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Abstract

Symmetric nonnegative matrix factorization (symNMF) is a variant of nonnegative
matrix factorization (NMF) that allows handling symmetric input matrices and has
been shown to be particularly well suited for clustering tasks. In this paper, we
present a new model, dubbed off-diagonal symNMF (ODsymNMF), that does not
take into account the diagonal entries of the input matrix in the objective function.
ODsymNMEF has three key advantages compared to symNME. First, ODsymNMF is
theoretically much more sound as there always exists an exact factorization of size
at most n(n — 1)/2 where n is the dimension of the input matrix. Second, it makes
more sense in practice as diagonal entries of the input matrix typically correspond
to the similarity between an item and itself, not bringing much information. Third, it
makes the optimization problem much easier to solve. In particular, it will allow us to
design an algorithm based on coordinate descent that minimizes the component-wise
£1 norm between the input matrix and its approximation. We prove that this norm is
much better suited for binary input matrices often encountered in practice. We also
derive a coordinate descent method for the component-wise £, norm, and compare
the two approaches with symNMF on synthetic and document datasets.
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1 Introduction

Nonnegative matrix factorization (NMF) is a widely used linear dimension reduction
(LDR) technique which extracts useful information in images, documents, or more
generally nonnegative datasets. Given a nonnegative matrix A € R’/™" and a positive
integer r < min(m, n), NMF aims at finding two nonnegative matrices W € R’} ™"
and H € R} such that the low-rank matrix W H approximates the input matrix
A, which means that A;; ~ (WHT),-j fori =1,..,mand j = 1, ..., n. The design
and algorithmic implementation of refined NMF models for various applications is
still a very active area of research; see [8, 11, 12, 22] and the references therein.

When the input matrix A € R’}*" is symmetric, it makes sense to look for a
low-rank approximation which is symmetric as well. For this purpose, symmetric
nonnegative matrix factorization (symNMF) seeks a matrix H € R*" such that
HHT approximates A, that is Ajj ~ (HHT)ij for 1 <i, j <n. SymNMF is mainly
used as a clustering method. In fact, the matrix A usually represents the similarity
measured between each pair of a set of n elements. The symNMF H H' of A amounts
to decomposing A into r rank-1 factors:

,
A~ HH" = HH,".
k=1

Since the rank-1 factors are nonnegative, there is no cancellation and A is approxi-
mated via the sum of r rank-1 nonnegative matrices. The non-zero entries of a rank-1
factor correspond to a square submatrix of A with mostly positive entries, that is, to
a cluster within A where all elements are highly connected. SymNMF has been used
successfully in many different settings and was proved to compete with standard clus-
tering techniques such as normalized cut, spectral clustering, k-means, and spherical
k-means; see [7, 18-20, 28-30] and the references therein, and see also Section 5.2
where we compare symNMF models to k-means and spectral clustering.

In order to find the matrix H, the symNMF problem is mainly tackled by solving
the following optimization problem:

in ||A—-HHT|3, 1

min || 7 @

which is non-convex and NP-hard to solve [9]. Nevertheless, several local schemes
were developed in order to obtain acceptable solutions—typically such algorithms

are guaranteed to converge to first-order stationary points of (1); see for example [17,
19, 24, 26].

Outline and contribution of the paper In this work, we introduce a closely related

variant of symNMF where the diagonal entries of the input matrix A are not taken
into account, that is, we are looking for a low-rank approximation H H” such that

Aij~ (HHT);;  fori # j. 2)
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It has to be noted that this idea has already been used in the context of approxi-
mation of correlation matrices [6]. However, the nonnegativity of the factor H is
not enforced; hence the problem is rather different, being a symmetric eigenvalue
problem efficiently solvable.

Throughout this paper, we will refer to this problem as off-diagonal SymNMF
(ODsymNMF) and focus on solving

n n
P
min |4 — HH lop,, where A~ HHllop,, = [ 33" ‘A —HHT|
= i=1 j=1
i

tj

3)
Although this model might be surprising at first (one may say odd), we describe its
advantages and why it is meaningful in practice in Section 2. In Section 3, we develop
two local algorithms based on coordinate descent (CD) to tackle the cases p = 1 and
p=2.

In Section 4, we propose an initialization scheme for ODsymNMF that is particu-
larly crucial when p = 1 as it is more sensitive to initialization than when p = 2. In
Section 5, we perform some numerical experiments on synthetic and real examples
(document datasets) highlighting the validity of the ODsymNMF model.

2 The why of ODsymNMF

In this section, we discuss the advantages of ODsymNMF compared to symNMF. We
also show that ODsymNMEF for p = 1 is an ideal model in the rank-1 case when A
is binary.

2.1 Advantages of ODsymNMF

Let us describe the three most important advantages of ODsymNMF compared to
symNMF.

From a practical point a view When the entries of A correspond to the similarity
between items, the detection of clusters is made more complicated by the overlap
between clusters. As illustrated in the toy example 1 below, the sum of the two desired
clusters H. 1 H. T and H;,sz,zT is not equal to the input matrix A. In the case where
the diagonal entries are not taken into account, then the decomposition of A into
H.1H.;T + H.,H.»" is exact in the sense that |[A — HHT |lop,, = 0. Since a
diagonal entry represents the similarity between an item and itself, it should be a
large value for most similarity measures. In order to approximate these large values,
the optimization in symNMF methods deteriorates the quality of the cluster detection
(see Section 5 where we show that ignoring the diagonal entries leads to a better
clustering accuracy).
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Example 1 For the matrix

A H . H ;T H.oH. T

symNMF is unable to perfectly recover these two clusters (in fact, one eigenvalue of
A is negative hence symNMF cannot exactly reconstruct this matrix even for r larger
than two; see below), while ODsymNMF perfectly does so as it does not take into
account diagonal entries.

From a theoretical point of view The cp-rank of a matrix A is the minimum positive
integer r such that there exists an exact factorization A = H H” where H is an n-by-
r nonnegative matrix [1]. The cp-rank of a symmetric matrix A is said to be infinite
when no exact factorization H H” exists for any value of r. This is the case for the
matrix A in example 1 since A has one negative eigenvalue, namely, 1 — +/2, while
all approximations of the form HH are positive definite hence
min |[A-—HH | > V21
HeRY”

for any value of r (this follows from the Eckart-Young theorem). On the contrary,
ODsymNMF is much more sound as there always exists an exact factorization with
H having at most K columns where K is half the number of non-zero off-diagonal
entries of A. In particular, when A has only positive off-diagonal entries, we have
K = "("—;) Such a factorization is obtained by using a column H. , for each pair of
entries A, = Ayp # 0 such that, fori # j,

Apg = Agp it (G, J) €l{(p. ). (g, P}

HoH Ty —
(H.¢H. ¢ )ij 0 otherwise,

which can be achieved for example by choosing

1 ifi = p,
Hi’({: qu ifi:q,
0 otherwise.

This amounts to decompose A as the sum of K clusters containing 2 elements cor-
responding to each pair of non-zero entries. Of course, in practice, because of noise
and model misfit, exact factorizations are not desirable; see Section 5. However, the
above observation shows that ODsymNMF is much more sensible than symNMF that
cannot even decompose some simple rank-2 matrices as shown for the matrix A from
example 1. In fact, the solution obtained by symNMF for that matrix is the following
(with three digits of accuracy):

110 1.047 0.088 1.047 0.088 \ " 1.104 0.854 0.104
A=|111|~HHT =| 0748 0.805 0.748 0.805 = | 0.854 1.207 0.854 | .
011

0.010 1.050 0.010 1.050 0.104 0.854 1.104
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From an algorithmic point of view One of the most widely used optimization scheme
in matrix factorization is CD which consists in updating one variable at a time while
considering the other ones fixed [21, 27]. When applied to symNMEF, CD requires
to find the minimum of a univariate quartic non-convex polynomial, which can be
done in O (1) [26]. However, as pointed out in [24, 26], the drawback is that the con-
vergence to a stationary point is not guaranteed since the minimum of the quartic
polynomial may not be unique. As we show in Section 3, using ODsymNMF makes
the optimization problem easier to solve: the sub-problem in one entry of H (the oth-
ers being fixed) is a quadratic optimization problem over the nonnegative orthant for
which a closed-form solution exists. Moreover, since the optimal solution of these
sub-problems is uniquely attained, convergence of CD to stationary points is guar-
anteed [4, 5]. Moreover, as the sub-problems of ODsymNMF are simpler, we will
be able to design CD for another loss function, namely the component-wise £1-norm
which would be highly non-trivial for symNMF (see Section 3.2).

2.2 Rank-1 binary ODsymNMF

In many applications, the matrix A is binary; hence, it is implicitly assumed that the
noise is also binary [31]. This is the case for example for adjacency matrices of undi-
rected and unweighted graphs that appear in many applications, such as community
detection [10]. Although our theoretical results focus on the binary case, the algo-
rithms we will propose in Section 3 can handle any symmetric input matrix, and we
will provide numerical experiments on some non-binary real-world documents data
sets in Section 5.2. For a low-rank binary input matrix and binary noise, the maximum
likelihood estimator is the optimal solution of

min  ||[A—HH"|lop,o, 4
HeR™"

where the £ norm counts the number of non-zero entries in A — HH7, that is, the
number of mismatches between A and HH”. An advantage of this formulation is
that it produces binary solutions; see Lemma 1. Such binary solutions allow eas-
ier interpretations for most applications. However, it is not straightforward to design
local schemes for (4) since the objective function is of combinatorial nature. A stan-
dard approach to deal with (4) is to replace it with its convex surrogate, the £1-norm,
where we also relax the binary constraints on H:

min IA—HH" |op,1. Q)
Hel0, 177"

In the following, we prove that the problems in £ and £ norms, that is, (4) and
(5), are equivalent for r = 1; see Theorem 1. Note that this equivalence was also
proved in the asymmetric case, that is, for NMF [14]. This means that the £; norm is
particularly well suited for binary input matrices, much better than the £, norm which
generates dense solutions. In fact, in the rank-1 case, the optimal solution using the
£> norm is always positive when A is irreducible (that is, when the graph induced by
A is connected) which follows from the Perron-Frobenius theorem [3]; see also [14]
for a discussion.
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The first lemma shows that a solution of (4) can always be transformed into a
binary solution with a lower objective function value; this observation is similar than
in the unsymmetric case [14, Lemma 1].

Lemma 1 Let h € R" and let A be a n-by-n binary matrix. Applying the following
simple transformation to h

0 ifh; =0
@ (hj) = Thi =

1 otherwise
gives

1A — @)@ () |lop.o < [|A —hh"|lop.o.

Proof There are two cases:

1. Ifhjhj =0, then @ (h;)@(h;) = 0 hence the transformation does not affect the

approximation.

2. Ifhihj #0,then ®(h;)@(h;) = 1.1If A;; = 0 then ||A — @)@ ) |lop.o =
IIA — hi'llopo = 1 while, if A;j = 1, [|A — kh"[lopo = [IA —
@ (h)®(h) [lop,o = 0. O

Lemma 1 implies that the optimal solution of (4) with r = 1 can be assumed to be
binary without loss of generality, using a simple transformation. The second lemma
below shows that the same observation applies to (5).

Lemma 2 Let h € [0, 11" and let A be a n-by-n binary matrix. There exists a simple
transformation to h (see the proof below) that generates a binary vector h' € {0, 1}"
such that

1A —'B' T [lop1 < ||A — hhT |lop.1.

Proof Let h € [0, 1]7, and let us show that we can transform it into a binary solution
with a lower objective function value. For each i € {1, ..., n} such that i; ¢ {0, 1},
the terms of the objective function involving h; are

fhiy=">" |Aij—hihj|. (6)

j=Li#i

The function (6) is piecewise linear and convex; hence, minimizing it over the interval
[0, 1] leads to a global minimum equal to 0, 1, or one of the breakpoints ’2—’: where
ke{jlj#i hj#0}. Since A is binary and 0 < h < 1, we have that ’2—’;" is either

equal to 0 or is larger than 1. Therefore, O or 1 is a global minimum of f(k;) over the
interval [0, 1], and replacing A; by 0 or 1 will decrease the objective function. O
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Lemmas 1 and 2 imply that the £ and ¢; norm formulations of ODsymNMEF are
equivalent in the following sense.

Theorem 1 Any optimal solution of the rank-1 problem (4) can be transformed into
a binary optimal solution which is also optimal for the rank-1 problem (5), and vice
versa.

Proof By Lemmas 1 and 2, we know that we can transform any solution into a
binary solution with a smaller objective function value. For these binary solutions, the
entries of the residual P = A —hh” belongto {—1, 0, 1}. Since || Pllop,o = IPllop,1
for any matrix P € {—1, 0, 1}""*", the binary optimal solutions for one problem are
also optimal for the other problem. O

Theorem 1 shows that the ¢; relaxation (5) is particularly well suited for binary
input matrices. In Section 3.2, we design a CD scheme for this problem and, in
Section 5, we illustrate this observation with some numerical experiments, showing
that it outperforms the £, norm in this scenario.

3 Coordinate descent schemes for ODsymNMF

Coordinate descent (CD) is among the most intuitive methods to solve optimization
problems [27]. At each iteration, all variables are fixed but one which is then opti-
mized exactly or inexactly depending on the difficulty of the corresponding univariate
problem. For symNMEF (1) using the Frobenius norm, when all entries of H are fixed
except one, the optimal value of the univariate problem is the root of a polynomial of
the type x> + ax + b which can be computed in closed-form [26].

Let us introduce our general CD framework for ODsymNME. If we optimize the
(k, Dth entry of H, the univariate problem to solve is the following:

1
p P

.
min | > A — (Y H.H], . 7
Hei=0\ i =1 '

i,j

To simplify the presentation, let us focus on one rank-1 factor, say H.;H.;”, and
denote P the residual matrix P = A — 371, H.,H.,T corresponding to this
factor. Let us also denote the vector » = H(:,[). When optimizing the entries of
h = H(:, 1) in CD, we face the following rank-1 ODsymNMF problem:

1

e ;(Pi,/—hihj)p : ®)
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CD can be applied by solving iteratively rank-1 ODsymNMF problems for each
column H.; with/ = 1, ..., r where the entries of each column are themselves solved
via CD; see Algorithm 1.

Algorithm1 H = ODsymNMF (A, Hy).

INPUT: A € R"*" Hyj € R'j_xr
OUTPUT: H € R*"
H < Hj
R« A—HHT
while stopping criterion not satisfied do
for/ =1:rdo
P < R+ H H,;"
H.; < rank_one_.ODsymNMF (P, H. )
R« P—H H,"
end for
11: end while

R e A AN e

_
=

It remains to show how to apply CD to rank-1 ODsymNMEF. In the next two sub-
sections, we will see how to do so for the Frobenius-norm (p = 2) and for the
component-wise £1-norm (p = 1).

3.1 ODsymNMF with the Frobenius norm

When p = 2 in the optimization problem (8), we are looking for the solution mini-
mizing the least-squares error between P and its rank-1 approximation 2h” without
taking into account the diagonal entries. This problem can be written as

) l — < 2
min £ (h), wheref(h>=Z§j§(Pi,j—hihj) : ©)
J#i

For the kth entry of i, with k € {1, ..., n}, the objective function can be decomposed
as follows:

PR , 1 1 )
f(]’l):ZZZ(Pi,j—hihj) +ZZ(Pk’j_hkhj) +ZZ(Pi’k_hihk) .
i=1 j=I j=1 i=1
ik j#i J#k i#k

Jj#k
(10)
Since the matrix P is symmetric, the last two terms of the right-hand side of (10) are
equal to one another. This expression shows that the sub-problem in the entry Ay is a
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quadratic optimization problem whose optimal solution is either O or the single root
of the equation V f(h), = 0 where V f (h) represents the gradient of f (). We have

n
V) =Y (hih% — P jhj) = aghy — by (1)
j=1
J#k
where ax = |[h|3 — h? and by = hT P.x — hyPyx. The optimal value h that

minimizes (10) over the nonnegative orthant is

b
hf = max (0, —"> . (12)

Ak

Due to the computation of a; and by, the update of one variable with (12) can be
done in O(n). Therefore, algorithm 1 runs in O(n?r) for updating once the nr entries
of H since lines 7, 8, and 9 run each in O(nz). However, algorithm 1 requires to
store the residual matrices P and R which have O(n?) entries. Even when the matrix
A is sparse, these residual matrices are usually dense which leads to a memory cost
of O(n?). In the following, we show how to tackle the case of large sparse matrices
more efficiently by avoiding the computation of P and R, reducing the computational
costs to O(Kr) and the memory cost to O(K) where K is the number of nonzero
entries of A.

Avoiding the explicit computation of the residual matrix In order to compute (12),
we need to compute a; and by that depend on P. After some calculations by simply
expanding P, we obtain that the optimal solution for Ay ;, all other variables being
fixed, is given by

b1
h,':l = max <0, — ],
’ a1

where ay; = || H. /|5 — sz,l and
by =H Ay — H(H H).; — He (A + sz,l = I H.al13 = I i 115)-

Algorithm 2 uses these expressions to avoid the computation of P and R, but
produces the same output as Algorithm 1.
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Algorithm 2 H = ODsymNMF-¢,(A, Hyp).

INPUT: A € R"™", Hy € Ry
OUTPUT: H € R’
H <« H()
fori =1:rdo
Cr < ||H..l13
end for
fork=1:ndo
Ly < ||H.:13
end for
D <« H'H
: while stopping criterion not satisfied do
for/=1:rdo
fork=1:ndo
ar) < Cp — HkZJ
brj < (H.)" Ak — Hi Dy + Hi(Cr + Ly — Agp — HkZJ)

b1
) m)

C1 < Cr+ (H{)* — HY,
Ly < Ly + (H)* — H,
Dy. < Dy.— Hi .Hyy + HP HY,
D.; < (D))"
end for
end for
: end while

R AR AN U A

— _ = = =
EaE S A T =

—_ =
(AN

ka[ <« max(0

R R
s )

Let us analyze the computational cost and memory of algorithm 2. The precom-
putations of || Hy . ||%, ||H;,l||% in O(nr) (see lines 4-9) and of D in O(nr?) (see line
10) allow computing the optimal value H,:' ; in O(n) when A is dense due to the

product H;,ITA;,k. It is therefore possible to apply one iteration of CD in On?r)
operations. When A contains K nonzero entries, the computational complexity drops
to O (r max (K, nr)) since the computation of H;JTA can be done in O(K) oper-
ations. This result implies that that when K = O(n), which is the case for sparse
matrices, algorithm 2 runs in Omr?) operations per iteration. In terms of memory,
algorithm 2 only needs to store A and H, for a cost of O(K + nr).

3.2 ODsymNMF with the component-wise £1-norm

The ¢1-norm is usually used to tackle Laplacian noise but is also a well-known surro-
gate of the £p-norm in the presence of binary noise. In fact, we showed in Section 2.2
that for the ODsymNMF model using the £1-norm is equivalent to using the £op-norm
in the rank-1 binary case. For symNMF with the £;-norm, the univariate problem
arising when using CD is a sum of absolute value of quadratic terms. Such a func-
tion is non-convex in general, making it difficult to optimize within a CD method.
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With ODsymNME, the quadratic terms disappear and we obtain a univariate convex
problem. When p = 1 in (8), we have to minimize a sum of absolute values:

) 1 n n
min f(h),  where f(h) = 2]:2 |Pi.j — hihj]|. (13)

i=1 j=

J#i

As with the £>-norm, let us focus on the kth variable: we have

1 n n 1 n 1 n
fh) = EZZMJ _hihj|+§Z|Pk,j _hkhj|+§Z‘Pi,k_hihk|- (14)

i=1 j=1 j=1 i=1
i#k ji J#k ik
J#k

The first term of the right-hand side of (14) does not involve hj, and the last two
terms are equal when P is symmetric. Hence, the terms containing /4 in the objective
function f(h) are Z?:l,i;ék |P,-,k - hihk‘. Hence, defining a € R" ! as a = h(K)
where K = {1,2,...,n}\{k}, and b € R lash = P (k, K), finding the optimal
value of hj requires solving

n
min > |aix — bil. (15)
i=1

x>0
The objective is a convex piecewise linear non-differentiable function, and this prob-
lem is a constrained weighted median problem. There exists an algorithm in O(n)
operations to solve the weighted median problem [16]. In the constrained case,
because (15) is convex, if the optimal solution x* is negative, we can replace it by
zero to obtain the optimal solution. For the sake of completeness, Algorithm 7 in
Appendix presents a simple algorithm for this constrained weighted median prob-
lem running in O(n log n) operations (as it requires sorting the entries of a vector of

length n). Finally, algorithm 3 summarizes our algorithm for the rank-1 ODsymNMF
with £{-norm.

Algorithm 3 4 = rank_oneODsymNMF-£ (P, hy).

. INPUT: P € R"™" hy € R".
. OUTPUT: h € R",
:h < hy
:fork=1:ndo
K=1{1,2,... n)\{k}
a < h(K)
b < Pk, K)
hf < constrained weighted median(a, b) % see Algorithm 7
end for

R A SR > ey

Since algorithm 7 requires O (n log n) operations, algorithm 3 runs in O(n? logn).
As noted above, the logn factor could be removed by using the weighted median
algorithm from [16]. Overall, updating once each entry of H using the £1-norm when
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the residual matrix R is available has a computational complexity of O (nzr log n)
operations which is the same as for the £>-norm, up to the logarithmic factor.

Avoiding the explicit computation of the residual matrices As for the £, norm, in
case of a sparse input matrix A, we would like to avoid the computation of the resid-
ual matrices P and R. Similarly, as for the ¢, norm, we substitute the expression
P=A-— Z;zl’t# H;JH;JT in the updates of Hy ; see algorithm 4 for the details.
Since the residual matrix is not stored, the main difference lies in the computation of
the terms » 7y _; ,; Hi  Hy,, which occurs O(n) times for the update of one entry. The

overall computational complexity of algorithm 4 is therefore O (n?r?) operations. As
opposed to algorithms 1 and 3 running in O(n?r) operations, avoiding the storage of
a n-by-n dense matrix increases the computational cost. Moreover, unfortunately, the
£1-norm does not allow the sparsity of the input matrix A to have any kind of effect
in the overall complexity because A is never multiplied by any other matrix during
the updates (see lines 5-14 in algorithm 4). In summary, we can reduce the memory
cost to O(K ), while the computational cost slightly increases, to O(n*r?) operations.

Algorithm4 H = ODsymNMF-¢, (A, Hp).

1: INPUT: A € R"™", Hy € R'*"
2. OUTPUT: H € R"*"

32 H <« Hy

4: while stopping criterion not satisfied do

5 for/ =1:rdo

6 fork=1:ndo

7 fori =1:ndo

8: a; < H;;

9 bi < Aix — Hy.H;." + H; Hy,

10: end for

11: K={1,2,...,n}\{k}

12: H,:'l <« constrained.weighted median(a(K), b(K)) % see
Algorithm 7

13: end for

14 end for

15: end while

3.3 Summary and convergence of the algorithms

Table 1 summarizes the complexity of the algorithms proposed in this section. The
three lines of the table concern respectively:

—  The problem (3) for p = 2, denoted ODsymNMF-¢, and solved with algorithm
2,

—  The problem (3) for p = 1, denoted ODsymNMF-¢; and solved with algorithms
1 and 3 where a residual matrix is used,

@ Springer



Numerical Algorithms

Table 1 Summary of the computational and memory complexities

General form Dense case Sparse case
K =0@n?) K=0®m
# flops Memory # flops Memory  # flops Memory

ODsymNMF-¢, O@(rmax(K,nr)) O@max(K,nr)) Om%r) On?) Onr?) O(nr)
Algorithm 2

ODsymNME-¢; On?r) Om?) Oowm*ry 0Om»  O0wr) 0w
Algorithm 1 and 3

ODsymNMF-¢; On?r?) O@max(K,nr)) Om*r? Om?) Om3rt)y  Onr)
Algorithm 4

— The problem (3) for p = 1, denoted ODsymNMF-¢; and solved with algorithm
4 where the use of a residual matrix is avoided.

Convergence The result [4; 5, Proposition 2.7.1] guarantees that every limit point of
an exact cyclic CD is a stationary point, given that

1. The objective function is continuously differentiable,

2. Each block of variables is required to belong to a closed convex set,

3. The minimum computed at each iteration for a given block of variables is
uniquely attained, and

4. The objective function values in the interval between all iterates and the next
(which is obtained by updating a single block of variables) are monotonically
decreasing.

For the ¢, norm, the subproblems in one variable are quadratic problems in one
variable (see above); hence, the four conditions above are satisfied. Therefore, every
limit point of algorithm 2 is a stationary point. Note that there is at least one limit
point since algorithm 2 decreases the objective function monotonically, and the level
sets of ODsymNMF-¢,, thatis, {H > 0| |A — HHT||0D,2 < ¢} for some constant
¢, are compact (Bolzano-Weierstrass theorem).

For the £1 norm, differentiability does not hold; hence, we can only guarantee the
convergence of the objective function values (which decreases monotonically and
is bounded below), as well as the existence of a limit point, as for the £, norm.
In fact, for non-differentiable objectives, counter examples exist even when all the
other assumptions above are satisfied; see for example [2, Example 14.5]. However,
in practice, we have observed convergence in all our numerical experiments. An
interesting direction of further research would be to characterize situations in which
our coordinate descent algorithm for ODsymNMF-¢; is guaranteed to converge (or
maybe adapt our algorithm so that convergence is guaranteed). As far as we know,
current convergence results do not apply to ODsymNMF-¢; [21, 27].
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4 A new initialization scheme for ODsymNMF

In this section, we discuss the initialization of ODsymNMF algorithms, and propose
a new very efficient greedy initialization scheme.

As far as we know, the only two strategies to initialize H in symNMF are either
at random [19] (e.g., using the uniform distribution in the interval [0,1] for each
entry of H) or with the zero matrix of appropriate dimension [26]. However, these
initializations have some drawbacks:

— When initializing H randomly, the first iterates are trying at first to approximate a
matrix which is highly perturbed (A — )"} _, H sz) with a randomly generated
matrix (H.q H:{) which is not very reasonable. Hence, the first steps are wasting
the global computational effort.

—  When initializing H with the zero matrix, the solution found has a particular
structure where the first factor is dense and the other ones are sparser. The reason
is that the first factor is given more importance since it is optimized first hence it
will be close to the best rank-one approximation of A [26].

Note that these drawbacks apply to any £, norm symNMF model.

We propose in the following a greedy strategy that adapts to the norm used, and
that does not have the drawbacks mentioned above while having a low computational
cost (roughly r iterations of our CD methods; see Table 2 below). It consists in con-
structing each column of H sequentially by selecting non-zero entries depending on
the non-zero entries of A. Our approach is summarized in Algorithm 5. It works as
follows, the matrix H is initialized with the zero matrix, and a residual matrix R is
initialized as the input matrix A and will be updated after each column of H is con-
structed (steps 3 and 4). The columns of H are computed sequentially by repeating
the following steps: for j =1, ..., r,

— Initialization. The weighting vector w is set as the vector of all ones of dimension
n, and the index set / as the empty set (steps 6 and 7). The vector w will represent
the importance of the entries of H(:, j) while the index set / will correspond to
the non-zero entries of H(:, j).

— Loopover{l,2,...,n}:

— Find the most important element, denoted k: it is the element maximiz-
ing Rw, that is, k = argmax;(Rw); (step 11). Note that the very first
time this loop is entered, Rw is the sum of the entries in the rows of A
so the first element selected is the element corresponding to the row of
A with the largest £1 norm. This element k is added to I (step 12).

— The entry Hy ; is then updated optimally by taking into account the
information already contained in the cluster, that is, Ry ; and Hj ;. That
way the value obtained for Hy_; is based on the values already updated,
and is optimized according with the closed-form solutions derived in the
previous sections (step 17). This update is referred to as Optimize_hk
in algorithm 5.
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For ODsymNMF-/¢1, this update will use the weighted median algo-
rithm (see step 8 of Algorithm 3) while for ODsymNMF-¢, this update
is the solution of (10) (see step 16 of Algorithm 2). For the first updated
entry of a column, we set Hy ; = 1 (step 14).

— The weighting vector w is updated: it is equal to the sum of the columns
of A in the index set I, that is, w = Zj A(:, I (step 15 or 18). This step
is particularly important in the first few iterations because the weighting
vector w has a strong impact on the selection process. It allows to add
indices in I highly connected to the indices already in /.

—  The residual is updated (step 21).

Algorithm 5 H = Greedy_init(A,r).

1: INPUT: A € R™", r € Nt
2: OUTPUT: H € R'*"

3 H < 0"

4: R < A

5: for j=1:rdo

6 w <~ 1"

7 I < {}

8: fori =1:ndo

9: s < Rw

10: §] <— —00

11: [m, k] < max(s)
12: I < ITU{k}

13: if i = 1 then

14: Hi j <1

15: w < A g

16: else

17: Hk,j <« Optimize_hk(R“, H[»j,k)
18: w<—w+ Ak
19: end if

20: end for

21 R« R—H j(H )T
22: end for

The computational complexity of Algorithm 5 is O(rn?), which makes it too
expensive in most applications; and this is not desirable: the initialization scheme
should have a low computational cost compared to the optimization scheme. This
heavy computational cost comes from step 9 where the computation of the product
between R and w is O(nz). However, during the last iterations, it becomes less and
less necessary to compute this product since the update of the weighting vector w
in step 18 has a diluted effect, rendering the step 9 less useful. Therefore, we found
that updating w only a small number of times works as well in practice. In particular,
using a multiple of the rank r (typically 2r) works very well. Moreover, to keep the
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spatial complexity low, the residual matrix R is not computed explicitly (as in our
CD schemes). These two changes lead to Algorithm 6: it is the same as Algorithm 5
except that s is only updated for 2r iterations, while R is not computed explicitly.

Algorithm 6 H = Greedy_init(A,r, p).

1: INPUT: A e R, r e N*, p e {1, 2}
2 OUTPUT: H € R™*"

3. H <« 0"

4: for j=1:rdo

5: w <« 1"

6: I < FALSE"

7 Cj ~0

8 fori =1:ndo

9 if i < 2r then

10: s <~ Aw—H. 1. (H:lej_lw)

11: §] < —00

12: else

13: §] < —00

14: end if

15: [m, k] < max(s)

16: if i = 1 then

17: Hij <1

18: w <— A;,k

19: else

20: if p = 2 then

21: b<_H]Y:jAI,k_(Hlj:jHl,l:j—l)Hky:l;j_l

22: if b > 0 then

23: H,:fj <« CL_/_

24: else

25: Hk‘fj «~0

26: end if

27: else

28: Ry <~ Apg— H1,1:j—1HkT,1;j_1

29: H,j:. < constrained weighted median(R;k, Hy ;)
Yosee Algorithm 7

30: end if

31: w<—w+ Ak

32: end if

33: Iy <~ TRUE

34: Ci <~ Cj+ sz,j

35: end for

36: end for

The overall computational cost of Algorithm 6 is O(r*n?) operations so it repre-
sents r iterations of Algorithms 2 and 3. Unfortunately the sparsity of the input has
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Table 2 Time (in ms) to run the experimentations

£1-norm Frobenius-norm
Greedy rxAlgorithm 4 Greedy rxAlgorithm 2
n =100 r=2 76.9 71.5 74.9 74.5
r=>5 80.1 91.7 77.0 77.8
r=10 88.0 142 83.2 87.4
n =500 r=2 98 115 85 101
r=>5 133 251 109 161
r=10 181 623 141 289
The input matrices A are balanced, i.e., if n = 100 and r = 10, A is composed of 10 disjointed clusters

of size 10 each. For each of the two norms used, the time spent in the Greedy initialization is always less
than r iterations of Algorithms 2 and 3

no impact on the computational cost, but the replacing of the residual matrix reduces
the spatial complexity from O(n?) to O(K).

Table 2 compares the computational times of the greedy initialization (Algorithm 6)
and r iterations of the corresponding ODsymNMF algorithm. We observe that the
cost of the greedy initialization is of the order r iterations of the ODsymNMF algo-
rithms; in fact, it is always smaller (except for n = 100, r = 2, and for the Frobenius
norm) while being significantly smaller as n and r increase. Hence, the greedy initial-
ization is relatively cheap compared to running the main loops of the OD-symNMF
algorithms.

5 Numerical experiments

In this section, we will compare the performances of the CD methods designed in
Section 3 with the CD method for the usual symNMF model [26] on synthetic and
real examples. Our code is available from https://sites.google.com/site/nicolasgillis/
code and the numerical examples presented below can be directly run from this online
code. All tests are performed using Matlab R2018a on a laptop Intel CORE 15-5200U
CPU @2.2GHz 8Go RAM.

5.1 Synthetic examples

The main goal of the tests on synthetic examples is to show the robustness of the £;-
norm ODsymNMF when binary noise is added and the effectiveness of the greedy
initialization proposed in Section 4. The different experimental setups used are the
following:

— Algorithms. We compare our £>-norm and £1-norm ODsymNMF algorithms with
the symNMF algorithm of [26].

@ Springer


https://sites.google.com/site/nicolasgillis/code
https://sites.google.com/site/nicolasgillis/code

Numerical Algorithms

— Initialization. We compare the greedy initialization described in Section 4 with
the zero and random initializations.

—  Benchmark matrices. The idea is to start from an input matrix for which the
clustering solution H* is known and then add binary noise to that matrix. The
benchmark matrices used are composed of multiple clusters of balanced sizes,
that is, the matrix A is a block diagonal matrix whose blocks have different size
and are made up of all ones:

1...10... 10...

1...10... 10...
A—]0.. 0101 with 7" — |01
1...1 1

To generate such matrices, we need the sizes of the clusters which we store in
the vector S. For example, S = [10 10 5] means A contains 2 cliques of size 10
each and a clique of size 5 so that A is a 25 x 25 binary matrix.

—  Evaluation metric. The availability of the ground-truth H* allows us to quan-
tify the performance of a clustering algorithm. We use a variation of the metric
described in [23] that quantifies the level of correspondence between the clusters
found H and the ground truth:

|Hp — H*||}
Accuracy = 1 — max ——— €[0, 1], (16)
Pell,2,....k] rn

where [1,2, ..., k] is the set of permutations of {1,2,...,k} and Hp is the
matrix H whose columns are rearranged according to the permutation P.

When the binary noise added is random, the experiment is repeated 30 times and
we report the average accuracy of the solutions computed; this is also done when the
random initialization is used.

5.1.1 Random binary noise

In this first experiment, we use 10 clusters of size 10, and the noise level § € [0, 1]
is the probability to perturb an entry of A. In other words, for each entry of A, there
is a probability of § that this entry is flipped (from 1 to 0, and vice versa).

Table 3 reports the accuracy when the noise level is fixed to 10%. For the random
initialization, symNMF and ODsymNMF-¢; perform similarly while ODsymNMF-
£1 performs badly. The reason is that ODsymNMF-¢; is much more sensitive to
initialization because it is intrinsically a more difficult problem (for r = 1, it
is NP-hard, which is not the case for symNMF). For the greedy initialization,
ODsymNMF-¢; outperforms symNMF and ODsymNMF-£;. This was expected as
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Table 3 Summary of the accuracies obtained for the three types of initialization in each problem

10% random noise Initialization type

Random Zero Greedy

OD-¢; OD-¢, Sym OD-¢; OD-¢, Sym OD-¢; OD-{, Sym

2 clusters ~ Balanced 55 91 91 51 29 91 98 91 91
Unbalanced 60 87 88 62 29 85 94 87 88
Sclusters  Balanced 64 90 90 64 88 90 96 90 90
Unbalanced 66 89 89 64 55 920 96 90 90
10 clusters  Balanced 76 90 90 73 68 90 98 90 90
Unbalanced 78 86 88 73 68 88 93 89 88

OD-/¢; stands for ODsymNMF-£;, OD-¢, stands for ODsymNMF-¢; and Sym stands for symNMF. The
highest accuracy for each initialization type is in bold

ODsymNMF-¢; is a better model in this scenario (Section 2.2), given that we can
provide a good initial solution which is made possible through the greedy initial-
ization. Moreover, the greedy initialization leads symNMF and ODsymNMF-¢; to
similar or better results. For this reason, we only keep the greedy initialization for the
remainder of our numerical experiments.

Figure 1 provides the accuracy for the different models depending on the noise
level. For low levels of noise (§ < 0.15), ODsymNMF-{; recovers a very good clus-
tering (accuracy above 90%). For larger noise levels, the performances deteriorate

ODsymNMF-¢;
=¥ - ODsymNMF-/,

90 + &'&&
S
&
s 80r
—
]
Q
[}
<
70+
60 1 1 1 1 1 I
0 5 10 15 20 25 30

Probability (in %) of perturbing an entry of A

Fig. 1 Evolution of the accuracy when random binary noise is added. The input matrix is composed of 10
cliques of size 10 each
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rapidly. Above a certain noise level (around 18%), ODsymNMF-¢; performs worse
than the two other models. We believe the reason is that the dataset, above a cer-
tain noise level, is very far from a low-rank matrix and ODsymNMF-¢; tends to get
stuck more easily in bad local minima. As expected, ODsymNMF-¢, and symNMF
perform similarly since the difference between these two models is the diagonal of
A composed of n elements. However, recall that ODsymNMF-¢; is computationally
cheaper and has convergence guarantee.

5.1.2 Adversarial binary noise

In order to highlight the differences between ODsymNMF-¢; and ODsymNMF-¢5,
let us construct the following adversarial example:

[1... 1 0...00...07

A= .. ;
0 0 1 .10 0
0 .. 0
: o I,
O............0

where the matrix A is composed of two cliques and of m isolated elements (identity
matrix [,,,). The adversarial noise consists in adding connections between the cliques
and the isolated elements. Here, the noise level is the number of connections added
between an isolated element and the 2 cliques. As long as this number of connections
does not exceed half the size of the cliques, we can expect ODsymNMF-{; to recover
the ground truth. This is in fact what is observed in Fig. 2.

Conclusions The conclusions from running these synthetic experiments are three-
fold: the greedy initialization outperforms the zero and random initializations, and
ODsymNMF-¢; outperforms ODsymNMF-¢; and symNMF in the presence of
binary noise while ODsymNMF-¢, and symNMF perform similarly.

5.2 Document datasets

We now perform clustering of real document datasets. These documents are repre-
sented as a word-count matrix X € N**™: see Table 4.

Similarity matrix A In order to obtain a similarity matrix starting from the word-
count matrix X, we choose to use a simple but powerful one: the cosine angle. The
T
similarity between documents a and b is then equal to m The values inside A
are therefore real (not binary); this implies a lot of overlap hence a difficult problem.
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100
ODsymNMF-/¢;
h = ¥ = ODsymNMF-/,
90 t ""’é ...@.. SymNMF
&,
""},é
=) R
= 80 r @' o
g} ..... @
s Uy
=
5 70¢ .
< &.&9
60 r
50 \ \ \ \ |
0 2 4 6 8 10

# links added to each cluster

Fig.2 Evolution of the accuracy when adversarial binary noise is added. The input matrix is composed of
2 cliques of size 10 each and an identity matrix of size 10

The “correct” clustering is known as the documents are sorted in categories. We refer
the reader to [25] for a discussion on the construction of the similarity matrix.

Interpretation of the output H Table 5 reports the accuracy (16) of symNMEF,

ODsymNMF-{;, and ODsymNMF-¢;. We use the greedy initialization for all algo-
rithms. Table 5 also reports two other widely used clustering quality measures,

Table 4 Data of 12 documents sets from [32]

Dataset # documents (= n) # words (= m) Rank r
Classic 7094 41681 4
Ohscal 11,162 11,465 10
Hitech 2301 10,080 6
Reviews 4069 18,483 5
Sports 8580 14,870 7
lal 3204 31,472 6
la2 3075 31,472 6
klb 2340 21,839 6
trll 414 6429 9
tr23 204 5832 6
trdl 878 7454 10
tr45 690 8261 10
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Table 5 Comparisons between the accuracy (defined in (16)) and other common clustering metrics,
namely NMI (normalized mutual information) and ARI (adjusted rand index) for each document dataset

Dataset Accuracy NMI ARI

OD-¢4 OD-£, Sym OD-¢4 OD-£» Sym OD-¢; OD-¢; Sym

Classic 66.33 63.67 63.67  67.74 67.50 67.50  22.64 23.27 23.29
Ohscal 38.08 43.16 4324  82.80 83.89 83.91 17.78 21.42 21.46
Hitech 52.19 49.24 49.07  71.55 75.55 75.54  26.99 23.69 23.63
Reviews  70.07 49.55 4937  82.64 71.37 7143  54.21 25.89 25.82
Sports 48.81 51.41 5146  71.86 73.35 7335 2043 24.14 24.14

lal 40.61 48.81 49.16  67.08 72.93 73.29 14.82 21.46 22.01
la2 39.40 48.62 4894 65.21 73.30 73.44 10.33 22.24 22.39
klb 66.45 58.68 57.18  69.46 68.92 68.31 33.20 31.26 29.63
trll 51.21 59.90 59.66  84.73 87.72 87.66  42.53 53.86 53.55
tr23 36.76 35.29 3529  67.22 68.86 68.90 12.09 13.62 13.33
tr41 47.04 47.15 46.70  79.63 79.54 80.15  25.87 23.97 25.28
tr45 43.04 42.61 4290  81.51 83.14 83.58  22.53 27.41 28.57

The best results are highlighted in bold

namely the normalized mutual information (NMI) and the adjusted Rand Index
(ARI). We observe that these three measures are very well correlated to each other.
We observe the following:

— As for the synthetic datasets, SymNMF and ODsymNMF-¢, perform simi-
larly (but bear in mind that ODsymNMF-{, has numerical and theoretical
advantages).

— ODsymNMF-¢; performs very differently than SymNMF and ODsymNMF-/¢5.
In some cases, it provides a much better accuracy (in particular, for the reviews
dataset; from 50 to 70% accuracy) and, in other cases, a worse accuracy (from
about 50 to 40% for lal and 1a2). The reason why ODsymNMF-{¢; does not
outperform SymNMF and ODsymNMF-/¢; is that the datasets are not binary,
and do not follow the low-rank model very closely. However, it is interesting
to observe that these models obtain rather different solutions. This means that
they are able to extract different clusters within datasets. Hence, one could use
aggregation techniques to obtain even better clusterings, as often done in the
literature [15]. However, this is out of the scope of this paper.

In Table 6, we compare our results with two widely used clustering methods,
namely k-means and spectral clustering (SC). For the sake of conciseness, we only
report the accuracy which is highly correlated with the NMI and ARI (see Table 5).

We observe that symNMF models perform on average significantly better than k-
means and SC, as already noted in the literature; see the discussion and the references
in Section 1. Note also that, as expected, SC performs on average better than k-means.
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Table 6 Comparisons of the accuracy (in %) with other clustering methods, namely k-means and spectral
clustering (SC). The best result is highlighted in bold

Data set OD-¢; OD-¢, Sym k-Means SC

Classic 66.33 63.67 63.67 51.66 52.39
Ohscal 38.08 43.16 43.24 38.51 41.34
Hitech 52.19 49.24 49.07 43.75 49.58
Reviews 70.07 49.55 49.37 36.02 51.34
sports 48.81 51.41 51.46 42.75 41.49
lal 40.61 48.81 49.16 46.29 48.49
la2 39.40 48.62 48.94 46.38 48.49
klb 66.45 58.68 57.18 37.42 36.90
trll 51.21 59.90 59.66 23.40 38.91
tr23 36.76 35.29 35.29 45.55 43.54
trd1 47.04 47.15 46.70 34.35 37.91
trd5 43.04 42.61 42.90 33.23 39.16
Average 50.00 49.84 49.72 39.94 44.13

6 Conclusion

In this paper, we proposed a new meaningful model for symNMF by discarding the
diagonal elements; we refer to this model as ODsymNMEF. This allowed us to design
efficient coordinate descent algorithms for the £, norm and ¢; norm. For the ¢;
norm, our algorithm has the advantage to be computationally cheaper than the CD
method of symNMF [26] (the subproblems in one variable are quadratic instead of
quartic) while having convergence guarantees. For the 1 norm, this is, to the best of
our knowledge, the first algorithm of this kind for symNMF. It was made possible
precisely because we discarded the diagonal elements. This £;-norm model is bet-
ter suited for binary input matrices which we theoretically proved in Section 2.2 in
the rank-1 case, and empirically illustrated in Section 5.1 on synthetic datasets. We
also provided numerical experiments for real document datasets, where the £>-norm
and £1-norm models perform rather differently. Future work includes the design of
other initialization strategies, as well as new symNMF-like models that would adapt
to the structure of the input matrix for example using distributionally robust models
asin [13].
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Appendix: The constrained weighted median problem

Algorithm 7 provides a pseudocode to compute the solution to the constrained
weighted median problem:

min E |al~x — bi|.
x>0 4=
i

The algorithm works as follows:

— The set S of breakpoints % is initialized for all i = 1,...,n such that a; # 0

(because when a; = 0, the contribution of the ith term in the objective function
is a constant) and the vector a is then sorted and normalized according to the
values in S,

— As the values g; correspond to the slopes, the second step of the algorithm looks
for the kth breakpoint for which we have Zf:ll ai < Y i, a; and Zf‘: Lai >
Y i1 @i It corresponds to a global optimum since the slope on the left is
negative, and on the right is nonnegative.

Algorithm 7  x = constrained_weighted median(a, b).

INPUT:a e R}, b € R"
OUTPUT: x € R
S <0
fori =1:ndo
if a; # O then
S« SU {g—j}
end if
end for
[S, Inds] < sort(S)

a(Inds)
sum(a)

R AR AN U S

—
e

AR |

CumulatedSum < 0

: while CumulatedSum < 0.5 do
CumulatedSum < Cumulated Sum + a;
15: x <« S

16: i<—i+1

17: end while

—_ = e
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