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This paper concerns the minimax center of a collection 
of linear subspaces. For k-dimensional subspaces of an n-
dimensional vector space, this can be cast as finding the 
center of a minimum enclosing ball on a Grassmann manifold. 
For subspaces of differing dimension, the setting becomes 
a disjoint union of Grassmannians rather than a single 
manifold, and the problem is no longer well-defined. However, 
natural geometric maps exist between these manifolds with 
a well-defined notion of distance for the images of the 
subspaces under the mappings. Solving the problem in this 
context leads to a candidate minimax center on each of 
the constituent manifolds, but does not provide intuition 
about which candidate is the best representation of the data. 
Additionally, the solutions of different rank are generally not 
nested so a deflationary approach will not suffice, and the 
problem must be solved independently on each manifold. 
We propose an optimization problem parametrized by the 
rank of the minimax center. The solution is computed with a 
subgradient algorithm applied to the dual problem. By scaling 
the objective and penalizing the information lost by the rank-k
minimax center, we jointly recover an optimal dimension, k∗, 

✩ Supported by the Fonds de la Recherche Scientifique & the Fonds Wetenschappelijk Onderzoek -
Vlanderen: EOS project O005318F-RG47/30468160, and European Research Council starting grant 679515.
* Corresponding author.

E-mail addresses: timothy.marrinan@umons.ac.be (T. Marrinan), pa.absil@uclouvain.be (P.-A. Absil), 
nicolas.gillis@umons.ac.be (N. Gillis).
https://doi.org/10.1016/j.laa.2021.05.006
0024-3795/© 2021 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.laa.2021.05.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/laa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.laa.2021.05.006&domain=pdf
mailto:timothy.marrinan@umons.ac.be
mailto:pa.absil@uclouvain.be
mailto:nicolas.gillis@umons.ac.be
https://doi.org/10.1016/j.laa.2021.05.006


T. Marrinan et al. / Linear Algebra and its Applications 625 (2021) 248–278 249
and a subspace at the center of the minimum enclosing ball, 
U∗, that best represents the data.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Finding the minimum enclosing ball (MEB) of a finite collection of points in a met-
ric space, or the �∞-center of mass, is a topic of broad interest in the mathematical 
community [1–7]. For Euclidean data, the problem has been well studied, and research 
has transitioned towards finding approximate solutions efficiently when computing the 
MEB exactly is impractical [2,6]. A breakthrough technique of Bădoiu and Clarkson [2]
finds an optimal subset of the data, called a core-set, such that finding the exact MEB 
of the core-set is computationally tractable. They show that the radius of this core-set 
will be bounded by (1 + ε) times the radius of the entire data set, where ε depends only 
on the number of points in the core-set [2]. That is, the minimum enclosing ball can be 
approximated to any desired accuracy by increasing the number of points in the core-set, 
and the number of points needed for the radius of the core-set to be at most ε percent 
larger than the true radius is �2

ε �. This solution represents efforts to make �∞-averaging 
possible for complex data sets.

The difficulty in computing the MEB of Euclidean data is due to the massive size 
of data sets to be averaged, however in less traditional settings other difficulties arise 
and contribute to the complexity of this task. Many modern problems are formulated on 
manifolds instead of Euclidean space in situations where the manifold geometry better 
represents the natural structure of the data model [8–10]. Afsari provided existence and 
uniqueness conditions for Riemannian �p centers of mass [11], and with this type of 
structure in mind, Arnaudon and Nielsen [1] adapted the efficient MEB algorithm of 
Bădoiu and Clarkson to Riemannian manifolds. For linear subspace data, a subclass 
of data addressed by [1], this work was further generalized by Renard, Gallivan, and 
Absil [3,12]. They created a technique that applies to points lying on a disjoint union of 
Grassmann manifolds, that is, a collection of pi-dimensional subspaces of Rn where pi is 
not necessarily equal for all i. Although the data comes from a collection of manifolds, 
the MEB must be computed on one individual Grassmannian and the choice of which is 
not obvious. Determining which Grassmannian provides the best center for a collection 
of subspaces is one of the tasks of this manuscript, and we provide a geometrically-
motivated criterion for automatically selecting this manifold.

With subspace data, it is natural to think of the center of the Grassmannian minimum 
enclosing ball (GMEB) as the common information in the data set. Common subspace 
extraction can be found in subspace clustering [13], domain adaptation, and subspace 
alignment. These tools can be used in a plethora of tasks in pattern recognition including 
subspace tracking [14], face recognition [15,16], video action recognition [17,16], infected 
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patient diagnosis [18], adaptive sorting [19], model reduction [20], and many more. Com-
mon subspace extraction is frequently done by finding the �2- or �1-center in cases where 
outliers are present in the data collection, but if the data are drawn from a uniform 
distribution whose support is a ball, the �∞-center gives the maximum likelihood esti-
mator for the center of the support and thus may be preferred when all the subspaces 
have been drawn from a single uniform distribution [11]. Furthermore, techniques have 
been developed to prune outliers from data sets using the �∞-norm, with theoretical 
guarantees in some circumstances [21].

In this paper, we present a novel technique to accurately estimate the GMEB for a 
collection of linear subspaces of possibly differing dimension, and a geometrically inspired 
order-selection rule to identify the Grassmannian that best represents the shared infor-
mation in the data. Choosing the ideal manifold on which to perform the �∞-averaging 
is inherently related to finding a common subspace of optimal rank, and thus the nu-
merical experiments explore the relationships between different rank-adaptive subspace 
averaging methods.

The main contributions of the paper are summarized as follows. We propose

• a subgradient approach to solve the dual of the GMEB problem for subspaces of 
differing dimensions. A duality gap of zero certifies the solution as optimal.

• an unsupervised order-selection rule for the dimension of the center of the GMEB.
• a warm-start initialization for the subgradient algorithm that reduces the number of 

iterations needed for the subgradient algorithm to converge.
• a hybrid method for order-selection which modifies the existing rule of [22] for use 

with the center of the GMEB.
• a synthetic data model that allows us to measure the accuracy of an estimate for the 

center of the GMEB, and demonstrate the effectiveness of the proposed technique 
using data generated with this model.

Finally, we compare the proposed order-selection rules to existing methods for automatic 
order selection in subspace averaging with numerical experiments.

2. Mathematical background: Grassmannian minimum enclosing ball

In this section we provide the mathematical background necessary to formulate the 
GMEB problem for subspaces of differing dimension. We begin by stating the relevant 
properties of invariant metrics, a standard reference on this topic is [23]. We recall the 
maps defined in [24] that associate a subset of points on a single manifold with each 
subspace from the collection and the point-to-set distance that measures the dissimilarity 
of these sets. Finally, we explicitly state the minimax optimization problem that defines 
this GMEB.

Denote by Gr(k, n) the Grassmann manifold of k-dimensional subspaces in Rn. If A is 
an n ×k matrix with full column rank, the column space of A, col(A), defines a subspace 
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that can be identified with a point A ∈ Gr(k, n). Any matrix in the GL(k) orbit of A
will have the same column space, so we assume without loss of generality that the chosen 
representative for A ∈ Gr(k, n) is an orthonormal basis, A ∈ Rn×k with ATA = I. This 
assumption simplifies notation, however the choice of basis is not unique so a measure 
of distance between points must be orthogonally invariant. To see this, let O(k) denote 
the set of k × k orthogonal matrices. If Qk ∈ O(k) then AQk is another orthonormal 
basis for A. For any two points, A, B ∈ Gr(k, n), there exists a set of k principal angles, 
0 ≤ θ1(A, B) ≤ · · · ≤ θk(A, B) ≤ π/2, defined recursively as

θ1(A,B) .= min
a1∈A,b1∈B

cos−1
(

aT
1 b1

‖a1‖2‖b1‖2

)
, and for i = 2, . . . , k

θi(A,B) .= min
ai∈A,bi∈B

cos−1
(

aT
i bi

‖ai‖2‖bi‖2

)

s.t. aT
j ai = 0 for j < i

bT
j bi = 0 for j < i.

(1)

The vectors that form these angles, {a1, . . . , ak} and {b1, . . . , bk}, are called the left 
and right principal vectors, respectively, and when normalized, these vectors form or-
thonormal bases A, B ∈ Rn×k, for the spaces A and B. The principal angles and 
principal vectors can be computed via the singular value decomposition (SVD) [25]. 
Let ATB = V ΣWT be a thin SVD with the singular values sorted in nonincreasing or-
der, so that V ∈ Rk×k with V TV = I, Σ is a k×k diagonal matrix, and W ∈ Rk×k with 
WTW = I. Then Σii = cos(θi(A, B)), where θi(A, B) is the ith principal angle separat-
ing A and B, with associated left and right principal vectors ai = Avi and bi = Bwi

for i = 1, . . . , k.
Let d : Gr(k, n) × Gr(k, n) → R be a metric. If for all A, B ∈ Gr(k, n) and for all 

Qn ∈ O(n) the left action of Qn on A and B by multiplication does not change the 
value of the metric, that is, d(A, B) = d(QnA, QnB), then d is said to be orthogonally 
invariant. Orthogonally invariant metrics depend only on the relative position of A and 
B, so as a result of [26, Thm. 3], d can be written as a function of the vector of principal 
angles separating A and B, θ(A, B) ∈ Rk. Additionally, for Gr(k, n) with either k �= 2
or n �= 2 there is an essentially unique invariant Riemannian metric (up to scaling) which 
yields d(A, B) = ‖θ(A, B)‖2, and is frequently referred to as the geodesic distance based 
on arc length [26].

Let D = {Xi}Mi=1 be a finite collection of subspaces of Rn with possibly different 
dimensions, so that dim(Xi) = pi. For the set of positive integers P = {dim(Xi) : Xi ∈
D} we can consider D as a collection of points lying on the disjoint union of Grassmann 
manifolds, Xi ∈

∐
p∈P Gr(p, n). To account for the difference in subspace dimensions, we 

adopt the convention of [24] by redefining d(U, Xi) as the minimum distance between U
and a subset of points on Gr(k, n), appropriately defined for each Xi ∈ D. Each subspace 
is associated with one of two types of subset, which are defined by
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Fig. 1. Illustration of the minimum point-to-set distance on Gr(k, n) between U and the sets Ω−(X1), 
Ω+(X2), and Y3, associated with points on Gr(k + 1, n), Gr(k − 1, n), and Gr(k, n), respectively. The 
points that realize the minimum distance are Y1 ∈ Ω−(X1), Y2 ∈ Ω+(X2), and Y3. The point U is the 
center of the minimum enclosing ball of Y1, Y2, and Y3.

Ω+(Xi)
.= {Y ∈ Gr(k, n) : Xi ⊆ Y} for pi < k, and

Ω−(Xi)
.= {Y ∈ Gr(k, n) : Y ⊆ Xi} for pi ≥ k.

(2)

We use Ω(Xi) when referring to either type generically. For Xi such that pi < k, Ω+(Xi)
is the set of all points of Gr(k, n) containing Xi. Alternatively when Xi is a pi-plane 
with pi > k, Ω−(Xi) is all k-dimensional subspaces contained in Xi, and when pi = k

the subset of points is just the singleton, Xi.
Finally, we overload the notation for distance so that

dGr(k,n)(U,Xi)
.= dGr(k,n)(U,Ω(Xi)) = min{d(U,Yi) : Yi ∈ Ω(Xi)} (3)

when the distance is being measured on Gr(k, n) and the data comes from Grassmann 
manifolds of possibly differing dimension. This is the proposed distance of [24], which 
is well-defined for a fixed value of k. Fig. 1 shows an illustration of this distance as 
the length of the shortest path between a point, U, and the sets of points, Ω(Xi) for 
i = 1, . . . , 3. In this particular case Y3 ∈ Gr(k, n) so Y3 = X3 = Ω(X3).

The minimum in Equation (3) always exists because Ω(Xi) is a closed subset of the 
Grassmannian, and the points satisfying Yi ∈ arg minY∈Ω(Xi) d(U, Y) are independent 
of the choice of orthogonally invariant distance measure. Let UTXi = V ΣWT be a thin 
SVD. One point that achieves the minimum distance is the column space of the matrix 
defined by

Yi
.=

⎧⎨
⎩

[Xiw1, . . . , Xiwk] for pi ≥ k;

[Xiw1, . . . , Xiwpi
, Uvpi+1, . . . , Uvk] otherwise.

(4)

This derivation can be found in, e.g. [27].
This formalism implies that distances can be written as a function of exactly k prin-

cipal angles regardless of the dimension of Xi, and conveniently the definition agrees 
with many pseudo-metrics commonly used in the literature that measure similarity as 
a function of the (possibly less than k) principal angles between subspaces of different 
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dimension. It should be clear, however, that this is not a metric because the distance 
between A and B will be zero if A is a proper subspace of B, despite being non-identical.

This manuscript is concerned with computing the minimax center, i.e., the center of 
the GMEB, on Gr(k, n) for the collection of subspaces, D, using the point-to-set distance. 
However, rather than using a metric on Gr(k, n) we measure dissimilarity by the squared 
chordal distance, d(A, B) = ‖ sin(θ(A, B))‖2

2. The minimum point-to-set distance using 
the squared chordal distance is

dGr(k,n)(U,Xi) = ‖ sin(θ(U,Yi))‖2
2

= 1
2‖UkU

T
k − YiY

T
i ‖2

F

= k − Tr(UTYiY
T
i U )

= min{k, pi} − Tr(UTXiX
T
i U),

(5)

where θ(U, Yi) ∈ Rk is the vector of principal angles between U and a point Yi ∈ Ω(Xi)
that attains the minimum. The final equality in Equation (5) can be seen from the 
definition of Yi in Equation (4) and will be demonstrated in Equation (32). Note that 
it is not necessary to know Yi in order to compute dGr(k,n)(U, Xi). With this definition 
and choice of distance measurement, the minimax problem we wish to solve is

arg min
U∈Gr(k,n)

max
i=1,...,M

dGr(k,n)(U,Xi). (6)

Using the notion of distance from Equation (3), an algorithm was proposed by [3] to 
solve Problem (6) for a given value of k. Since the data is not of uniform dimension, it 
is one of our goals to find the solution across all possible values of k that best represents 
the common subspace in the data. In Section 5 we propose an order-selection rule for 
comparing solutions of different dimension, however we must first be able to find the 
solutions of different dimension efficiently. As we will see in Section 5.1, U∗(k) ∈ Gr(k, n)
is not always contained in U∗(k + 1) ∈ Gr(k + 1, n), so it is not possible to construct 
the respective solutions iteratively via deflation. Instead the problem needs to be solved 
independently for each value of k.

3. Dual formulation

Problem (6) is nonconvex and challenging to optimize directly. Therefore, in this 
section we formulate the dual problem which can be solved efficiently. The dual variables 
also provide a primal-feasible solution, which can be tested for optimality.

Using Equation (5), Problem (6) can be written as one with matrix arguments that 
can be identified with the Grassmannian points they represent. That is,
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arg min
U∈Rn×k

max
i=1,...,M

(
min{k, pi} − Tr(UTXiX

T
i U)

)
s.t. UTU = I,

(7)

where U is an orthonormal basis for U, Xi is an orthonormal basis for Xi, and pi =
dim(Xi). A solution to (6) is then the column space of a solution to (7), U∗ = col(U∗). 
For ease of notation we will treat the dual problem as a minimization, so we reformulate 
the primal as,

arg max
U∈Rn×k

min
i=1,...,M

−
(
min{k, pi} − Tr(UTXiX

T
i U)

)
s.t. UTU = I.

(8)

Adding an auxiliary variable τ , the quadratic cost function to be minimized is replaced 
by a smooth linear objective that is maximized with respect to quadratic inequality 
constraints,

arg max
U∈Rn×k,τ∈R

τ

s.t. − τ − min{k, pi} + Tr(UTXiX
T
i U) ≥ 0 for i = 1, . . . ,M,

UTU = I.

(9)

This is essentially the same construction as in [3]. The authors of [3] go on to compute 
an intermediate solution to this problem via the Karush–Kuhn–Tucker conditions, and 
iterate to a stationary point by taking geodesic steps towards the subspace with the 
maximum distance to the current iterate of the primal variable. This contrasts with the 
proposed approach, where a solution to (6) is found by optimizing the dual problem.

Let λ = [λ1, . . . , λM ]T be a vector of Lagrange multipliers associated with the inequal-
ity constraints in (9). Dualizing only the inequality constraints leads to the Lagrangian

L(U, τ,λ) = τ +
M∑
i=1

λi

(
−τ − min{k, pi} + Tr(UTXiX

T
i U)

)
, (10)

such that UTU = I and λi ≥ 0 for i = 1, . . . , M . The dual cost function is then found 
by maximizing L over U and τ ,

f(λ) = sup
τ

(
τ −

M∑
i=1

λiτ
)
−

M∑
i=1

λi min{k, pi} + sup
UTU=I

Tr(UT (
M∑
i=1

λiXiX
T
i )U). (11)

The maximum over τ yields f(λ) = ∞ unless ‖λ‖1 = 1, in which case the first term is 
zero. The final term in (11) is a well-known problem that is maximized by the sum of 
the k largest eigenvalues of 

∑M
i=1 λiXiX

T
i [28]. Let d1(λ) ≥ d2(λ) ≥ · · · ≥ dn(λ) be the 
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eigenvalues of 
∑M

i=1 λiXiX
T
i and let v1(λ), v2(λ), . . . , vn(λ) be the associated orthonor-

mal eigenvectors. The argument λ is included to emphasize that the eigendecomposition 
depends on λ. The supremum is then 

∑k
j=1 dj(λ), and is achieved by the matrix whose 

columns are the k dominant eigenvectors,

Uλ
.= [v1(λ), . . . ,vk(λ)]. (12)

Thus the dual cost can be written as

f(λ) = −
M∑
i=1

λi min{k, pi} +
k∑

j=1
dj(λ), (13)

and finally, we wish to solve the problem,

arg min
λ∈RM

f(λ) s.t. ‖λ‖1 = 1 and λi ≥ 0 for i = 1, . . . ,M. (14)

4. Solution via subgradient

The dual cost in (13) is a locally Lipschitz convex function. However, it is not differ-
entiable at values of λ for which dk(λ) = dk+1(λ), that is, at values for which the kth 
and (k + 1)st eigenvalues of 

∑M
i=1 λiXiX

T
i are equal [28, Corr. 3.10]. There are many 

efficient ways to optimize such a function. In this section we recall how the subgradient 
method [29] can be applied to solve this dual problem. After a subgradient has been 
computed, the well-developed literature of subgradient algorithms provides a variety of 
techniques and step sizes to optimize Problem (14) with associated convergence guaran-
tees.

Recall that a vector g ∈ RM is a subgradient of f : RM → R at x in the domain of f
if for all z in the domain of f ,

f(z) ≥ f(x) + gT (z − x).

In this case we denote that g is in the subdifferential of f at x by writing g ∈ ∂f(x). If f
is differentiable at x then the gradient is the only subgradient and g = ∇f(x) = ∂f(x).

To minimize f in Problem (14), the subgradient method uses the iteration

λ(t+1) = Π(λ(t) − α(t)g(t)), (15)

where α(t) is a step size selected to guarantee that the sequence {λ(t)}∞t=1 converges (in 
distance) to the optimum, λ∗, and Π : RM → {x : ‖x‖1 = 1, xi ≥ 0 for i = 1, . . . , M} ⊂
RM projects the iterate into the unit simplex.

There is a standard trick for computing a subgradient of the dual function that can 
be adapted to this problem from nonlinear optimization texts such as [30]. Write the 
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Lagrangian as L(U, τ, λ) = q(U, τ) + λTg(U, τ), where q(U, τ) is the primal objective 
function and g(U, τ) ∈ RM is the vector of constraint values. Given the dual variable, 
λ(t) ∈ RM , at iteration t, let (Uλ(t) , τλ(t)) be the primal variable that maximizes the 
Lagrangian. Then g(t) = g(Uλ(t) , τλ(t)) is a subgradient of f at λ(t).

In our case Uλ(t) is defined by Equation (12) and the ith element of the constraint vec-
tor is gi(Uλ(t) , τλ(t)) = −τλ(t) −min{k, pi} +Tr(UT

λ(t)XiX
T
i Uλ(t)). However, the constant 

vector [−τλ(t) , . . . , −τλ(t) ]T ∈ RM does not affect the direction after projection onto the 
unit simplex, so a subgradient of f(λ(t)) is

g(t) =

⎛
⎜⎝

−min{k, p1} + Tr(UT
λ(t)X1X

T
1 U

λ(t))
...

−min{k, pM} + Tr(UT
λ(t)XMXT

MU
λ(t))

⎞
⎟⎠ . (16)

We can check that g(t) is a subgradient of f as follows. For any λ̃ ∈ RM such that 
‖λ̃‖1 = 1 and λ̃i ≥ 0 for i = 1, . . . , M we have

f(λ(t)) + g(t)T (λ̃− λ(t)) = f(λ(t)) + g(t)T λ̃− g(t)Tλ(t)

= f(λ(t)) + g(t)T λ̃− f(λ(t))

= −
M∑
i=1

λ̃i min{k, pi} + Tr(UT
λ(t)(

M∑
i=1

λ̃iXiX
T
i )U

λ(t))

≤ −
M∑
i=1

λ̃i min{k, pi} + max
UTU=I

Tr(UT (
M∑
i=1

λ̃iXiX
T
i )U)

= f(λ̃),

(17)

and thus g(t) ∈ ∂f(λ(t)). Additionally, it can be verified that this subgradient matches 
the general description provided by [28, Thm. 3.9] with the associated affine shift.

4.1. Convergence

The subgradient g(t) can be used to update λ(t) via the iteration in (15). The sub-
gradient method is not a descent method, so the value of the objective function at step 
t + 1 may be larger than it was at step t. Thus we keep track of the dual variable with 
the lowest cost at each iteration and denote it

λ
(t+1)
best =

⎧⎨
⎩
λ

(t)
best f(λ(t+1)) > f(λ(t)

best);

λ(t+1) otherwise.
(18)

Given an upper bound on the norm of the subgradients, ‖g(t)‖2 ≤ G < ∞ for all 
t, classical theory makes different guarantees on the convergence of the sequence of 
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iterates, {λ(t)}∞t=1, and thus on the sequence of objective function values, {f(λ(t)
best)}∞t=1, 

depending on the choice of step size, α(t). For example, with step sizes independent of 
iteration like α(t) = a or α(t) = a/‖g(t)‖2 for some a > 0, the subgradient algorithm will 
converge respectively to within G2a/2 or Ga/2 of the optimal value [30]. Alternatively, if 
the step size converges to zero and the sequence is nonsummable or square-summable, 
that is, limt→∞ α(t) = 0 and

∞∑
t=1

α(t) = ∞ or
∞∑
t=1

(α(t))2 < ∞, (19)

the subgradient method converges to an optimal objective value, limt→∞ f(λ(t)
best) =

f(λ∗). These conditions are satisfied by step sizes like, α(t) = a/
√
t for a > 0, or α(t) =

a/(b+t) where a > 0 and b ≥ 0. Proofs of these results can be found in standard literature 
on convex optimization for nonsmooth problems such as [30,29,31].

Although the theory requires α(t) to satisfy the constraints in (19) for convergence, the 
small step size leads to very slow convergence. In practice we can find an approximate 
solution quickly by stepping in the direction of a subgradient but requiring the dual 
objective to decrease at each iteration. Algorithm 1 (in Appendix A) solves Problem (14)
by performing a back-tracking line search in the direction of g(t) ∈ ∂f(λ(t)) to ensure 
that the dual objective decreases at each step, however, this method is not guaranteed to 
converge because g(t) is not necessarily a descent direction. The practical implementation 
of Algorithm 1 is a hybrid of a back-tracking line search and a nonsummable diminishing 
step size and for a fixed dimension k it identifies a stationary point of the dual problem 
while providing a feasible solution to the primal problem. It is not intended to be a 
state-of-the-art subgradient algorithm, but rather just one example of an implementation 
that is faster than the standard a/(b+t) square-summable step size. Alternatively, a well-
established quasi-Newton method like the Broyden-Fletcher-Goldfarb-Shanno (BFGS) 
algorithm [32] can be used to solve Equation (14), but empirically the convergence rates 
are comparable to those of the algorithm presented here for this problem.

4.2. Optimality

In addition to theoretical convergence guarantees, the optimality of a solution to 
the dual subgradient approach can be verified in some cases. Let λ∗ be a solution to 
Problem (14). There exists a matrix Uλ∗ whose columns are the k dominant eigenvectors 
of 
∑M

i=1 λ
∗
iXiX

T
i , analogous to Equation (12). Then Uλ∗ satisfies UT

λ∗Uλ∗ = I and is 
thus a feasible solution to the primal problem in (7). If the primal and dual objective 
functions are equal, strong duality holds and implies that λ∗ and U∗ = col(Uλ∗) are 
globally optimal dual and primal variables, respectively. Empirically the duality gap 
approaches zero for collections of data that satisfy an implicit assumption of minimax 
optimization; that the data collection is free of outliers. Even when strong duality does 
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not hold, the duality gap gives a bound on the maximum possible improvement for a 
solution.

This verification of optimality is standard for problems where the primal and dual costs 
are both computable, but existing techniques for finding the GMEB do not offer this 
feature. For instance, using a primal method like [3] does not directly provide a solution 
to the dual problem, and thus the duality gap is unknown. Section 7.1 contains numerical 
experiments that demonstrate the accuracy of the proposed subgradient method.

5. Proposed order selection rule

Given a dimension, k, and a finite collection of subspaces, D = {Xi ∈ Gr(pi, n)}Mi=1, 
there exist subspaces, U∗(k), that solve

arg min
U∈Gr(k,n)

max
i=1,...,M

dGr(k,n)(U,Xi), (20)

for k = 1, . . .maxi{dim(Xi)}. The argument k is now included in the notation for the 
GMEB center to emphasize that the subspace depends on the parameter k, and may differ 
significantly depending on the value of this parameter. Section 4 described a method 
to compute U∗(k) from the associated dual variable, λ∗(k) ∈ RM . However, because 
D contains subspaces of differing dimension, it is unclear on which Grassmannian the 
minimum enclosing ball should be computed. Thus, given the set D, in this section we 
would like to determine the optimal choice for k, in addition to the associated center 
U∗(k). Please note a change in notation; the costs associated with a particular order, 
k, are more intuitive when the primal is formulated as a minimization problem and the 
dual is a maximization. Therefore, as shown in Equation (20), the primal minimization 
formulation is used for the remainder of the manuscript. The prior formulation was only 
used for ease of notation in the subgradient method.

All orthogonally invariant distances on Gr(k, n) can be written as a function of the 
k principle angles between a pair of points. It should be clear from the definition in 
Equation (1) that each angle is bounded above by π/2, and thus that the squared chordal 
distance is bounded above by k. Scaling the primal objective function by 1/k normalizes 
the cost associated with U∗(k) so that the value of

cobj(k) :=

⎧⎪⎨
⎪⎩

0 k = 0;

max
i=1,...,M

dGr(k,n)(U∗(k),Xi)
k

k = 1, . . .max
i

{dim(Xi)},
(21)

gives a fair comparison across different values of k. The normalized objective function 
achieves its maximum value, cobj(k) = 1, when there exists an i such that Xi ⊥ U∗(k). 
That is, U∗(k) contains no information about at least one of the points in D. At the 
other extreme, the minimum occurs when k = 0, and when the point of each Ω(Xi)
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closest to the center coincides with the center. That is, cobj(k) = 0 when Y∗
i (k) = U∗(k)

for all i, where Y∗
i (k) = arg min

Yi∈Ω(Xi)
dGr(k,n)(U∗(k), Yi).

Simply minimizing cobj(k) with respect to k is not sufficient to identify the ideal di-
mension of U∗(k) because on average cobj(k) ≤ cobj(k+1) irrespective of the relationship 
between the data points, and of course cobj(0) = 0 by definition. However, the dimension 
of the ideal center should represent all the common information without over-fitting, and 
should also indicate when no significant relationship exists between the data. Thus we 
propose a penalty term based on the dimensions of the data not represented by U∗(k)
that balances the information lost by making k too small with the lack of specificity that 
comes from setting k too large.

Let U∗⊥(k) denote the orthogonal complement of U∗(k) and p̃j
.= min{n −

k, dim(Xj)} for j = 1, . . . , M . The expression

cpen(k) :=

⎧⎪⎨
⎪⎩

1 k = 0;

min
j=1,...,M

1 −
dGr(p̃j ,n)(U∗⊥(k),Xj)

p̃j
k = 1, . . .max

j
{dim(Xj)},

(22)

represents the minimum similarity between any point in D and the dimensions not 
contained in the center of the GMEB. A high minimum similarity between points in D
and U∗⊥(k) implies that too much information is being left out of the central subspace, 
U∗(k). The penalty term takes a value of cpen(k) = 1 when dim(U∗⊥(k) ∩ Xj) = p̃j for 
all j and cpen(k) = 0 when there exists a j for which Xj ⊥ U∗⊥(k). The sum of the 
terms in (21) and (22) leads to the proposed rule for selecting the optimal order k∗,

arg min
k=0,...,maxi{dim(Xi)}

cobj(k) + cpen(k). (23)

The two terms in (23) are computed independently so the GMEB center is not affected by 
the penalty term. The value of k∗ that minimizes the sum of these two terms corresponds 
to the number of subspace dimensions needed to represent the common information 
present in D without over-fitting. Numerical experiments in Section 7.3 demonstrate the 
efficacy of the order selection rule on simulated data with ground truth.

5.1. Primal solutions are not nested in general for increasing values of k

Naively, the order selection rule in Equation (23) can be applied by computing the 
costs cobj(k) and cpen(k) independently for k = 0, . . . , maxi{dim(Xi)} as follows,

1. Compute λ∗(k) using the subgradient method described in Section 4.
2. Find the associated primal variable, U∗(k), as the k-dimensional eigenspace of the 

weighted sum 
∑M

i=1 λ
∗
i (k)XiX

T
i .

3. Compute the orthogonal complement, U∗⊥(k) = col
(
I − U∗(k)U∗T (k)

)
.
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Then k∗ is selected as the value of k associated with the minimum cost, cobj(k) +cpen(k). 
If λ∗(k) = λ∗(k + 1) for some k < maxi{dim(Xi)} then the solution on Gr(k + 1, n)
can be constructed in a greedy fashion as the direct sum of the solution on Gr(k, n) and 
the (k + 1)st eigenvector of 

∑M
i=1 λ

∗
i (k)XiX

T
i . Unfortunately, the dual variables are not 

generally equal for increasing values of k, so a greedy approach is not appropriate.
Observe that the central subspaces are not nested for increasing dimensions in the 

following illustrative example. Let

X1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

√
2√
3 0

1√
6 0

1√
6 0

0
√

7√
8

0 1√
8

⎤
⎥⎥⎥⎥⎥⎥⎦
, X2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1√
6 0

√
2√
3 0

1√
6 0

0 1√
8

0
√

7√
8

⎤
⎥⎥⎥⎥⎥⎥⎦
, and X3 =

⎡
⎢⎢⎢⎢⎣

1√
6

1√
6√
2√
3

0
0

⎤
⎥⎥⎥⎥⎦ , (24)

be orthonormal bases for the three points X1, X2 ∈ Gr(2, 5) and X3 ∈ Gr(1, 5). One can 
check that the subspace that minimizes the maximum distance to these three points on 
Gr(1, 5) is the mean of their first columns. That is, the optimal primal and dual variables 
are

U∗(1) = col
([

1√
3

1√
3

1√
3 0 0

]T)
, and λ∗(1) =

[
1√
3

1√
3

1√
3

]T
, (25)

with associated primal and dual costs of

min
U∈Gr(1,5)

max
i=1,2,3

dGr(1,5)(U,Xi) = max
λ∈R3

min
UTU=I

1 −
3∑

i=1
λiTr(UTYiY

T
i U ) = 1

9 . (26)

The duality gap in Equation (26) is zero, indicating that this is a global solution.
On Gr(2, 5), however, Ω+(X3) consists of subspaces that span X3 and any orthogonal 

direction. In particular there exists Y3 ∈ Ω+(X3) such that the second column of Y3 is 
[0 0 0 1/

√
2 1/

√
2]T . This leads to a solution for the center of the minimum enclosing ball 

on Gr(2, 5) given by primal and dual variables

U∗(2) = col

⎛
⎝[ 3√

22
3√
22

2√
22 0 0

0 0 0 1√
2

1√
2

]T⎞⎠ , and λ∗(2) =
[ 1

2
1
2 0

]T
. (27)

Notably, X3 is not in the support of the minimum enclosing ball on Gr(2, 5) and thus 
does not influence the central subspace. Strong duality also holds for this solution with

min
U∈Gr(2,5)

max
i=1,2,3

dGr(2,5)(U,Xi) = max
λ∈R3

min
UTU=I

2 −
3∑

i=1
λiTr(UTYiY

T
i U ) = 14 − 3

√
7

24 .

(28)
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Since U∗(1) is orthogonal to the second dimension of U∗(2) and noncollinear with the 
first, and the columns of U∗(2) are orthogonal, we have U∗(1) �⊂ U∗(2). Additionally 
we find that the optimal order selected by applying the rule in Equation (23) is k∗ = 1, 
because

cobj(0) + cpen(0) = 0 + 1 = 1,

cobj(1) + cpen(1) = 1
1

(
1
9

)
+ 1

1

(
1 −

(√
8√
9

)2)
≈ 0.22, and

cobj(2) + cpen(2) = 1
2

(
14 − 3

√
7

24

)
+ 1

2

(
2 −

(
−1√
12

)2

+
(

1 −
√

7√
16

)2)
≈ 0.25.

(29)

This agrees with the intuition that the center of the minimum enclosing ball represents 
the common information in all points without over-fitting to any subset of points, but 
note that the optimal order is not always the dimension of the smallest subspace. The 
common subspace may have dimension smaller than any of the samples or there may be 
no common subspace.

Even though the primal solutions are not always nested, a good initial guess for 
the dual variable will reduce computational overhead. One benefit of the subgradient 
approach is that λ∗(k) is computed explicitly. Thus we can initialize the algorithm 
with λ(0)(k + 1) = λ∗(k). The impact of this heuristic warm-start is discussed in the 
experiments in Section 7.2.

5.2. Related literature on order fitting for subspace averaging

A recent work from Santamaría et al. [22] also attempts to find a central subspace 
of ambiguous dimension. The authors minimize the mean-squared error (MSE) between 
a subspace and a collection of data in the space of n × n projection matrices using the 
squared Frobenius norm. That is,

E(k) = min
U∈Gr(k,n)

1
M

M∑
i=1

‖UUT −XiX
T
i ‖2

F . (30)

Putting aside for a moment that the current work is interested in minimizing the 
maximum deviation rather than the mean-squared error, there remains a central dif-
ference between the technique in [22] and the proposed method. The optimization of 
Equation (30) is done in a vector space, after which the solution is mapped to the near-
est point on the Grassmann manifold. This is subtly different than minimizing the MSE 
on the Grassmannian with respect to the squared chordal distance using the point-to-set 
interpretation of [24]. To see this, write half of the squared distance from [22] between 
the central subspace and the ith point as
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1
2‖U

∗(k)U∗T (k) −XiX
T
i ‖2

F = k + pi
2 −

min{k,pi}∑
r=1

cos2(θr(U∗(k),Xi))

= |k − pi|
2 +

min{k,pi}∑
r=1

sin2(θr(U∗(k),Xi)).

(31)

In contrast, the point-to-set squared chordal distance on Gr(k, n) is

dGr(k,n)(U∗(k),Xi) = min
{
d(U∗(k),Yi) : Yi ∈ Ω(Xi)

}
= min

{1
2‖U

∗(k)U∗T (k) − YiY
T
i ‖2

F : Yi ∈ Ω(Xi)
}

= k −
k∑

r=1
cos2(θr(U∗(k),Yi))

=
min{k,pi}∑

r=1
sin2(θr(U∗(k),Xi))

(32)

because 0 = θpi
(U∗(k), Yi) = θpi+1(U∗(k), Yi) = · · · = θk(U∗(k), Yi) if pi < k by 

the definition of Yi in Equation (4). Thus the distances differ by |k−pi|
2 , which is the 

difference in dimensions between the central subspace and the ith data point.
The slight difference in distance measurements lends itself to an interesting interpre-

tation when determining the appropriate rank of the central subspace. The solution, 
U∗(k), to

arg min
U∈Gr(k,n)

1
M

M∑
i=1

‖UUT −XiX
T
i ‖2

F (33)

for a fixed k is the dominant k-dimensional eigenspace of the sum 1
M

∑M
i=1 XiX

T
i . That 

is, if

1
M

M∑
i=1

XiX
T
i = FDFT (34)

is an eigendecomposition with eigenvectors F = [f1, f2, . . . , fR] and associated eigenvalues 
d1 ≥ d2 ≥ · · · ≥ dR, then the solution to Equation (33) is U∗(k) = [f1, f2, . . . , fk]. Note 
that this U∗(k) is not the same subspace as the center of the minimum enclosing ball. 
The MSE in Equation (30) can be written as a function of all R eigenvalues,

E(k) =
k∑

1 − dr +
R∑

dr, (35)

r=1 r=k+1
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and the minimum of Equation (35) is achieved when k∗ is the smallest value for which 
dk+1 < 0.5. This eigenvalue threshold is then fixed regardless of the dimension of the 
ambient space, and as we will see in Section 7.3, the selected dimension could differ 
drastically for noisy data depending on the ambient dimension.

For a different interpretation of the k∗ that minimizes Equation (30) we can rewrite 
Equation (35) as a function of the angles between each eigenvector and the subspaces,

E(k) =
k∑

r=1
1 − fTr ( 1

M

M∑
i=1

XiX
T
i )fr +

R∑
r=k+1

fTr ( 1
M

M∑
i=1

XiX
T
i )fr (36)

=
k∑

r=1
1 − 1

M

M∑
i=1

cos2(θ(fr,Xi)) +
R∑

r=k+1

1
M

M∑
i=1

cos2(θ(fr,Xi)) (37)

=
k∑

r=1

1
M

M∑
i=1

sin2(θ(fr,Xi)) +
R∑

r=k+1

1
M

M∑
i=1

sin2(π2 − θ(fr,Xi)) (38)

=
k∑

r=1

1
M

M∑
i=1

sin2(θ(fr,Xi)) +
R∑

r=k+1

1
M

M∑
i=1

sin2(θ(fr,X⊥
i )) (39)

=
k∑

r=1

1
M

M∑
i=1

dGr(1,n)(fr,Xi) +
R∑

r=k+1

1
M

M∑
i=1

dGr(1,n)(fr,X⊥
i ). (40)

The equality between (38) and (39) is due to [33, Thm. 2.7] which implies that π
2 −

θ(fr, Xi) = θ(fr, X⊥
i ). Note, however, that Equation (40) is not equivalent to

1
M

M∑
i=1

dGr(k,n)(U∗(k),Xi) + 1
M

M∑
i=1

dGr(R−k,n)(U∗⊥(k),X⊥
i ) (41)

because linear combinations of the eigenvectors, fr, are not included in the expression. A 
new interpretation of the MSE-minimizing k becomes fairly apparent in light of Equa-
tion (40). The optimal k∗ is the one that minimizes the mean-squared chordal distance 
between {f1, . . . , fk} and the data points, plus the mean-squared chordal distance be-
tween {fk+1, . . . , fR} and the orthogonal complements of the data points.

5.3. Hybrid rule

It is possible to create a hybrid of the order-selection rule of [22] and the proposed 
method with a slight modification. In [34], a robustification of the technique in [22] is pro-
posed that leads to a weighted eigenvalue decomposition at optimality. The weights are 
determined using a variety of robust objective functions via a majorization-minimization 
scheme, which results in a down-weighting of outliers in the data. By minimizing the 
mean-squared error of the weighted average (similar to Equation (30)), this amounts to 
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a hard eigenvalue threshold with the order chosen to be the number of dimensions with 
eigenvalues greater than 0.5.

For the hybrid method, weights will come from the values of the dual variable, 
λ∗(k), at optimality. Since these values depend on the parameter k, the hard eigen-
value threshold is not applicable. Let d1(k) ≥ d2(k) ≥ · · · ≥ dR(k) be the eigenvalues 
of 
∑M

i=1 λ
∗
i (k)XiX

T
i where λ∗(k) is the vector of optimal dual variables computed for 

the GMEB on Gr(k, n) using the proposed algorithm. For k = 0, let λ∗
i (0) = 1

M for 
i = 1, . . . , M . We define a modified version of the MSE from Equation (35) as

Ẽ(k) =
k∑

r=1
1 − dr(k) +

R∑
r=k+1

dr(k). (42)

The order-selection rule of [22] applied to the GMEB center is then

arg min
k=0,...,maxi{dim(Xi)}

Ẽ(k). (43)

It should be clear that the eigenvalues {dr(k)}Rr=1 will be different for different values of 
λ∗(k). In the experiments of Section 7.3, this combined method is referred to as “Hybrid” 
and performs favorably for all tests; out-performing the other techniques in 2 out of 3
scenarios.

6. Synthetic data generation

The numerical experiments in Section 7 require data for which the ground truth is 
known, and ideally data for which the center of the GMEB is distinct from the other 
generalized Grassmannian means. Thus, in this section we propose two different models 
for sampling points nonuniformly from a unit ball on the Grassmannian. The first is 
an asymmetrical nested ball structure, and the second samples more densely within a 
randomly selected arc of the boundary of a unit ball.

6.1. Asymmetrical nested ball model

A collection of subspaces, D = {Xi}Mi=1, are uniformly sampled from two balls, 
Bε2(Z2) ⊂ Bε1(Z1) ⊂ Gr(k0, n) with centers at Z1, Z2 and corresponding radii ε1 > ε2, 
respectively. The larger ball, Bε1(Z1), is the minimum enclosing ball of the data so 
that U∗(k0) = Z1. The smaller ball is fully contained within the larger ball, i.e., 
Bε2(Z2) ⊂ Bε1(Z1), but Z1 /∈ Bε2(Z2). Let M1, M2 be the number of points sampled 
from Bε1(Z1), Bε2(Z2) respectively, with M = M1 + M2. When M2 = 0, the generalized 
Grassmannian means are all equal to the point Z1. When more points are sampled from 
Bε2(Z2) and the fraction M2/M1 grows, the generalized Grassmannian means for p < ∞
move away from Z1 in the direction of Z2, making the averages distinct without affecting 
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Fig. 2. Two examples of point sets from Gr(1, 3) generated using the nested ball model embedded into R2 by 
multidimensional scaling. The points from B1(Z1) are indicated with x’s, points from B0.2(Z2) are marked 
with white circles, the true center is the green square, the Karcher mean is the blue circle, and the estimated 
GMEB center is the yellow diamond. (For interpretation of the colors in the figure(s), the reader is referred 
to the web version of this article.)

the center of the GMEB. The radius of the large ball, ε1, controls the similarity of the 
data points.

As described, the data points are all sampled from a single manifold, Gr(k0, n). If 
ε1 is small enough, then the optimal rank for the GMEB (or any of the generalized 
Grassmannian means) is k∗ = k0. This construction can be generalized in two ways.

1. For i = 1, . . . , M , the basis for Xi can be completed to a pi-dimensional subspace 
by taking the span of Xi and pi − k0 random dimensions. If the pi − k0 random 
dimensions are mutually orthogonal for i = 1, . . . , M , then the optimal rank for the 
GMEB is still k∗ = k0.

2. Points from the large ball can be sampled from one manifold, Bε1(Z1) ⊂ Gr(k1, n)
while points from the small ball are sampled from another, Bε2(Z2) ⊂ Gr(k2, n). 
If k1 �= k2, the optimal rank of the central subspace is ambiguous. Experiments 
show that using the proposed order selection rule, k∗ = k1 independent of other 
parameters, but using the criteria of [22], k∗ depends on ε1 and M2/M1.

As an illustrative example, Fig. 2 shows 2-dimensional embeddings via multidimensional 
scaling of data sets on Gr(1, 3) that have been generated according to the asymmetrical 
nested ball model. The yellow diamond indicates the center of the GMEB (computed 
via the proposed method) and the blue circle marks the Karcher mean of each data 
collection.

6.2. Unit ball with higher sampling density from a random arc

Another practical scenario where the GMEB center may differ from other generalized 
Grassmannian means is when data has been sampled unevenly. This setting is simulated 
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Fig. 3. Two examples of point sets from Gr(1, 3) on the unit ball, B1(Z1), sampled with nonuniform density 
on the boundary, embedded into R2 by multidimensional scaling. Points from B1(Z1) are indicated with 
x’s, the true center is the green square, the Karcher mean is the blue circle, and the estimated GMEB center 
is the yellow diamond.

by selecting a random arc from the boundary of a unit ball and sampling additional points 
from that region. A collection of subspaces, D = {Xi}Mi=1, are uniformly sampled from 
the ball Bε1(Z1) ⊂ Gr(k0, n) with center at Z1 and radius ε1. M1 points are sampled from 
Bε1(Z1) so that U∗(k0) = Z1. Two points are randomly selected from the boundary of 
Bε1(Z1), and M2 additional points are uniformly sampled from the arc connecting them 
on the boundary to create M = M1 + M2 samples. The data points are all sampled 
from a single manifold, Gr(k0, n), and for sufficiently small ε1, the optimal rank for 
the GMEB (or any of the generalized Grassmannian means) is k∗ = k0. To generalize 
this construction, additional dimensions can be included to create points from a disjoint 
union of Grassmannians.

For i = 1, . . . , M , the basis for Xi can be completed to a pi dimensional subspace by 
taking the span of Xi and pi − k0 random dimensions. If the pi − k0 random dimensions 
are mutually orthogonal for i = 1, . . . , M , then the optimal rank for the GMEB is still 
k∗ = k0. Fig. 3 shows 2-dimensional embeddings via multidimensional scaling of data 
sets on Gr(1, 3) that have been generated as a unit ball with higher sampling density 
along a random arc. The yellow diamond indicates the center of the GMEB (computed 
via the proposed method) and the blue circle marks the Karcher mean of each data 
collection.

It should be noted that using either data model the point at the center of Bε1(Z1)
is only the ground-truth center of the minimum enclosing ball of the data collection, 
U(k∗), if the points have been sampled with a high enough density from the surface of 
the ball. The minimum number of uniformly distributed points needed grows with the 
ambient dimension, n, so in high dimensional spaces the number of points, M , needed 
to create a ground-truth center may become prohibitively large. The experimental data 
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Fig. 4. Median distance to the groundtruth and cumulative time for the GMEB on Gr(3, 10) of data generated 
with the asymmetrical nested ball model from Section 6.1 over 100 Monte Carlo trials. The data consists 
of 100 points in Gr(3, 10). The proposed method is indicated by the dashed purple line and the method of 
Renard et al. [3] is represented by the solid turquoise line. The shaded regions span the extreme values.

can be generated exclusively from the boundary of the balls or interior points can be 
added.1

7. Numerical experiments

The experiments in this section are meant to illustrate three properties of the proposed 
GMEB algorithm and associated order-selection rule. First, we demonstrate the speed 
and accuracy of the proposed method for estimating the center of the GMEB. Second, we 
demonstrate that a warm-start on Gr(k+ 1, n) using the optimal solution from Gr(k, n)
can reduce the number of iterations required for the algorithm to converge. And finally, 
we compare results of the proposed order-selection rule and the rule of [22] in a variety 
of scenarios to gain intuition about when and how they differ.

7.1. Experiment 1: accuracy of the GMEB

To test the accuracy and efficiency of the proposed dual subgradient approach, data 
sets are generated according to each of the two data models from Section 6. For each 
data collection, the GMEB center is approximated using the proposed method and the 
algorithm of Renard et al. [3], and the residual error is measured as the distance between 
the approximate centers and the true centers. For the first data set, M = 100 points 
are sampled from Gr(3, 10) using the asymmetrical nested ball model in Section 6.1
with neither of the proposed generalizations. That is, k0 = k1 = k2 = 3 so that all 
points are sampled from the same Grassmann manifold. M1 = 70 of the points come 
from the boundary of B1(Z1) and M2 = 30 from the boundary of B0.125(Z2). No points 
are sampled from the interior of either ball. Both algorithms are initialized using the 

1 Matlab code for the algorithms, data generation procedures, and numerical experiments in this 
manuscript is available at https://sites .google .com /site /nicolasgillis /code.

https://sites.google.com/site/nicolasgillis/code
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extrinsic mean of the data [35,9], that is, λ(0) = [1/100, 1/100, . . . , 1/100]T , and U(0)(3) is 
the dominant 3-dimensional eigenspace of 

∑100
i=1 λ

(0)
i XiX

T
i . The groundtruth center is 

U∗(3) = Z1.
Fig. 4a shows the median distance to the groundtruth over 100 Monte Carlo trials 

between the iterate with the lowest primal cost and the ground-truth center. Fig. 4b 
shows the same median distance to the groundtruth relative to cumulative computation 
time for each algorithm. In both plots the proposed method is indicated by the dashed 
purple line and the method of [3] is represented by the solid turquoise line. The shaded 
regions denote the complete range of values across all trials. This is a setting in which 
all data points live on a single Grassmann manifold. Therefore the point-to-set distances 
reduce to the traditional Grassmannian distances and the technique of [3] is equivalent 
to that of [1].

The proposed method clearly outperforms the existing technique in terms of accuracy 
relative to both iterations and computation time for this collection of data. However, the 
cumulative computation time is affected by many of the parameters in the experimental 
setup. Let P = maxi{dim(Xi)}. For the technique of [3,1], the per iteration complexity 
is O

(
MP (nk + k2)

)
due to the M matrix products and subsequent thin SVDs. The 

proposed method computes these same M products and SVDs, but must additionally 
compute the compact SVD of a matrix of size n × MP in order to get the updated 
center. Assuming that n ≤ MP (as it is in all the experiments), the complexity of the 
proposed algorithm is then O

(
MP (nk + k2 + n2)

)
. There are an additional M SVDs 

for each back-tracking step taken, but those steps are infrequent and thus dominated 
by the other terms. From these complexities we can see that an increase in the ambient 
dimension, n, number of subspaces, M , or subspace dimension, P , would all lead to a 
relative decrease in the efficiency of the proposed method.

In the second example we employ the data model from Section 6.2, with the inclusion 
of interior points and the generalization that the data points come from a disjoint union 
of Grassmannians, that is, they are subspaces of differing dimensions. Initially, M1 = 100
points are sampled from the boundary of B1(Z1) on Gr(3, 15). An additional M2 = 100
points are selected from an arc on the boundary of the ball between two randomly 
selected points. Finally M3 = 100 points are selected uniformly at random from the 
interior of the ball. Each of the M = 300 points is then completed to a basis for a pi-
dimensional subspace where pi is randomly selected from the set P = {3, 4, 5, 6}. Both 
algorithms are again initialized using the extrinsic mean of the data on Gr(3, 15) where 
λ(0) = [1/300, 1/300, . . . , 1/300]T , and U(0)(3) is the dominant 3-dimensional eigenspace of ∑300

i=1 λ
(0)
i XiX

T
i . Fig. 5a shows the median distance to the groundtruth over 100 Monte 

Carlo trials between the iterate with the lowest primal cost and the ground-truth center, 
while Fig. 5b shows the median error relative to cumulative computation time. The 
proposed method is indicated by the dashed purple line and the method of Renard et 
al. [3] is represented by the solid turquoise line. The shaded regions span the extreme 
values. The groundtruth center is U∗(3) = Z1.
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Fig. 5. Median distance to the groundtruth and cumulative computation time for the GMEB on Gr(3, 15)
of data generated with the nonuniform sampling model from Section 6.2 over 100 Monte Carlo trials. The 
data consists of 300 points in ∐p∈P Gr(p, 15) for P = {3, 4, 5, 6}. The proposed method is indicated by 
the dashed purple line and the method of Renard et al. [3] is represented by the solid turquoise line. The 
shaded regions span the extreme values.

As shown in Fig. 5a, the proposed method achieves a higher accuracy in fewer iter-
ations than [3]. However, the greater complexity of the proposed method means that 
the primal algorithm initially achieves a lower error, as shown in Fig. 5b. The increased 
number of points in the data set and specifically in the support of the GMEB lead to 
a slower overall convergence for the proposed algorithm. This reduced efficiency would 
grow with the size of the data, however the subgradient technique consistently achieves 
lower overall error given enough time. Moreover, the proposed method provides duality-
gap optimality guarantees.

One direction for future work is to combine the two methods to get the best of 
both worlds; fast initial estimates of the center and high accuracy solutions over time. 
Using U(t)(k) computed via t iterations of [3] as an estimate of the center, we can 
find dual-feasible variables that are non-zero only for points in the support set of the 
enclosing ball centered at U(t)(k). For example, let I = {i : dGr(k,n)(U(t)(k), Xi) =
maxi dGr(k,n)(U(t)(k), Xi)}. Then let λ(0)

i = 1/|I| for i ∈ I and λ(0)
i = 0 otherwise, and 

proceed with the subgradient algorithm from this warm-start. An alternative initializa-
tion strategy is proposed in Section 7.2.

7.2. Experiment 2: faster convergence by initializing with previous solutions

To apply the order selection criteria in Section 5, the GMEB center must be com-
puted for k = 1, . . . , maxi{dim(Xi)}. The example in Section 5.1 demonstrates that the 
subspace at the center of the minimum enclosing ball cannot be built in a greedy fash-
ion, because the center U∗(k − 1) ∈ Gr(k − 1, n) is not in general a subspace of the 
center U∗(k) ∈ Gr(k, n). However, the solutions are often nearly nested. As a result, 
the vector, λ∗(k − 1), that provides the optimal value of the dual objective function 
for the problem on Gr(k − 1, n) can offer a good initialization for the dual subgradient 
algorithm used to find the GMEB center on Gr(k, n), significantly reducing the total 
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Fig. 6. Number of iterations needed for the proposed algorithm to reach a stationary point using a naive 
initialization, λ(0)(k + 1) = [1/M, 1/M, . . . , 1/M]T (orange), and a warm start, λ(0)(k + 1) = λ∗(k) (red) for 
two data sets.

computation time needed to identify the optimal dimension, k∗. In [36] the authors also 
used a warm-starting strategy on a similar problem to improve the efficiency of a rank-
adaptive matrix optimization scheme. Their proposed method alternates between greedy 
rank increase and smooth Riemannian optimization on fixed-rank manifolds, and they 
show that the strategy significantly improves the number of iterations and computational 
time to convergence.

This experiment demonstrates the advantages of warm-starting the dual problem, 
which has the benefit of efficiently generating primal feasible solutions with lower er-
ror. By way of a baseline comparison, simple initializations of λ(0)(k) would be to 
randomly select the dual variables or to set all of the dual variables equal so that 
λ(0)(k) = [1/M, . . . , 1/M]T . For these experiments the latter strategy is chosen. The initial 
iterate for the primal variable when the dual variables are all equal is then the uniformly 
weighted extrinsic mean of the data, that is, U(0)(k) is the dominant k-dimensional 
eigenspace of 

∑M
i=1 λ

(0)
i XiX

T
i . On Gr(1, n), no warm-start initialization is possible be-

cause λ∗(0) is undefined, so the algorithm is run using only the naive initialization. 
For k = 2, . . . , maxi{dim(Xi)} Fig. 6 illustrates the relative speed-up due to smart ini-
tialization by comparing the number of iterations needed to find a stationary point for 
different choices of the initial dual variable using each of the data models. Both data 
models are intentionally structured so that the extrinsic mean is not the center of the 
GMEB on Gr(k∗, n). The naive initialization is indicated by the orange box-and-whisker 
plots, while the warm-start is denoted with red. The black dots mark the mean number 
of iterations and the solid line is the median.

In Fig. 6a the data has been generated using the asymmetrical nested ball model with 
M = 50 points sampled from Gr(pi, 10) for pi ∈ {4, 5, 6} and an optimal dimension of 
k∗ = 4. The warm start converged in less iterations than the naive initialization in 359
out of 500 possible trials. An experiment using data generated by sampling more densely 
from a randomly selected arc of a unit ball is displayed in Fig. 6b. Here, M = 300 points 
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were generated on Gr(pi, 10) with pi ∈ {4, 5, 6} where k∗ = 4. In 415 out of 500 possible 
trials, the warm start converged in less iterations than the naive initialization.

7.3. Experiment 3: order-selection comparison

The previous experiments demonstrated the effectiveness of the proposed approach for 
computing the subspace at the center of the GMEB in a noise-free scenario. However the 
end-goal is to find a central subspace and the optimal size to best represent the common 
dimensions in a collection of data. Adding noise to the subspaces makes it difficult to 
identify how many common dimensions exist, thus the third experiment compares the 
ability of the proposed order-selection rule to identify the optimal dimension of the 
common subspace with that of the technique from Santamaria et al. [22] as the difficulty 
of the task varies.

In many machine learning applications, a common low-rank subspace is extracted 
from data as a pre-processing task, but the rank of this subspace is selected with little 
care. The most commonly used solutions are heuristics for locating the elbow of the scree 
plot, that is, computing the SVD of the concatenated data sets, finding the singular val-
ues that represent the significant information, and keeping the dimensions corresponding 
to these singular values. This can be done with a variety of techniques such as the L-
method [37], which estimates the elbow as the intersection of the two lines that minimize 
the root mean-squared error of the projection of the points in the scree plot onto the 
lines, the method of [38], which maximizes the profile log-likelihood under an indepen-
dence assumption, and even just visually inspecting the scree plot to identify the first 
significant change in the first derivative [39]. To justify the need for a more principled 
way of selecting a subspace dimension, we additionally compare to the elbow of the scree 
plot using the L-method, and expect it to provide bad results. In the experiments this 
technique is denoted “SVD.”

Fig. 7 shows a comparison of order-selection rules for M = 20 points generated using 
the asymmetrical nested ball model from Section 6.1 with both generalizations. The data 
has M1 = 10 points that are sampled uniformly from the boundary of B1(Z1) ⊂ Gr(10, n)
and M2 = 10 points that are sampled from the boundary of B.5(Z2) ⊂ Gr(15, n). Each 
of the points is completed to a basis for a point on Gr(pi, n) for pi ∈ {10, 11, . . . , 20}
and n = 20, 30, . . . , 200. Zero-mean Gaussian noise is added to create noisy data sets. 
The signal-to-noise ratio (SNR) of the data is the total power of the signal divided 
by the total power of the noise. In order to have the same SNR for each subspace 
despite differing dimensions, the noise variance per component is scaled by the number 
of subspace dimensions. Since Xi is an orthonormal basis for Xi, the magnitude of each 
basis vector is 1. Thus the total power of signal subspace is k∗, and the SNR is computed 
as SNR = 10 log10(k

∗
/σ2

N), where σ2
N is the total variance of the noise. In this example 

the order of the common subspace is k∗ = 10 and σ2
N = 1.259 meaning that the data 

has an SNR of 9 dB.
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Fig. 7. Order-selection accuracy and mean selected order relative to the ambient dimension of the data from 
100 Monte Carlo trials using the proposed order-selection rule (purple dashed line with triangle markers), 
the method of Santamaría et al. [22] (pink solid line with circle markers), the hybrid method (turquoise 
dotted line with square markers), and the elbow point of the SVD (orange dash-dotted line with circle 
markers). The data consists 20 points from ∐p∈P Gr(p, n) for P = {10, 11, . . . , 20} and n = 20, 30, . . . , 200
with an SNR of 9 dB generated according to the model in Section 6.1.

Fig. 7a shows the percentage of 100 Monte Carlo trials for which the proposed order-
selection rule (purple dashed line with triangle markers), the method of Santamaría et 
al. [22] (pink solid line with circle markers), the hybrid method (turquoise dotted line 
with square markers), and the elbow point of the SVD (orange dash-dotted line with 
circle markers) were able to correctly identify the optimal order of the common subspace 
relative to the ambient dimension. Fig. 7b shows the mean selected order, averaged across 
all trials. We can see that when the ambient dimension is small, all methods other than 
the SVD tend to overestimate the order of the common subspace. This is a result of the 
noise dimensions being relatively close in the low-dimensional spaces. The dimension of 
Gr(k, n) is k(n − k), so for k ≈ maxi{pi} ≈ n all samples are very similar regardless of 
the data model. As the ambient dimension grows and the randomly selected dimensions 
become further apart on average, the proposed method and the hybrid method correctly 
select the order with a high degree of accuracy. The proposed method achieves slightly 
lower accuracy and has less stable performance than the hybrid method because cpen(k)
can be significantly affected by even one subspace that is similar to U∗⊥(k). However, 
this behavior is consistent with the assumption that every sample is valid and there are 
no outliers in the collection of data. As expected, [22] initially estimates the order as the 
dimension of the common subspace for the smaller ball and over-estimates the order as 
15, while the methods that rely on the minimum enclosing ball estimate the dimension 
of the common subspace for that support set. Predictably, the elbow point of the SVD 
has low accuracy regardless of the ambient dimension. In essence, this method attempts 
to preserve all dimensions that are not pure noise.

Fig. 8 shows a comparison using data from the second model, a ball that is sampled 
more densely from a random arc. For some Z1 ∈ Gr(3, 100), M1 = 200 points are sampled 
uniformly from B0.5(Z1) ⊂ Gr(3, 100) and M2 = 25 additional points are then sampled 
from a random arc on the same ball. No points were sampled from the interior of the 
ball. Each of these M = 225 subspaces is completed to a basis for a point on Gr(pi, 100)
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Fig. 8. Order-selection accuracy and mean selected order relative to the signal-to-noise ratio of the data (in 
dB) from 100 Monte Carlo trials using the proposed order-selection rule (purple dashed line with triangle 
markers), the method of Santamaría et al. [22] (pink solid line with circle markers), the hybrid method 
(turquoise dotted line with square markers), and the elbow point of the SVD (orange dash-dotted line with 
circle markers). The data consists 225 points from ∐p∈P Gr(p, 100) for P = {3, 4, 5} generated according 
to the model in Section 6.2.

for pi ∈ {3, 4, 5}, and zero-mean Gaussian noise is added to each basis to create noisy 
data sets. In this experiment, the ambient dimension is fixed and we allow the SNR to 
vary from −5 dB to 10 dB.

With this data the optimal order of the common subspace is k∗ = 3 and center of the 
ball is U∗(3) = Z1. Fig. 8a shows the percentage of 100 Monte Carlo trials for which the 
proposed order-selection rule (purple dashed line with triangle markers), the method of 
Santamaría et al. [22] (pink solid line with circle markers), the hybrid method (turquoise 
dotted line with square markers), and the elbow point of the SVD (orange dash-dotted 
line with circle markers) were able to correctly identify the optimal order of the common 
subspace relative to the signal-to-noise ratio. Fig. 8b shows the mean selected order in 
the same trials. This experiment demonstrates the behavior of the different rules when 
all of the points are in the support of the minimum enclosing ball on Gr(k∗, n). Each 
of the subspace averaging methods should theoretically select the same order in this 
experiment, because all of the points share the same number of dimensions and there is 
no ambiguity about the optimal solution. Thus even though the mean computed by [22]
is not the same point as the center of the GMEB, they lead to the same estimated rank. 
We see that in this scenario, the behavior of the rules using �∞-norm and the �2-norm are 
similar with a sharp phase transition when the power of the signal and the power of the 
noise are almost equal, although the �2-norm transitions to the correct order at a slightly 
higher noise power. This suggests that for situations where the data is free from outliers 
and the �∞-mean is close to the �2-mean, either technique will accurately estimate the 
number of common dimensions. The elbow point of the singular value decomposition 
fails to identify the common dimension in all trials.

Finally, in Fig. 9 we see the ability of each method to identify when there is no 
subspace common to a collection of points. This is a valuable test because estimating 
k∗ = 0 suggests that there is no information shared across all the data and that averaging 
the points is not an appropriate way to aggregate the information in the data. The data 
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Fig. 9. Order-selection accuracy and mean selected order relative to the ambient dimension of the data when 
there is no common subspace. Results are from 100 Monte Carlo trials using the proposed order-selection 
rule (purple dashed line with triangle markers), the method of Santamaría et al. [22] (pink solid line with 
circle markers), the hybrid method (turquoise dotted line with square markers), and the elbow point of the 
SVD (orange dash-dotted line with circle markers). The data consists 50 points from ∐p∈P Gr(p, n) for 
P = {3, 4, 5} and n = 5, 6, . . . , 15, 20, 25, . . . , 40.

in this experiment consists of 50 subspaces chosen uniformly at random from Gr(pi, n)
for pi ∈ {3, 4, 5} for i = 1, . . . , 10 with ambient dimensions n = 5, 6, . . . , 15, 20, 25, . . . , 40. 
The noise variance does not affect performance in this task because there is no signal 
so the SNR is undefined. In Fig. 9a we see a similar phase transition to that of Fig. 8. 
The hybrid method is able to achieve perfect accuracy for ambient dimensions greater 
than 10, while [22] and the proposed method transition shortly thereafter. The SVD 
fails every time, but that is to be expected in this scenario. The elbow point method 
computes two lines that minimize the residual for the scree plot, and chooses dimension 
as the index of the singular value just larger than the intersection of those lines. A line 
cannot be fit to zero points, so the method will not select k∗ = 0 or k∗ = n as a solution. 
However, in Fig. 9b we see that the SVD is significantly overestimating the dimension 
of the (non-existent) common subspace, so the poor performance is not an issue of the 
method being unable to select 0 as the optimal dimension. When n is small the proposed 
algorithm incorrectly identifies a relationship between the subspaces, but as the ambient 
dimension grows the optimal order, k∗ = 0, is selected with increasing accuracy. As noted 
in discussion of Fig. 7, the misidentifications in low dimensions are due to the minimum 
similarity between the points and U∗⊥(k) being higher when k ≈ maxi{pi} ≈ n.

8. Conclusions

The recent trend of performing machine learning tasks on linear subspace data has 
created a need for flexible subspace averages, ones that can be computed accurately and 
in a principled manner for subspaces of differing dimension. In response to this need, we 
have proposed an algorithm to find the �∞-center of mass using a subgradient algorithm 
to solve the dual problem with respect to a point-to-set distance. We additionally pro-
posed a flexible data generation model to create subspaces of differing dimensions with 



T. Marrinan et al. / Linear Algebra and its Applications 625 (2021) 248–278 275
ground-truth for the GMEB that emulates realistic settings where an �∞-average would 
be appropriate. On this synthetic data, the proposed algorithm provides estimates of the 
GMEB center with high accuracy. However, the high computational complexity means 
that an existing primal method can provide low-accuracy solutions more quickly for large 
data sets. One direction for future expansion is to develop a core-set theory akin to that 
of [2] in order to estimate the GMEB on a subset of the data with theoretical accuracy 
guarantees. A related area for further study is to develop an active-set approach for 
�∞-averaging of mixed-dimensional subspaces, à la John [40]. Active-set methods also 
attempt to minimize the cost function over a subset of the data. However, the active-set 
approach looks for a subset of the data that solves the original problem exactly, whereas 
the core-set technique computes error bounds on the solution provided by any subset 
of a given size. One theoretical hurdle to achieving an active-set method is a theorem 
on the minimum number of points required to define a Grassmannian ball given a fixed 
Grassmann manifold and subspaces of differing dimensions.

Finally, we proposed a geometric order-fitting rule that estimates the best dimension 
for the common subspace. This rule fits the common dimensions of the subspaces in 
the support set of the minimum enclosing ball, which is appropriate for data where 
all subspace samples are assumed to be valid examples of the model of interest. We 
additionally implement a hybrid technique for estimating the dimension of the common 
subspace that modifies the order-selection rule of [22] for use with the �∞-average. This 
hybrid method would not be possible for existing techniques that estimate the GMEB, 
because it uses the values of the dual variables as weights for an eigenvalue decomposition 
at each potential order. The hybrid approach outperforms the proposed technique and 
that of [22] when the ambient dimension is close to the subspace dimension of the data 
points.

A high-accuracy estimate of the GMEB center combined with an order-selection rule 
for the number of common dimensions results in a powerful technique for detecting 
and estimating similarity in a collection of subspaces. We anticipate that many practical 
applications will arise in the form of distributed large-scale problems, where the subspace 
averaging can be used for aggregation, for example the sparse subspace clustering of [13].
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Appendix A. GMEB dual subgradient algorithm

Algorithm 1 Algorithm to minimize Equation (14) with back-tracking line search.
1: function GMEB(

{
Xi

}M
i=1, k, a, η, ζ, β)

2: input: Data: 
{
Xi

}M
i=1, Rank: k, Step size parameter: a, Stopping criteria: η, Step size threshold: ζ, 

Growth parameter: β
3: output: Weights: λ∗, Minimax center: U∗

4: t ← 0
5: λ(t) ← [1/M, . . . , 1/M]T ∈ RM 	 λ(t) ← λ∗(k − 1) for warm-start
6: U(t) ← dominant k eigenvectors

(∑M
i=1 λ

(t)
i XiX

T
i

)
7: g(t) ← −

[
dGr(k,n)(U(t), X1), dGr(k,n)(U(t), X2), . . . , dGr(k,n)(U(t), XM )

]T
8: fprimal(U(t)) ← mini=1,...,M{−dGr(k,n)(U(t), Xi)} 	 Primal cost at iteration t
9: fdual(λ(t)) ← λ(t)Tg(t) 	 Dual cost at iteration t

10: while fdual(λ(t)) − fprimal(U(t)) > η and max
i=1,...,10

{fdual(λ(t−i)) − fdual(λ(t))} > η do
11: t ← t + 1
12: α(t) ← a/

√
t

13: λ(t) ← λ(t−1) − α(t)g(t−1), λ(t) ← λ(t)/‖λ(t)‖1

14: U(t) ← dominant k eigenvectors
(∑M

i=1 λ
(t)
i XiX

T
i

)
15: g(t) ← −

[
dGr(k,n)(U(t), X1), dGr(k,n)(U(t), X2), . . . , dGr(k,n)(U(t), XM )

]T
16: α̃(t) ← α(t)

17: λ̃
(t) ← λ(t)

18: fdual(λ̃
(t)) ← λ̃

(t)Tg(t)

19: while fdual(λ̃
(t)) > fdual(λ(t−1)) and α̃(t) > ζα(t) do 	 Back-tracking line search

20: a ← a/2

21: α̃(t) ← a/
√

t

22: λ̃
(t) ← λ(t−1) − α̃(t)g(t−1), λ̃(t) ← λ̃

(t)
/‖λ̃(t)‖1

23: Ũ(t) ← dominant k eigenvectors
(∑M

i=1 λ̃
(t)
i XiX

T
i

)
24: g̃(t) ← −

[
dGr(k,n)(Ũ(t), X1), dGr(k,n)(Ũ(t), X2), . . . , dGr(k,n)(Ũ(t), XM )

]T
25: fdual(λ̃

(t)) ← λ̃
(t)T g̃(t)

26: if fdual(λ̃
(t)) ≤ fdual(λ(t−1)) then 	 Update variables if fdual decreases

27: a ← βa

28: λ(t) ← λ̃
(t)

29: U(t) ← Ũ(t)

30: g(t) ← g̃(t)

31: fprimal(U(t)) ← mini=1,...,M{−dGr(k,n)(U(t), Xi)}
32: fdual(λ(t)) ← λ(t)Tg(t)

return λ(t), U(t)
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