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Abstract—Nonnegative matrix factorization (NMF) is a linear dimensionality reduction technique for analyzing nonnegative data. A key
aspect of NMF is the choice of the objective function that depends on the noise model (or statistics of the noise) assumed on the data.
In many applications, the noise model is unknown and difficult to estimate. In this paper, we define a multi-objective NMF (MO-NMF)

problem, where several objectives are combined within the same NMF model. We propose to use Lagrange duality to judiciously
optimize for a set of weights to be used within the framework of the weighted-sum approach, that is, we minimize a single objective
function which is a weighted sum of the all objective functions. We design a simple algorithm based on multiplicative updates to
minimize this weighted sum. We show how this can be used to find distributionally robust NMF (DR-NMF) solutions, that is, solutions
that minimize the largest error among all objectives, using a dual approach solved via a heuristic inspired from the Frank-Wolfe
algorithm. We illustrate the effectiveness of this approach on synthetic, document and audio data sets. The results show that DR-NMF

is robust to our incognizance of the noise model of the NMF problem.

Index Terms—Nonnegative matrix factorization, Multiple objectives, Distributional robustness, Multiplicative updates

1 INTRODUCTION

Nonnegative matrix factorization (NMF) consists in the
following problem: Given a nonnegative matrix X € R"*"
and a factorization positive rank r < min(m,n), find two
nonnegative matrices W € R7*" and H € R}*" such
that WH ~ X. NMF is a linear dimensionality reduction
technique for nonnegative data. In fact, assuming each
column of X is a data point, it is reconstructed via a linear
combination of r basis elements given by the columns of W
while the columns of H provide the weights (or coefficients)
to reconstruct each column of X within that basis, that is,

for all j,
§) > W k)H (k).
k=1

2)

smoothness [6]. These constraints are motivated by a
priori information on the sought solution and depend
on the application at hand. Note that these additional
constraints are in most cases imposed via a penalty term
in the objective function.

The choice of the objective function that assesses the
quality of an approximation by evaluating some dis-
tance between W H and X differs. This choice is usually
motivated by the noise model/statistics assumed on the
data matrix X. The most widely used class of objective
functions are component-wise and based on the (-
divergences defined as follows: for 2,y € Ry,

Dg(z,y)
NMF has attracted a lot of attention since the seminal paper Z_logZ—1 for B =0,
of Lee and Seung [1], with applications in image analysis, _ leog z _Jm +y for =1
Yy )

document classification and music analysis. See for example
[2], [3] and the references therein. Many NMF models have
been proposed over the years. They mostly differ in two
aspects:

1) Additional constraints are added to the factor matrices
W and H such as sparsityi [4], spatial coherence [5] or
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s (@ + (B =1y’ — Bay’™t) for B #0,1.
We will use the following matrix-wise notation,

5(X, WH) ZDﬁ iy WH); ).

Minimizing the S-divergence in NMF is equivalent to
maximizing the log-likelihood of the NMF model under
different noise distributions [7], [8]. The following spe-
cial cases are of particular interest (see for example [7]
for a discussion):

o Dy(X,WH) = 3| X — WH]||% is the Frobenius
norm (addltlve Gau551an noise).

e Di(X,WH) = KL(X,WH) is the Kullback-
Leibler (KL) divergence (Poisson noise).

e Do(X,WH) = IS(X,WH) is the Itakura-Saito
(IS) divergence (multiplicative Gamma noise).
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In this paper, we focus on the second aspect, namely, the
choice of the objective function. We will consider a multi-
objective NMF (MO-NMF) formulation. More precisely, we
will consider a weighted sum of the different objective
functions, which is arguably one of the most widely used
approach in multi-objective optimization [9]. Our main mo-
tivation to consider this class of models is that in many
applications it is not clear which objective function to use
because the statistics of the noise is unknown. To the best
of our knowledge, there are currently three main classes of
methods to handle this situation:

e The user chooses the objective function she/he be-
lieves is the most suitable for the application at hand.
This is, as far as we know, the simplest and most
widely-used approach. However, this approach is an
ad hoc one.

o The objective function is automatically selected using
cross-validation, where the training is done on a
subset of the entries of the input data matrix and
the testing on the remaining entries [10], [11].

o The most suitable objective function is chosen using
some statistically motivated criteria such as score
matching [12] or maximum likelihood [13].

However, in all the above approaches, if the choice of
the objective function is wrong, the NMF solution provided
could be far from the desired solution (as we will show in
our numerical experiments in Section 5). Another possibility
which we propose in this paper is to compute an NMF so-
lution that is robust to different types of noise distributions;
this is referred to as distributionally robust, and is closely
related to robust optimization [14]. In mathematical terms,
we will consider the problem

min max Dg(X, WH),
(W,H)>0 BEQ
As we will see, this problem can be tackled by minimizing a
weighted sum of the different objective functions [9], exactly
as for MO-NME, but where the weights assigned to the
different objective functions are automatically tuned within
the iterative process.

Outline of the paper: In Section 2, we first define
MO-NMF and explain how to scale the objective functions
to make the comparison between the constituent NMF
objective functions. Then we give our main motivation to
consider MO-NMEF, namely to be able to compute distribu-
tionally robust NMF (DR-NMF) solutions, that is, solutions
that minimize the largest objective function value. In Sec-
tion 3, we propose simple multiplicative updates (MU) to
solve a weighted-sum approach for MO-NMF. In Section 4,
we propose a heuristic scheme to solve DR-NMF which
updates the primal variables using the MU and the dual
variable using the Frank-Wolfe descent direction. Finally,
we illustrate in Section 5 the effectiveness of our approach
on synthetic, document and audio data sets.

2 MuLTI-OBJECTIVE NMF (MO-NMF)

Let €2 be a finite subset of R. We consider in this paper the
following MO-NMF problem:

(WI};}?ZO{DB (X, WH)}seq-

2

Note that we focus on S-divergences to simplify our pre-
sentation and because these are the most widely-used di-
vergences to measure the “distance” between the given
matrix X and its approximation W H in the NMF literature.
However, our approach can adapted to be used for other
objectives functions (for example, a-divergences [15]). To
tackle this problem, we consider the standard weighted-
sum approach [16] which consists in solving the following
minimization problem which involves a single objective
function:

o Dy (X, WH),

where D)(X,WH) = Y 500 AsDs(X,WH), A € R}, and
[AllL = >-geq As = 1. Using different values for A allows to
generate different Pareto-optimal solutions. See Section 5.1
for some examples. Note, however, that it does not allow to
generate all Pareto-optimal solutions [16]. A Pareto-optimal
solution is a solution that is not dominated by any other
solution. That is, (W, H) is a Pareto-optimal solution if there
does not exist a feasible solution (W', H') such that

e Dg(X,W'H') < Dg(X,WH) forall § € Q, and
o there exists § €  such that Dg(X,W'H') <
Ds(X,WH).

Multi-objective optimization has already been consid-
ered for NMF problems. However, most of the existing
literature considers combining a single data fitting term
with penalty terms on the factor matrices; for example, an ¢;
penalty to obtain sparse solutions [17]. As far as we know,
the only paper where several objectives are used to balance
different data fitting terms is [18]. The authors combined
two objectives, one being a standard data fitting term (more
precisely, they used the Frobenius norm || X — WH|%)
and the other being a data fitting term in a feature space
obtained using a nonlinear kernel (that is, a term of the form
[®(X) — ®(W)H|3, where ||.||3 corresponds to the norm
in the feature space). Hence this approach is rather different
than ours where we allow more than two objectives and
where we only focus on the input space. Moreover, we will
optimize the weights in a principled optimization-theoretic
fashion, whereas [18] uses an ad hoc manner to combine the
two terms. Another related work [19] considers a data fusion
problem where several data sets, denoted X1, X5,...,X,,
share the same factor H. Their goal is to compute H > 0 and
W; > 0 such that X; =~ W;H fori¢ = 1,2,...,p. To achieve
this goal, the authors use a weighted objective function
>P  NiDg,(X;,WH,;) for some well-chosen weights \;’s,
and some parameters 3;’s that depend on the noise statistic
of the corresponding data set. Again, this is a rather different
setup that ours as there is no distributionally robust aspect.

2.1 Scaling of the objectives

It can be easily checked that for any constant a@ > 0, we
have
Dg(aX,aWH) = o’ Dg(X, WH).

Hence the values of the divergences for different values
of # depend highly on the scaling of the input matrix.
This is usually not a desirable property in practice, since
most data sets are not particularly properly scaled and
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since scaling simply multiplies the noise by a constant
which in most cases does not change its distribution (only
its parameters). Therefore, we will scale the objectives to
have a meaningful linear combination, in the sense that
each term in the sum has the same importance. It will be
particularly crucial for our DR-NMF model described in
the next section. In fact, as we will see in Section 5, DR-
NMF will generate solutions that have small error for all
objectives instead of just one; and as such, the solutions
inherit superior qualities of the ones generated by different
divergences. We will use the following approach to scale the
different objective functions. First, we compute a solution
(Wg, Hg) for minw, gy>0 Dg(X, WH) to obtain the error
eg = Dg(X,WsHpg). Note that we can only compute this
minimization in an approximate fashion because the NMF
problem is NP-hard [20]. Then, we define
D 5(X,WH) = M7
€s
so that Dg(X,WzHps) = 1. Finally, we will only consider
the MO-NMEF problem where the objectives Dg(X, W H) are
replaced by their normalized versions D (X, W H), that is,
S PA

(WI,IE?EODQ(X’ WH)? (1)
where D(X,WH) = 35,0 AsDs(X, WH). In Section 3,
we propose a MU algorithm to tackle this problem.

2.2 Main motivation: Distributionally robust NMF

If the noise model on the data is unknown, but it is known
that it corresponds to a distribution associated with a §-
divergence with 5 € Q (for example, the Tweedie distri-
bution as discussed in [8]), it makes sense to consider the
following distributionally robust NMF (DR-NMF) problem

in max Dp(X, WH). 2
We use Dg(+,-), not Dg(+,-), because otherwise, in most
cases, the above problem amounts to minimizing a single
objective corresponding to the 8-divergence with the largest
value; see the discussion in Section 2.1 where 2 is a subset
of #’s of interest. In Section 4, we will design an algorithm to
tackle this problem based on MO-NME. We remark that, as
mentioned in the introduction, Problem (2) is intrinsically a
deterministic robust optimization problem. However, since
each [-divergence is associated to a distribution of noise
(see some examples in the introduction), we prefer using
the name DR-NMF for Problem (2) to emphasize its essence,
which is finding a solution that is robust to different types
of noise distributions.

3 MULTIPLICATIVE UPDATES FOR (1)

In this section, we propose MU for (1) which we will be able
to use as a subroutine to tackle MO-NMF and DR-NME. As
with most NMF algorithms, we use an alternating strategy;
that is, we will first optimize over the variable W for fixed
and then reverse their roles. By the symmetry of the problem
(XT = HTWT), we will focus on the update of H; the
update of W can be obtained similarly.

3.1 Deriving MU

Let us recall the standard way MU are derived (see for
example [7], [21], [22]) on the following general optimization
problem with nonnegativity constraints

rggg ). ®3)

Let us apply a rescaled gradient descent method to (3), that
is, use the following update

2t =z — BVf(z),

where z is the current iterate, 1 is the next iterate, and
B is a diagonal matrix with positive diagonal elements.
Let Vi f(x) > 0 and V_f(x) > 0 be such that Vf(z) =
Vif(x)—V_f(z). Taking B;; = - fry; forall i, we obtain
the following MU rule:
+ _ [z] o
V- @)] w
Vi f(z)]
where o (resp. [-]/[-]) refers to component-wise multiplica-
tion (resp. division) between two vectors or matrices. Note
that we need strict positivity of V f(z) and V_ f(z), oth-
erwise we would encounter problems involving division by
zero or a variable directly set to zero, which is not desirable.
Using the above simple rule with proper choices for V f(z)
and V_ f(x) leads to algorithms that are, in many cases,
guaranteed to not increase the objective function, that is,
f(zT) < f(x); see below for some examples, and [22] for
a discussion and an unified rule to design such updates.
This is a desirable property since it avoids any line-search
procedure and also preserves non-negativity naturally. If we
cannot guarantee that the updates are non-increasing, the
step length can be reduced, that is, use
ot =z —yBVf(x),
for some 0 < v < 1 which leads to
et =1 —-y)z+yz"

For example, one can set the step size v = 1/2% for
the smallest k£ such that the error decreases; such a k is
guaranteed to exist since the rescaled gradient direction is
a descent direction. We implemented such a line search; see
Algorithm 1 below. This idea is similar to that in [23]. More-
over, it would be worth investigating the use of regularizers
to guarantee convergence to stationary points without the
use of a line search [24].

For x; = 0, we have that B;; = 0 and the MU are
not able to modify x;: this is the so-called zero-locking
phenomenon [25]. A possible way to fix this issue in prac-
tice is to use a lower bound € on the entries of z, say
€ = 1079, replacing ™ with max(e, ™). This allows such
algorithms to be guaranteed to converge to a stationary
point of min, >, f(z) [26], [27]. More precisely, any sequence
of solutions generated by the modified MU has at least one
convergent subsequence and the limit of any convergent
subsequence is a stationary point [27]. Moreover, it can also
be shown [26, Chap. 4.1] that such stationary points are close
to stationary points of the original problem in (3). We will
use this simple strategy in this paper.



IEEE TRANS. PATTERN ANAL. MACH. INTELL., VOL. X, NO. Y, MONTH YEAR

3.2 Multiplicative Updates for (1)

We now provide more details on how to choose V_ f(z)
and V f(z) for the family of S-divergences in order to
tackle (1). For all 8, we have

VADs(X,WH) = VI Dg(X,WH) - VEDs(X, WH),

where V# denotes the gradient with respect to variable H,
and

VEDs(X,WH) = WT(WH)°*#»~1  and

VD (X, WH) =W (WH)*#2 0 X),

where A°F is the component-wise exponentiation by k of
the matrix A. To solve (1) using MU, we simply use the
linear combination of the above standard choice [8]; see Al-
gorithm 1 for the update of H (the update for W is obtained
in the same way by symmetry). Note that the line-search
procedure (steps 3 to 6) is very rarely entered (we have only
observed it in all our numerical experiments described in
Section 5 when Q = {0}, that is, only for IS-NMF alone).
Note also that the only difference between Dg and Djg is
a constant term; see Section 2.1. In the case of a single
objective (i.e., that |[Q2] = 1), Algorithm 1 particularizes to
the standard MU algorithm for NMF; see for example [7]
and the references therein.

Algorithm 1 MU for H to solve (1)

Input: The matrices X € R[™" and W € RT™", an
initialization H € R'™", a finite set {2 of nonnegative

real numbers, and \ € lel. -
Output: Hf € RT*" such that D}(X,WH}) <
DQ(X ,(WH).

[zﬁeﬂ As (VfIDg(X,WH))}

[Z@en Ag (V{ED[#(X,WH))} ’
’y = 1/ —E_[fr = H+. B
while Df\Z(X7WH:/*) > D) (X, WH) do
V=3
Hf =(1—7)H+~H".
end while

1: Ht =Ho

Because of the step length procedure that guarantees the
objective function to not increase (steps 3-6), the use of Al-
gorithm 1 in an alternating scheme to solve (1) by updating
W and H alternatively is guaranteed to not increase the
objective function. Since the objective function is bounded
below, this guarantees that the objective function values
converge as k goes to infinity.

4 ALGORITHM FOR DR-NMF

As (W, H) — maxgeq Dg(X, WH) is a non-convex func-
tion, obtaining a global solution (W*, H*) for (2) efficiently
is not possible in general. In particular, deciding whether the
minimum in (2) is equal to zero (that is, deciding whether
there exists W and H such that X = W H) is NP-hard [20].
In the following, we propose to find an approximate solu-
tion for the DR-NMF problem via a weighted sum of the
different objective functions. We first observe that

ax D (X, WH) = NsDg(X, WH).
max a( ) %} sDgs( )

max
A>0,5"5cq As=1

Hence (2) can be reformulated as

> AsDp(X,WH). (5)
BEN

min max
(W,H)>0 X>0,[[A[l1=1

4.1 Related works on min-max problems

The problem in (5) is a min-max problem. Let us present a
brief review of well-known methods for solving a general
min-max problem, also known as a saddle point problem
(SSP), of the form

i P 6
min max (x,y), (6)

where X and Y are closed convex sets. SPPs are abound in
game theory, machine learning and statistics. A special class
of SPPs is the class of bilinear SPPs which assume that the
objective can be expressed as (z,y) = f(x)+(Ax, y)+g(y)
where A is a linear operator, f and g are differentiable
functions, and the coupling between x and y is linear in
2z and linear in y. Bilinear SPPs have been extensively
studied and can be solved efficiently by several methods
such as Nesterov’s smoothing method [28] and the primal-
dual hybrid gradient method [29], [30]. For non-bilinear
SPPs, the proximal mirror descent method (which subsumes
the proximal gradient descent method as a special case [31],
[32], [33]), is often the method of choice since it is a direct
method applied to the underlying SPP (while [28] requires
advanced smoothing techniques) and it can be adapted to
the case in which regularizers or constraints are present,
assuming the involving proximal maps can be computed. In
another line of works, the approach of sequentially solving
auxiliary sub-problems (which can have closed-form solu-
tions or can be approximately solved by suitable solvers) to
alternatively update 2 (while fixing y) and y (while fixing x)
has also been developed in the literature [34], [35], [36].

To establish convergence guarantees of algorithms for
SPPs, the following three typical assumptions are made in
the literature: (A) ® is convex in x and concave in y, (B) the
gradient map (z,y) — [V, ®(z,y), —V,®(x,y)] is Lipschitz
continuous, and (C) the SPP has at least one saddle-point,
that is, there exists (z*, y*) such that

O(z*,y) < P(a™,y") < P(z,y") forallz € XY and y € Y.

@)
Assumption (C) is satisfied when X and ) are convex
compact sets and ® is a continuous convex-concave function
[37, Proposition 5.5.3], hence Assumption (C) can be omitted
for SPPs under these settings [31], [32]. For SPPs under
other settings (for example when X or Y is unbounded,
or when ®(z,y) is not convex-concave), Assumption (C)
concerning the existence of saddle points is a standard
assumption for the development of numerical algorithms
for solving SPPs; see [30], [33], [34] and references therein.
Our SPP (5) neither satisfies Assumption (A) nor Assump-
tion (B) since (W, H) +— Dg(X,WH) is not convex and
(W, H) — YV Dg(X, W H) is not Lipschitz continuous. These
facts prevents us from applying standard SPP algorithms
with convergence guarantees to solve (5).

4.2 Preliminaries

The following proposition provides some properties of sad-
dle points of ®. Its proof can be derived from [37, Proposi-
tion 3.4.1] and the definition of subgradients.
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Proposition 1. Consider the SPP in (6). Suppose that for each
(x,y) € X x Y, ®(-,y) and —D(x, -) are subdifferentiable on X
and Y respectively. Then,

(D) (z*,y*) is a saddle point of (6) if and only if there exist
a subgradient @, (z*,y*) of ®(-,y*) at z* and a subgradient
=@} (z*,y*) of —®(x*,-) at y* such that

ot =1y (2" — O (a",y")) and y* =Ty(y" + Oy (2", y")).

(1D (z*,y*) is a saddle point of (6) if and only if strong duality
holds, that is,

i ax d = maxmin ®
min max &(z, y) = max min &(z, y),

and

y* € argmax min ®(x, y).

" .
x* € arg min max ®(x
g % (z,9), g max miy

zeEX Y€
Suppose ® has a saddle point. Proposition 1 shows
that if we can find a solution of the dual problem
y* € argmax,cy mingex ®(7,y) and a solution z* of
min, _x ®(z,y*), that is, 2* = Ily(z* — @, (z*,y*)), such
that the equation y* = Ily(y* + @} (z*,y*)) also holds,
then (z*,y*) is a saddle point of ®, which then leads
to the fact that z* is a solution of the primal problem
ming ey maxyey ®(x,y). This motivates us to use a dual
subgradient method that solves the dual problem of (5),
which is the maximization problem of a concave function.
This is described in the next subsection.

4.3 A dual subgradient method
Define the functions L(W,H;\) = D}(X,WH), and
g(\) = mingw, gy>0 L(W, H; X), and the set

A={A:A>0, |\l =1}

It then follows from Danskin’s theorem [37, Proposition
B.25] that the vector —¢g'()\) with

g/</\) = [DB(X? WAH}\)][—}QQ I (8)

where (W, Hy) € argming, ~q ;5o D3 (X, WH), is a sub-
gradient of —g at A\. We now solve the dual problem
Azoljﬁguﬂclzlg()\), )
to obtain an optimal solution A*. We observe that g(\)
is concave and, as such, a subgradient method with a
suitable choice of step sizes guarantees the convergence
to a global optimal solution of the concave maximization
problem in (9); see, for example, [38].
Algorithm 2 describes a dual subgradient method. It
is worth noting that Problem (9) can also be solved by a
mirror descent method; see for example [39, Chapter 4].
Note that we take I, in Step 4 of Algorithm 2 to be the
Euclidean projection operator. This allows us to establish a
convergence guarantee for the sequence of dual parameters
{AF) Y ey generated in Step 4 of Algorithm 2 by applying
[38, Theorem 3]. Specifically, suppose the step sizes satisfy
pr — 0, 322 pr = +oo and > poq pi < oc. Then the
sequence {\¥)}; cy generated by Algorithm 2 converges to
a solution \* of (9). Furthermore, suppose (W*, H*) is a
limit point of (W®), H®*)) and assume that (W, H,\) ~
L(W, H; \) is lower semicontinuous at (W*, H*, \*). Then

Algorithm 2 A dual subgradient method

Input: The matrices X € R"*", a finite set {2 of nonnega-
tive real numbers.
Output: (W, H), an approximate solution to DR-NMF (2) .

1: Initialize )\g) = ﬁ forall § € Q.

2: fork=1,2,... do
3: Compute (W) H(*)) as an optimal solution to
. =\ (k)
i DY (X WH). (10)
4: Update

AEED — 1 A 4 prg’ (AR))),

where g’ (A(®)) is computed as in (8).
5: end for

we have (W* H*) € argmingy >0 Dg (X,WH). In-
deed, let {k,, },en be such that (W kn) [ kn)y — (W* H*)
as n — oo. Step 3 of Algorithm 2 implies that

LW ) g\ By < LW, H; ), (W, H) > 0,
Taking n — oo, we obtain
LW?, H*;X") < liminf LW Fn), g0 \n))
< L(W, H; \*) for all (W, H) > 0.

Hence (W*, H*) € arg mingw, mry>0 D3 (X, W H).

We have shown that the iterates generated by Algo-
rithm 2 converge to a solution A\* of the dual problem and
to a solution (W*, H*) of mingy,z)>o L(W, H; \*). After
obtaining \*, the discussion after Proposition 1 indicates
that if we assume that L has a saddle point (which is a
common assumption as mentioned in Section 4.1) and that
we can find a solution (W*, H*) of miny, gy>o L(W, H; \*)
that satisfies the condition \* = I (A\* + L\ (W*, H*; \*)),
then we can recover a solution (W*, H*) of the primal
problem (5). Hence we can regard the output (W *), H(*))
of Algorithm 2 as an approximate solution of (5). In practice,
we can run Algorithm 2 until we observe that the change
between two consecutive iterates is negligible; for example
stop the algorithm when [[A*+1) — X&), < ¢ for a
predetermined tolerance ¢ > 0. Since ||A*)||; = 1 for all
k, choosing for example ¢ = 0.001 means that we stop
the algorithm when A(*) is modified by less than 0.1%
(compared to the previous iterate).

The performance of Algorithm 2 critically depends on
the solver for solving the weighted-sum minimization in
Step 3, which itself is a difficult non-convex optimization
problem. We can use Algorithm 1 to find an approxi-
mate solution (W *), H(*)) in Step 3. However, subgradient
methods are often slow in practice. Indeed, we observe that
Algorithm 2 combined with Algorithm 1 is very slow for
the data sets we use in our experiments (see Section 4.5 and
Figure 1). Therefore, although Algorithm 2 provides some
convergence guarantees for the primal and dual problems,
we are motivated to propose another practical approach for
finding an approximate solution to (2). In the following,
we present a heuristic scheme that performs very well,
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significantly better than Algorithm 2 where Step 3 is ap-
proximately solved via Algorithm 1.

4.4 A Frank-Wolfe heuristic scheme for DR-NMF

Unfortunately, Algorithm 2 is not practical because Step 3
requires one to solve (10) which is NP-hard in general (since
it is a generalization of NMF). Hence we instead propose a
heuristic scheme described in Algorithm 3.

Algorithm 3 Heuristic Frank-Wolfe scheme for DR-NMF (2)

Input: The matrices X € R} and an initialization
WO ¢ R and HO ¢ R'™", a finite set Q of
nonnegative real numbers.

Output: (W, H), an approximate solution to DR-NMF (2).

1: Initialize \g = ﬁ for all 5 € (.

2: fork=1,2,... do

3: Update H**+1) using Algorithm 1 with initializa-
tion H = H*), and with W = W) and A = A%,

4: Update W (*+1) using Algorithm 1 and the symme-
try of the NMF problem, with initialization W =
W®), and with H = H**1) and A = A,

5; Let 8* € argmaxgcq Dg(X, WHEHD H*1) and

)y _ J 1 ifg=p7,
()‘* )ﬂ - { 0 if B+ B~
6: Choose a step size 7, and update

AHD — AR 4 (A \(R)),

(11)

end for
(W H) = (WD, HED)

® N

Let us explain the main ideas behind Algorithm 3.
Steps 3 and 4 are designed to decrease (W,H) —
L(W, H; \*)). Note that if we perform Steps 3 and 4 repeat-
edly, its output will approximate the output of Step 3 of Al-
gorithm 2. However, this would be computationally rather
expensive as it would require many updates of (W, H) for
each A\(*), and the MU constitutes the most expensive steps
of Algorithm 3.

The descent direction A\*) used to update )\ at iteration k
is the one from the Frank-Wolfe (FW) algorithm [40], which
is also known as the conditional gradient method; see for
example [41] and the references therein. In the context of
solving DR-NMF (2), let us explain the intuition behind the
descent direction A" , defined in Step 5 of Algorithm 3.
Letting 8* € argmaxgcq Dg(X, WFHD HE+D) we have
for all 8 € () that

Dﬁ* (X, W(k:-‘rl)H(k-i-l)) > D,B (X, W(k+1)H(k+1)).

Defining A™ as the vector with a single non-zero en-
try equal to one at position 5*, see (11), we have
)\*k) = argmax,c, DE(X, W(k+1)H(k+1)). Therefore,
since we are trying to solve the optimization prob-
lem miny, z1y>0 Maxgeqn Dﬁ(X7 WH), the g*-divergence
should be given more importance at the next iteration in
order for Dg«(X,WH) to decrease, and hence the maxi-
mum among the f-divergences to decrease as well at the

6

next iteration. Finally, Algorithm 3 updates A*) in Step 6 as
follows

AFFD = 2B oy (A — AW, (12)
= (1= 7)AY + Al
In our experiments, we choose the step sizes v, = k%rl We

leave the fine-tuning of the step sizes as a future direction
of research, although we have tried different step sizes, and
we were not able to find step sizes that perform significantly
better than v = k%rl In fact, the performance for ;, of
similar order is very similar. For example, the standard FW
parameter choice of v, = ki+2 which yields essentially the
same but slightly worse performance.

We emphasize that Algorithm 3 is a heuristic algorithm,
and we leave convergence guarantees as a research topic
for future work. We use Algorithm 3 in our experiments
and observe that it performs very well in terms of simulta-
neously decreasing all S-divergences for 8 € (2. Thus, we
do not need prior knowledge on the noise distribution or,
equivalently, on the value of .

4.5 Comparison between the dual subgradient method
and the heuristic scheme for DR-NMF

The update in Step 5 of Algorithm 3 results in faster conver-
gence compared to the subgradient direction (see Step 4 of
Algorithm 2) because it gives much more importance to the
B-divergence that is maximal at the current iteration. In fact,
the entries of the subgradient are always all positive (unless
X = WH in which case the problem is solved). Thus, the
direction that places weight only at the current maximum g-
divergence (as is done in Step 5 of Algorithm 3) outperforms
the subgradient direction empirically, leading to much faster
convergence in practical problems.

Let us compare the dual subgradient method and the
heuristic scheme for DR-NMF on a simple synthetic data
set. However, we have made the same observations on all
other data sets we have experimented with such as the ones
presented in Section 5. Figure 1 illustrates the distinction
between the two algorithms with a synthetic experiment
that compares Algorithm 3 with the variant in which Step
5 is replaced with a standard subgradient step, that is,
Step 4 of Algorithm 2. In this illustrative experiment, the
entries of a 100-by-100 matrix X are generated uniformly
at random in the interval [0,1], and we use r = 10 and
QO = {0,1,2}, that is, DR-NMF with the IS-divergence,
the KL-divergence and the Frobenius norm. Both variants
are initialized with the same matrices (W) H()) whose
entries are also generated uniformly at random in [0, 1].

We observe that the variant using the subgradient con-
verges very slowly. Indeed, the maximum of the three
objectives (the IS-divergence) is far from convergence, even
after 1000 iterations.! In contrast, Algorithm 3 converges
much faster. In particular, the values of the IS-divergence
and the Frobenius norm quickly converge to one an-
other. All in all, Algorithm 3 finds a solution with scaled
B-divergence within 2% of the smallest possible values

1. It required 3000 iterations to make the IS-divergence and the
Frobenius norm intersect, but then the Frobenius norm becomes larger
and, within the next 7000 iterations (for a total of 10000 iterations), the
IS divergence remains larger hence convergence is not attained.
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Fig. 1: Comparison of Algorithm 3 with its variant where
Step 5 is replaced by a standard subgradient step (i.e., Step
4 of Algorithm 2). The curves display the evolution of the
scaled [3-divergences (referred to as “error” in the legend).

for the three S-divergences within 240 iterations, that is,
maxgeq Dg(X, WR HF)) < 1.02 for k > 240. This is
made possible because of our more aggressive heuristic
strategy to update A. In contrast, if one uses the subgradient
direction, about 800 iterations are required to obtain the
same approximation guarantee.

Remark 1 (Property of DR-NMF solutions). We observe on
Figure 1 that the two scaled B-divergences with the largest values
are equal to each another. The same behaviour will often be
observed in the extensive sets of experiments in Section 5. Let
us explain why this is expected to happen. First, recall that the
lowest possible value of a single scaled [-divergence is one; see
Section 2.1. Second, the maximum scaled [-divergence is attained
at a single scaled (-divergence when it is strictly larger than all
the other scaled (B-divergences. In that case, the maximum scaled
B-divergence will be larger than one, and hence it can typically?*
be reduced locally while ensuring that the other [-divergences
remain smaller, hence reducing the maximum scaled B-divergence.

5 NUMERICAL EXPERIMENTS

In this section, we apply DR-NMF on several data sets. In
all cases, we perform 1000 iterations. All tests are preformed
using Matlab R2015a on a laptop Intel CORE i7-7500U CPU
@2.9GHz 24GB RAM. The code is available on Code Ocean
via https:/ /doi.org/10.24433 /CO.7769595.v1.

5.1 MO-NMF: Examples of the Pareto frontier on syn-
thetic data

In this section, we illustrate the use of Algorithm 1 to
compute Pareto-optimal solutions. We will focus on the case
B =0,1,2, thatis, IS- and KL-divergences and the Frobenius

2. Because of the non-convexity of the objectives of DR-NME, such a
descent direction is not guaranteed to exist.
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norm. Note, however, that our algorithm and code can deal
with any § > 0 and any finite set .

We generate the input matrix X as follows: X =
max (0, WH + N) where the component matrices W, H
and the noise matrix IV are generated as follows:

« The entries of W € R200x10 559 H ¢ R10%x200
are generated using the uniform distribution in the
interval [0,1]. We define X = WH which is the
noiseless low-rank matrix.

e Letusdefine zg = 1if 8 € , 3 = 0 otherwise. Let
also

< Nis Ny Nr
A T R o P v

where

- Ns=XoGis multiplicative Gamma noise
where each entry of G is generated using the
normal distribution of mean 0 and variance 1,

— each entry of Ny, is generated according to
the Poisson distribution of parameter 1 (for
simplicity, since the expected value of (W H); ;
is the same for all (i, j)),

- each entry of Vg is generated using the normal
distribution of mean 0 and variance 1.

We set N = e”):(“FN with € = 0.2.
(NIl #

Finally, X = max(0,X + N) is a low-rank matrix to
which had been contaminated with 20% of noise (that
is, |N|lr = 0.2]|X||r) and then was projected onto the
nonnegative orthant. The noise is constructed using the
distributions corresponding to 3 € €.

Figure 2 shows the Pareto-optimal solutions for MO-
NMF. More precisely, it provides the solution for the prob-
lems

min DX, WH),
(W,H)>0
where A = ({,1 — ¢) for £ = 0,0.1,...,1, and for Q =
{0,1},{0,2}, {1, 2}. To simplify computation, we have used
the true underlying solution (W, Hy) as the initialization
(using random or other initializations sometimes generate
solution which are more often not on the Pareto frontier
because NMF may have many local minima). The Pareto
frontier is as expected: the smallest possible value for each
objective is 1 (because of the scaling), for which the other
objective function is the largest. As A changes, one objective
increases while the other decreases. The DR-NMF solution
computed with Algorithm 3 finds the point on the Pareto
frontier such that Dg,(X,WH) = Dg, (X,WH) for 3 #
B2 € Q.
For DR-NMF, we observe that

o The solution of DR-NMF does not necessarily coin-
cide with a value of A close to (0.5, 0.5). For example,
for the case of the IS divergence with the Frobenius
norm, it is close to A = (0.9,0.1).

e Using DR-NMF allows to obtain a solution with low
error for both objectives, always at most 2% worse
than the lowest error. Minimizing a single objective
sometimes leads to solution with error up to 35%
higher than the lowest (in the case IS divergence
with Frobenius norm). We will observe a similar
behaviour on real data sets.
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Fig. 2: Pareto-optimal solutions for A = (¢,1 — ¢) for ¢ =
0,0.1,...,1 and Q = {0,1},{0,2},{1,2} (top to bottom),
and solution computed by DR-NMF (Algorithm 3).

5.2 Sparse document data sets:

Q=1{1,2}

For sparse data sets, it is known that only the -divergence
for § = 1,2 can exploit the sparsity structure. In fact, in
all other cases, all entries of the product W H have to be
computed explicitly which is impractical for large sparse
matrices since W H can be dense. In other words, let K
denote the number of non-zero entries of X. Then the MU
for NMF with the $-divergence for 8 = 1,2 can be run in
O(K'r) operations, while for the other values of 3, it requires
O(mnr) operations.

As explained in [42], for sparse word-count matrices,
Poisson noise is the most appropriate model; in fact, Gaus-
sian noise (and any dense noise) does not make much
sense on sparse data sets. Hence we expect KL-NMF to
provide better results than Fro-NMF. However, we believe
it is rather interesting to run DR-NMF with Q@ = {1,2} on
such data sets to see how it performs. One should expect
DR-NMEF to perform on average worse than KL-NMF (since
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it has to take into account the Frobenius norm which is not
appropriate) but better than the Frobenius norm (since it
takes into account the more appropriate KL-NMF).

In this section, we use the 15 sparse document data sets
from [43]. These are large and highly sparse matrices whose
entries X (7, 7) is the number of times word j appears in
document i. We apply KL-NMEFE, Fro-NMF and DR-NMF
with Q = {1,2}. To simplify the comparison, reduce the
computational load and to have a good initial solution,
we use the same initial matrices (W, H(%)) in all cases,
namely the solution obtained by the successive projection
algorithm [44] that has provable guarantee under the sepa-
rability condition [45], [46]. We perform rank-r factorization
where 7 is the number of classes reported for these data sets.

Table 1 reports the results. The first and second columns
report the name of the data set and the number of classes,
respectively. The next four columns report the accuracies of
the clustering obtained with the factorizations (W, H) pro-
duced by KL-NMF, Fro-NMF, and DR-NMF with Q = {1, 2}
solved via Algorithm 3. Given the true disjoint clusters
Ci € {1,2,...,m} for 1 < i < r and given a computed
disjoint clustering {C;}7_,, its accuracy is defined as

accuracy ({é’l}fﬂ) = min o 7711 Z |C; N Cﬂ( l,

m€e(l,2,..

where [1,2,...,r] is the set of permutations of {1,2,...,r}.
For simplicity, given an NMF (W, H) where each row of
H corresponds to a topic, we cluster the documents by
selecting its closest topic, that is, document j is assigned
to the topic k£ that maximizes X(i) H(ky) H‘(Ik ). The next three

1H (k,:)
columns report how much higher the KL error (in percent)

of the solutions of Fro-NMF and DR-NMF are compared to
KL-NMF, that is, it reports

KL(X,WH)

KL(X, W1 H,)
where (W1, Hy) is the solution computed by KL-NMF. The
last three columns report how much higher the Frobenius

error (in percent) of the solutions of KL-NMF and DR-NMF
are compared to Fro-NMEF, that is,

| X - WH|3%
| X — WaH,|%

where (Ws, Hs) is the solution computed by Fro-NMF.
We observe the following:

Dy(X,WH)—1=

Dy(X,WH) - 1= —1

e In terms of clustering, DR-NMF in fact allows us
to be robust in the sense that it is able to provide
in all cases at least the second highest clustering
accuracy. On four data sets, it is even able to provide
the highest accuracy, sometimes by a large margin.
Globally, DR-NMF does not perform as well as KL-
NMEF although on average their accuracy only differs
by 3.32%. However, DR-NMF performs better than
Fro-NMF, with 6.44% higher accuracy on average.

e In terms of error, as already noted in the previous
section, DR-NMF is able to simultaneously provide
solutions with small KL and Frobenius error, on av-
erage 2.65% higher than the solution computed with
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TABLE 1: Comparison of NMF with KL-divergence and Frobenius norm, and DR-NMF with Q = {1,2} on text mining
data sets from [43]. Bold numbers indicate the best accuracy, underlined numbers indicate the second best accuracy.

Dataset | r Clustering accuracy (%) Di(X,WH) —1 (%) Do(X,WH) —1 (%)

KL-NMF  Fro-NMF DR-NMF | Fro-NMF DR-NMF | KL-NMF DR-NMF
NG20 20 42.15 23.08 28.74 21.47 3.85 149.48 3.83
ng3sim 3 63.48 38.06 49.87 16.82 2.70 17.32 2.70
classic 4 83.66 55.64 78.46 13.19 0.74 2.44 0.74
ohscal | 10 37.45 30.50 32.13 10.03 1.76 9.60 1.75
k1b 6 64.27 59.19 60.30 9.00 1.32 5.02 1.32
hitech 6 43.29 46.94 48.02 8.27 1.12 3.98 1.13
reviews 5 75.65 51.19 74.88 7.89 1.03 7.70 1.03
sports 7 43.93 40.37 50.26 9.60 1.24 7.10 1.24
lal 6 65.95 65.04 67.98 9.26 1.03 3.61 1.03
la12 6 56.25 54.80 54.29 7.32 0.70 2.76 0.70
la2 6 54.96 49.17 52.07 9.21 0.82 3.04 0.82
trll 9 62.32 50.48 51.45 22.88 4.48 97.27 447
tr23 6 34.80 35.29 38.73 56.04 3.83 47.36 3.78
trdl 10 54.33 4499 53.08 24.38 4.93 46.17 4.90
trd5 10 46.81 38.26 39.13 42.52 10.15 50.14 10.15

[ Average | [ 5529 45.53 5196 [ 1786 265 [ 3020 264 ]

a single objective. On the other hand, optimizing a
single objective often leads to very large errors for
the other one, up to 149% on NG20, with an average
of 17.86% for Fro-NMF and 30.20% for KL-NME.

5.3 Dense time-frequency matrices of audio signals:
Q={0,1}

NMF has been used successfully to separate sources from
a single audio recording. However, there is a debate in
the literature as to whether the KL or the IS divergence
should be used; see [47], [48] and the references therein.
In fact, as we will see, IS-SNMF and KL-NMF provide rather
different results on different audio data sets. On one hand,
due to its insensitivity to scaling (see Section 2.1), IS-NMF
gives the same relative importance to all entries of the
data matrix. For example, the error for approximating 1
by 10 is the same as for approximating 10 by 100, that is,
Dy(1,10) = Dy(10,100). On the other hand, KL-NMF gives
more importance to larger entries as it is (linearly) sensitive
to scaling; for example, the error for approximating 1 by 10
is ten times smaller than approximating 10 by 100, that is,
10D, (1,10) = D, (10, 100).

5.3.1 Quantitative results

Our DR-NMF approach overcomes the issue of having
to choose between the IS- and KL-divergences by generating
solutions which possess small IS and KL errors simultane-
ously. We use 10 diverse audio data sets:

o voice_cell, syntBassDrum and syntCCcyGC were
downloaded from  http://isse.sourceforge.net/
demos.html.

o prelude JSB is the the well-tempered Clavier per-
formed by Glenn Gould 1/13 between the 19th
et 49th seconds, downloaded from https://www.
youtube.com/watch?v=IrJjPYi_vhM.

e ShanHur_sunrise was downloaded from http://
bass-db.gforge.inria.fr/fasst/.

o trio_Brahms and trio_bapitru were derived from the
TRIOS data set [49]; see https://c4dm.eecs.qmul.ac.
uk/rdr/handle/123456789/27.

e sisec_mixdrums and sisec_mixfemale come from
the SISEC data set; see http://sisec.wiki.irisa.
fr/tiki-indexbfd7 html?page=Underdetermined+
speech+and+music+mixtures.

e piano_Mary is a recording at the third author’s
house.

Table 2 reports the results, exactly as done in the last
columns of Table 1, except that it also reports the standard
deviation among 10 random initializations.

For these data sets, the results are even more striking
than for the sparse text data sets in Section 5.2. In particular,
DR-NMF has on average an error higher by about 10%
compared to both IS-NMF and KL-NMEF, while KL-NMF
(resp. IS-NMF) has on average an increase in IS error of
149% (resp. 179%). Moreover, DR-NMF is more robust in
the sense that its standard deviation is significantly lower.
This shows that by taking into account different objectives,
DR-NMEF is less sensitive to initialization.

As we will see in the next section, using DR-NMF allows
to obtain more robust results than using IS-NMF or KL-NMF
alone.

5.3.2 Qualitative results
In the previous section, we have shown quantitative results
showing that DR-NMF is able to obtain solutions with low
KL and IS divergence simultaneously. In this section, we
investigate the data set piano_Mary in more detail and
show that DR-NMF also leads to better separation for three
comparative studies described in detail below: (1) no noise
added to the signal, (2) Poisson noise added and (3) Gamma
noise added. This data set is the first 4.7 seconds of “Mary
had a little lamb”. The sequence is composed of three notes,
namely, F4, Dy and Cjy. The recorded signal is downsam-
pled to f; = 16000Hz yielding T = 75200 samples. The
short-time Fourier transform (STFT) of the input signal z
is computed using a Hamming window of size F' = 512
leading to a temporal resolution of 32ms and a frequency
resolution of 31.25Hz. We use 50% overlap between two
frames, leading to n = 294 frames and m = 257 frequency
bins. Figure 3 displays the musical score.

There are three notes plus a fourth source. This last
source is the very first offset of each note in the musical
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TABLE 2: Comparison of NMF with the IS- and KL-divergences, and DR-NMF with 2 = {0, 1} on audio data sets with
m = 149 and r = 10. The table reports the averages and standard deviations over 10 initializations.

Data set n Do (X, WH) — 1 (%) D1 (X, WH) —1 (%)
KL-NMF DR-NMF IS-NMF DR-NMF
syntBassDrum 543 39.54 + 3.28 7.06 £+ 3.01 108.09 + 16.78 7.06 £ 3.01
piano_Mary 586 387.51 £ 253.67 9.73 £ 2.74 177.71 &+ 22.79 9.73 + 2.74
prelude_]JSB 2582 31.81 £ 3.57 13.05 £3.55 | 18593 +54.84  13.04 £ 3.55
syntCCcyGC 1377 9.79 £ 0.64 2.63 + 0.38 42.21 £10.29 2.63 £ 0.38
trio_Brahms 14813 360.49 + 44.65 14.74 £1.99 | 257.61 £130.29 14.74 +£1.99
trio_bapitru 6200 354.66 £+ 25.31 9.16 + 2.03 249.99 + 28.72 9.15 + 2.03
voice_cell 2181 186.46 4+ 2.20 13.98 £+ 3.75 191.12 + 23.43 13.98 £+ 3.75
ShanHur_sunrise 4102 53.51 + 8.32 12.31 £ 1.36 184.72 + 34.74 12.30 £+ 1.35
sisec_mixdrums 1249 25.61 + 0.87 12.74 £ 1.38 292.40 + 56.62 12.74 + 1.38
sisec_mixfemale 1249 37.68 £ 2.88 12.12 £ 0.85 100.67 + 8.88 12.12 + 0.85
[ Average [ [ 148.71 4+ 34.54 10.75 £ 2.10 [ 179.05 + 38.74 10.75 £ 2.10 ]
C
O 10
p” 4 ) ! ) |
tx7—F—+—— 1 T
= e —o 9r 1
Ma-ry had a lit - tle lamb é st |- IS error for IS-NMF :
. ) Y ) . i - = KL error for IS-NMF
Flg'. 3: Musical score of “Mary had a little lamb”. The notes : a IS error for KL-NMF i
activate as follows: Ey, D4, C4, D4, E4, E4, Ey4. ’§ — KL error for KL.NMF
"§ e —o IS error for DR-NMF )
= —=— KL error for DR-NMF
sequence, that is, some common mechanical vibration acting ‘*; 5 1
in the piano just before triggering a specific note, which can Z
be associated to the hammer noise (denoted H ), hence the g 41 i
correct rank is r = 4; see [50] for more details. = 5l |
5.3.2.1 No added noise: Figure 4 displays the evo- O
lution of the scaled IS- and KL-divergences along iterations. Y N ]
DR-NMF is able to compute a solution with low IS and
KL error, which is not the case of IS-NMF and DR-NMF 1 ‘ ‘ ‘ :
0 10 20 30 40 50

(in particular, KL-NMF has IS error almost 9 times larger
than IS-NMF). However, the three solutions generated by IS-
NMF, KL-NMF and DR-NMF all give a correct separation.
The reason is that this recording is of good quality hence the
noise is rather low.

5.3.22 Poisson noise: The second comparative
study is performed on the same data set with Poisson
noise added to the input audio spectrogram following the

methodology described in Section 5.1. We use NV = ¢ Hg”i N

with ¢ = 0.6 and N = ”]\Z,\;ﬁ Figure 5 displays the rows
of H (that is, the activations of the notes over time) for
NMF with IS- and KL-divergences, and for DR-NMF with
0 ={0,1} with r = 4.

As expected with this noise model and high noise level,
IS-NMF is not able to extract the three notes, while KL-NMF
and DR-NMF identify them. In fact, the recovered activa-
tions, that is, the rows of H, correspond to the activations
of the notes from the musical score shown on Figure 3: Cy4
is activated once, D, twice and E, four times. Note that the
hammer noise (Hy) is not extracted (a source is set to zero)
but is mixed with C, and to a smaller extent with D,. This
illustrates that DR-NMEF is robust to different types of noises
(in this case, Poisson noise).

5.3.2.3 Gamma noise: The third comparative study
is performed on the same data set with multiplicative
Gamma noise, accordingly to the the methodology de-

scribed in Section 5.1. We use N = e”]XQ”FN with e = 0.4
F

Iterations

Fig. 4: Comparative study of NMF with IS- and KL-
divergences, and DR-NMF with 2 = {0,1} applied to the
amplitude spectrogram of “Mary had a little lamb” with
r = 4. The figure shows the evolution of the scaled f-
divergences fo the different NMF models.

and N = ”]\],\f# For this experiment, we overestimate the
number of sources present into the input spectrogram by
choosing r = 5; this allows to highlight the differences
between the different NMF variants better. Figure 6 displays
the rows of H for NMF with IS- and KL-divergences, and
for DR-NMF with © = {0,1}.

KL-NMF identifies five sources among which the third
one has no physical meaning and seems to be a mixture of
several notes. IS-NMF correctly identifies the three notes, the
fourth estimate (the hammer) is less accurately estimated in
terms of amplitude for the activations but IS-NMF is able
to set to zero the fifth estimate which is appealing as it
automatically remove an unnecessary component. DR-NMF
again takes advantage from both divergences as it is able
to extract the three notes correctly, the fourth estimate (the
hammer) is well extracted and the fifth estimate is close
to zero. This again illustrates that DR-NMF is robust to
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Fig. 5: Comparative study of NMF with IS- and KL-
divergences, and DR-NMF with Q@ = {0,1} applied to
“Mary had a little lamb” amplitude spectrogram with r = 4
and Poisson noise. The figure shows the activations (that
is, the rows of H) of the recovered sources over time, and
indicates which source it corresponds to (the notes C4, Dy,
FE,, and the hammer noise H ).

IS-NMF KL-NMF DR-NMF
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Fig. 6: Comparative study of NMF with IS- and KL-
divergences, and DR-NMF with Q@ = {0,1} applied to
“Mary had a little lamb” amplitude spectrogram with r = 5
and Gamma noise. The figure shows the activations (that
is, the rows of H) of the recovered sources over time. Note
that the hammer noise is also extracted with C4 and Dy,
although with a small intensity.

different types of noises (in this case, multiplicative Gamma
noise).

6 CONCLUSION AND FURTHER WORK

In this paper, we have proposed an NMF model that takes
into account several data fitting terms. We then proposed

11

to tackle this problem with a weighted-sum approach with
carefully chosen weights, and designed variations of MU
algorithm to minimize the corresponding objective function.
We used this model to design a DR-NMEF algorithm, inspired
from the Frank-Wolfe algorithm, that allows to obtain NMF
solutions with low reconstruction errors with respect to
several objective functions. We illustrated the effectiveness
of this approach on synthetic, document and audio data sets.
For audio data sets, DR-NMF provided particularly stun-
ning results, being able to obtain solutions with significantly
lower IS and KL errors (simultaneously), while generating
meaningful solutions under different noise models or statis-
tics. It is our hope that the proposed algorithms for DR-NMF
(Algorithm 3) resolve the long-standing debate [47], [48] on
whether to use IS- or KL-NMF for audio data sets. Using
DR-NMF provides a safe alternative when one is uncertain
of the noise statistics of audio data sets. Indeed, the noise
statistics is rarely, if at all, known in practice.

Possible further research include the design of more
efficient algorithms to solve multi-objective NMF, the exten-
sion of our distributionally robust model to low-rank tensor
decompositions, and the refinment of our model by adding
additional penalty terms or contraints to exploit properties,
such as sparsity, smoothness or minimum volume [3], [15],
[51], in the decompositions. Another challenging direction
of research is to consider the DR-NMF problem with an
uncountably infinite uncertainty set 2 such as Q = [0, 2].
Finally, an important direction of research that we plan to
investigate is the design of an efficient algorithm for DR-
NMF with convergence guarantees; see Section 4.
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