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Abstract. In this paper, we provide novel algorithms with identifiability guarantees for simplex-structured5
matrix factorization (SSMF), a generalization of nonnegative matrix factorization. Current state-6
of-the-art algorithms that provide identifiability results for SSMF rely on the sufficiently scattered7
condition (SSC) which requires the data points to be well spread within the convex hull of the basis8
vectors. The conditions under which our proposed algorithms recover the unique decomposition is9
in most cases much weaker than the SSC. We only require to have d points on each facet of the10
convex hull of the basis vectors whose dimension is d− 1. The key idea is based on extracting facets11
containing the largest number of points. We illustrate the effectiveness of our approach on synthetic12
data sets and hyperspectral images, showing that it outperforms state-of-the-art SSMF algorithms13
as it is able to handle higher noise levels, rank deficient matrices, outliers, and input data that highly14
violates the SSC.15
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1. Introduction. Extracting meaningful underlying structures that are present in high-19

dimensional data sets is a key problem in machine learning, data mining, and signal processing.20

Structured matrix factorization (SMF) is a general model for exploiting latent linear structures21

from data; see for example [40, 19] and the references therein. Given a factorization rank r,22

SMF expresses the input matrix X ∈ Rm×n as the product of two matrices W ∈ Rm×r and23

H ∈ Rr×n, with some restrictions on the structure of W and/or H. This paper focuses on a24

specific SMF model called simplex-structured matrix factorization (SSMF).25

Given an m-by-n matrix X and an integer r, SSMF looks for an m-by-r matrix W whose26

columns are the basis vectors, and an r-by-n matrix H containing the mixing weights such27

that X ≈WH and with the property that each column of H belongs to the unit simplex, that28

is, H(:, j) ∈ ∆r =
{
x ∈ Rr

∣∣∣ x ≥ 0,
∑r

i=1 xi = 1
}

for all j. In the exact case when X = WH,29

we have conv(X) ⊆ conv(W ) where conv(W ) = {x | x = Wh, h ∈ ∆n}, that is, each column30

of X belongs to the convex hull generated by the columns of W . SSMF is a generalization31

of nonnegative matrix factorization (NMF), an SMF problem where W and H are required32

to be nonnegative, while X is nonnegative as well. The main advantage of NMF over other33

SMFs such as the PCA/SVD is its interpretability when the factors W and H have a physical34

meaning; see [10, 22, 14] and the references therein. In the exact case, NMF can be formulated35
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2 M. ABDOLALI AND N. GILLIS

as an SSMF problem using a simple scaling of the columns of X and W . In fact, defining136

DX as the diagonal matrix with (DX)ii = ||X(:, i)||1 for all i, we have37

X(DX)−1︸ ︷︷ ︸
X′

= W (DW )−1︸ ︷︷ ︸
W ′

DWH(DX)−1︸ ︷︷ ︸
H′

.38

Since the entries of each column of X ′ and W ′ sum to one, and since X ′(:, j) = W ′H ′(:, j)39

for all j, the entries of the columns of H ′ must also sum to one, that is, H ′(:, j) ∈ ∆r40

for all j. In fact, letting e be the vector of all ones of appropriate dimension, we have41

e> = e>X ′ = e>W ′H ′ = e>H ′. Note that SSMF is a constrained variant of semi-NMF which42

only requires the factor H to be nonnegative; see [23] and the references therein.43

Applications. Let us discuss in more details two applications of SSMF: blind hyperspectral44

unmixing, and topic modeling; see [42] and the references therein for more applications. A45

hyperspectral image is a data cube that consists of hundreds of two dimensional spatial images46

that are acquired at different contiguous wavelengths (known as spectral bands). These images47

have a vast variety of applications in remote sensing, military surveillance, and environmental48

monitoring. Due to the limited spatial resolution of hyperspectral sensors, a pixel may be49

a mixture from several materials located in the captured scene. Under the linear mixing50

assumption, identifying the materials present in the image, known as endmembers, can be51

modeled as an SSMF problem [8, 35]. Constructing the matrix X by stacking the spectral52

signature of the pixels as its columns, each column of W is the spectral signature of an53

endmember, and each column of the matrix H represents the abundance of the endmembers54

in the corresponding pixel. Another application of SSMF is text mining [6, 26, 15]. Let55

the matrix X represent a collection of documents where the (i, j)th element indicates the56

frequency of the ith word in the jth document. Extracting latent topic patterns across the57

documents and categorizing the documents according to the extracted topics is an essential58

task when processing textual information. By applying SSMF on the document matrix, each59

column of W can be interpreted as a hidden topic, and each column of H can be regarded as60

the proportion of the topics discussed in the corresponding document.61

Identifiability. In many applications, a crucial question about SSMF is when the factors W62

and H can be uniquely recovered. SSMF never has a unique solution, unless some additional63

constraints are imposed on the factors W and/or H. In fact, if there exists a polytope conv(W )64

containing the columns of X, then any larger polytope containing conv(W ) leads to another65

solution of SSMF. Suppose X is generated by multiplying the ground truth factors Wt and66

Ht, where the columns of Ht belong to the unit simplex. Two crucial questions are:67

1. Under what conditions are the factors Wt and Ht uniquely identifiable (up to trivial68

ambiguities such as permutation)?69

2. Does there exist a (polynomial-time) algorithm able to recover these ground truth70

factors Wt and Ht?71

Many works have studied these questions, leading to weaker and weaker conditions on72

the factors Wt and/or Ht that lead to uniqueness; see Section 2 for more details. Given that73

Wt is identifiable, the identifiability of Ht follows from well-known results: Ht is unique if74

and only if all columns of X are located on k-dimensional faces of conv(Wt) having exactly75

1We assume that the columns of X and W are different from zero otherwise they can be discarded.
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SIMPLEX-STRUCTURED MATRIX FACTORIZATION 3

k + 1 vertices [39]. When Wt is full column rank, then Ht is always unique as this condition76

is always met. This is the reason why the identifiability results for SSMF are focused on the77

identification of Wt, and we also only focus on the identifiability of Wt in this paper.78

Contribution and outline of the paper. The main goal of this paper is to answer the two79

above questions in a novel way. In Section 2, we review the main SSMF algorithms and80

identifiability results. Then, the main contributions of this paper are presented in the next81

four sections:82

1. In Section 3, we provide new identifiability conditions for SSMF, referred to as the83

facet-based conditions (FBC), that rely on the sparsity of H, by requiring to have84

d = rank(X) data points on each facet2 of conv(W ); see Theorem 3.4. This condition85

is in most cases much weaker than the current state-of-the-art identifiability conditions86

that rely on the data points being sufficiently spread within conv(W ).87

2. In Section 4, we propose and study a first algorithm for SSMF, dubbed brute-force88

facet-based polytope identification (BFPI). BFPI looks for a polytope enclosing the89

data points by maximizing the number of points on each facet of that polytope. It relies90

on solving an optimization problem in the dual space. We provide an identifiability91

theorem for BFPI under the FBC (Theorem 4.4).92

3. In Section 5, we present a greedy variant for BFPI, namely GFPI, better suited for93

solving practical problems. GFPI extracts the facets of conv(W ) containing the largest94

number of data points sequentially by solving mixed integer programs (MIPs). We95

explain how GFPI is able to handle noise, rank deficient W ’s, and outliers. We also96

provide an identifiability theorem for GFPI under the FBC (Theorem 5.5).97

4. In Section 6, we show on numerous numerical experiments that GFPI outperforms the98

current state-of-the-art SSMF algorithms. GFPI recovers the ground truth factor Wt99

in much more difficult scenarios, while being less sensitive to noise and outliers.100

2. Related Works: SSMF algorithms and identifiability. Among the current approaches101

with identifiability guarantees for SSMF, the two main ones are arguably separable NMF [4, 5],102

and simplex volume minimization [36].103

Separability. Separable NMF (SNMF) relies on the separability assumption. It requires104

that each column ofW is present as a column ofX, that is, that there exists an index setK such105

that W = X(:,K). Equivalently, if separability holds, H contains the identity as a submatrix.106

Separability is referred to as the pure-pixel assumption in HU [8], and to the anchor word107

assumption in topic modeling [4]. Separability allows for efficient algorithms (that is, running108

in polynomial time) that are robust in the presence of noise; see [22] and the references therein.109

An instrumental algorithm to tackle separable NMF is the successive projection algorithm110

(SPA) introduced in [2], and proved to be robust to noise in [25]. However, separability is a111

rather strong condition and might not hold in many applications.112

Minimum Volume, and Sufficiently Scattered Condition. To overcome this limitation, the113

Minimum-Volume (Min-Vol) framework was proposed which does not rely on the existence of114

the columns of W in the data set. Min-Vol looks for a simplex that encloses the data points115

2A facet of a d-dimensional polytope is a (d − 1)-dimensional face of that polytope. For example, in two
dimensions, a polytope is a polygon and its facets are the segments.
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4 M. ABDOLALI AND N. GILLIS

and simultaneously has the smallest possible volume. It can be formulated as follows [18, 33]116

(Min-Vol)
min

W∈Rm×r,H∈Rr×n
det(W>W ) such that X = WH and H(:, j) ∈ ∆r for all j.117

When the separability assumption is violated, Min-Vol is significantly superior to SNMF.118

Identifiability of Min-Vol requires H to satisfy the sufficiently scattered condition (SSC),119

while rank(W ) = r. For a matrix H ∈ Rr×n+ to satisfy the SSC, the columns of H must be120

sufficiently scattered in ∆r in order for their conical hull cone(H) = {y | y = Hx, x ≥ 0} to121

contain the second-order cone C = {x ∈ Rr+
∣∣e>x ≥ √r − 1||x||2}. The SSC is a much more122

relaxed condition than separability, see Figure 1 for an illustration. We refer the reader123

to [18, 13, 14] for discussions on the SSC and the identifiability of SSMF.

Figure 1. Comparison of separability (left), SSC (middle), and our facet-based condition (right) for the
matrix H whose columns lie on the unit simplex. On the left, separable NMF, as well as Min-Vol and FPI, will
be able to uniquely identify W . On the middle, separable NMF fails while Min-Vol will uniquely identify W .
Our approach may fail since the data points are also enclosed in another triangle containing six data points on
its segments (there are only r − 1 = 2 columns of H on each facet of ∆r). On the right, Min-Vol fails while
FPI will be able to uniquely identify W . The reason Min-Vol fails is because the triangle with minimum volume
containing the data points does not coincide with ∆r. However, the only triangle with three data points on each
segment and containing all data points is ∆r, which explains why FPI works.

124
However, Min-Vol is a difficult optimization problem and, as far as we know, most methods125

are based on standard non-linear optimization schemes (such as projected gradient methods)126

come with no global optimality guarantees. Hence although Min-Vol allows for identifiability,127

it is still an open problem to provide an algorithm that solves the problem up to global128

optimality, in polynomial time; see the discussion in [14]. There exist non-ploynomial time129

algorithms for Min-Vol; see the next paragraph. Min-Vol has three main weaknesses:130

1. It requires W to be full column rank. For example, in three dimensions, it can only131

identify three vertices.132

2. It does not take advantage of the fact that, in many applications, most data points133

are usually located on the facets of the convex hull of the columns of W because H is134

sparse. Minimum-volume NMF only uses the columns of X that are not contained in135

the convex hull of the other columns, that is, the vertices of conv(X). We believe this136

is a crucial information to take into account, and will lead to more robust approaches:137
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SIMPLEX-STRUCTURED MATRIX FACTORIZATION 5

we not only want to be able to reconstruct each data point, but also that as many138

points as possible are located on the facets of conv(W ).139

3. The SSC, although much milder than separability, is still rather strong. It might not140

be satisfied in highly mixed scenarios; for example when a column of W is not present141

in a sufficiently large proportion in sufficiently many pixels; see Figure 1 (right).142

In Section 4, we will provide a new weak condition for identifiability, namely the FBC. In143

a nutshell, the FBC only requires to have r data points on each facet of conv(W ). (Note that144

the SSC implies that there are at least r − 1 data points on each of these facets.) Figure 1145

illustrates the different identifiability conditions on the matrix H for r = 3.146

Improving algorithmic designs for SNMF and Min-Vol is usually the main concern of the147

majority of recent studies; see for example [37, 3, 17, 21, 30]. In this paper, we take another148

direction, and consider new identifiability conditions, along with provably correct algorithms.149

Algorithms based on facet identification. As mentioned before, our model and algorithm150

that will be presented in Section 4 is based on the identification of the facets of conv(W ).151

There are few representative works that are based on similar ideas.152

Ge and Zou [20] introduced the concept of subset-separability which relaxes the separabil-153

ity condition. A factorization X = WH is subset-separable if each column of W is the unique154

intersection point of a subset of filled facets. A facet is filled if there is at least one point155

in the interior of the convex hull of the columns in W corresponding to that facet or if the156

facet is exactly a vertex of W . This algorithm is based on finding all facets by enumerating157

through all columns of X. The facets are identified using the following fact: each point can158

be expressed as a convex combination of other points lying on the same facet. This algorithm159

requires the data points which are not on facets to be in general positions, so that these points160

cannot be identified as a filled facet. The intuition behind our approach is related to these161

ideas. However our proposed algorithm will be completely different and our assumptions will162

be weaker: we do not require the facets to be filled, and do not put a general position condition163

on the points within the polytope conv(W ).164

Lin et al. [32] proposed an algorithm that looks for the simplex enclosing the data points165

by determining the r associated facets, and then calculating the vertices of that simplex (that166

is, the columns of W ) by finding the intersection of the facets. Their approach is referred167

to as Hyperplane-based Craig-simplex-identication (HyperCSI). The algorithm for identifying168

the r facets relies on SPA [2]. First, an initial estimate of the facets is computed using the r169

points extracted by SPA. The orientational difference between the ground-truth facet and the170

estimated facet is reduced by finding active samples that are close to the estimated facets. It171

was proven that in the noiseless setting, and as the number of columns of X goes to infinity,172

that is, n→∞, the simplex identified by HyperCSI is exactly the minimum-volume simplex.173

In [34], Lin et al. proposed a different geometric approach for SSMF that is based on174

fitting a maximum-volume inscribed ellipsoid (MVIE) in conv(X). They show that, under175

the SSC, the MVIE touches every facet of conv(W ) which allows it to recover them, and then176

W . However, computing the MVIE requires to first compute all facets of conv(W ), which is177

NP-hard in general (the number of facets can be exponential in the number of columns of W ).178

The second step uses semidefinite programming to compute the MVIE. As opposed to most179

algorithms for Min-Vol, MVIE is guaranteed to recover W in the noiseless case. However,180

the limitations of Min-Vol still hold here. Moreover, MVIE relies on facet enumeration which181
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6 M. ABDOLALI AND N. GILLIS

is sensitive to noise and outliers; see Section 6 for numerical experiments. This approach182

was recently improved by using a first-order method to solve the semidefinite program, and a183

different post-processing of the MVIE solution to recover W [31].184

In [11], authors provide identifiability results when the input matrix H is sufficiently185

sparse. This result also applies to SSMF: it has a unique solution if on each subspace spanned186

by all but one column of W , there are b r(r−2)r−k c + 1 data points with spark r (that is, any187

subset of r − 1 columns is linearly independent). However, this is a theoretical result, with188

no algorithm to tackle the problem. Moreover, this result does not take nonnegativity into189

account, and requires much more points on each facet than our facet-based condition.190

Summary. Algorithms for SSMF based on the identification of the facets of conv(W ) have191

not been very successful in practice because they are either theoretically oriented, or they192

rely on strong conditions and are sensitive to noise. Table 1 gives the conditions under which193

SSMF algorithms recover the ground truth factor W , in the noiseless case.194

Table 1
Indentifiability conditions for different SSMF algorithms in the exact case. We denote d = rank(X) ≤ r.

# Points per facets separability SSC d = r n→∞
Separable NMF [2] d− 1 X X X -

Min-Vol [36] d− 1 - X X -

MVIE [34] d− 1 - X X -

HyperCSI [32] d− 1 - X X X
BFPI and GFPI d - - - -

It highlights five conditions: number of points per facet of conv(W ) (this is essentially a195

sparsity condition on H), separability, SSC, full column rank of W , and whether the number196

of samples needs to go to infinity. Our proposed algorithms, BFPI and GFPI, require d =197

rank(X) points per facet, which is only one additional data point on each facet compared to the198

other algorithms that require additional strong conditions such as the SSC or rank(W ) = r.199

Hence BFPI and GFPI will not always be stronger than Min-Vol (see Figure 1), but they will200

be in most practical cases.201

3. Identifiability of SSMF under the faced-based conditions. Let us state the FBC.202

Assumption 3.1 (Facet-based conditions (FBC)). Let X ∈ Rm×n+ with d = rank(X), and203

let W ∈ Rm×r and H ∈ Rr×n+ be such that X = WH where204

a. No column of W is contained in the convex hull of the other columns of W , that is,205

conv(W ) is a polytope with r vertices given by the columns of W .206

b. The columns of H belong to the unit simplex, that is, H(:, j) ∈ ∆r for j = 1, 2, . . . , n.207

c. Each facet of conv(W ) contains at least s ≥ d distinct columns of X and, among them,208

at least d− 1 generate that facet (that is, the dimension of the convex hull of these s209

columns is d− 2).210

d. There are strictly less than s distinct columns of X on every facet of conv(X) which211

is not a facet of conv(W ).212

Let us comment on these assumptions.213

• Assumption 3.1.a is necessary for any identifiable SSMF model since a column of W214
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SIMPLEX-STRUCTURED MATRIX FACTORIZATION 7

cannot be identified if it is located in the convex hull of the other columns (it could215

be discarded to have a decomposition with r − 1 factors).216

Since X = WH, d = rank(X) ≤ rank(W ) ≤ r. However as opposed to most previous217

works, we do not assume d = r so that conv(W ) may contain more vertices than its218

dimension plus one; for example, it could be a quadrilateral in the plane as in Figure 3.219

• Assumption 3.1.b allows for WH to be a SSMF. For NMF, that is, when X = WH220

with W ≥ 0 and H ≥ 0, Assumption 3.1.b can be assumed without loss of generality221

by using a simple scaling of the columns of X and W ; see the introduction.222

• The key assumption is Assumption 2.c. It implies a certain degree of sparsity of the223

columns of H: a column of X is on a facet of conv(W ) if the corresponding column of224

H has at least one zero entry. Hence Assumption 2.c implies that each row of H has225

d zero entries, and this condition is easy to check.226

• Assumption 3.1.d will allow us to make the decomposition unique. For example,227

assume the data points are located on the boundary of a hexagon in two dimensions228

with r = 3; see Figure 2 for an illustration. There are many possible triangles that229

contain these points, and SSMF is not unique. (Min-Vol) picks the unique triangle230

with the smallest volume, while SSMF under the FBC picks the unique triangle having231

three points on each segment.

Columns of X
FBC solution
Min-Vol solution

Figure 2. Illustration of the non-uniqueness of SSMF. SSMF under the FBC achieves uniqueness based on
Assumption 1.d, and selects the triangle whose vertices are the red crosses, with three points on each segment.
Min-Vol selects the triangle whose vertices are the black squares, which has the smallest volume, but only two
points on each segment.

232

Under Assumption 3.1.d, data points can be on the boundary of conv(X) as long as233

the number of such points on the same facet does not exceed the number of points on234

any of the facets of conv(W ). We believe that this assumption will be met in most235

practical situations.236

Assumption 3.1.d is not easy to check as it requires to compute all facets of conv(X),237

and there could be exponentially many. Note however that the SSC is NP-hard to238

check [27].239

Compared to the assumption required for Min-Vol, our assumptions require one additional240
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8 M. ABDOLALI AND N. GILLIS

data points on each facet but does not require these data points to be well-spread on that241

facet. Moreover, we do not require X to be of rank r. Note however that the well-spreadness242

of data points on a facet will influence the robustness to noise of our model; see Section 6.243

Remark 3.2 (Separability vs. the FBC). As opposed to the SSC, Assumption 3.1 is not a244

generalization of separability because a separable matrix might not satisfy Assumption 3.1.c.245

However, Assumption 3.1.c could be relaxed as follows: either a facet of conv(W ) satisfies246

Assumption 3.1.c or its vertices are columns of X. In that case, our results still apply, using247

the same trick as in [20, Algorithm 5]. We stick in this paper to Assumption 1.c for the248

simplicity of the presentation and because, in practice, it is not likely for a facet to contain249

all its vertices while not containing any point in its interior.250

Before proving that the factor W in SSMF is identifiable under the FBC (Assumption 3.1),251

let us show the following lemma.252

Lemma 3.3. Let X = WH satisfy Assumption 3.1. Then every facet of conv(W ) is a facet253

of conv(X).254

Proof. Assumptions 3.1.b implies conv(X) ⊆ conv(W ), while each facet of conv(W ) con-255

tains at least d columns of X whose convex hull has dimension d − 2 (Assumptions 3.1.c).256

This implies that every facet of conv(W ) is a facet of conv(X).257

The proof of Lemma 3.3 leads to an interesting observation: for SSMF to be identifiable,258

one needs to have at least d−1 data points on each facet of conv(W ), otherwise it cannot be a259

facet of conv(X) and hence cannot be identified. In fact, one can check that both separability260

and the SSC imply this condition. The FBC only requires one additional data point on each261

of these facets.262

Theorem 3.4 (Uniqueness of W in SSMF under the FBC). Let X = WH satisfying the FBC263

(Assumption 3.1). For any other factorization X = Ŵ Ĥ satisfying the FBC, Ŵ = WΠ where264

Π ∈ {0, 1}r×r is a permutation matrix.265

Proof. Note that the FBC depends on the parameter s ≥ d. Assume there exists two266

factorizations X = WH and X = Ŵ Ĥ satisfying the FBC (Assumption 3.1), where the267

parameter s = sW for WH, and s = sŴ for Ŵ Ĥ. Assume without loss of generality that268

sW ≤ sŴ . By definition, the columns of W and Ŵ are the intersections of the facets of269

conv(W ) and conv(Ŵ ), respectively. For W and Ŵ to have at least one column that do not270

coincide (up to permutation), there is at least one facet of conv(W ) that is different from one271

facet of conv(Ŵ ). Let F̂ be a facet of conv(Ŵ ) that is not a facet of conv(W ). By Lemma 3.3,272

F̂ is a facet of conv(X). This is in contradiction with Assumption 3.1.d for (W,H): F̂ is a273

facet of conv(X) but not a facet of conv(W ) while it contains sŴ ≥ sW distinct data points.274

4. Brute-force facet-based polytope identification (BFPI). In this section, we describe275

our first proposed algorithm, namely BFPI; see Algorithm 4.1. The high-level geometric276

insight of the proposed FPI algorithm is to identify the facets of conv(W ), given the data277

points. Although we will not implement BFPI, we believe the high level ideas within BFPI278

are key, and may be an important starting point for future algorithmic design, which is the279

reason why we present it here. Moreover, BFPI is provably correct and is supported by280

identifiability guarantees under the assumptions of the FBC; see Theorem 4.4.281
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SIMPLEX-STRUCTURED MATRIX FACTORIZATION 9

Algorithm 4.1 Brute-force facet-based polytope identification (BFPI) for SSNMF

Input: Data matrix X ∈ Rm×n satisfying Assumption 3.1, and parameter s.
Output: The basis matrix W .

% Step 1. Preprocessing
1: Remove the zero columns of X, and remove duplicated data points.
2: Reduce the dimension of the columns of X to a (d− 1)-dimensional space, by constructing the matrix X̃ ∈

R(d−1)×n as follows. Given the compact SVD of X − X̄ = UΣV > where U ∈ Rm×(d−1), Σ ∈ R(d−1)×(d−1)

and V ∈ Rn×(d−1), we take
X̃ = U>(X − X̄) = ΣV >.

Let us denote W̃ = U> (W − [x̄ . . . x̄]), so that X̃ = W̃H.

% Step 2. Compute all vertices of conv(X)∗

3: Compute all vertices {θi}vi=1 of conv(X)∗ = {θ | X̃>θ ≤ e} ⊆ Rd−1.

% Step 3. Identify the vertices of conv(W )∗

4: Identify the vertices corresponding to a facet in the primal that contain more than s points

J =
{
i
∣∣∣ ∣∣{j | X̃(:, j)>θi = 1}

∣∣ ≥ s, 1 ≤ i ≤ v} .
The convex hull of {θi}i∈J is the dual of the convex hull of W̃ .

% Step 4. Recover W̃ from the vertices of conv(W̃ )∗

5: Recover W̃ by intersecting the facets {x | x>θi ≤ 1} for i ∈ J .

% Step 5. Postprocess W̃ to recover W
6: Project W̃ ∈ R(d−1)×r back to the original m-dimensional space: W = UW̃ + [x̄ . . . x̄].

Preliminaries. Let d = rank(W ). The facets of the (d− 1)-dimensional polytope conv(W )282

are the polytopes of dimension d−2 obtained as the intersection of conv(W ) with a hyperplane.283

For a set A containing the origin in its interior, its dual is A∗ =
{
y | x>y ≤ 1 for all x ∈ A

}
.284

If A is a polytope, then A∗ is also a polytope whose facets correspond to the vertices of A,285

and vice versa. Moreover, it is easy to prove that if A ⊆ B, then B∗ ⊆ A∗. We refer the reader286

to [44] for more information on polytopes. In order to recover the facets of conv(W ), the dual287

space will be considered such that the problem of searching for the facets of a polytope is288

replaced by the equivalent problem of finding the vertices of a polytope in the dual space.289

Preprocessing. Before doing so, the first step of FPI is to make sure the origin belongs290

to conv(W ) by removing x̄ = 1
n

∑n
j=1X(:, j) from all data points. This does not change the291

structure of the SSMF problem:292

X(:, j)− x̄ = WH(:, j)− x̄ = (W − x̄e>)H(:, j),293

since e>H(:, j) = 1 because H(:, j) ∈ ∆r for all j. To simplify the notation, let us denote294

X̄ = x̄e>. Then, to have a full-dimensional problem, that is, to have the dimension of conv(X)295

coincide with the dimension of the ambient space, we project X−X̄ onto its (d−1)-dimensional296

column space. In fact, since 0 ∈ conv
(
X − X̄

)
, the rank of X − X̄ is equal to d − 1, and297

this second preprocessing step amounts to premultiplying X − X̄ by a (d − 1)-by-m matrix298

obtained via the truncated SVD of X − X̄; see Algorithm 4.1. This does not change the299

structure of the SSMF problem either, it simply premultiplies X and W by a matrix of rank300

d− 1. This is a standard preprocesing step in the SSMF literature; see for example [35].301
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10 M. ABDOLALI AND N. GILLIS

Dual approach. Let us denote the dual of conv(X) as302

conv(X)∗ =
{
θ | x>θ ≤ 1 for all x ∈ conv(X)

}
=
{
θ | X>θ ≤ e

}
.303

Since conv(X) ⊆ conv(W ), the dual of conv(W ) is contained in conv(X)∗.304

Example 4.1. Let the columns of W be the vertices of the square [−1, 1]× [−1,−1], while305

X =

(
−1 −1 −1 −0.8 −0.65 −0.5 −0.8 −0.65 −0.5 1 1 1
0.8 0.65 0.5 1 1 1 −1 −1 −1 −0.8 −0.65 −0.5

)
,306

see Figure 3 for an illustration. The polygon conv(X) has 8 segments: 4 containing 3 data307

points, and 4 containing 2 data points. In the dual space, 4 of the vertices of conv(X)∗308

correspond to the 4 vertices of conv(W )∗, that is, to the four segments of conv(W ), while the309

other 4 correspond to the other 4 segments of conv(X).

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Primal

X

conv(X)

W

conv(W)

-2 -1 0 1
-2

-1.5

-1

-0.5

0

0.5

1

Dual

conv(X)*

conv(W)*

Figure 3. Illustration of the concept of duality to compute SSMF. On the left, this is the primal space
where conv(X) ⊆ conv(W ). On the right, this is the dual representation where conv(W )∗ ⊆ conv(X)∗. The
circles are the vertices of conv(X)∗ corresponding to the segments of conv(X) in the primal. The crosses are
the vertices of conv(W )∗ corresponding to the segments of conv(W ) in the primal.

310

Our goal is to find the vertices of conv(X)∗ that correspond to the vertices of conv(W )∗,311

that is, the facets of conv(W ). Under Assumption 3.1.c, there are at least d columns of X on312

each facet of conv(W ) whose convex hull has dimension d − 2 ; on Figure 3, there are three313

points on each segment of conv(W ). This implies that a subset of the vertices of conv(X)∗314

contains the vertices of conv(W )∗, as shown in the following lemma.315

Lemma 4.2. Let X = WH satisfy Assumption 3.1, and assume X has been preprocessed316

as described in Algorithm 4.1 so that 0 ∈ conv(X) and X ∈ R(d−1)×n where rank(X) = d− 1.317

Then the set of vertices of conv(X)∗ contain all the vertices of conv(W )∗.318

Proof. This follows from Lemma 3.3 and duality.319

Once the vertices of conv(X)∗ are identified, we recover the vertices of conv(W )∗ that corre-320

spond to the facets of conv(W ) containing the largest number of data points. More precisely,321

under Assumption 3.1, we have the following lemma.322
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Lemma 4.3. Let X = WH satisfy Assumption 3.1, and assume X has been preprocessed323

as described in Algorithm 4.1 so that 0 ∈ conv(X), X ∈ R(d−1)×n where rank(X) = d−1, and324

X does not have duplicated columns. Then the set {x ∈ conv(W ) | θ>x = 1} for θ ∈ Rd−1 is325

a facet of conv(W ) if and only if326

(4.1) θ is a vertex of conv(X)∗ =
{
θ | X>θ ≤ e

}
and

∣∣{j | X(:, j)>θ = 1}
∣∣ ≥ s,327

where |A| denotes the cardinality of the set A.328

Proof. Let {x ∈ conv(W ) | θ>x = 1} be a facet of conv(W ). By Lemma 3.3, θ must329

belong to conv(X)∗, while, by Assumption 3.1.c, facets of conv(W ) contain more than s ≥ d330

columns of X.331

Let θ satisfy (4.1) so that the set F = {x ∈ conv(W ) | θ>x = 1} contains s columns of X.332

Since θ is a vertex of conv(X)∗, the set F corresponds, by duality, to a facet of conv(X). By333

Assumption 1.c, the facets containing at least s points must correspond to facets of conv(W ).334

Finally, W is recovered by intersecting the facets of conv(X) containing more than s data335

points. The proposed brute-force algorithm is presented in Algorithm 4.1. The main step of336

Algorithm 4.1 is a vertex enumeration problem in the dual space.337

Identifiability. Let us prove that, if X = WH satisfies Assumption 3.1, then Algorithm 4.1338

recovers W , up to permutation of its columns.339

Theorem 4.4 (Recovery of W by Algorithm 4.1). Let X = WH satisfy Assumption 3.1.340

Then Algorithm 4.1 recovers the columns of W (up to permutation).341

Proof. First, as already noted above, the prepossessing step does not change the geometry342

of the problem, that is, if X = WH satisfies Assumption 3.1, then X̃ = W̃H also satisfies343

Assumption 3.1. Hence let us assume w.l.o.g. that 0 ∈ conv(X) and X ∈ R(d−1)×n where344

rank(X) = d− 1. The rest of the proof follows from Lemmas 3.3 and 4.3. By Lemma 3.3, the345

vertices of conv(X)∗ computed in step 4 of Algorithm 4.1 correspond to facets of conv(X).346

By Lemma 4.3, only the facets of conv(X) corresponding to facets of conv(W ) containing at347

least s columns of X.348

Computational cost. Algorithm 4.1 may run in the worst-case in exponential time. The349

set conv(X)∗ is an (d− 1)-dimensional polytope defined by n inequalities and can have expo-350

nentially many vertices, namely O
((

n
d−1
))

.351

Although we could adapt BFPI to handle noisy input matrices, we will develop in the next352

section a more practical algorithm that does not require to identify all vertices of conv(X)∗,353

and that can handle noise and outliers. However, we believe BFPI is important, and could be354

the starting point for other practical SSMF algorithms.355

5. Greedy FPI (GFPI). The brute-force approach presented in the previous section is356

provably correct but may require exponentially many operations. Note that the same obser-357

vation holds for (Min-Vol): as far as we know, the algorithms that provably solve (Min-Vol)358

up to global optimally require to compute all facets of conv(X); see Section 2. In this section,359

we propose a practical sequential algorithm, dubbed Greedy FPI (GFPI), by leveraging highly360

efficient MIP solvers (in particular their ability to quickly find high quality solutions). Al-361

though it is still computationally heavy to solve (that is, we cannot prove it runs in polynomial362
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12 M. ABDOLALI AND N. GILLIS

time), it allows to solve large problems; see Section 6.363

GFPI sequentially searches for the facets of conv(X) containing the largest number of364

points. This section is organized as follows. The optimization model used to identify a facet,365

even in the presence of noise and outliers, is described in Section 5.1. Once a facet is identified,366

the same model can be used to extract the next facet, by removing the previously identified367

facets from the search space (Section 5.2). To make sure the intersection of the r extracted368

facets corresponds to a bounded polytope, we add a constraint when extracting the last facet369

(Section 5.3). The way the matrix W is estimated from the extracted facets is described in370

Section 5.5. Finally, in Section 5.6, we prove the identifiability of GFPI under the FBC, and371

discuss its computational cost and the choice of its parameters.372

5.1. Identifying a facet, in the presence of noise and outliers. As for GFPI, the data373

points are first centered and projected into a (d − 1)-dimensional subspace to obtain X̃ ∈374

R(d−1)×n such that 0 ∈ conv
(
X̃
)

and rank
(
X̃
)

= d − 1. Since we want GFPI to handle375

noisy data, we cannot use the metric of the number of points on a facet of conv
(
X̃
)

to know376

whether it is also a facet of conv
(
W̃
)
, because points will not be exactly located on the facets377

of conv(X). Given a parameter γ that depends on the noise level, we propose to solve378

(5.1) max
θ∈Rd−1

n∑
j=1

I
(
X̃(:, j)>θ ≥ 1− γ

)
such that X̃>θ ≤ (1 + γ)e,379

where I(.) is the indicator function which is equal to 1 if the input condition is met, and to 0380

otherwise. The variable θ encodes the facet {x ∈ conv
(
X̃
)
| x>θ = 1}. The optimal solution381

of (5.1) corresponds to a facet containing the largest number of data points within a safety382

gap defined by γ. In the noiseless case, taking γ = 0 and solving (5.1) provides a facet of383

conv(X) containing the largest number of columns of X, and hence it will correspond to a384

facet of conv(W ), under Assumption 3.1; see Lemma 4.3.385

To solve (5.1), we use a MIP. We introduce a binary variable yi ∈ {0, 1} (1 ≤ i ≤ n) which386

is equal to 0 if I(X̃(:, i)>θ ≥ 1− γ) = 1, and to 1 otherwise3, and solve387

min
θ∈Rd−1,y∈{0,1}n

n∑
j=1

yj such that 1− γ −Ayj ≤ X̃(:, j)>θ ≤ 1 + γ for 1 ≤ j ≤ n.388

The parameter A is a sufficiently large scalar based on the BIG-M approach often used to389

model indicator functions; see Remark 5.1. If the condition X̃(:, j)>θ ≥ 1− γ is satisfied, the390

value of yj can be either 0 or 1. Since the MIP minimizes yj , yj will be set to 0. If it is not391

satisfied, that is, X̃(:, j)>θ < 1− γ, then the value of y has to be equal to 1. Note that yj = 0392

means that the corresponding data point is located close to the sought facet.393

We have observed numerically that using the same safety gap for the n constraints X̃>θ ≤394

(1+γ)e does not give enough degrees of freedom to the formulation, and, in difficult scenarios,395

fails to return good solutions. In particular, it is unable to deal with outliers that might be396

arbitrarily far away from the sought polytope of which {x | θ>x ≤ 1} is a facet. Hence we397

3We made this (arbitrary) choice to obtain a minimization problem, which is more standard.
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introduce the variable δ ∈ Rn+ that accounts for the distance of the data points from the398

polytope; in particular, δj = 0 if θ>X̃(:, j) ≤ 1. We propose the following MIP399

min
θ,δ≥0,y∈{0,1}n

n∑
j=1

yj + λ

n∑
j=1

δj such that 1− γ −Ayj ≤ X̃(:, j)>θ ≤ 1 + δj for 1 ≤ j ≤ n,400

δj ≤ Ayi + γ for 1 ≤ j ≤ n.(5.2)401402

The parameter λ controls how much the points are allowed to be far away from the polytope.403

The constraint δj ≤ Ayi + γ forces the binary variable yj to get the value of 0 only when404 ∣∣X̃(:, j)>θ− 1
∣∣ ≤ γ, so that the data point is in fact close to the facet, up to the safety gap γ.405

The entries of δ larger than γ will correspond to outliers, that is, points that are outside and406

far away from the sought polytope.407

Remark 5.1 (Value of A). The BIG-M formulation is frequently used as a modeling trick408

for problems with disjunctive or indicator constraints [7]. Choosing a good value for A is a409

difficult problem in the MIP literature. A good choice for the parameter A depends on the410

data. A very large value for A leads to weak relaxations, while a very small value removes411

feasible solutions. We have set A to 10 in all the experiments in the absence of outliers and412

did not notice sensitivity to this value. For the experiments with outliers, we used A = 100;413

this makes sense as outliers are further away from conv(W ).414

5.2. Cutting previous facets from the solution space. Solving (5.2) allows to approxi-415

mate one facet of conv
(
W̃
)
. In order to extract other facets sequentially, we need to eliminate416

the previously found facets from the feasible solutions of (5.2). To do so, we select one point417

in each of the previously identified facets such that it only belongs to the corresponding facet,418

that is, it needs to be in the relative interior of that facet. This point is chosen as the average419

of the data points associated to that facet. We will denote M (t) ∈ R(d−1)×t the matrix whose420

columns correspond to these points after t facets have been identified. At the next step, that421

is, at the (t+1)th step, we restrict the search space of (5.2) by adding the following constraints422

making sure that these selected points do not lie on the current sought facet:423

θ>M (t)(:, i) ≤ 1− γ − η for i = 1, . . . , t,424

where η ∈ R+ is a margin parameter which controls how far the next facet should be from425

the previously selected facets. The larger η is, the further the facets will be from each other.426

Figure 4 illustrates this procedure after one facet has been identified (corresponding to θ1 on427

the figure), in the primal and dual spaces simultaneously. As the margin parameter η increases,428

more and more feasible solutions are cut from the dual conv(X)∗. However, for all margin429

values, namely {0.1, 0.5, 0.8}, the two other vertices of conv(W )∗ are not cut. In general, if the430

margin value η is set too high, there will be no feasible solution to the optimization problem431

and, if it is set too low, the algorithm might find a facet too close to the previously identified432

facets. However, both cases can be prevented. If the optimizing algorithm does not find any433

feasible solution, the margin can be reduced. If the identified facet is not sufficiently different434

from the other ones, it can be increased. However, as shown in Section SM1.4 (supplementary435

material), our approach is not too sensitive to this parameter.436
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14 M. ABDOLALI AND N. GILLIS

Figure 4. Illustration of the effect of the margin parameter η on the solution space with r = 3.

Remark 5.2 (Construction of M (t)). If the data points associated to a facet are not well-437

spread in that facet, their average might lie near the boundary of that facet. (Note however438

that, by Assumption 3.1, the points on a facet generate that facet hence their average has to439

be in the relative interior of the facet.) In this situation, a separable NMF algorithm, such as440

SPA, can be used to identify d− 1 points well spread on this facet, and then take the average441

of this subset of points. In this paper, we use the successive nonnegative projection algorithm442

(SNPA) [21] which is more robust to noise than SPA. This second strategy is useful in more443

difficult scenarios, and we have used it for the real-world hyperspectal images in Section 6.2.444

5.3. Obtaining a polytope. We are now able to extract sequentially facets of conv(X)445

that approximately contain the largest number of columns of X. Let us focus on the case446

W is full column rank, that is, rank(W ) = r. In difficult scenarios, for example when W is447

ill-conditioned, or the noise level is high, we cannot guarantee that, after having extracted r448

facets, we will obtain a polytope (that is, a bounded polyhedron). In order to resolve this449

issue, we take advantage of the following theorems.450

Theorem 5.3 (Boundedness theorem [38]). Let θ1, . . . , θd be d linearly independent vectors451

in Rd. If θd+1 = −
∑d

i=1 µiθ
i with µ > 0, then the positive hull of these d+ 1 vectors span Rd.452

Theorem 5.4 (Full body theorem [38]). Given a set Θ = {θ1, . . . , θ`} in Rd, the polyhedron453

P = {x|θ>i x ≤ bi; i = 1, . . . , `} is bounded if and only if the positive hull of Θ spans Rd.454

To ensure that the r identified facets define a bounded polytope in Rd−1, we add the following455

constraint to (5.2) when computing the last facet:456

(5.3) θ = −
d−1∑
i=1

µiθ
(i) with µi ≥ ε for i = 1, . . . , d− 1,457

where θ(i) (1 ≤ i ≤ r− 1) are the r− 1 vectors extracted at the first r− 1 steps of GPFI, and458

ε is a small positive constant. We used ε = 0.1 in all numerical experiments in Section 6.459
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As mentioned above, this additional constraint plays an instrumental role in difficult460

scenarios. For example, on the real hyperspectral images from Section 6.2 that are highly461

contaminated with noise (and do not follow closely the model assumptions), this constraint462

allowed us to obtained significantly better solutions; see in particular Figure 9-(b) where one463

of the extracted facet does not have many points around it: its extraction was made possible464

because of (5.3). Moreover, we have observed that the use of (5.3) makes the identification of465

the last facet less sensitive to the margin parameter η as (5.3) forces the sought facet to be466

far from the facets already identified.467

Rank-deficient case. Our sequential strategy can extract more than r facets of conv(W )468

when rank(W ) < r; for example, in Section 6.1.3, we will extract the 4 segments of a square.469

In practice, in the rank-deficient case, it is unclear how many facets need to be extracted.470

In two dimensions, the number of facets of a polygon coincides with the number of vertices.471

However, in higher dimensions, the number of facets and vertices cannot be deduced from472

one another. Hence we leave to the user to decide how many facets are extracted. A possible473

heuristic would be to extract facets as long as they contain sufficiently many data points,474

and/or as long as the corresponding polyhedron is unbounded. We leave this as a direction475

of further development.476

5.4. Summary of the MIP model for facet identification. To summarize, GFPI will477

extract one facet at each iteration. At iteration t, it solves the following MIP:478

(5.4) min
θ∈Rd−1,δ∈Rn

+,y∈{0,1}n

n∑
j=1

yi + λ
n∑
j=1

δj479

480

such that X̃(:, j)>θ ≤ 1 + δj for 1 ≤ j ≤ n, → Forming dual space

X̃(:, j)>θ ≥ 1− γ −Ayj for 1 ≤ j ≤ n, → Counting points on the facet

θ>M (t−1)(:, k) ≤ 1− γ − η for 1 ≤ k ≤ t− 1, → Removing previous facets

δj ≤ Ayj + γ for 1 ≤ j ≤ n. → Discarding outliers

481

The optimal solution of (5.4) at iteration t for the variable θ will be denoted θ(t), it approx-482

imates the tth facet of conv
(
W̃
)
. When rank(W ) = r, the constraint (5.3) is added when483

extracting the last facet to obtain a bounded polytope; see Section 5.3.484

The proposed MIP model (5.4) has been carefully designed in order to achieve state-of-485

the-art performances on synthetic and real-world data sets; see Section 6 for the numerical486

experiments. It results from a long trial-and-error procedure, and many alternative formula-487

tions have been tested. A direction of research is to further improve this MIP formulation.488

5.5. Post-processing: intersection of facets. Once the facets of conv
(
W̃
)

are identified,489

that is, the vectors {θ(t)}Tt=1 are computed sequentially using (5.4), how can we recover W̃490

accurately, even in noisy conditions? It is possible to improve the quality of the identified491

facets, and hence of W̃ , by taking advantage of the knowledge of the data points associated492

to them. For the identified facet corresponding to θ(t) (1 ≤ t ≤ T ), let493

J (t) =
{
j
∣∣ ∣∣∣X̃(:, j)>θ(t) − 1

∣∣∣ ≤ γ}494
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be the index set containing the points associated to it. The set J (t) contains the indices such495

that yj = 0 when solving (5.4). To improve the estimate of θ(t), we compute the normal496

vector of the affine hull containing the columns of X(:, J (t)), which is the left singular vector497

corresponding to the smallest singular value of the SVD of X(:, J (t)), after removing the498

average from each column (the facet is translated so that 0 belongs to it). Let us denote499

Θ ∈ Rd−1×T the matrix whose columns are these singular vectors so that Θ(:, t) replaces θ(t).500

The facet t has the form {x | Θ(:, t)>x = qt} for some offset qt. Again, we compute qt from501

the data by taking the average dot product between the normal vector Θ(:, t) with the data502

points associated to that facet, that is, we take503

qt =
Θ(:, t)>X(:, J (t))e

|J (t)|
for t = 1, 2, . . . , T.504

Finally, our estimation of the polytope conv
(
W̃
)

is given by P = {x | Θ>x ≤ q}. Estimating505

W̃ from P can be done using any off-the-shelf vertex enumeration algorithm. We have used506

the approach in [9] whose implementation is provided in [28].507

Finally, to estimate the matrix W , our estimated W̃ is projected back onto the original508

m-dimensional space, as in Algorithm 4.1.509

5.6. Identifiability. Algorithm 5.1 provides the pseudo-code for GFPI. The main differ-510

ence with BFPI (Algorithm 4.1) is the way the facets of conv(W̃ ) are extracted.511

For well-chosen parameters, GFPI recovers the unique SSMF under the FBC.512

Theorem 5.5. Let X = WH satisfy the FBC (Assumption 3.1). Let also the parameters of513

GFPI (Algorithm 5.1) be as follows: γ = 0, η is sufficiently small, λ→ +∞, A is sufficiently514

large, T is the number of facets of conv(W ), and d = rank(X). Then Algorithm 5.1 recovers515

the columns of W (up to permutation).516

Proof. The preprocessing ensures that 0 ∈ conv(X̃) and X̃ ∈ R(d−1)×n where rank(X̃) =517

d− 1, while the geometry of the problem remains unchanged, as in Theorem 4.4.518

Let us discuss the parameters and their influence on (5.4):519

• The variable δ was introduced to handle noise; see Section 5.1. Taking λ → +∞520

implies that the optimal solution for the variable δ in (5.4) is 0, because δ = 0 is part521

of many feasible solutions (take for example any θ such that X̃>θ ≤ e, such as θ = 0522

since 0 ∈ conv(X̃), and yj = 1 for all j). In other words, in the noiseless case, δ can523

be set to zero and removed from the formulation (5.4). Note that for δ = 0, the first524

constraint of (5.4) reduces to forming the dual space, that is, X̃>θ ≤ e, while the last525

constraints, dealing with outliers, can be removed since A, y, γ ≥ 0.526

• For A sufficiently large and γ = 0, the objective of (5.4) is equivalent to the indicator527

function counting the points on the facet {x | θ>x = 1}; see Section 5.1.528

This means that, for the chosen parameters, (5.4) is equivalent to529

(5.5) max
θ∈Rd−1

n∑
j=1

I
(
X̃(:, j)>θ ≥ 1

)
such that X̃>θ ≤ e and M (t−1)>θ ≤ (1− η)e.530

Now, let us prove the result by induction.531
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Algorithm 5.1 Greedy FPI (GFPI)

Input: Data matrix X ≈ WH ∈ Rm×n satisfying Assumption 3.1 approximately, number T of facets to
extract, dimension d, and the parameters γ ≥ 0, η > 0, λ > 0, and A > 0.

Output: Recover the basis matrix W ∈ Rm×r approximately.
% Step 1. Preprocessing

1: Use the same preprocessing as in Algorithm 4.1, to obtain X̃ = U>[X − X̄] ∈ R(d−1)×n.
% Step 2. Extract the T facets of conv

(
W̃
)

2: Initialization: Set M (0) = [ ], and Θ = [ ].
3: for t = 1, 2, . . . , T do
4: Compute θ(t) as the optimal solution of (5.4). If t = T = d, use the additional constraint (5.3)

within (5.4) to obtain a bounded polytope.
5: Identify the data points close to the facet corresponding to θ(t), that is,

J(t) =
{
j |
∣∣∣X̃(:, j)>θ(t) − 1

∣∣∣ ≤ γ} .
6: Compute the average of these points as m(t) = X̃(:,J(t))e

|J(t)| , and let M (t) = [M (t−1),m(t)].

7: Provide a more reliable estimate of θ(t): add as a column of Θ the left singular vector of
X̃(:, J(t))− [m(t) . . .m(t)] corresponding to its smallest singular value.

8: Compute the tth entry of the offset vector, qt = Θ(:,t)>X(:,J(t))e

|J(t)| = Θ(:, t)>m(t).

9: end for
% Step 3. Recover W̃

10: Compute the columns W̃ as the r vertices of the polytope {x | Θ>x ≤ q}.
If T = d, then r = T = d: it is equivalent to solving the linear systems Θ(:, k̄)>W̃ (:, k) = q(k̄) for
k = 1, 2, . . . , r where k̄ = {1, 2, . . . , r}\{k}.
% Step 4. Postprocess W̃ to recover W

11: Project W̃ ∈ R(d−1)×r back to the original m-dimensional space: W = UW̃ + [x̄ . . . x̄].

First step. Solving (5.5) boils down to maximizing the number of data points in the set532

{x ∈ conv(X̃) | θ>x = 1}. By Lemma 4.3, this is a facet of conv(W̃ ); in fact, it is a facet533

containing the largest number of data points.534

Induction step. Assume GFPI has extracted k facets of conv(W̃ ). The columns of M (k)535

are located in the relative interior of their corresponding facets. This follows from Assump-536

tion 3.1.c because data points on that facet of conv(W̃ ) generate that facet. Because of the537

constraint M (k)>θ ≤ (1 − η)e, the previously extracted θ(t) (1 ≤ t ≤ k) are eliminated from538

the feasible set of (5.5), because M (k)(:, t)>θ(t) = 1 for 1 ≤ t ≤ k. Moreover, for η sufficiently539

small, no other vertex of conv(W̃ )∗ is cut from the feasible set (see Figure 4 for an illustration).540

In fact, for η → 0, only the vertices θ(t) (1 ≤ t ≤ k) are cut from conv(X̃)∗. Therefore the next541

step of GFPI identies a facet of conv(X̃) not extracted yet and containing the largest possible542

number of points. By Assumption 3.1.c-d, this must correspond to a facet of conv(W̃ ). At543

the last step when t = T and if T = d, the constraint (5.3) is added to (5.5). Since conv(W̃ )544

is bounded, by definition, it does not prevent the model to extract the last facet of conv(W̃ ).545

It was used as a safety constraint in difficult scenarios; see Section 5.3.546

In Section 6.1, we will show that GFPI in fact performs perfectly in noiseless conditions547

under Assumption 3.1. An important direction of research is to characterize the robustness to548

noise of GFPI. This is also an open problem for algorithms based on Min-Vol; see Section 2.549
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5.7. Computational cost. Identifying each facet requires to solve the MIP (5.4). Solving550

MIPs is in general NP-hard and can be time consuming. In fact, the proposed model can551

be hard to solve up to global optimality when n and/or r become large. Moreover, we552

have observed that, as the noise level increases, the problem gets more challenging which553

increases the computational time as well. We will use IBM-CPLEX (v12.10) [12] for solving554

the MIP (5.4). We noticed that CPLEX is able to find the optimal solution quite fast in555

many cases, even though it might require a lot of time to certify global optimality. In Table 3556

(Section 6.1.1), we will perform such a numerical experiment: for example, for m = r = 6 and557

n = 190, CPLEX finds the 6 facets in 1.44 seconds on average, while it requires 2700 seconds558

to provide an optimality certificate. Moreover, CPLEX is often able to find good feasible559

solutions quickly, and hence can be stopped early providing reasonable solutions for GFPI. In560

Section 6.2, we will use a time limit of 100 seconds for each facet identification on two large561

real data sets, and GFPI will provide solutions whose quality is similar to the state of the art.562

Interestingly, this observation holds even for problems with dimensions as large as 30. For563

example, in the noiseless case and for d ≤ 30, CPLEX finds in most case the optimal solution564

for each facet in less than 100 seconds4. In the supplementary material SM1.3, we provide565

additional numerical experiments on the computational cost of GFPI. A direction of further566

research would be to design dedicated algorithms (including heuristics) to tackle (5.4), taking567

advantage of its particular structure and geometry.568

Remark 5.6 (Convex relaxation of the MIP (5.4) in GFPI). The core optimization prob-569

lem (5.4) in GFPI is a MIP, and the constraints and the objective function are linear. Hence570

a natural idea to find an approximate solution of (5.4) is to relax the binary constraints on y571

by 0 ≤ y ≤ 1 to obtain a linear program (LP). However, our numerical experiments show that572

this approach leads to bad solutions and poor performance in most cases. Note that CPLEX573

is based on branch and bound where the solution of the relaxed LP is the first computed574

solution, at the root node [41].575

5.8. Robustness to noise. A challenging research direction is the design of SNMF algo-576

rithms without the separability assumption and that are provably robust against noise. In577

fact, to the best of our knowledge, the only such algorithm available in the literature is the578

one from [20] which relies on strong assumptions and has not been shown yet to compete579

with state-of-the-art algorithms on practical problems (see Section 2). In particular, proving580

robustness of algorithms based on the SSC and the Min-Vol framework is a major missing581

piece in the literature of SSMF [14]. However, Min-Vol algorithms have been shown to work582

well in noisy scenarios; see for example [1] and the references therein.583

Algorithms based on facet identification, such as GFPI and the ones discussed in the584

introduction, could be rather sensitive to noise. As least they have not been used as much as585

Min-Vol algorithms in practice. Intuitively, in noisy scenarios, it may be difficult to identify586

the facets of a polytope, while one may identify hyperplanes inside the polytope as facets.587

The later problem is in fact an issue for the algorithm of [20] where authors need to assume588

4For synthetic data sets, in the noiseless case, we know the optimal solution which allows us to check
whether CPLEX found it. As shown in Section SM1.3, for CPLEX to return the global optimal solution with
a certificate takes more than one hour, even for small values of r and n.
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that points that are not on a facet of conv(W ) are in general position. However, GFPI is less589

sensitive to inner hyperplanes as it requires all data points to be located on one side of the facet;590

see the first constraint of (5.4). Moreover, as we will see in Section 6.1.2 and the supplementary591

material SM1.1, GFPI will show encouraging robustness in identifying facets for corrupted592

data with moderate level of noise. Moreover, we do believe that if the parameters of GFPI are593

properly chosen, it is not significantly impacted by the inner hyperplanes within the polytope.594

Recall that the parameters λ and γ indicate how deep GFPI looks for hyperplanes within595

conv(W ). For a detailed analysis of the effect of these parameters on the performance of GFPI,596

we refer to the discussion and numerical experiments in the supplementary material SM1.4.597

Of course, as for Min-Vol algorithms, analyzing the robustness of GFPI is an important598

research direction. It would require to adapt the FBC. In fact,599

• The noise allowed for GFPI to approximately recover W will depend on the condi-600

tioning of conv(W ), as for separable NMF algorithms. For example, less noise can be601

added to a flat triangle than to a equilateral one. This requires to adapt Assump-602

tion 3.1.a by requiring the conditioning of conv(W ) to be lower bounded by a positive603

number.604

• Data points on the facets of conv(W ) should be well spread on that facet. For example,605

if all data points on a facet are very close to one another, it will be harder to accurately606

estimating the corresponding facet in the presence on noise. This requires to adapt607

Assumption 3.1.c.608

• Facets of conv(X) that are not facets of conv(W ) cannot have too many points in609

their neighborhood. This requires to adapt Assumption 3.1.d.610

Such a theoretical robustness analysis is highly challenging and out of the scope of this611

paper. We leave it as a future work.612

6. Numerical Experiments. In this section, GFPI is evaluated on synthetic and real-world613

dat sets. All experiments are implemented in Matlab (R2019b), and run on a laptop with614

Intel Core i7-9750H, @2.60 GHz CPU and 16 GB RAM. We use IBM-CPLEX (v12.10) [12] for615

solving the MIP (5.4). The code is available from https://sites.google.com/site/nicolasgillis/616

code, and all experiments presented in this paper can be reproduced using this code. Note617

that the user can also use the Matlab MIP solver, intlinprog, which may be convenient.618

Compared Algorithms. GFPI is compared with the following state-of-the-art algorithms:619

• Successive nonnegative projection algorithm (SNPA) [21]: This is an extension of SPA620

which is provably more robust to noise, and can handle rank deficient matrices.621

• Simplex volume minimization: We use the model622

(6.1) min
W,H
‖X −WH‖2F + λ̃ logdet(W>W + δIr) such that H(:, j) ∈ ∆r for all j,623

which has been shown to provide the best practical performances [16, 1], and use624

the efficient algorithm proposed in [29]. We will use different parameters for λ̃ =625

λ
‖X−W (0)H(0)‖2F

logdet(W (0)>W (0)+δIr)
where (W (0), H(0)) is computed by SNPA, while δ = 0.1; see [29]626

for more details. We refer to this algorithm as min vol.627

• Maximum volume inscribed ellipsoid (MVIE) [34], see Section 2.628

• Hyperplane-based Craig-simplex-identication (HyperCSI) [32], see Section 2.629
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Quality measures. To quantify the performance of SSMF algorithms, the following metrics630

will be used. For the synthetic data experiments, we will use the relative distance between631

the ground-truth Wt and the estimated W632

ERR =
||Wt − W ||F
||Wt||F

,633

where the columns of W are permuted to minimize this quantity, using the Hungarian algo-634

rithm. For real hyperspectral images, we will use the average mean removed spectral angle635

(MRSA) between the columns of W and Wt (after a proper permutation of the columns of636

W ). This is the most common choice in this area of research. The MRSA between two vectors637

x ∈ Rn and y ∈ Rn is638

MRSA(x, y) =
100

π
cos−1

(
(x− x̄e)>(y − ȳe)
||x− x̄e||2||y − ȳe||2

)
,639

where x̄ = 1
n

∑n
i=1 xi. We will also use the relative reconstruction error, RE = ||X−WH||F

||X||F .640

6.1. Synthetic data sets. In this section, we compare GFPI with the state-of-the-art641

approaches on synthetic data sets.642

Data generation. To generate full-rank synthetic data sets X = WtHt, we follow a standard643

procedure; see for example [1]. Each entry of Wt is drawn uniformly at random from the644

interval [0, 1]. We discard the matrices with condition number larger than 10r to avoid too645

ill-conditioned matrices.646

We generate the columns of matrix Ht by splitting them in two parts: Ht = [H1, H2]. The647

matrix H1 corresponds to the points lying on facets, making sure there are enough points on648

each facet so that Assumption 3.1 holds. The matrix H2 corresponds to data points randomly649

generated within conv(W ). We generate H1 and H2 as follows.650

1. Let n1 be the number of data points on each facet. For each sample on a facet, the651

corresponding r − 1 nonzero elements in the columns of H1 are generated using the652

Dirichlet distribution with parameters equal to 1
r−1 .653

2. Let n2 denotes the number of samples within the simplex, possibly lying on some facets654

but this is not strictly enforced. The columns of H2 are generated by the Dirichlet655

distribution with parameters set to 1
r .656

Let us define the purity parameter p ∈ (0, 1] used to quantify how far the columns of X657

are from the columns of Wt. It is defined as p(Ht) = min1≤k≤r ||Ht(k, :)||∞. Recall that each658

row of Ht corresponds to the activation of the corresponding column of W , while Ht(:, j) ∈ ∆r659

for all j. Therefore, p(Ht) indicates how much the separability assumption is violated. For660

p(Ht) = 1, X satisfies the separability assumption since each column of Wt appears in the661

data set. For p(Ht) = 0, at least one of the columns of W is not used to generate X. In order662

to control the purity of Ht, that is, p(Ht), we use the parameter p, and resample the columns663

of H1 and H2 with entries larger than5 p, that is, we define an upper bound on the entries664

of matrix Ht. Hence, using this resampling, Ht(k, j) ≤ p for all k, j which implies p(Ht) ≤ p.665

5 To make the data generation possible, for p ≤ 0.3, we set the parameters of the Dirichlet distribution for
the columns of H1 to 1000

r−1
, otherwise most columns of H1 are rejected.
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Note that p has to be chosen larger than 1
r−1 since H(:, j) ∈ ∆r for all j, while the columns666

of H1 have at least one zero entry.667

Finally, the data matrix X is generated by X = Wt Ht. In the presence of noise, we use668

additive Gaussian noise based on a given signal-to-noise ratio (SNR). The variance of the i.i.d.669

random Gaussian noise given the SNR value is given by
∑m

i=1

∑n
j=1 X

2
i,j

10(SNR/10)×m×n .670

Parameters for GFPI. The parameters of GFPI are selected according to Table 2. As men-671

tioned before, GFPI is not too sensitive to the parameter η and we use 0.5 in all experiments.672

For the parameter λ, as it depends on the noise level, it should be decreased as the noise level673

increases; recall that λ→ +∞ in the noiseless case (Theorem 5.5). The parameter γ influences674

how the data points are associated to a facet: X(:, j) is associated to the facet parametrized675

by θ when |X(:, j)>θ − 1| ≤ γ. Hence the larger the noise level, the larger γ should be, since676

the data points are moved further away from the facets.677

Table 2
Parameters of GFPI with respect to different values of SNR

inf 80 60 50 40 30
λ 1000 100 100 10 10 10
γ 0.001 0.01 0.01 0.05 0.1 0.2

For GFPI, we have set the “timelimit” property of CPLEX to 10 seconds. Whenever the678

upper bound on CPU time is activated, we specify it with “**” after GFPI in the figures.679

6.1.1. Noiseless data sets. In this section, we investigate the effect of the purity on680

the performance of GFPI compared to the state-of-the-art approaches. To this end, we use681

the synthetic data with the following parameters: n1 = 30 and n2 = 10. Figure 5 reports682

the average measure ERR over 10 randomly generated synthetic data sets obtained by the683

different algorithms for r = m = {3, 4, 5, 7} as a function of the purity p. In this experiment,684

the value of the purity p varies between 1
r−1 + 0.01 (recall, 1

r−1 is the smallest possible value)685

to 1 (separability).686

GFPI recovers Wt perfectly for all cases, and the performance is not dependent on the687

purity, as expected since Assumption 3.1 is satisfied, regardless of the purity (Theorem 5.5).688

On the other hand, the performance of all other approaches gradually decreases as the pu-689

rity decreases. For SNPA (which is based on the separability assumption), the performance690

worsens as soon as p < 1. For low levels of purity, the SSC is not satisfied, and hence the691

performances of min vol and MVIE degrade as p decreases. In fact, it is interesting to observe692

that MVIE performs perfectly for p sufficiently large, when the SSC is satisfies (as guaranteed693

by the theory), while min vol degrades its performances faster as it relies on local optimization694

schemes and hence is sensitive to initialization. In fact, initializing min vol with slightly per-695

turbed versions of the groundtruth W leads to rather different solutions with almost perfect696

recovery. A similar behavior was already observed in [34, Figure 5].697

The computational time of the tested algorithms is reported in Table 3. In addition to698

the running time of GFPI when requiring CPLEX to obtain a global optimality guarantee,699

Table 3 also reports the time that CPLEX needs to find the optimal solution (before providing700

the optimality certificate), which we denote GFPI*. We observe that CPLEX finds an optimal701
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Figure 5. Average ERR metric for 10 trials depending on the purity for SSMF algorithms in noiseless
conditions for different values of r and m.

solution rather fast, but takes a significant amount of time to provide a certificate of global702

optimality (this issue is also discussed in Section 5.7). Hence in practice we recommend to703

use CPLEX with a time limit, as we will do for the numerical experiments on the large-scale704

hyperspectral images presented in Section 6.2.705

Additional numerical experiments regarding the computational time of GFPI can be found706

in Section SM1.3 of the supplementary material.707

6.1.2. Noisy data sets. In this section, we compare the behavior of the different algo-708

rithms in the presence of noise. We use two levels of noise (SNR = 60 and 40) and investigate709

the effect of the purity for r = m = {3, 4}. Figure 6 reports the ERR metric, similarly as for710

Figure 5 (average of 10 randomly generated synthetic data sets). As the noise level increases711

(SNR decreases), the performance of all algorithms decreases steadily. However, in almost all712

cases, GFPI outperforms all other approaches, especially when the the purity p is low. As for713
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Table 3
Comparison of the the run times (in seconds) of the tested SSMF algorithms. The experimental setting

is the one from Figure 5, with an average over 10 trials. GFPI* refers to the time CPLEX needs to find
the r optimal solutions (one for each facet), while GFPI refers to the time CPLEX needs to provide a global
optimality certificate for these solutions.

r purity GFPI GFPI* min vol SNPA MVIE HyperCSI
0.51 0.64 0.12 0.07 0.008 1.17 0.008

3 0.706 0.64 0.13 0.07 0.008 0.95 0.002
1 1.02 0.16 0.08 0.008 1.07 0.001

0.343 2.36 0.41 0.11 0.01 1.77 0.01
4 0.606 4.76 0.53 0.11 0.01 1.87 0.003

1 6.17 0.39 0.10 0.01 1.58 0.002
0.26 7.08 0.81 0.14 0.02 5.77 0.009

5 0.556 36.36 0.98 0.13 0.02 7.17 0.004
1 83.10 0.86 0.11 0.02 5.73 0.003

0.21 24.73 1.19 0.17 0.04 37.92 0.01
6 0.526 474.92 1.29 0.15 0.04 54.22 0.004

1 2699.9 1.44 0.14 0.03 40.93 0.003

the noiseless case, MVIE performs the second best. The performance of GFPI in presence of714

noise and under low purity levels is further illustrated in Section SM1.1.715

6.1.3. Rank-deficient SSMF. An advantage of GFPI is that it provably works when W716

does not have full column rank, and without the separability assumption. Note that717

• SNPA works in the rank-deficient case, but requires the separability assumption. Other718

separable NMF algorithms also work in the rank-deficient case; for example [4, 37, 24]719

but are computationally much more demanding than SNPA as they rely on solving n720

linear programs in n variables.721

• The min-vol model (6.1) can be used in the rank-deficient case [29]. However, it does722

not come with identifiability guarantees (this is actually an open problem).723

MVIE and HyperCSI are not applicable when rank(W ) < r.724

In this section, we confirm the ability of GFPI to recover W when it does not have full725

column rank. To do so, we use the rank-deficient synthetic data from [29]. It generates the726

matrix X ∈ R4×200 using the rank-deficient matrix727

Wt =


1 1 0 0
0 0 1 1
0 1 1 0
1 0 0 1

 ,728

for which rank(Wt) = 3 < r = 4. Each column of Ht ∈ R4×200 is generated using the Dirichlet729

distribution with parameters equal to 0.1. The columns of H with elements larger than a730

predefined purity value p are resampled, as before. In this experiment, we consider three731

values for the purity, namely 0.8, 0.7 and 0.6. We take X = WtHt and then corrupt it with732

i.i.d. Gaussian distribution with zero mean and standard deviation of 0.01. GFPI parameters733

are λ = 10, η = 0.5, γ = 0.05, and A = 10.734
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Figure 6. Average ERR metric for 10 randomly generated data sets depending on purity for the different
SSMF algorithms, for different noise levels: SNR of 60 (top) and 40 (bottom), and for m = r = 3 (left) and
m = r = 4 (right).

Figure 7 shows the result, after projection of the data points in two dimensions. Since the735

data is not separable, SNPA provides the worst solutions. For p ∈ {0.7, 0.8}, min vol performs736

well, although slightly worse than GFPI; for p = 0.8 (resp. 0.7), the ERR of min vol is 0.014737

(resp. 0.029) while for GFPI it is 0.010 (resp. 0.018). For p = 0.6, min vol fails to extract738

columns of Wt, as the purity is not large enough. However, it recovers a reasonable solution739

with smaller volume; this is a similar behavior as in Figure 2.740

6.1.4. Performance in the presence of outliers. As mentioned earlier, as far as we know,741

most SSMF algorithms are very sensitive to outliers (in particular, most separable NMF742

algorithms, min vol, MVIE and HyperCSI). We generate the clean data by considering m =743

r = 3, p = 1 (no resample of the columns of Ht so p(Ht) is close to 1), n1 = 30, n2 = 10744

data points (for a total of 100 clean samples), and SNR = ∞. We then add outliers whose745
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Figure 7. Two dimensional representation of the estimated vertices in rank-deficient cases with different
values of purity.

entries are drawn from the uniform distribution in [0, 1]. GFPI parameters are λ = 0.01,746

η = 0.5, γ = 0.01, and A = 100. The parameter λ is chosen relatively small allowing δ747

to take larger values, which is necessary in the presence of outliers. Figure 8 reports the748

results on four different examples, with 3, 10, 50 and 100 outliers (red crosses). It shows the749

columns of W and their corresponding convex hulls estimated by the different algorithms. In750

all cases, GFPI perfectly recovers the true endmembers, while the other algorithms fail. In751

fact, even few outliers affects their performance whereas GFPI tolerates as many outliers as752

the number of clean samples. The reason for this robustness to outliers is that outliers are753

generated randomly, and hence no more than d − 1 outliers belong to the same hyperplane754

(with probability one); in this example, no combination of three outliers belong to the same755

segment. Of course, adding adversarial outliers on the same hyperplane would lead to different756

results. However, as long as the number of outliers on the same hyperplane is smaller than757

the number of points on the facets of conv(W ), GFPI will perform well.758

6.2. Hyperspectral images. In this section, we evaluate the performance of GFPI on759

two widely used hyperspectral images, namely Samson and Jasper Ridge; see [43] and the760

references therein. These hyperspectral images are relatively large, containing thousands of761

pixels. Hence we set the timelimit of CPLEX for optimizing each facet to 100 seconds. We762

will provide the MRSA for the extracted factors by the different SSMF algorithms. It is763

important to note that the ground truth factor Wt is actually unknown, and these estimates764

come from [43]. Moreover, the reported result for min vol are the best possible performance765

with highly tuned parameters from [1]. Given W , we solve766

min
H∈Rr×n

||X −WH||2F such that H(:, j) ∈ ∆r for all j,(6.2)767
768

to estimate the abundance matrix H using the code from [21].769

6.2.1. Samson. The Samson data set consists of 95×95 images for 156 spectral bands [43].770

Mostly three materials are present in this image: “soil”, “water” and “tree”, and hence r = 3.771

We run GFPI to extract three endmembers with parameters: T = d = 3, λ = 0.1, γ = 0.3,772
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Figure 8. Comparison of SSMF algorithms in the presence of outliers.

η = 0.7 and A = 10. The extracted spectral signatures are shown in Figure 9 (a). For a773

qualitative comparison, the corresponding abundance maps are shown in Figure SM5 in the774

supplementary material. To interpret GFPI geomerically, Figure 9 (b) shows the data points775

and the polytope computed by GFPI, projected onto a two-dimensional subspace spanned776

by the first two principal components of the input matrix. Table 4 reports the MRSA and777

RE for GFPI, SNPA, min vol, and HyperCSI. MVIE is computationally too expensive and778

is excluded from the comparison. GFPI performs similarly to SNPA and slightly worse than779

min vol. HyperCSI has the worst performance among the four. This illustrates that CPLEX780

finds good feasible solutions for the MIP (5.4) fast.781

Table 4
Comparing the performances of GFPI with HyperCSI, SNPA and min vol on Samson data set

SNPA min vol HyperCSI GFPI
MRSA 2.78 2.24 12.91 2.97
||X−WH||F
||X||F 4.00% 2.64% 5.35% 4.02%

6.2.2. Jasper Ridge. The Jasper Ridge data set consists of 100 × 100 images for 224782

spectral bands [43]. Mostly four materials are present in this image: “road”, “soil”, “water”783
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Figure 9. SSMF algorithms applied on the Samson hyperspectral image.

and “tree”. We run GFPI to extract four endmembers with parameters: T = d = 4, λ =784

0.0001, γ = 0.2, η = 0.5 and A = 10. Note that λ is rather small, much smaller than for785

Samson (λ = 0.1). Because such data sets are very noisy and violate the model assumptions,786

GFPI is more sensitive to its parameters which should be carefully tuned (note that it is also787

sensitive to the time limit used in CPLEX, and hence to the power of the computer it is run788

on). However, although GFPI parameters were fine-tuned for these real-world experiments,789

it provides good solutions for a different values of the parameters. For example, we also790

obtain good solutions for λ ∈ [0.01, 0.0001]. The extracted spectral signatures are shown in791

Figure 10 (a) and the corresponding abundance maps are reported in Figure SM6. Similar to792

the Samson data set, the two dimensional representation of the data points and the estimated793

polytope are shown in Figure 10 (b). Table 5 reports the MRSA and RE. We observe that794

GFPI has the lowest (best) MRSA value and second best RE among the four algorithms.795

Table 5
Comparing the performances of GFPI with HyperCSI, SNPA and min vol on Jasper database

SNPA min vol HyperCSI GFPI

MRSA 22.27 6.85 17.04 4.82
||X−WH||F
||X||F 8.42% 3.90% 11.43% 6.47%

Note that it is natural for min vol to have the lowest RE as it is part of its objective796

function. Having a low RE for GFPI is a side result of W being well estimated. In particular,797

GFPI is able to discard outliers (see Section 6.1.4) which may increase the RE significantly798

because this measure is very sensitive to outliers (least squares). Once W is estimated by799

GFPI, the RE, or other quality measures, could be used to assess whether GFPI provided a800

reasonable solution (in fact, GFPI never uses this quantity as a criterion for estimating W ).801

This would be another way to fine tune the parameters of GFPI.802
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Figure 10. SSMF algorithms applied on the Jasper ridge hyperspectral image.

7. Conclusion. In this paper, we have presented a new framework for simplex-structured803

matrix factorization (SSMF). The high level idea is to identify the facets of the convex hull804

of the basis matrix W by looking for facets of the convex hull of the data matrix X = WH805

containing the largest number of points. We first proved that under our facet-based conditions806

(FBC, see Assumption 3.1), SSMF is identifiable, that is, it has a unique solution W , up to807

permutation of the columns (Theorem 3.4). Then, we proposed and analyzed brute-force facet-808

based polytope identification (BFPI) which converts the problem of searching for the facets809

to the problem of identifying the vertices in the dual space. BFPI recovers the ground truth810

W under the FBC (Theorem 4.4). We also proposed GFPI (greedy FPI) which sequentially811

identifies the facets (instead of identifying them all) using MIPs, and comes with identifiabiliy812

guarantees (Theorem 5.5). In order to handle noise and outliers, we have proposed a very813

effective MIP to tackle the subproblem for identifying a facet. We have also proposed an814

effective postprocessing step to improve the recovery of W by reestimating the facets using815

the data points associated to them. We illustrated the effectiveness of GFPI compared to816

state-of-the-art SSMF algorithms. GFPI is able to handle highly mixed data points for which817

the conditions under which the other algorithm work are highly violated (namely, separability818

and the SSC). It is also able to handle many outliers, and rank-deficient matrices W . We819

also provided encouraging numerical experiments on real-world hyperspectral images. GFPI820

is applicable to large data sets because the MIPs do not need to be solved up to global821

optimality: any solution returned by the solver can be used by GFPI to construct a facet.822

Directions of further research include the identifiability of GFPI in presence of noise and823

outliers, the design of more effective MIP formulations to identify the facets, the improve-824

ment of the scalability of GFPI for large-scale data sets (for example by designing dedicated825

algorithms to solve the MIPs), and the use of GFPI for other applications.826
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vagnin, On handling indicator constraints in mixed integer programming, Computational Optimiza-847
tion and Applications, 65 (2016), pp. 545–566.848

[8] J. M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader, and J. Chanussot,849
Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches,850
IEEE J. Sel. Top. Appl. Earth. Obs. Remote Sens., 5 (2012), pp. 354–379.851

[9] D. Bremner, K. Fukuda, and A. Marzetta, Primal-dual methods for vertex and facet enumeration,852
Discrete & Computational Geometry, 20 (1998), pp. 333–357.853

[10] A. Cichocki, R. Zdunek, A. H. Phan, and S.-i. Amari, Nonnegative matrix and tensor factorizations:854
applications to exploratory multi-way data analysis and blind source separation, John Wiley & Sons,855
2009.856

[11] J. E. Cohen and N. Gillis, Identifiability of complete dictionary learning, SIAM Journal on Mathematics857
of Data Science, 1 (2019), pp. 518–536.858

[12] CPLEX IBM ILOG, V12.1: Users manual for CPLEX, International Business Machines Corporation,859
46 (2009), p. 157.860

[13] X. Fu, K. Huang, and N. D. Sidiropoulos, On identifiability of nonnegative matrix factorization,861
IEEE Signal Processing Letters, 25 (2018), pp. 328–332.862

[14] X. Fu, K. Huang, N. D. Sidiropoulos, and W.-K. Ma, Nonnegative matrix factorization for signal863
and data analytics: Identifiability, algorithms, and applications., IEEE Signal Processing Magazine,864
36 (2019), pp. 59–80.865

[15] X. Fu, K. Huang, N. D. Sidiropoulos, Q. Shi, and M. Hong, Anchor-free correlated topic modeling,866
IEEE Transactions on Pattern Analysis and Machine Intelligence, 41 (2019), pp. 1056–1071.867

[16] X. Fu, K. Huang, B. Yang, W.-K. Ma, and N. D. Sidiropoulos, Robust volume minimization-868
based matrix factorization for remote sensing and document clustering, IEEE Transactions on Signal869
Processing, 64 (2016), pp. 6254–6268.870

[17] X. Fu, W.-K. Ma, T.-H. Chan, and J. M. Bioucas-Dias, Self-dictionary sparse regression for hyper-871
spectral unmixing: Greedy pursuit and pure pixel search are related, IEEE Journal of Selected Topics872
in Signal Processing, 9 (2015), pp. 1128–1141.873

[18] X. Fu, W.-K. Ma, K. Huang, and N. D. Sidiropoulos, Blind separation of quasi-stationary sources:874
Exploiting convex geometry in covariance domain, IEEE Transactions on Signal Processing, 63 (2015),875
pp. 2306–2320.876

[19] X. Fu, N. Vervliet, L. De Lathauwer, K. Huang, and N. Gillis, Computing large-scale matrix877
and tensor decomposition with structured factors: A unified nonconvex optimization perspective, IEEE878
Signal Processing Magazine, 37 (2020), pp. 78–94.879

[20] R. Ge and J. Zou, Intersecting faces: Non-negative matrix factorization with new guarantees, in Pro-880
ceedings of the 32nd International Conference on Machine Learning, 2015, pp. 2295–2303.881

This manuscript is for review purposes only.



30 M. ABDOLALI AND N. GILLIS

[21] N. Gillis, Successive nonnegative projection algorithm for robust nonnegative blind source separation,882
SIAM Journal on Imaging Sciences, 7 (2014), pp. 1420–1450.883

[22] N. Gillis, The why and how of nonnegative matrix factorization, Regularization, Optimization, Kernels,884
and Support Vector Machines, 12 (2014).885

[23] N. Gillis and A. Kumar, Exact and heuristic algorithms for semi-nonnegative matrix factorization,886
SIAM Journal on Matrix Analysis and Applications, 36 (2015), pp. 1404–1424.887

[24] N. Gillis and R. Luce, Robust near-separable nonnegative matrix factorization using linear optimization,888
Journal of Machine Learning Research, 15 (2014), pp. 1249–1280.889

[25] N. Gillis and S. A. Vavasis, Fast and robust recursive algorithms for separable nonnegative matrix890
factorization, IEEE Transactions on Pattern Analysis and Machine Intelligence, 36 (2014), pp. 698–891
714.892

[26] K. Huang, X. Fu, and N. D. Sidiropoulos, Learning hidden markov models from pairwise co-893
occurrences with applications to topic modeling, arXiv preprint arXiv:1802.06894, (2018).894

[27] K. Huang, N. D. Sidiropoulos, and A. Swami, Non-negative matrix factorization revisited: Uniqueness895
and algorithm for symmetric decomposition, IEEE Transactions on Signal Processing, 62 (2014),896
pp. 211–224.897

[28] M. Kleder, Con2vert-constraints to vertices, MathWroks File Exchange. Available at https://au. math-898
works. com/matlabcentral/fileexchange, (2005).899

[29] V. Leplat, A. M. Ang, and N. Gillis, Minimum-volume rank-deficient nonnegative matrix factoriza-900
tions, in IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), 2019, pp. 3402–3406.901

[30] V. Leplat, N. Gillis, and A. M. S. Ang, Blind audio source separation with minimum-volume beta-902
divergence NMF, IEEE Transactions on Signal Processing, 68 (2020), pp. 3400–3410.903

[31] C.-H. Lin and J. M. Bioucas-Dias, Nonnegative blind source separation for ill-conditioned mixtures via904
John ellipsoid, IEEE Transactions on Neural Networks and Learning Systems, (2020).905

[32] C.-H. Lin, C.-Y. Chi, Y.-H. Wang, and T.-H. Chan, A fast hyperplane-based minimum-volume en-906
closing simplex algorithm for blind hyperspectral unmixing, IEEE Transactions on Signal Processing,907
64 (2015), pp. 1946–1961.908

[33] C.-H. Lin, W.-K. Ma, W.-C. Li, C.-Y. Chi, and A. Ambikapathi, Identifiability of the simplex volume909
minimization criterion for blind hyperspectral unmixing: The no-pure-pixel case, IEEE Trans. Geosci.910
Remote Sens., 53 (2015), pp. 5530–5546.911

[34] C.-H. Lin, R. Wu, W.-K. Ma, C.-Y. Chi, and Y. Wang, Maximum volume inscribed ellipsoid: A new912
simplex-structured matrix factorization framework via facet enumeration and convex optimization,913
SIAM Journal on Imaging Sciences, 11 (2018), pp. 1651–1679.914

[35] W.-K. Ma, J. M. Bioucas-Dias, T.-H. Chan, N. Gillis, P. Gader, A. J. Plaza, A. Ambikapathi,915
and C.-Y. Chi, A signal processing perspective on hyperspectral unmixing: Insights from remote916
sensing, IEEE Signal Processing Magazine, 31 (2013), pp. 67–81.917

[36] L. Miao and H. Qi, Endmember extraction from highly mixed data using minimum volume constrained918
nonnegative matrix factorization, IEEE Trans. Geosci. Remote Sens., 45 (2007), pp. 765–777.919

[37] B. Recht, C. Re, J. Tropp, and V. Bittorf, Factoring nonnegative matrices with linear programs, in920
Advances in Neural Information Processing Systems, 2012, pp. 1214–1222.921

[38] G. Salmani Jajaei, Rotating Supporting Hyperplanes and Snug Circumscribing Simplexes, PhD thesis,922
Virginia Commonwealth University, 2018.923

[39] Y. Sun and J. Xin, Underdetermined sparse blind source separation of nonnegative and partially over-924
lapped data, SIAM Journal on Scientific Computing, 33 (2011), pp. 2063–2094.925

[40] M. Udell, C. Horn, R. Zadeh, and S. Boyd, Generalized low rank models, Foundations and Trends926
in Machine Learning, 9 (2016), pp. 1–118.927

[41] L. A. Wolsey, Mixed integer programming, Wiley Encyclopedia of Computer Science and Engineering,928
(2007), pp. 1–10.929

[42] R. Wu, W.-K. Ma, and X. Fu, A stochastic maximum-likelihood framework for simplex structured930
matrix factorization, IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), (2017),931
pp. 2557–2561.932

[43] F. Zhu, Hyperspectral unmixing: ground truth labeling, datasets, benchmark performances and survey,933
arXiv preprint arXiv:1708.05125, (2017).934

[44] G. Ziegler, Lectures on Polytopes, Springer-Verlag, 1995.935

This manuscript is for review purposes only.


	Introduction
	Related Works: SSMF algorithms and identifiability
	Identifiability of SSMF under the faced-based conditions
	Brute-force facet-based polytope identification (BFPI)
	Greedy FPI (GFPI)
	Identifying a facet, in the presence of noise and outliers
	Cutting previous facets from the solution space
	Obtaining a polytope
	Summary of the MIP model for facet identification
	Post-processing: intersection of facets
	Identifiability
	Computational cost
	Robustness to noise

	Numerical Experiments
	Synthetic data sets
	Noiseless data sets
	Noisy data sets
	Rank-deficient SSMF
	Performance in the presence of outliers

	Hyperspectral images
	Samson
	Jasper Ridge


	Conclusion

