data, while the activation/weight
matrix H is nonnegative (and typically sparse) and hence tells us the importance of each basis
vector (that is, each column of W ) in each data sample (that is, each column of X). Moreover,
in several applications, NMF is motivated by physical models where the entries of W and H
represent nonnegative physical quantities, for example in blind HU (Sections 1.4.2 and 1.3.2),
SMCR (Sections 1.4.1 and 9.3), and audio source separation (Section 1.3.4).
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nonnegative least squares, 281

affine
hull, 21, 26
NMF, 176

alternating direction method of multipliers
alternating optimization, 294
nonnegative least squares, 289–291
nonnegative matrix factorization, 291
separable NMF, 251

alternating least squares, 282–283
alternating nonnegative least squares, 281–282
alternating optimization, see block coordinate

descent, two blocks
anchor word assumption, see also separability

assumption, 183, 210, 258
antichain

identifiability of Exact NMF, 127
minimum-volume NMF, 153
nonnegative rank, lower bounds, 68

archetypal analysis, 172
audio source separation, 9, 125, 177, 210
autoencoders, 192
auxiliary function, 265

biadjacency matrix, see bipartite graph
biclique

covering number, 71
maximal, 72
maximum-edge biclique problem, 72, 198
rectangle covering bound, 71

bilinear NMF, 185
binary NMF, 185
bipartite graph, 71, 198, 203

blind hyperspectral unmixing
bilinear NMF, 185
definition, 7
history, 12
minimum-volume NMF, 138
self-modeling curve resolution, 309
separability, 208

block coordinate descent
block successive upper-bound minimization,

268
exact, 267, 268
two blocks, 261

alternating nonnegative least squares, 281
block successive upper-bound minimization, 268

HALS, 286
multiplicative updates, 277

Bolzano–Weierstrass theorem, 267
Boolean matrix factorization, 70, 185
Boolean rank, 69, 71

C (programming language)
NMF toolbox, 305

Cartesian product, 93
CBCL data set, 7f

comparison of NMF algorithms, 295f
deep NMF, 184f
initialization, 300f
NMF vs. sparse NMF, 176f
nonnegative matrix underapproximation, 177f
orthogonal NMF, 138f
projective NMF, 173f
semi-NMF, 175f
separable NMF, 210f

chromatic number of a graph, 71
clique

biclique, see biclique
number, 64
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polytope, 92
symNMF, 178

column space, 21
combinatorial optimization

extended formulations, 15, 83
hyperplane separation bound, 77
rectangle covering bound, 71

communication complexity, 94–95
community detection, 308, 313

symmetric NMF, 179
topic modeling, 182
tri-NMF, 181
tri-symNMF, 182
Zachary karate club, 179

completely positive matrices, 179
completely positive rank, 79, 80
completion, low-rank matrix, see principal

component analysis, missing data
compression, data, 2, 16
computational geometry, 13
condition number

minimum-volume NMF, 143, 145
nonnegative least squares, 289
separable NMF, 214

conditioning, see condition number
cone, 20, 105

copositive, 79
dual, 106
factorizations, 93
polyhedral, 105
rank, 80
second-order, see second-order cone
self-dual, 115
simplicial, 105

conic combination, 20
conical hull, 20
contact change point, 45f, 46, 49, 50f, 130f, 131
contingency table, 14
convex combination, 21
convex hull

definition, 21
nested convex hulls, 22
volume computation, see volume computation

convex NMF, 172
convex-concave-constant decomposition, 274
convolutive NMF, 177

separability, 259
coordinate descent, see also block coordinate

descent, 283
copositive cone, 79
copositive matrices, 78
coupon collector problem, 122
Cramér–Rao lower bound, 304
cross validation, 164, 168

data fitting term, see error measure
deep NMF, 184
dictionary

learning, 3, 150, 151
NMF, 172
self, 172, 250–256

dictionary-based NMF, 172
distribution

Dirichlet, 144, 242
Gaussian, 160
Laplace, 162
multiplicative gamma, 162
not i.i.d., 162
Poisson, 161
uniform, 161

distributional robustness, 164
divergence
β-divergence

illustration, 165f
β-divergence
β-NMF, 165
definition, 165
derivative, 167
domain, 166
Frobenius norm, see Frobenius norm
properties, 165

Itakura–Saito, 162, 165, 270, 276f
Kullback–Leibler, see Kullback–Leibler

divergence
others, 163

divide-and-conquer NMF algorithm, 303
document classification, see also topic modeling, 9
dual cone, 106

Eckart–Young theorem, 196
ellipsoid

maximum-volume, 149
minimum-volume, 237

epsilon, machine, 278, 286
error measure, 3, 4, 160–167
Exact NMF

algorithms, 53
complexity, 51
definition, 19
geometric interpretation, 19
identifiability, see identifiability, Exact NMF
rank-two, 26, 101
regularized, see regularization, Exact NMF
restricted, see restricted Exact NMF

∃R-complete, 54
extended formulations

approximate, 92
Cartesian product, 93
compact, 84
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conic, 93
definition, 83
history, 15
lower bounds, 83
nested polytope problem, 92
n-gons, 86

extension complexity, see extended formulations
extrapolation, 288, 292
extreme direction of a cone, 105
extreme ray of a cone, 105

face of a polytope, 22, 74
facet identification

sparse NMF, 154
facet of a polytope, 22
factorization, matrix

Boolean, see Boolean matrix factorization
Cholesky, 238
cone factorizations, 93
near-separable, 211
nonnegative, see nonnegative matrix

factorizations
positive semidefinite, 93
principal component analysis, see principal

component analysis
singular value decomposition, see singular value

decomposition
trivial, 56, 265
unconstrained, 186

fast anchor words, 230
fast projected gradient method, 287–289
feature extraction, 6, 137, 139, 169, 209
fooling set, 63–65

bound, 64
fractional rectangle covering bound, 73
Frobenius norm

low-rank matrix approximations, 2
maximum likelihood, 161
NMF

algorithms, see nonnegative least squares,
algorithms

computational complexity, 195–200
gradient, 263
multiplicative updates, 272
stationary point, 264

nonnegative rank, lower bound, 78
semi-NMF, 173
singular value decomposition, see singular value

decomposition

gene expression analysis, 309
geometric interpretation

counting lower bound for the nonnegative rank,
67

Exact NMF, 19, 21f, 23f, 25f

nested cone problem, 20
nested convex hulls, 20
nested hexagons, 31, 32f, 35f
nested squares, 48f
neural networks and autoencoders, 193
rank-one perturbation, 59
rank-two Exact NMF, 102f
rank-two NMF, 101
restricted Exact NMF, 36
separable NMF, 134f
Sperner family, 128
successive projection algorithm, 227
sufficiently scattered condition, 112f
Thomas matrix, 29f

heuristic algorithms
alternating least squares, 282
extrapolation for NMF algorithms, 293
globalization for Exact NMF, 53
local search for Exact NMF, 304
maximum volume sub-matrix, 229
multiplicative updates, 271
multistart for NMF algorithms, 299
separable NMF, 247

hidden Markov models, 184, 313
hierarchical alternating least squares, 283–287

accelerated, 284, 294
hierarchical NMF algorithm, 303
Hottopixx, 253
Hoyer sparsity measure, 150
hyperplane separation bound, 76–77, 81
hyperspectral image, 7
hyperspectral unmixing, see blind hyperspectral

unmixing

identifiability
Exact NMF, 100

algebraic characterization, 104
nested cone problem, 105
nested polytope problem, 104
rank-two, 101
rigidity theory, see rigidity theory
separability condition, 107
sparsity of the input matrix, 128
Sperner family, 126
sufficiently scattered condition, see

sufficiently scattered condition
regularized Exact NMF

minimum-volume NMF, 138
orthogonal NMF, 136
separable NMF, 134
sparse NMF, 150

infinity norm
computational complexity, 202
maximum likelihood, 161



346 Index

initialization, 299
intermediate simplex problem, 51
interval valued NMF, 185
irreducible, 173, 197
iterative space reconstruction algorithm, 270

Jensen’s inequality, 275

Karush–Kuhn–Tucker (KKT) conditions, 5,
263–265

kernel NMF, 185
k-face of a polytope, 22, 74
k-means, 3, 188–189, 301

spherical, see spherical k-means
Kruskal rank, 128, 151, 153, 154
k-sparse matrix factorization, see sparse NMF
Kullback–Leibler divergence, 161, 164, 191

definition, 165
KL-NMF

complexity, 200–201
multiplicative updates, 272
stationary points, 200

ℓ1 norm, see also robust PCA
computational complexity, 203
maximum likelihood, 162
normalization, 22, 134, 141

ℓ1,q norm, 251, 255
labeled Markov chain, 13
latent Dirichlet allocation, 183, 193, 258
likelihood, maximum, 160
linear algebra, 13
linear dimensionality reduction, 1–239
linear Euclidean distance matrices, 64

nonnegative rank
antichain bound, 70
counting argument, 67
fooling set bound, 65
geometric bound, 75
nonnegative nuclear norm, 80
rectangle covering bound, 71–73
self-scaled bound, 81
upper bound, 82

restricted nonnegative rank, 65
linear mixing model, 8f, 9
linear optimization

extended formulations, 15, 83
hyperplane separation, 76
rectangle covering bound, 71
second-order cone, 90
separable NMF

Hottopixx, 253
ℓ1,q relaxations, 251
multiple linear programs, 249
self-dictionary, 254

Lipschitz constant, 266
loss function, see error measure
low-rank matrix approximation, 1–292
lower semicontinuous, 57

majorization minimization, 265
multiplicative updates, 273

majorizer, 265
matching problem, 15, 77, 83, 86, 92
MATLAB
lsqnonneg function, 281
nnmf function, 283
code from this book, xii
epsilon, machine, 278
least squares, 282
NMF toolbox, 305
singular value decomposition (SVD), 197

matrix
biadjacency, see bipartite graph
binary, 69
copositive, see copositive matrices
linear Euclidean distance, see linear Euclidean

distance matrices
nested hexagons, 30
nested quadrilaterals, 38, 129
nested squares, 47
orthogonal, 109
permutation, 100
slack, see slack matrix
Thomas, see Thomas matrix
unique disjointness, 95, 96
word co-occurrence, 182

maximum likelihood, 164, 168
maximum-edge biclique problem, see also

biclique, 198, 203
maximum-volume ellipsoid, 149
microarray data analysis, 309
minimum-volume ellipsoid, 237
minimum-volume NMF

algorithm, 288
complexity, 204
identifiability, 138–150, 155
link with sparse NMF, 153–155
model comparison, 144
regularization, 168
volume computation, see volume computation

mixed membership stochastic block model, 184
model-order selection, 167
momentum, see extrapolation
multilayer NMF, 184
multiple measurement vectors, 252
multiplicative updates, 270–280

computational cost, 279
convergence, 277
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fixed-point iteration, 272
flexibility, 280
gradient ratio, 271
majorization minimization, 273
rescaled gradient descent, 272
zero locking phenomenon, 272, 278–279

multispectral imaging, 159, 232
multivariate curve resolution, 12

near-separable factorization, 211
near-separable NMF, see separable NMF
nested cone problem, 20, 105–107
nested convex hulls, see also nested polytope

problem, 20
nested polygon problem, see also nested polytope

problem, 44–50
nested polytope problem

algorithm in two dimensions, 44
complexity, 44–51
definition, 36
extended formulations, 92
history, 13
identifiability of Exact NMF, 104
linear EDMs, 65
nested quadrilaterals, 129
nested regular hexagons, 29, 87
random instances, 61
rank-two Exact NMF, 101
restricted Exact NMF, equivalence with, 36

neural networks, 176, 192
n-gons

extended formulations, 86–91
generic, 91
hexagon, 87
octagon, 87
regular, 90
square, see also Thomas matrix

noise, see also perturbation, 160–167
separable NMF, 214

nondeterministic communication complexity, see
communication complexity

nonnegative least squares, 280
algorithm

active set, 281
alternating direction method of multipliers,

289
coordinate descent, 283
projected gradient methods, 287

nonnegative matrix factorization (NMF)
affine NMF, 176
bilinear NMF, 185
binary NMF, 185
Boolean NMF, see Boolean matrix factorization
convex NMF, 172

convolutive NMF, see convolutive NMF
deep NMF, 184
dictionary-based NMF, 172
error measures, list of, 163t
Exact NMF, see Exact NMF
interval valued NMF, 185
kernel NMF, 185
minimum-volume NMF, see minimum-volume

NMF
multilayer NMF, 184
NMF, 4
nonnegative matrix trifactorization, see

nonnegative matrix trifactorization
nonnegative matrix underapproximation, see

nonnegative matrix underapproximation
online NMF, 185
online resources, 305
orthogonal NMF, see orthogonal NMF
positive matrix factorization, see positive matrix

factorization
rank factorization of nonnegative matrices, 13
regularizations, 168
restricted Exact NMF, see restricted Exact NMF
semi-NMF, see semi-NMF
semi-supervised, 170
separable NMF, see separable NMF
sparse NMF, see sparse NMF
symmetric NMF, see symmetric NMF
toolboxes, 305
variants of NMF, list of, 186t
weighted, see weighted low-rank matrix

approximation
nonnegative matrix trifactorization

model, 181
symmetric, 181–184
symmetric and minimum-volume, 259
symmetric and separable, 257–259

nonnegative matrix underapproximation, 176, 302
nonnegative nuclear norm, 77–80
nonnegative rank, 55

applications, 97
communication complexity, 94
extended formulations, 83
generic values, 61
lower bounds, 62–82
perturbations, 57
properties, 55
rational versus irrational, 53
restricted, see restricted nonnegative rank
upper bounds, 82

norm, xvi, xviii, xix
Frobenius, see Frobenius norm
infinity, see infinity norm
ℓ0, 150
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ℓ1, see ℓ1 norm
ℓ1,q , 251, 255
ℓrow,0, 250
nonnegative nuclear, see nonnegative nuclear

norm
nuclear, see nuclear norm
weighted, see weighted low-rank matrix

approximation
normalization, see scaling
NP-hardness, xiii

Exact NMF, 51, 52
LRA with infinity norm, 202
min-vol NMF, 148, 204
NMF, 195
NMF with ℓ1 norm, 204
NMF with X ≱ 0, 198
NMF with weighted norm, 203
nonnegative PCA, 188
restricted Exact NMF, 51
semi-NMF, 174
separable NMF, 204, 208
sparse NMF, 205
sufficiently scattered condition, 118

nuclear norm, see also nonnegative nuclear norm,
79, 148

objective function, see error measure
online NMF, 185
online resources, 305
optimality conditions, see Karush–Kuhn–Tucker

conditions
orthogonal NMF

algorithm, 282
CBCL data set, 138f
identifiability, 136–138, 155
model, 171
regularization, 169
relaxation of k-means, 189
tri-ONMF, 181
Urban hyperspectral image, 137f
variant of spherical k-means, 189

pairwise independent entries, 63
permutahedron, 84
permutation matrix, 100
Perron–Frobenius theorem, 174, 197
perturbation, see also noise

Exact NMF, 100
nonnegative rank, 57
rank-one, 57

photon counting, 161
polytope

cyclic, 74
definition, 21
dimension, 22

extended formulations of, see extended
formulations, 15

matching, see matching problem
nested polytope problem, see nested polytope

problem, 13
traveling salesman, see traveling salesman

problem
positive matrix factorization, 4, 15
positive semidefinite factorization, 93
positive semidefinite rank, 93
principal component analysis (PCA), 2, 186

missing data, 162, 197, 203, 312
nonnegative, 187–188
robust, see robust PCA

probabilistic latent semantic analysis and
indexing, 189–191

probability, 14
projected gradient method, 287–289
projective NMF, 171
pure-pixel assumption, see also separability

assumption, 109, 209
Python

NMF toolbox, 305

quantifier elimination, 52

R (programming language)
NMF toolbox, 305

Raman spectroscopy, 12, 308
rank

Boolean, see Boolean rank
cone, 80
cp-rank, see completely positive rank
Kruskal, see Kruskal rank
nonnegative, see nonnegative rank
positive semidefinite, see positive semidefinite

rank
restricted nonnegative, see restricted

nonnegative rank
semi-nonnegative, 173

rank-one NMF, 197
rank-two NMF, 26, 101, 199

geometric interpretation, 101
recommender systems, 311–313
rectangle covering bound, 70–73

fractional, 73
refined, 73
unique disjointness matrix, 95

rectangle graph, 64
regularization, 168

Exact NMF, 133
identifiability, see identifiability, regularized

Exact NMF
NMF, 168–170
NMF variants, 185
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sparse NMF, 175
Tikhonov, 168, 290

restricted Exact NMF
complexity, 44–51, 53
definition, 35
nested polytope problem, equivalence with, 36

restricted nonnegative rank
definition, 35
linear EDMs, 65
nonnegative rank, lower bound for, 75
nonnegative rank, upper bound for, 82
slack matrix of a polytope, 89

Richardson–Lucy algorithm, 270
rigidity theory, 128, 133
robust PCA, 3, 162, 204

saddle point, 264, 265
sandwiched simplices problem, 14
scaling

factor H , 140, 142
factor W , 143
factor W or H , 168
input matrix, 21f, 102f, 134f, 189, 212–213
NMF rank-one factors

algorithmic issue, 289
convergence issue, 267
identifiability issue, 100
KKT conditions, 298–299
postprocessing, 307–308

NMF solutions, 286
Schur complement, 227
second-order cone

linear optimization, 90
positive semidefinite cone, 93
sufficiently scattered condition, 110

self dictionary, see dictionary, self
self-modeling curve resolution, 12, 308
self-scaled bound, 80
semi-NMF, 135, 173
semialgebraic set, 52
separability assumption, 107
separable matrix, 107
separable NMF

algorithm
fast anchor words, 230
greedy, 223
heuristic, 247
Hottopixx, 253
idealized, 216
multiple linear programs, 249
N-FINDR, 248
numerical comparison, 241
pure-pixel index, 247
self-dictionary, 250

self-dictionary via linear programming, 254
successive nonnegative projection algorithm,

see successive nonnegative projection
algorithm

successive projection algorithm, see
successive projection algorithm

vertex component analysis, 232
XRAY, 236

applications, 208
assumptions, 211
complexity, 204
convex and dictionary-based NMF, 172
convolutive NMF, 259
definition, 208
Exact NMF, 27
generalization, 259
geometric interpretation, 134f
identifiability, 134–136, 155
initializing NMF algorithms, 301
preconditioning, 237

minimum-volume ellipsoid, 237
successive projection algorithm, 240
truncated SVD, 237
whitening, 237

tri-symNMF, 257
set covering problem, 72
set of feasible solutions, 12, 14, 41, 102
simplex, unit, 21
singular value decomposition (SVD)

accelerating NMF algorithms, 292
definition, 196
Eckart–Young theorem, 196
initializing NMF algorithms, 300
LDR technique, 2, 187
preprocessing, 216, 232, 237, 239
semi-NMF solution, 174

sketching, 292, 304
slack matrix

definition, 85
hexagon, 87
n-gons, see n-gons
octagon, 87
pair of polytopes, of a, 92
permutahedron, 84
square, 86

spark, 151
sparse NMF, 150, 175

complexity, 205
facet identification, 154
HALS algorithm, 287
identifiability, 150–153, 155
link with min-vol NMF, 153–155
regularization, 168
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sparsity, see also sparse NMF, 5
data set, 297
Hoyer, 150, 175
input matrix, 128
pattern, 62
sufficiently scattered condition, 118, 119

spatial information, 137, 169
spectrogram, 9, 177
Sperner family, see antichain
spherical k-means, 188–189, 301
stationary point, 264
statistical model, 160
stochastic gradient descent, 304
stochastic sequential machines, 13
stopping criterion, 297
successive nonnegative projection algorithm, see

also separable NMF, 232–236
computational cost, 235
initializing NMF algorithms, 146, 301
robustness, 235
SPA, comparison, 235

successive projection algorithm, see also separable
NMF, 223–230

computational cost, 227
fast anchor words, 230
geometric interpretation, 227
history, 229
initializing NMF algorithms, 137, 172, 173, 176
linear dimensionality reduction, 240
minimum-volume ellipsoid, 238
preconditioner, 240
preprocessing, 239
pros and cons, 228
robustness, 226
SNPA, comparison, 235
variants, 229

sufficiently scattered condition
definition, 109
example, 111
geometric interpretation, 112f
identifiability of Exact NMF, 116
identifiability of minimum-volume NMF, 140,

142, 143
necessary condition, 119
phase transition, 124
sparsity, 118, 119
sufficient condition, 118

sum of squares, 80
support, 71
swimmer data set, 6
Sylvester’s four-point problem, 62
symmetric NMF, 133, 178–179

tensor, xiv, 201

text mining, see also topic modeling, 9
theorem

Bolzano–Weierstrass, 267
Eckart–Young, 196
Perron–Frobenius, 174, 197
Yannakakis, 85

Thomas matrix
fooling set, 63
fooling set bound, 64
history, 14
hyperplane separation bound, 77
nested squares, 48
nonnegative rank, 28
slack matrix, 86

toolboxes, 305
topic modeling

NMF, 9
PLSI, PLSA, and KL-NMF, 189–191
separable tri-symNMF, 257–259
tri-symNMF, 182–183

traveling salesman problem (TSP), 15, 83, 86
trifactorization, see nonnegative matrix

trifactorization
truncated SVD, see also singular value

decomposition, 196
tuning, parameters, 170

underapproximation, see nonnegative matrix
underapproximation

unique disjointness
matrix, 95, 96
problem, 95–97

uniqueness of Exact NMF, see identifiability,
Exact NMF

unit simplex, 21
Urban hyperspectral image, 8f

hierarchical rank-two NMF, 303f
min-vol NMF, 147f
orthogonal NMF, 137f
projective NMF, 172f

vertex component analysis, 232
volume computation, 139, 227

Wedderburn rank reduction formula, 53, 302
weighted low-rank matrix approximation, see also

principal component analysis, missing data,
3, 162, 203, 312

whitening, 237

Yannakakis theorem, 85

Zachary’s karate club, 179
zero locking phenomenon, 272, 278–279


