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Simplex-Structured Matrix Factorization:
Sparsity-based ldentifiability and Provably Correct Algorithms*

Maryam Abdolalif and Nicolas Gillis'

Abstract. In this paper, we provide novel algorithms with identifiability guarantees for simplex-structured
matrix factorization (SSMF), a generalization of nonnegative matrix factorization. Current state-
of-the-art algorithms that provide identifiability results for SSMF rely on the sufficiently scattered
condition (SSC) which requires the data points to be well spread within the convex hull of the basis
vectors. The conditions under which our proposed algorithms recover the unique decomposition is
in most cases much weaker than the SSC. We only require to have d points on each facet of the
convex hull of the basis vectors whose dimension is d — 1. The key idea is based on extracting facets
containing the largest number of points. We illustrate the effectiveness of our approach on synthetic
data sets and hyperspectral images, showing that it outperforms state-of-the-art SSMF algorithms
as it is able to handle higher noise levels, rank deficient matrices, outliers, and input data that highly
violates the SSC.

Key words. simplex-structured matrix factorization, nonnegative matrix factorization, sparsity, identifiability,
uniqueness, minimum volume
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1. Introduction. Extracting meaningful underlying structures that are present in high-
dimensional data sets is a key problem in machine learning, data mining, and signal processing.
Structured matrix factorization (SMF) is a general model for exploiting latent linear structures
from data; see for example [40, 19] and the references therein. Given a factorization rank r,
SMF expresses the input matrix X € R™*™ as the product of two matrices W € R™*" and
H € R™ " with some restrictions on the structure of W and/or H. This paper focuses on a
specific SMF model called simplex-structured matrix factorization (SSMF).

Given an m-by-n matrix X and an integer r, SSMF looks for an m-by-r matrix W whose
columns are the basis vectors, and an r-by-n matrix H containing the mixing weights such
that X ~ W H and with the property that each column of H belongs to the unit simplex, that
is, H(:,j) € A" = {:L' eR" ‘ x>0, x= 1} for all j. In the exact case when X = WH,
we have conv(X) C conv(W) where conv(W) = {x | x = Wh,h € A™}, that is, each column
of X belongs to the convex hull generated by the columns of W. SSMF is a generalization
of nonnegative matrix factorization (NMF), an SMF problem where W and H are required
to be nonnegative, while X is nonnegative as well. The main advantage of NMF over other
SMFs such as the PCA/SVD is its interpretability when the factors W and H have a physical
meaning; see [10, 22, 14] and the references therein. In the exact case, NMF can be formulated
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2 M. ABDOLALI AND N. GILLIS

as an SSMF problem using a simple scaling of the columns of X and W. In fact, defining'
Dx as the diagonal matrix with (Dx); = || X (:,4)||1 for all ¢, we have

X(Dx)™' = W(Dw) ! DwH(Dx) .
R
X/ w’ H'

Since the entries of each column of X’ and W’ sum to one, and since X'(:,j) = W/H'(:,5)
for all j, the entries of the columns of H' must also sum to one, that is, H'(:,j) € A"
for all j. In fact, letting e be the vector of all ones of appropriate dimension, we have
el =e' X' =e"W'H' = e" H'. Note that SSMF is a constrained variant of semi-NMF which
only requires the factor H to be nonnegative; see [23] and the references therein.

Applications. Let us discuss in more details two applications of SSMF': blind hyperspectral
unmixing, and topic modeling; see [42] and the references therein for more applications. A
hyperspectral image is a data cube that consists of hundreds of two dimensional spatial images
that are acquired at different contiguous wavelengths (known as spectral bands). These images
have a vast variety of applications in remote sensing, military surveillance, and environmental
monitoring. Due to the limited spatial resolution of hyperspectral sensors, a pixel may be
a mixture from several materials located in the captured scene. Under the linear mixing
assumption, identifying the materials present in the image, known as endmembers, can be
modeled as an SSMF problem [8, 35]. Constructing the matrix X by stacking the spectral
signature of the pixels as its columns, each column of W is the spectral signature of an
endmember, and each column of the matrix H represents the abundance of the endmembers
in the corresponding pixel. Another application of SSMF is text mining [6, 26, 15]. Let
the matrix X represent a collection of documents where the (i,7)th element indicates the
frequency of the ith word in the jth document. Extracting latent topic patterns across the
documents and categorizing the documents according to the extracted topics is an essential
task when processing textual information. By applying SSMF on the document matrix, each
column of W can be interpreted as a hidden topic, and each column of H can be regarded as
the proportion of the topics discussed in the corresponding document.

Identifiability. In many applications, a crucial question about SSMF is when the factors W
and H can be uniquely recovered. SSMF never has a unique solution, unless some additional
constraints are imposed on the factors W and/or H. In fact, if there exists a polytope conv (W)
containing the columns of X, then any larger polytope containing conv(W) leads to another
solution of SSMF. Suppose X is generated by multiplying the ground truth factors W; and
H,, where the columns of H; belong to the unit simplex. Two crucial questions are:

1. Under what conditions are the factors W; and H; uniquely identifiable (up to trivial
ambiguities such as permutation)?

2. Does there exist a (polynomial-time) algorithm able to recover these ground truth

factors W; and H;?

Many works have studied these questions, leading to weaker and weaker conditions on
the factors Wy and/or H; that lead to uniqueness; see Section 2 for more details. Given that
W¢ is identifiable, the identifiability of H; follows from well-known results: H; is unique if
and only if all columns of X are located on k-dimensional faces of conv(W;) having exactly

'We assume that the columns of X and W are different from zero otherwise they can be discarded.
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SIMPLEX-STRUCTURED MATRIX FACTORIZATION 3

k + 1 vertices [39]. When W; is full column rank, then Hy is always unique as this condition
is always met. This is the reason why the identifiability results for SSMF are focused on the
identification of W}, and we also only focus on the identifiability of W; in this paper.

Contribution and outline of the paper. The main goal of this paper is to answer the two

above questions in a novel way. In Section 2, we review the main SSMF algorithms and
identifiability results. Then, the main contributions of this paper are presented in the next
four sections:

1. In Section 3, we provide new identifiability conditions for SSMF, referred to as the
facet-based conditions (FBC), that rely on the sparsity of H, by requiring to have
d = rank(X) data points on each facet? of conv(W); see Theorem 3.4. This condition
is in most cases much weaker than the current state-of-the-art identifiability conditions
that rely on the data points being sufficiently spread within conv(W).

2. In Section 4, we propose and study a first algorithm for SSMF, dubbed brute-force
facet-based polytope identification (BFPI). BFPI looks for a polytope enclosing the
data points by maximizing the number of points on each facet of that polytope. It relies
on solving an optimization problem in the dual space. We provide an identifiability
theorem for BFPI under the FBC (Theorem 4.4).

3. In Section 5, we present a greedy variant for BFPI, namely GFPI, better suited for
solving practical problems. GFPI extracts the facets of conv(WW') containing the largest
number of data points sequentially by solving mixed integer programs (MIPs). We
explain how GFPI is able to handle noise, rank deficient W’s, and outliers. We also
provide an identifiability theorem for GFPI under the FBC (Theorem 5.5).

4. In Section 6, we show on numerous numerical experiments that GFPI outperforms the
current state-of-the-art SSMF algorithms. GFPI recovers the ground truth factor W,
in much more difficult scenarios, while being less sensitive to noise and outliers.

2. Related Works: SSMF algorithms and identifiability. Among the current approaches
with identifiability guarantees for SSMF, the two main ones are arguably separable NMF [4, 5],
and simplex volume minimization [36].

Separability. Separable NMF (SNMF) relies on the separability assumption. It requires
that each column of W is present as a column of X, that is, that there exists an index set K such
that W = X (:,K). Equivalently, if separability holds, H contains the identity as a submatrix.
Separability is referred to as the pure-pixel assumption in HU [8], and to the anchor word
assumption in topic modeling [4]. Separability allows for efficient algorithms (that is, running
in polynomial time) that are robust in the presence of noise; see [22] and the references therein.
An instrumental algorithm to tackle separable NMF is the successive projection algorithm
(SPA) introduced in [2], and proved to be robust to noise in [25]. However, separability is a
rather strong condition and might not hold in many applications.

Minimum Volume, and Sufficiently Scattered Condition. To overcome this limitation, the
Minimum-Volume (Min-Vol) framework was proposed which does not rely on the existence of
the columns of W in the data set. Min-Vol looks for a simplex that encloses the data points

2A facet of a d-dimensional polytope is a (d — 1)-dimensional face of that polytope. For example, in two
dimensions, a polytope is a polygon and its facets are the segments.
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4 M. ABDOLALI AND N. GILLIS

and simultaneously has the smallest possible volume. It can be formulated as follows [18, 33]
(Min-Vol)
min det(WTW) suchthat X =WH and H(:,j) € A" for all j.
WeRmXr HeRrxn

When the separability assumption is violated, Min-Vol is significantly superior to SNMF.
Identifiability of Min-Vol requires H to satisfy the sufficiently scattered condition (SSC),
while rank(W) = r. For a matrix H € R*" to satisfy the SSC, the columns of H must be
sufficiently scattered in A" in order for their conical hull cone(H) = {y | y = Hz,x > 0} to
contain the second-order cone C = {z € R", |e"z > +/r — 1||z||2}. The SSC is a much more
relaxed condition than separability, see Figure 1 for an illustration. We refer the reader
to [18, 13, 14] for discussions on the SSC and the identifiability of SSMF.

separability | © Columns of H SSC facet-based condition
—conv(H)
-x- A"

0.5

Figure 1. Comparison of separability (left), SSC (middle), and our facet-based condition (right) for the
matriz H whose columns lie on the unit simplex. On the left, separable NMF, as well as Min-Vol and FPI, will
be able to uniquely identify W. On the middle, separable NMF fails while Min-Vol will uniquely identify W .
Our approach may fail since the data points are also enclosed in another triangle containing siz data points on
its segments (there are only r — 1 = 2 columns of H on each facet of A”). On the right, Min-Vol fails while
FPI will be able to uniquely identify W. The reason Min-Vol fails is because the triangle with minimum volume
containing the data points does not coincide with A". However, the only triangle with three data points on each
segment and containing all data points is A", which explains why FPI works.

However, Min-Vol is a difficult optimization problem and, as far as we know, most methods
are based on standard non-linear optimization schemes (such as projected gradient methods)
come with no global optimality guarantees. Hence although Min-Vol allows for identifiability,
it is still an open problem to provide an algorithm that solves the problem up to global
optimality, in polynomial time; see the discussion in [14]. There exist non-ploynomial time
algorithms for Min-Vol; see the next paragraph. Min-Vol has three main weaknesses:

1. It requires W to be full column rank. For example, in three dimensions, it can only
identify three vertices.

2. It does not take advantage of the fact that, in many applications, most data points
are usually located on the facets of the convex hull of the columns of W because H is
sparse. Minimum-volume NMF only uses the columns of X that are not contained in
the convex hull of the other columns, that is, the vertices of conv(X). We believe this
is a crucial information to take into account, and will lead to more robust approaches:

This manuscript is for review purposes only.
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SIMPLEX-STRUCTURED MATRIX FACTORIZATION 5

we not only want to be able to reconstruct each data point, but also that as many
points as possible are located on the facets of conv ().

3. The SSC, although much milder than separability, is still rather strong. It might not
be satisfied in highly mixed scenarios; for example when a column of W is not present
in a sufficiently large proportion in sufficiently many pixels; see Figure 1 (right).

In Section 4, we will provide a new weak condition for identifiability, namely the FBC. In
a nutshell, the FBC only requires to have r data points on each facet of conv(WW). (Note that
the SSC implies that there are at least » — 1 data points on each of these facets.) Figure 1
illustrates the different identifiability conditions on the matrix H for r = 3.

Improving algorithmic designs for SNMF and Min-Vol is usually the main concern of the
majority of recent studies; see for example [37, 3, 17, 21, 30]. In this paper, we take another
direction, and consider new identifiability conditions, along with provably correct algorithms.

Algorithms based on facet identification. As mentioned before, our model and algorithm
that will be presented in Section 4 is based on the identification of the facets of conv(WV).
There are few representative works that are based on similar ideas.

Ge and Zou [20] introduced the concept of subset-separability which relaxes the separabil-
ity condition. A factorization X = W H is subset-separable if each column of W is the unique
intersection point of a subset of filled facets. A facet is filled if there is at least one point
in the interior of the convex hull of the columns in W corresponding to that facet or if the
facet is exactly a vertex of W. This algorithm is based on finding all facets by enumerating
through all columns of X. The facets are identified using the following fact: each point can
be expressed as a convex combination of other points lying on the same facet. This algorithm
requires the data points which are not on facets to be in general positions, so that these points
cannot be identified as a filled facet. The intuition behind our approach is related to these
ideas. However our proposed algorithm will be completely different and our assumptions will
be weaker: we do not require the facets to be filled, and do not put a general position condition
on the points within the polytope conv(W).

Lin et al. [32] proposed an algorithm that looks for the simplex enclosing the data points
by determining the r associated facets, and then calculating the vertices of that simplex (that
is, the columns of W) by finding the intersection of the facets. Their approach is referred
to as Hyperplane-based Craig-simplex-identication (HyperCSI). The algorithm for identifying
the r facets relies on SPA [2]. First, an initial estimate of the facets is computed using the r
points extracted by SPA. The orientational difference between the ground-truth facet and the
estimated facet is reduced by finding active samples that are close to the estimated facets. It
was proven that in the noiseless setting, and as the number of columns of X goes to infinity,
that is, n — oo, the simplex identified by HyperCSI is exactly the minimum-volume simplex.

In [34], Lin et al. proposed a different geometric approach for SSMF that is based on
fitting a maximum-volume inscribed ellipsoid (MVIE) in conv(X). They show that, under
the SSC, the MVIE touches every facet of conv(W') which allows it to recover them, and then
W. However, computing the MVIE requires to first compute all facets of conv(W), which is
NP-hard in general (the number of facets can be exponential in the number of columns of ).
The second step uses semidefinite programming to compute the MVIE. As opposed to most
algorithms for Min-Vol, MVIE is guaranteed to recover W in the noiseless case. However,
the limitations of Min-Vol still hold here. Moreover, MVIE relies on facet enumeration which
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6 M. ABDOLALI AND N. GILLIS

is sensitive to noise and outliers; see Section 6 for numerical experiments. This approach
was recently improved by using a first-order method to solve the semidefinite program, and a
different post-processing of the MVIE solution to recover W [31].

In [11], authors provide identifiability results when the input matrix H is sufficiently
sparse. This result also applies to SSMF': it has a unique solution if on each subspace spanned
by all but one column of W, there are L%J + 1 data points with spark r (that is, any
subset of r — 1 columns is linearly independent). However, this is a theoretical result, with
no algorithm to tackle the problem. Moreover, this result does not take nonnegativity into
account, and requires much more points on each facet than our facet-based condition.

Summary. Algorithms for SSMF based on the identification of the facets of conv(W) have
not been very successful in practice because they are either theoretically oriented, or they
rely on strong conditions and are sensitive to noise. Table 1 gives the conditions under which

SSMF algorithms recover the ground truth factor W, in the noiseless case.

Table 1
Indentifiability conditions for different SSMF algorithms in the exact case. We denote d = rank(X) < r.
# Points per facets separability SSC d=r n—
Separable NMF [2] d—1 v v v -
Min-Vol [36] d—1 - v v -
MVIE [34] d—1 - vV -
HyperCSI [32] d—1 - v v v
BFPI and GFPI d - - - -

It highlights five conditions: number of points per facet of conv(WW) (this is essentially a
sparsity condition on H), separability, SSC, full column rank of W, and whether the number
of samples needs to go to infinity. Our proposed algorithms, BFPI and GFPI, require d =
rank(X) points per facet, which is only one additional data point on each facet compared to the
other algorithms that require additional strong conditions such as the SSC or rank(W) = r.
Hence BFPI and GFPI will not always be stronger than Min-Vol (see Figure 1), but they will
be in most practical cases.

3. Identifiability of SSMF under the faced-based conditions. Let us state the FBC.

Assumption 3.1 (Facet-based conditions (FBC)). Let X € R}'™™ with d = rank(X), and
let W e R™*" and H € R" be such that X = WH where

a. No column of W is contained in the convex hull of the other columns of W, that is,
conv(W) is a polytope with r vertices given by the columns of W.

b. The columns of H belong to the unit simplex, that is, H(:,7) € A" for j = 1,2,...,n.

c. Each facet of conv(WW') contains at least s > d distinct columns of X and, among them,
at least d — 1 generate that facet (that is, the dimension of the convex hull of these s
columns is d — 2).

d. There are strictly less than s distinct columns of X on every facet of conv(X) which
is not a facet of conv(W).

Let us comment on these assumptions.
e Assumption 3.1.a is necessary for any identifiable SSMF model since a column of W

This manuscript is for review purposes only.
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215 cannot be identified if it is located in the convex hull of the other columns (it could
216 be discarded to have a decomposition with r — 1 factors).

217 Since X = WH, d = rank(X) < rank(W) < r. However as opposed to most previous
218 works, we do not assume d = r so that conv(W) may contain more vertices than its
219 dimension plus one; for example, it could be a quadrilateral in the plane as in Figure 3.
220 e Assumption 3.1.b allows for W H to be a SSMF. For NMF, that is, when X = WH
221 with W > 0 and H > 0, Assumption 3.1.b can be assumed without loss of generality
222 by using a simple scaling of the columns of X and W; see the introduction.

223 e The key assumption is Assumption 2.c. It implies a certain degree of sparsity of the
224 columns of H: a column of X is on a facet of conv(W) if the corresponding column of
225 H has at least one zero entry. Hence Assumption 2.c implies that each row of H has
226 d zero entries, and this condition is easy to check.

227 e Assumption 3.1.d will allow us to make the decomposition unique. For example,
228 assume the data points are located on the boundary of a hexagon in two dimensions
229 with r = 3; see Figure 2 for an illustration. There are many possible triangles that
230 contain these points, and SSMF is not unique. (Min-Vol) picks the unique triangle
231 with the smallest volume, while SSMF under the FBC picks the unique triangle having

three points on each segment.

X |O Columns of X
© %\, |><-FBC solution
. ['@-Min-Vol solution

Figure 2. Illustration of the non-uniqueness of SSMF. SSMF under the FBC' achieves uniqueness based on
Assumption 1.d, and selects the triangle whose vertices are the red crosses, with three points on each segment.
Min-Vol selects the triangle whose vertices are the black squares, which has the smallest volume, but only two
points on each segment.

232

233 Under Assumption 3.1.d, data points can be on the boundary of conv(X) as long as
234 the number of such points on the same facet does not exceed the number of points on
235 any of the facets of conv(W). We believe that this assumption will be met in most
236 practical situations.

237 Assumption 3.1.d is not easy to check as it requires to compute all facets of conv(X),
238 and there could be exponentially many. Note however that the SSC is NP-hard to
239 check [27].

240 Compared to the assumption required for Min-Vol, our assumptions require one additional

This manuscript is for review purposes only.



8 M. ABDOLALI AND N. GILLIS

data points on each facet but does not require these data points to be well-spread on that
facet. Moreover, we do not require X to be of rank r. Note however that the well-spreadness
of data points on a facet will influence the robustness to noise of our model; see Section 6.

Remark 3.2 (Separability vs. the FBC). As opposed to the SSC, Assumption 3.1 is not a
generalization of separability because a separable matrix might not satisfy Assumption 3.1.c.
However, Assumption 3.1.c could be relaxed as follows: either a facet of conv(W) satisfies
Assumption 3.1.c or its vertices are columns of X. In that case, our results still apply, using
the same trick as in [20, Algorithm 5]. We stick in this paper to Assumption 1.c for the
simplicity of the presentation and because, in practice, it is not likely for a facet to contain
all its vertices while not containing any point in its interior.

Before proving that the factor W in SSMF is identifiable under the FBC (Assumption 3.1),
let us show the following lemma.

Lemma 3.3. Let X = WH satisfy Assumption 3.1. Then every facet of conv(W) is a facet
of conv(X).

Proof. Assumptions 3.1.b implies conv(X) C conv(W), while each facet of conv(W) con-
tains at least d columns of X whose convex hull has dimension d — 2 (Assumptions 3.1.c).
This implies that every facet of conv(W) is a facet of conv(X). [ |

The proof of Lemma 3.3 leads to an interesting observation: for SSMF to be identifiable,
one needs to have at least d —1 data points on each facet of conv(W), otherwise it cannot be a
facet of conv(X) and hence cannot be identified. In fact, one can check that both separability
and the SSC imply this condition. The FBC only requires one additional data point on each
of these facets.

Theorem 3.4 (Uniqueness of W in SSMF under the FBC). Let X = W H satisfying the FBC
(Assumption 3.1). For any other factorization X = W H satisfying the FBC, W = W1II where
IT € {0,1}"*" is a permutation matriz.

Proof. Note that the FBC depends on the parameter s > d. Assume there exists two
factorizations X = WH and X = WH satisfying the FBC (Assumption 3.1), where the
parameter s = sy for WH, and s = s, for WH. Assume without loss of generality that
sw < 85 By definition, the columns of W and W are the intersections of the facets of
conv(W) and conv(W), respectively. For W and W to have at least one column that do not
coincide (up to permutation), there is at least one facet of conv(W) that is different from one
facet of conv(W). Let F be a facet of conv(1¥) that is not a facet of conv(W). By Lemma 3.3,
F is a facet of conv(X). This is in contradiction with Assumption 3.1.d for (W, H): F is a
facet of conv(X') but not a facet of conv (W) while it contains s;, > sy distinct data points.H

4. Brute-force facet-based polytope identification (BFPI). In this section, we describe
our first proposed algorithm, namely BFPI; see Algorithm 4.1. The high-level geometric
insight of the proposed FPI algorithm is to identify the facets of conv(W), given the data
points. Although we will not implement BFPI, we believe the high level ideas within BFPI
are key, and may be an important starting point for future algorithmic design, which is the
reason why we present it here. Moreover, BFPI is provably correct and is supported by
identifiability guarantees under the assumptions of the FBC; see Theorem 4.4.

This manuscript is for review purposes only.
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Algorithm 4.1 Brute-force facet-based polytope identification (BFPI) for SSNMF

Input: Data matrix X € R™*™ satisfying Assumption 3.1, and parameter s.
Output: The basis matrix W.

% Step 1. Preprocessing

1: Remove the zero columns of X, and remove duplicated data points.

2: Reduce the dimension of the columns of X to a (d — 1)-dimensional space, by constructing the matrix X e
RE=DX" a5 follows. Given the compact SVD of X — X = USV " where U € R™*(@~1 5 g R@-1x(d-1)
and V € R"*=D we take

X=U'(x-X)=xv'.
Let us denote W = U" (W — [Z...%]), so that X = WH.

% Step 2. Compute all vertices of conv(X)* }
3: Compute all vertices {0;}/_; of conv(X)* ={0 | X"0 < e} CRI!.

% Step 3. Identify the vertices of conv(W)*
4: Identify the vertices corresponding to a facet in the primal that contain more than s points

J:{i‘}{j|X(:,j)T6’¢:1}}25,1§i§v}.

The convex hull of {6;};cs is the dual of the convex hull of w.

% Step 4. Recover W from the vertices of conv(W)*
5: Recover W by intersecting the facets { | 2'6; < 1} fori € J.

% Step 5. Postprocess W to recover W ~
6: Project W € RE=DX" hack to the original m-dimensional space: W =UW + [Z...Z].

Preliminaries. Let d = rank(W). The facets of the (d — 1)-dimensional polytope conv (W)
are the polytopes of dimension d—2 obtained as the intersection of conv(W) with a hyperplane.
For a set A containing the origin in its interior, its dualis A* = {y | 2"y <1 for all z € A}.
If A is a polytope, then A* is also a polytope whose facets correspond to the vertices of A,
and vice versa. Moreover, it is easy to prove that if A C B, then B* C A*. We refer the reader
to [44] for more information on polytopes. In order to recover the facets of conv(W), the dual
space will be considered such that the problem of searching for the facets of a polytope is
replaced by the equivalent problem of finding the vertices of a polytope in the dual space.

Preprocessing. Before doing so, the first step of FPI is to make sure the origin belongs
to conv(W) by removing = = %Z?Zl X(:,7) from all data points. This does not change the
structure of the SSMF problem:

X)) —z=WH(,j)—z =W —ze")H(:,j),

since e H(:,j) = 1 because H(:,j) € A" for all j. To simplify the notation, let us denote
X = Ze'. Then, to have a full-dimensional problem, that is, to have the dimension of conv(X)
coincide with the dimension of the ambient space, we project X —X onto its (d—1)-dimensional
column space. In fact, since 0 € conv (X - X ), the rank of X — X is equal to d — 1, and
this second preprocessing step amounts to premultiplying X — X by a (d — 1)-by-m matrix
obtained via the truncated SVD of X — X; see Algorithm 4.1. This does not change the
structure of the SSMF problem either, it simply premultiplies X and W by a matrix of rank
d — 1. This is a standard preprocesing step in the SSMF literature; see for example [35].

This manuscript is for review purposes only.
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10 M. ABDOLALI AND N. GILLIS

Dual approach. Let us denote the dual of conv(X) as
conv(X)* = {9 | 270 <1 forallze conv(X)} = {9 | XTo< e}.

Since conv(X) C conv(WW), the dual of conv(W) is contained in conv(X)*.
Ezample 4.1. Let the columns of W be the vertices of the square [—1,1] x [—1, —1], while

Y - -1 -1 -1 -08 —-065 —-05 —-0.8 —-0.65 —-05 1 1 1
-\ 08 065 05 1 1 1 -1 -1 -1 —-08 —-0.65 —-0.5 )’

see Figure 3 for an illustration. The polygon conv(X) has 8 segments: 4 containing 3 data
points, and 4 containing 2 data points. In the dual space, 4 of the vertices of conv(X)*
correspond to the 4 vertices of conv(W)*, that is, to the four segments of conv(W), while the
other 4 correspond to the other 4 segments of conv(X).

Primal Dual

1t |[—conv(X)* A
- --conv(W)* S

IS

4 05 o 05 1 2 E 0 :
Figure 3. [llustration of the concept of duality to compute SSMF. On the left, this is the primal space
where conv(X) C conv(W). On the right, this is the dual representation where conv(W)* C conv(X)*. The

circles are the vertices of conv(X)* corresponding to the segments of conv(X) in the primal. The crosses are
the vertices of conv(W)* corresponding to the segments of conv(W) in the primal.

Our goal is to find the vertices of conv(X)* that correspond to the vertices of conv(W)*,
that is, the facets of conv(W). Under Assumption 3.1.c, there are at least d columns of X on
each facet of conv(W) whose convex hull has dimension d — 2 ; on Figure 3, there are three
points on each segment of conv(WW'). This implies that a subset of the vertices of conv(X)*
contains the vertices of conv(W)*, as shown in the following lemma.

Lemma 4.2. Let X = WH satisfy Assumption 3.1, and assume X has been preprocessed
as described in Algorithm 4.1 so that 0 € conv(X) and X € RUE=DX" where rank(X) = d — 1.

Then the set of vertices of conv(X)* contain all the vertices of conv(W)*.

Proof. This follows from Lemma 3.3 and duality. |

Once the vertices of conv(X)* are identified, we recover the vertices of conv(W)* that corre-
spond to the facets of conv(W) containing the largest number of data points. More precisely,
under Assumption 3.1, we have the following lemma.

This manuscript is for review purposes only.
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SIMPLEX-STRUCTURED MATRIX FACTORIZATION 11

Lemma 4.3. Let X = WH satisfy Assumption 3.1, and assume X has been preprocessed
as described in Algorithm 4.1 so that 0 € conv(X), X € REU=1D*" yhere rank(X) = d—1, and
X does not have duplicated columns. Then the set {x € conv(W) | 0Tx =1} for € R¥~1 is
a facet of conv(W) if and only if

(4.1) 0 is a vertez of conv(X)* = {0 | XTo< e} and |{j| X(,j)"0= 1} > s,

where |A| denotes the cardinality of the set A.

Proof. Let {x € conv(W) | "2 = 1} be a facet of conv(W). By Lemma 3.3, § must
belong to conv(X)*, while, by Assumption 3.1.c, facets of conv(W) contain more than s > d
columns of X.

Let 6 satisfy (4.1) so that the set F = {z € conv(W) | T2 = 1} contains s columns of X.
Since 6 is a vertex of conv(X)*, the set F corresponds, by duality, to a facet of conv(X). By
Assumption 1.c, the facets containing at least s points must correspond to facets of conv (/).

Finally, W is recovered by intersecting the facets of conv(X) containing more than s data
points. The proposed brute-force algorithm is presented in Algorithm 4.1. The main step of
Algorithm 4.1 is a vertex enumeration problem in the dual space.

Identifiability. Let us prove that, if X = W H satisfies Assumption 3.1, then Algorithm 4.1
recovers W, up to permutation of its columns.

Theorem 4.4 (Recovery of W by Algorithm 4.1). Let X = WH satisfy Assumption 3.1.
Then Algorithm /.1 recovers the columns of W (up to permutation).

Proof. First, as already noted above, the prepossessing step does not change the geometry
of the problem, that is, if X = W H satisfies Assumption 3.1, then X = WH also satisfies
Assumption 3.1. Hence let us assume w.l.o.g. that 0 € conv(X) and X € R(@=D*" where
rank(X) = d — 1. The rest of the proof follows from Lemmas 3.3 and 4.3. By Lemma 3.3, the
vertices of conv(X)* computed in step 4 of Algorithm 4.1 correspond to facets of conv(X).
By Lemma 4.3, only the facets of conv(X) corresponding to facets of conv(WW') containing at
least s columns of X. |

Computational cost. Algorithm 4.1 may run in the worst-case in exponential time. The
set conv(X)* is an (d — 1)-dimensional polytope defined by n inequalities and can have expo-
nentially many vertices, namely O (( dﬁ1)>'

Although we could adapt BFPI to handle noisy input matrices, we will develop in the next
section a more practical algorithm that does not require to identify all vertices of conv(X)*,
and that can handle noise and outliers. However, we believe BFPI is important, and could be
the starting point for other practical SSMF algorithms.

5. Greedy FPI (GFPI). The brute-force approach presented in the previous section is
provably correct but may require exponentially many operations. Note that the same obser-
vation holds for (Min-Vol): as far as we know, the algorithms that provably solve (Min-Vol)
up to global optimally require to compute all facets of conv(X); see Section 2. In this section,
we propose a practical sequential algorithm, dubbed Greedy FPI (GFPI), by leveraging highly
efficient MIP solvers (in particular their ability to quickly find high quality solutions). Al-
though it is still computationally heavy to solve (that is, we cannot prove it runs in polynomial
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12 M. ABDOLALI AND N. GILLIS

time), it allows to solve large problems; see Section 6.

GFPI sequentially searches for the facets of conv(X) containing the largest number of
points. This section is organized as follows. The optimization model used to identify a facet,
even in the presence of noise and outliers, is described in Section 5.1. Once a facet is identified,
the same model can be used to extract the next facet, by removing the previously identified
facets from the search space (Section 5.2). To make sure the intersection of the r extracted
facets corresponds to a bounded polytope, we add a constraint when extracting the last facet
(Section 5.3). The way the matrix W is estimated from the extracted facets is described in
Section 5.5. Finally, in Section 5.6, we prove the identifiability of GFPI under the FBC, and
discuss its computational cost and the choice of its parameters.

5.1. Identifying a facet, in the presence of noise and outliers. As for GFPI, the data
points are first centered and projected into a (d — 1)-dimensional subspace to obtain X e
RE-D*n guch that 0 € conv (f() and rank (X) = d — 1. Since we want GFPI to handle
noisy data, we cannot use the metric of the number of points on a facet of conv (X ) to know

whether it is also a facet of conv (W), because points will not be exactly located on the facets
of conv(X). Given a parameter « that depends on the noise level, we propose to solve

(5.1) max I (X(:,j)TH >1- 'y) such that X160 < (14 7)e,
feRd-1

where I(.) is the indicator function which is equal to 1 if the input condition is met, and to 0
otherwise. The variable 6 encodes the facet {z € conv (f( ) | 76 = 1}. The optimal solution
of (5.1) corresponds to a facet containing the largest number of data points within a safety
gap defined by 7. In the noiseless case, taking v = 0 and solving (5.1) provides a facet of
conv(X) containing the largest number of columns of X, and hence it will correspond to a
facet of conv(WW'), under Assumption 3.1; see Lemma 4.3.

To solve (5.1), we use a MIP. We introduce a binary variable y; € {0,1} (1 <14 < n) which
is equal to 0 if I(X(:,4)T8 > 1 —~) =1, and to 1 otherwise®, and solve

n
oep I1nin{01} Z y; such that 1 —y — Ay; < X(5,5)'0 <1+~ for1<j<n.
E 77y€ k) i

j=1

The parameter A is a sufficiently large scalar based on the BIG-M approach often used to
model indicator functions; see Remark 5.1. If the condition X (:,5) 70 > 1 — v is satisfied, the
value of y; can be either 0 or 1. Since the MIP minimizes y;, y; will be set to 0. If it is not
satisfied, that is, X(:,j)TH < 1 —, then the value of y has to be equal to 1. Note that y; =0
means that the corresponding data point is located close to the sought facet.

We have observed numerically that using the same safety gap for the n constraints X ' <
(14y)e does not give enough degrees of freedom to the formulation, and, in difficult scenarios,
fails to return good solutions. In particular, it is unable to deal with outliers that might be
arbitrarily far away from the sought polytope of which {z | #"x < 1} is a facet. Hence we

3We made this (arbitrary) choice to obtain a minimization problem, which is more standard.
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introduce the variable 5 € R’} that accounts for the distance of the data points from the
polytope; in particular, §; = 0 if 7 X(:,7) < 1. We propose the following MIP

n n
i 4+ A) d:suchthat 1 —~v — Ay; < X(5,5)10 <1+, for 1 <j<n,
a,azor,gé?o,l}"j; Yi ; j SUCH BAa v - Ay < X(j) 0 < jlor1<j<n

(5.2) 0j < Ay; + for 1 < j <n.

The parameter A\ controls how much the points are allowed to be far away from the polytope.
The constraint §; < Ay; + 7 forces the binary variable y; to get the value of 0 only when
{)N((:,j)—rﬂ — 1| < 7, so that the data point is in fact close to the facet, up to the safety gap ~.
The entries of § larger than v will correspond to outliers, that is, points that are outside and
far away from the sought polytope.

Remark 5.1 (Value of A). The BIG-M formulation is frequently used as a modeling trick
for problems with disjunctive or indicator constraints [7]. Choosing a good value for A is a
difficult problem in the MIP literature. A good choice for the parameter A depends on the
data. A very large value for A leads to weak relaxations, while a very small value removes
feasible solutions. We have set A to 10 in all the experiments in the absence of outliers and
did not notice sensitivity to this value. For the experiments with outliers, we used A = 100;
this makes sense as outliers are further away from conv(W).

5.2. Cutting previous facets from the solution space. Solving (5.2) allows to approxi-
mate one facet of conv (W) In order to extract other facets sequentially, we need to eliminate
the previously found facets from the feasible solutions of (5.2). To do so, we select one point
in each of the previously identified facets such that it only belongs to the corresponding facet,
that is, it needs to be in the relative interior of that facet. This point is chosen as the average
of the data points associated to that facet. We will denote M® € R(@=1*t the matrix whose
columns correspond to these points after ¢ facets have been identified. At the next step, that
is, at the (t+1)th step, we restrict the search space of (5.2) by adding the following constraints
making sure that these selected points do not lie on the current sought facet:

OTMO(0) <1—y—n fori=1,..t,

where 7 € R4 is a margin parameter which controls how far the next facet should be from
the previously selected facets. The larger n is, the further the facets will be from each other.
Figure 4 illustrates this procedure after one facet has been identified (corresponding to #; on
the figure), in the primal and dual spaces simultaneously. As the margin parameter 7 increases,
more and more feasible solutions are cut from the dual conv(X)*. However, for all margin
values, namely {0.1,0.5,0.8}, the two other vertices of conv(W)* are not cut. In general, if the
margin value n is set too high, there will be no feasible solution to the optimization problem
and, if it is set too low, the algorithm might find a facet too close to the previously identified
facets. However, both cases can be prevented. If the optimizing algorithm does not find any
feasible solution, the margin can be reduced. If the identified facet is not sufficiently different
from the other ones, it can be increased. However, as shown in Section SM1.4 (supplementary
material), our approach is not too sensitive to this parameter.
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L . - columns of X | |
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Figure 4. Illustration of the effect of the margin parameter n on the solution space with r = 3.

Remark 5.2 (Construction of M®)). If the data points associated to a facet are not well-
spread in that facet, their average might lie near the boundary of that facet. (Note however
that, by Assumption 3.1, the points on a facet generate that facet hence their average has to
be in the relative interior of the facet.) In this situation, a separable NMF algorithm, such as
SPA, can be used to identify d — 1 points well spread on this facet, and then take the average
of this subset of points. In this paper, we use the successive nonnegative projection algorithm
(SNPA) [21] which is more robust to noise than SPA. This second strategy is useful in more
difficult scenarios, and we have used it for the real-world hyperspectal images in Section 6.2.

5.3. Obtaining a polytope. We are now able to extract sequentially facets of conv(X)
that approximately contain the largest number of columns of X. Let us focus on the case
W is full column rank, that is, rank(1¥) = r. In difficult scenarios, for example when W is
ill-conditioned, or the noise level is high, we cannot guarantee that, after having extracted r
facets, we will obtain a polytope (that is, a bounded polyhedron). In order to resolve this
issue, we take advantage of the following theorems.

Theorem 5.3 (Boundedness theorem [38]). Let 01,...,04 be d linearly independent vectors
in R If @4+ = — Z?Zl wi0® with > 0, then the positive hull of these d+ 1 vectors span RY.

Theorem 5.4 (Full body theorem [38]). Given a set © = {61,...,0,} in R%, the polyhedron
P = {:L'|01T:L‘ <bji=1,...,0} is bounded if and only if the positive hull of © spans RY.

To ensure that the r identified facets define a bounded polytope in R%~! we add the following
constraint to (5.2) when computing the last facet:

d—1
(5.3) Hz—ZuiG(i) with pu; >efori=1,...,d—1,

i=1

where () (1 <i < r—1) are the r — 1 vectors extracted at the first r — 1 steps of GPFI, and
€ is a small positive constant. We used € = 0.1 in all numerical experiments in Section 6.

This manuscript is for review purposes only.



460
461
462
463
464
465

166
467

168
469
470
471
472
473
474
475

476

479

480

481

482
483
484
485
486
487

188
489
490
491
492
493

194

SIMPLEX-STRUCTURED MATRIX FACTORIZATION 15

As mentioned above, this additional constraint plays an instrumental role in difficult
scenarios. For example, on the real hyperspectral images from Section 6.2 that are highly
contaminated with noise (and do not follow closely the model assumptions), this constraint
allowed us to obtained significantly better solutions; see in particular Figure 9-(b) where one
of the extracted facet does not have many points around it: its extraction was made possible
because of (5.3). Moreover, we have observed that the use of (5.3) makes the identification of
the last facet less sensitive to the margin parameter n as (5.3) forces the sought facet to be
far from the facets already identified.

Rank-deficient case. Our sequential strategy can extract more than r facets of conv(W)
when rank(W) < r; for example, in Section 6.1.3, we will extract the 4 segments of a square.
In practice, in the rank-deficient case, it is unclear how many facets need to be extracted.
In two dimensions, the number of facets of a polygon coincides with the number of vertices.
However, in higher dimensions, the number of facets and vertices cannot be deduced from
one another. Hence we leave to the user to decide how many facets are extracted. A possible
heuristic would be to extract facets as long as they contain sufficiently many data points,
and/or as long as the corresponding polyhedron is unbounded. We leave this as a direction
of further development.

5.4. Summary of the MIP model for facet identification. To summarize, GFPI will
extract one facet at each iteration. At iteration ¢, it solves the following MIP:

n n
(5.4) min Yi+A)Y 0
OGRd—l,éeRi,ye{o,l}n; ! ng J
such that X(:,5)'6 <1+ 9j for 1 < j <, — Forming dual space
X()0>1—~v— Ay; for 1 <j<n, — Counting points on the facet
QTM(t_l)(:, Ey<l—y—nforl1<k<t-—1, — Removing previous facets
0; < Ayj+yfor1 <j<n. — Discarding outliers

The optimal solution of (5.4) at iteration ¢ for the variable 6 will be denoted 0 it approx-
imates the tth facet of conv (W) When rank(W) = r, the constraint (5.3) is added when
extracting the last facet to obtain a bounded polytope; see Section 5.3.

The proposed MIP model (5.4) has been carefully designed in order to achieve state-of-
the-art performances on synthetic and real-world data sets; see Section 6 for the numerical
experiments. It results from a long trial-and-error procedure, and many alternative formula-
tions have been tested. A direction of research is to further improve this MIP formulation.

5.5. Post-processing: intersection of facets. Once the facets of conv (W) are identified,
that is, the vectors {H(t)};‘ﬁzl are computed sequentially using (5.4), how can we recover W
accurately, even in noisy conditions? It is possible to improve the quality of the identified
facets, and hence of W, by taking advantage of the knowledge of the data points associated
to them. For the identified facet corresponding to 8®) (1 <t < T'), let

JO= {5 ] |XG60)Te0 - 1] <}
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16 M. ABDOLALI AND N. GILLIS

be the index set containing the points associated to it. The set J®) contains the indices such
that y; = 0 when solving (5.4). To improve the estimate of 0 we compute the normal
vector of the affine hull containing the columns of X (:, J (t)), which is the left singular vector
corresponding to the smallest singular value of the SVD of X(:,J (1), after removing the
average from each column (the facet is translated so that 0 belongs to it). Let us denote
0 € R T the matrix whose columns are these singular vectors so that O(:,t) replaces 6().
The facet ¢ has the form {x | ©(:,#) Tz = ¢} for some offset ¢;. Again, we compute ¢; from
the data by taking the average dot product between the normal vector ©(:,¢) with the data
points associated to that facet, that is, we take

oG, t)TX(:, JM)e
7]

q = for t=1,2,...,T.

Finally, our estimation of the polytope conv (W) is given by P = {z | "z < ¢}. Estimating
W from P can be done using any off-the-shelf vertex enumeration algorithm. We have used
the approach in [9] whose implementation is provided in [28].

Finally, to estimate the matrix W, our estimated W is projected back onto the original
m-~dimensional space, as in Algorithm 4.1.

5.6. Identifiability. Algorithm 5.1 provides the pseudo-code for GFPI. The main differ-

ence with BFPI (Algorithm 4.1) is the way the facets of conv(W) are extracted.
For well-chosen parameters, GFPI recovers the unique SSMF under the FBC.

Theorem 5.5. Let X = WH satisfy the FBC (Assumption 3.1). Let also the parameters of
GFPI (Algorithm 5.1) be as follows: v =0, n is sufficiently small, X — 400, A is sufficiently
large, T is the number of facets of conv(W), and d = rank(X). Then Algorithm 5.1 recovers
the columns of W (up to permutation).

Proof. The preprocessing ensures that 0 € conv()z' ) and X € RUA-D*n where rank()? ) =
d — 1, while the geometry of the problem remains unchanged, as in Theorem 4.4.
Let us discuss the parameters and their influence on (5.4):

e The variable § was introduced to handle noise; see Section 5.1. Taking A\ — +o0
implies that the optimal solution for the variable ¢ in (5.4) is 0, because § = 0 is part
of many feasible solutions (take for example any 6 such that XT0 <e, suchasf=0
since 0 € Conv(X ), and y; = 1 for all j). In other words, in the noiseless case, d can
be set to zero and removed from the formulation (5.4). Note that for 6 = 0, the first
constraint of (5.4) reduces to forming the dual space, that is, X6 < e, while the last
constraints, dealing with outliers, can be removed since A, y,~v > 0.

e For A sufficiently large and v = 0, the objective of (5.4) is equivalent to the indicator
function counting the points on the facet {z | #'x = 1}; see Section 5.1.

This means that, for the chosen parameters, (5.4) is equivalent to

(5.5) egﬁadzcl I (X(:,j)TG > 1) such that X '# <e and MEDTg < (1 —n)e.
j=1

Now, let us prove the result by induction.
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Algorithm 5.1 Greedy FPI (GFPI)

Input: Data matrix X ~ WH € R™*" satisfying Assumption 3.1 approximately, number T of facets to
extract, dimension d, and the parameters v > 0, n > 0, A > 0, and A > 0.
Output: Recover the basis matrix W € R™*" approximately.
% Step 1. Preprocessing
1: Use the same preprocessing as in Algorithm 4.1, to obtain X = U [X — X] € R(4=1xn,
% Step 2. Extract the T facets of conv (W)

2: Initialization: Set M® =[], and © = [].

3: fort=1,2,...,T do

4: Compute 6% as the optimal solution of (5.4). If ¢ = T = d, use the additional constraint (5.3)
within (5.4) to obtain a bounded polytope.

5: Identify the data points close to the facet corresponding to 8%, that is,

JO= {51 |X6Te 1] <A}

(.71
Compute the average of these points as m® = X(lJ‘(Iif;lk, and let M) = [M(t71)7m(t>].

Provide a more reliable estimate of 0Y: add as a column of © the left singular vector of
X(:, JY) — [m® ... m®)] corresponding to its smallest singular value.

8: Compute the tth entry of the offset vector, g = %W =03,t) Tm®.
9: end for
% Step 3. Recover W
10: Compute the columns W as the r vertices of the polytope {z | © Tz < ¢}.
If T = d, then r = T = d: it is equivalent to solving the linear systems O(:,k) W (:, k) = q(k) for
k=1,2,...,r where k = {1,2,...,7}\{k}.
% Step 4. Postprocess W to recover W
11: Project W € R@™DX" back to the original m-dimensional space: W = UW + [Z. .. &].

First step. Solving (5.5) boils down to maximizing the number of data points in the set
{z € conv(X) | 0Tz = 1}. By Lemma 4.3, this is a facet of conv(W); in fact, it is a facet
containing the largest number of data points.

Induction step. Assume GFPI has extracted k facets of conv(1W). The columns of M®*)
are located in the relative interior of their corresponding facets. This follows from Assump-

tion 3.1.c because data points on that facet of conv(WV) generate that facet. Because of the

constraint M® g < (1 —n)e, the previously extracted #*) (1 <t < k) are eliminated from
the feasible set of (5.5), because M®¥)(:,£)T0®) =1 for 1 <t < k. Moreover, for n sufficiently

small, no other vertex of conv(W)* is cut from the feasible set (see Figure 4 for an illustration).
In fact, for 7 — 0, only the vertices #®) (1 <t < k) are cut from conv(X)*. Therefore the next

step of GFPI identies a facet of conv(X) not extracted yet and containing the largest possible

number of points. By Assumption 3.1.c-d, this must correspond to a facet of conv(WW). At

the last step when ¢t = T" and if T' = d, the constraint (5.3) is added to (5.5). Since conv(W)

is bounded, by definition, it does not prevent the model to extract the last facet of conv(W).
It was used as a safety constraint in difficult scenarios; see Section 5.3. |

In Section 6.1, we will show that GFPI in fact performs perfectly in noiseless conditions
under Assumption 3.1. An important direction of research is to characterize the robustness to
noise of GFPI. This is also an open problem for algorithms based on Min-Vol; see Section 2.
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18 M. ABDOLALI AND N. GILLIS

5.7. Computational cost. Identifying each facet requires to solve the MIP (5.4). Solving
MIPs is in general NP-hard and can be time consuming. In fact, the proposed model can
be hard to solve up to global optimality when n and/or r become large. Moreover, we
have observed that, as the noise level increases, the problem gets more challenging which
increases the computational time as well. We will use IBM-CPLEX (v12.10) [12] for solving
the MIP (5.4). We noticed that CPLEX is able to find the optimal solution quite fast in
many cases, even though it might require a lot of time to certify global optimality. In Table 3
(Section 6.1.1), we will perform such a numerical experiment: for example, for m = r = 6 and
n = 190, CPLEX finds the 6 facets in 1.44 seconds on average, while it requires 2700 seconds
to provide an optimality certificate. Moreover, CPLEX is often able to find good feasible
solutions quickly, and hence can be stopped early providing reasonable solutions for GFPI. In
Section 6.2, we will use a time limit of 100 seconds for each facet identification on two large
real data sets, and GFPI will provide solutions whose quality is similar to the state of the art.
Interestingly, this observation holds even for problems with dimensions as large as 30. For
example, in the noiseless case and for d < 30, CPLEX finds in most case the optimal solution
for each facet in less than 100 seconds®. In the supplementary material SM1.3, we provide
additional numerical experiments on the computational cost of GFPI. A direction of further
research would be to design dedicated algorithms (including heuristics) to tackle (5.4), taking
advantage of its particular structure and geometry.

Remark 5.6 (Convex relaxation of the MIP (5.4) in GFPI). The core optimization prob-
lem (5.4) in GFPI is a MIP, and the constraints and the objective function are linear. Hence
a natural idea to find an approximate solution of (5.4) is to relax the binary constraints on y
by 0 <y <1 to obtain a linear program (LP). However, our numerical experiments show that
this approach leads to bad solutions and poor performance in most cases. Note that CPLEX
is based on branch and bound where the solution of the relaxed LP is the first computed
solution, at the root node [41].

5.8. Robustness to noise. A challenging research direction is the design of SNMF algo-
rithms without the separability assumption and that are provably robust against noise. In
fact, to the best of our knowledge, the only such algorithm available in the literature is the
one from [20] which relies on strong assumptions and has not been shown yet to compete
with state-of-the-art algorithms on practical problems (see Section 2). In particular, proving
robustness of algorithms based on the SSC and the Min-Vol framework is a major missing
piece in the literature of SSMF [14]. However, Min-Vol algorithms have been shown to work
well in noisy scenarios; see for example [1] and the references therein.

Algorithms based on facet identification, such as GFPI and the ones discussed in the
introduction, could be rather sensitive to noise. As least they have not been used as much as
Min-Vol algorithms in practice. Intuitively, in noisy scenarios, it may be difficult to identify
the facets of a polytope, while one may identify hyperplanes inside the polytope as facets.
The later problem is in fact an issue for the algorithm of [20] where authors need to assume

1For synthetic data sets, in the noiseless case, we know the optimal solution which allows us to check
whether CPLEX found it. As shown in Section SM1.3, for CPLEX to return the global optimal solution with
a certificate takes more than one hour, even for small values of r and n.
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that points that are not on a facet of conv(W) are in general position. However, GFPI is less
sensitive to inner hyperplanes as it requires all data points to be located on one side of the facet;
see the first constraint of (5.4). Moreover, as we will see in Section 6.1.2 and the supplementary
material SM1.1, GFPI will show encouraging robustness in identifying facets for corrupted
data with moderate level of noise. Moreover, we do believe that if the parameters of GFPI are
properly chosen, it is not significantly impacted by the inner hyperplanes within the polytope.
Recall that the parameters A and v indicate how deep GFPI looks for hyperplanes within
conv(W). For a detailed analysis of the effect of these parameters on the performance of GFPI,
we refer to the discussion and numerical experiments in the supplementary material SM1.4.

Of course, as for Min-Vol algorithms, analyzing the robustness of GFPI is an important
research direction. It would require to adapt the FBC. In fact,

e The noise allowed for GFPI to approximately recover W will depend on the condi-
tioning of conv(W), as for separable NMF algorithms. For example, less noise can be
added to a flat triangle than to a equilateral one. This requires to adapt Assump-
tion 3.1.a by requiring the conditioning of conv(W') to be lower bounded by a positive
number.

e Data points on the facets of conv(W) should be well spread on that facet. For example,
if all data points on a facet are very close to one another, it will be harder to accurately
estimating the corresponding facet in the presence on noise. This requires to adapt
Assumption 3.1.c.

e Facets of conv(X) that are not facets of conv(W) cannot have too many points in
their neighborhood. This requires to adapt Assumption 3.1.d.

Such a theoretical robustness analysis is highly challenging and out of the scope of this
paper. We leave it as a future work.

6. Numerical Experiments. In this section, GFPI is evaluated on synthetic and real-world
dat sets. All experiments are implemented in Matlab (R2019b), and run on a laptop with
Intel Core i7-9750H, @2.60 GHz CPU and 16 GB RAM. We use IBM-CPLEX (v12.10) [12] for
solving the MIP (5.4). The code is available from https://sites.google.com /site/nicolasgillis/
code, and all experiments presented in this paper can be reproduced using this code. Note
that the user can also use the Matlab MIP solver, intlinprog, which may be convenient.

Compared Algorithms. GFPI is compared with the following state-of-the-art algorithms:

e Successive nonnegative projection algorithm (SNPA) [21]: This is an extension of SPA
which is provably more robust to noise, and can handle rank deficient matrices.
e Simplex volume minimization: We use the model

(6.1) %11111 | X — WH|% + Xogdet(W W +61,)  such that H(:,5) € A" for all j,

which has been shown to provide the best practical performances [16, 1], and use
the efficient algorithm proposed in [29]. We will use different parameters for A =

|X-—WOHO)|2 ©) 77(0)y Mo S —01-
ogdet (WO T O)457) where (W' HY)) is computed by SNPA, while 6 = 0.1; see [29]

for more details. We refer to this algorithm as min vol.
e Maximum volume inscribed ellipsoid (MVIE) [34], see Section 2.
e Hyperplane-based Craig-simplex-identication (HyperCSI) [32], see Section 2.
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Quality measures. To quantify the performance of SSMF algorithms, the following metrics
will be used. For the synthetic data experiments, we will use the relative distance between
the ground-truth W; and the estimated W

We — Wik

ERR = :
Wil

where the columns of W are permuted to minimize this quantity, using the Hungarian algo-
rithm. For real hyperspectral images, we will use the average mean removed spectral angle
(MRSA) between the columns of W and W; (after a proper permutation of the columns of
W). This is the most common choice in this area of research. The MRSA between two vectors
z € R" and y € R" is

MRSA(z,y) = 100 cos ! (x—2¢) ' (y — ) ,
™ ||z — Zell2|ly — gell2

where z = %Z?:l x;. We will also use the relative reconstruction error, RE = %

6.1. Synthetic data sets. In this section, we compare GFPI with the state-of-the-art
approaches on synthetic data sets.

Data generation. To generate full-rank synthetic data sets X = Wy H,, we follow a standard
procedure; see for example [1]. Each entry of W; is drawn uniformly at random from the
interval [0,1]. We discard the matrices with condition number larger than 107 to avoid too
ill-conditioned matrices.

We generate the columns of matrix H; by splitting them in two parts: H; = [Hy, Hs]. The
matrix H; corresponds to the points lying on facets, making sure there are enough points on
each facet so that Assumption 3.1 holds. The matrix Ho corresponds to data points randomly
generated within conv(W). We generate H; and Hy as follows.

1. Let n1 be the number of data points on each facet. For each sample on a facet, the
corresponding r — 1 nonzero elements in the columns of H; are generated using the
Dirichlet distribution with parameters equal to T%l

2. Let ny denotes the number of samples within the simplex, possibly lying on some facets
but this is not strictly enforced. The columns of Hy are generated by the Dirichlet
distribution with parameters set to %

Let us define the purity parameter p € (0,1] used to quantify how far the columns of X
are from the columns of W;. It is defined as p(H;) = minj<i<, ||H¢(k,:)||c. Recall that each
row of H; corresponds to the activation of the corresponding column of W, while Hy(:, j) € A"
for all j. Therefore, p(H;) indicates how much the separability assumption is violated. For
p(Hy) = 1, X satisfies the separability assumption since each column of W, appears in the
data set. For p(H;) = 0, at least one of the columns of W is not used to generate X. In order
to control the purity of Hy, that is, p(H;), we use the parameter p, and resample the columns
of H; and H, with entries larger than® p, that is, we define an upper bound on the entries
of matrix H;. Hence, using this resampling, Hy(k,j) < p for all k, j which implies p(H;) < p.

® To make the data generation possible, for p < 0.3, we set the parameters of the Dirichlet distribution for

the columns of H; to 10_0?7 otherwise most columns of H; are rejected.
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Note that p has to be chosen larger than ﬁ since H(:,j) € A" for all j, while the columns
of Hi have at least one zero entry.
Finally, the data matrix X is generated by X = W; H;. In the presence of noise, we use

additive Gaussian noise based on a given signal-to-noise ratio (SNR). The variance of the i.i.d.

. . . .. mLos X2
random Gaussian noise given the SNR value is given by M—{Ji&.

Parameters for GFPI. The parameters of GFPI are selected according to Table 2. As men-
tioned before, GFPI is not too sensitive to the parameter n and we use 0.5 in all experiments.
For the parameter A, as it depends on the noise level, it should be decreased as the noise level
increases; recall that A — +o00 in the noiseless case (Theorem 5.5). The parameter 7 influences
how the data points are associated to a facet: X(:,j) is associated to the facet parametrized
by 6 when |X(:, j )TG — 1| < . Hence the larger the noise level, the larger v should be, since
the data points are moved further away from the facets.

Table 2
Parameters of GFPI with respect to different values of SNR

inf 80 60 50 40 30
A || 1000 100 100 10 10 10
v (| 0.001 0.01 0.01 0.05 0.1 0.2

For GFPI, we have set the “timelimit” property of CPLEX to 10 seconds. Whenever the
upper bound on CPU time is activated, we specify it with “**” after GFPI in the figures.

6.1.1. Noiseless data sets. In this section, we investigate the effect of the purity on
the performance of GFPI compared to the state-of-the-art approaches. To this end, we use
the synthetic data with the following parameters: n; = 30 and ne = 10. Figure 5 reports
the average measure ERR over 10 randomly generated synthetic data sets obtained by the
different algorithms for r = m = {3,4,5,7} as a function of the purity p. In this experiment,
the value of the purity p varies between i + 0.01 (recall, i is the smallest possible value)
to 1 (separability).

GFPI recovers W; perfectly for all cases, and the performance is not dependent on the
purity, as expected since Assumption 3.1 is satisfied, regardless of the purity (Theorem 5.5).
On the other hand, the performance of all other approaches gradually decreases as the pu-
rity decreases. For SNPA (which is based on the separability assumption), the performance
worsens as soon as p < 1. For low levels of purity, the SSC is not satisfied, and hence the
performances of min vol and MVIE degrade as p decreases. In fact, it is interesting to observe
that MVIE performs perfectly for p sufficiently large, when the SSC is satisfies (as guaranteed
by the theory), while min vol degrades its performances faster as it relies on local optimization
schemes and hence is sensitive to initialization. In fact, initializing min vol with slightly per-
turbed versions of the groundtruth W leads to rather different solutions with almost perfect
recovery. A similar behavior was already observed in [34, Figure 5.

The computational time of the tested algorithms is reported in Table 3. In addition to
the running time of GFPI when requiring CPLEX to obtain a global optimality guarantee,
Table 3 also reports the time that CPLEX needs to find the optimal solution (before providing
the optimality certificate), which we denote GFPI*. We observe that CPLEX finds an optimal

This manuscript is for review purposes only.



702
703
704
705
706
707

708
709
710
711
712
713

22

M. ABDOLALI AND N. GILLIS

0.4
-% GFPI
03¢ =S E =@ ‘minvol A = 0.01
‘\\ T min vol A = 0.1
03F R\«\\ ~ -G'minvol/\=1
= ‘\‘; A\ \‘Q =& ‘minvol A =5
z I LRRAARN ~[> sNPA
= 0.25 AR RS
= ESAEORS -3 ‘MVIE
= oo “ §<\ :\:\ =% -HyperCSlI
— O -
= | 8. UON
8 ~ <
; 015 \ \Q\\\\\\
- 0.1+ \ q\ N \\\\
. \ NRR
\ \‘\‘k
L x LS
0.05 \ & -s—\— X
- o Sa S
0 -
0.51 0.61 0.71 0.80 0.90 1.00
purity
(a)r=m=3
0.5 i i
o) -% ‘GFPI
PRSI =G ‘minvol A =0.01
z - *\ S i =
4~: REN min vol A\ = 0.1
0. \ '=% N —<¢ ‘minvol A=1
= \ W\ \& & ‘minvol A=5
=z \ WS RS- “i-> sna
= 03 N 4 ~\:§-E ‘MVIE
= \ ~ H=3 Hypercsl
- \ \ S b
= \ \ WL
L \
;. 0.2 \ <~~~~ \\\\\\
= ' q\ \\\ \
\\ o g\
0.1r . AWV O
\
Mo - Q:'. —\\-\\-)(
0 ~ . ~3
0.26 0.41 0.56 0.70 0.85 1.00
purity
(c)r=m=5

W =W, 1/ W, I

W =W [/ W, ]

0.4 v -
’,—3_1‘_ -% GFPI
e A _"_'g\ -G “minvol A = 0.01
"*"" NN min vol A = 0.1
03 N » —<¢ ‘minvol A=1
vV \\}\\ & ‘minvol A=5
025 PN v wa |=[> 'SNPA
’ \ « \ -3 ‘MVIE
0ol ‘\ \ ‘\ “HyperCSlI
. AY
\ \ \ ‘\“\
\ NOX Y
0.15 \ R \\\
\ N \\\ \
0.1r \ Q\ K »
\ s ~ N \\
0.05 | \ She —v - x
N )

\ X
o*——-#—————l—]—ﬁ>ﬁ
0.34 0.47 0.61 0.74 0.87 1.00

purity
(b)r=m=4
0.5 " | :
_Q - % GFPI**
- ‘\\ =@ ‘minvol A = 0.01
Ts ~ min vol A =0.1
0'4“ Q\\Qé ——‘9\‘\\ =< ‘minvol A =1
\ \%‘_~~ :\\‘ —Q ‘minvol A =5
\ . ~32 T4~ > sNPA
031 AN = -3 ‘MVIE
\ S = % ‘HyperCSlI
\ N T
N
02f - \\\\
‘ -~
\ <1 . v
\ N \ N
01} \ s\ Ny
Sy Se
\ \\.
' }5 I
0 -z
0.18 0.34 0.51 0.67 0.84 1.00
purity
(d)r=m=T7

Figure 5. Average ERR metric for 10 trials depending on the purity for SSMF algorithms in noiseless

conditions for different values of r and m.

solution rather fast, but takes a significant amount of time to provide a certificate of global
optimality (this issue is also discussed in Section 5.7). Hence in practice we recommend to
use CPLEX with a time limit, as we will do for the numerical experiments on the large-scale

hyperspectral images presented in Section 6.2.

Additional numerical experiments regarding the computational time of GFPI can be found
in Section SM1.3 of the supplementary material.

6.1.2. Noisy data sets. In this section, we compare the behavior of the different algo-
rithms in the presence of noise. We use two levels of noise (SNR = 60 and 40) and investigate
the effect of the purity for r = m = {3,4}. Figure 6 reports the ERR metric, similarly as for
Figure 5 (average of 10 randomly generated synthetic data sets). As the noise level increases
(SNR decreases), the performance of all algorithms decreases steadily. However, in almost all
cases, GFPI outperforms all other approaches, especially when the the purity p is low. As for
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Table 3
Comparison of the the run times (in seconds) of the tested SSMF algorithms. The experimental setting
is the one from Figure 5, with an average over 10 trials. GFPI* refers to the time CPLEX needs to find
the r optimal solutions (one for each facet), while GFPI refers to the time CPLEX needs to provide a global
optimality certificate for these solutions.

r | purity || GFPI GFPI* min vol SNPA MVIE HyperCSI
0.51 0.64 0.12 0.07 0.008 1.17 0.008
3| 0.706 0.64 0.13 0.07 0.008  0.95 0.002
1 1.02 0.16 0.08 0.008  1.07 0.001
0.343 2.36 0.41 0.11 0.01 1.77 0.01
4 1 0.606 4.76 0.53 0.11 0.01 1.87 0.003
1 6.17 0.39 0.10 0.01 1.58 0.002
0.26 7.08 0.81 0.14 0.02 5.77 0.009
51 0.556 || 36.36 0.98 0.13 0.02 7.17 0.004
1 83.10 0.86 0.11 0.02 5.73 0.003
0.21 24.73 1.19 0.17 0.04 37.92 0.01
6| 0.526 || 474.92 1.29 0.15 0.04  54.22 0.004
1 2699.9 1.44 0.14 0.03  40.93 0.003

the noiseless case, MVIE performs the second best. The performance of GFPI in presence of
noise and under low purity levels is further illustrated in Section SM1.1.

6.1.3. Rank-deficient SSMF. An advantage of GFPI is that it provably works when W
does not have full column rank, and without the separability assumption. Note that
e SNPA works in the rank-deficient case, but requires the separability assumption. Other
separable NMF algorithms also work in the rank-deficient case; for example [4, 37, 24]
but are computationally much more demanding than SNPA as they rely on solving n
linear programs in n variables.
e The min-vol model (6.1) can be used in the rank-deficient case [29]. However, it does
not come with identifiability guarantees (this is actually an open problem).
MVIE and HyperCSI are not applicable when rank(W') < r.
In this section, we confirm the ability of GFPI to recover W when it does not have full
column rank. To do so, we use the rank-deficient synthetic data from [29]. It generates the
matrix X € R**?% ysing the rank-deficient matrix

Wi =

— o O
SO = O =
O = = O
_— o = O

for which rank(W;) = 3 < r = 4. Each column of H; € R**2?% ig generated using the Dirichlet
distribution with parameters equal to 0.1. The columns of H with elements larger than a
predefined purity value p are resampled, as before. In this experiment, we consider three
values for the purity, namely 0.8, 0.7 and 0.6. We take X = W;H; and then corrupt it with
i.i.d. Gaussian distribution with zero mean and standard deviation of 0.01. GFPI parameters
are A = 10, n = 0.5, v = 0.05, and A = 10.
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Figure 6. Average ERR metric for 10 randomly generated data sets depending on purity for the different
SSMF algorithms, for different noise levels: SNR of 60 (top) and 40 (bottom), and for m = r = 3 (left) and

m =1 =4 (right).

Figure 7 shows the result, after projection of the data points in two dimensions. Since the
data is not separable, SNPA provides the worst solutions. For p € {0.7,0.8}, min vol performs
well, although slightly worse than GFPI; for p = 0.8 (resp. 0.7), the ERR of min vol is 0.014

(resp. 0.029) while for GFPI it is 0.010 (resp. 0.018).

For p = 0.6, min vol fails to extract

columns of W4, as the purity is not large enough. However, it recovers a reasonable solution
with smaller volume; this is a similar behavior as in Figure 2.

6.1.4. Performance in the presence of outliers. As mentioned earlier, as far as we know,
most SSMF algorithms are very sensitive to outliers (in particular, most separable NMF
algorithms, min vol, MVIE and HyperCSI). We generate the clean data by considering m =
r = 3, p = 1 (no resample of the columns of H; so p(H,) is close to 1), ny = 30, ny = 10
data points (for a total of 100 clean samples), and SNR = co. We then add outliers whose
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Figure 7. Two dimensional representation of the estimated vertices in rank-deficient cases with different
values of purity.

(c) purity = 0.6

entries are drawn from the uniform distribution in [0,1]. GFPI parameters are A = 0.01,
n = 0.5, v = 0.01, and A = 100. The parameter A is chosen relatively small allowing ¢
to take larger values, which is necessary in the presence of outliers. Figure 8 reports the
results on four different examples, with 3, 10, 50 and 100 outliers (red crosses). It shows the
columns of W and their corresponding convex hulls estimated by the different algorithms. In
all cases, GFPI perfectly recovers the true endmembers, while the other algorithms fail. In
fact, even few outliers affects their performance whereas GFPI tolerates as many outliers as
the number of clean samples. The reason for this robustness to outliers is that outliers are
generated randomly, and hence no more than d — 1 outliers belong to the same hyperplane
(with probability one); in this example, no combination of three outliers belong to the same
segment. Of course, adding adversarial outliers on the same hyperplane would lead to different
results. However, as long as the number of outliers on the same hyperplane is smaller than
the number of points on the facets of conv(W), GFPI will perform well.

6.2. Hyperspectral images. In this section, we evaluate the performance of GFPI on
two widely used hyperspectral images, namely Samson and Jasper Ridge; see [43] and the
references therein. These hyperspectral images are relatively large, containing thousands of
pixels. Hence we set the timelimit of CPLEX for optimizing each facet to 100 seconds. We
will provide the MRSA for the extracted factors by the different SSMF algorithms. It is
important to note that the ground truth factor W; is actually unknown, and these estimates
come from [43]. Moreover, the reported result for min vol are the best possible performance
with highly tuned parameters from [1]. Given W, we solve

(6.2) min ||X — WH||% such that

H(:,j) € A" for all j,
HeRan
to estimate the abundance matrix H using the code from [21].

6.2.1. Samson. The Samson data set consists of 95x 95 images for 156 spectral bands [43].
Mostly three materials are present in this image: “soil”, “water” and “tree”, and hence r = 3.
We run GFPI to extract three endmembers with parameters: T'=d = 3, A = 0.1, v = 0.3,
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Figure 8. Comparison of SSMF' algorithms in the presence of outliers.

n = 0.7 and A = 10. The extracted spectral signatures are shown in Figure 9 (a). For a
qualitative comparison, the corresponding abundance maps are shown in Figure SM5 in the
supplementary material. To interpret GFPI geomerically, Figure 9 (b) shows the data points
and the polytope computed by GFPI, projected onto a two-dimensional subspace spanned
by the first two principal components of the input matrix. Table 4 reports the MRSA and
RE for GFPI, SNPA, min vol, and HyperCSI. MVIE is computationally too expensive and
is excluded from the comparison. GFPI performs similarly to SNPA and slightly worse than
min vol. HyperCSI has the worst performance among the four. This illustrates that CPLEX

finds good feasible solutions for the MIP (5.4) fast.

Comparing the performances of GFPI with HyperCSI, SNPA and min vol on Samson data set

SNPA min vol

HyperCSI  GFPI

MRSA
[[X-WH]||r
[ X]le

12.91 2.97

5.35% 4.02%

6.2.2. Jasper Ridge. The Jasper Ridge data set consists of 100 x 100 images for 224
783 spectral bands [43]. Mostly four materials are present in this image: “road”, “soil”, “water”
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Figure 9. SSMF algorithms applied on the Samson hyperspectral image.

and “tree”. We run GFPI to extract four endmembers with parameters: T'=d = 4, A =
0.0001, v = 0.2, n = 0.5 and A = 10. Note that A is rather small, much smaller than for
Samson (A = 0.1). Because such data sets are very noisy and violate the model assumptions,
GFPI is more sensitive to its parameters which should be carefully tuned (note that it is also
sensitive to the time limit used in CPLEX, and hence to the power of the computer it is run
on). However, although GFPI parameters were fine-tuned for these real-world experiments,
it provides good solutions for a different values of the parameters. For example, we also
obtain good solutions for A € [0.01,0.0001]. The extracted spectral signatures are shown in
Figure 10 (a) and the corresponding abundance maps are reported in Figure SM6. Similar to
the Samson data set, the two dimensional representation of the data points and the estimated
polytope are shown in Figure 10 (b). Table 5 reports the MRSA and RE. We observe that
GFPI has the lowest (best) MRSA value and second best RE among the four algorithms.

Table 5
Comparing the performances of GFPI with HyperCSI, SNPA and min vol on Jasper database

SNPA min vol HyperCSI GFPI
MRSA 2227  6.85 17.04 4.82

IXTWHIE || 8429 3.90%  11.43%  6.47%

Note that it is natural for min vol to have the lowest RE as it is part of its objective
function. Having a low RE for GFPI is a side result of W being well estimated. In particular,
GFPI is able to discard outliers (see Section 6.1.4) which may increase the RE significantly
because this measure is very sensitive to outliers (least squares). Once W is estimated by
GFPI, the RE, or other quality measures, could be used to assess whether GFPI provided a
reasonable solution (in fact, GFPI never uses this quantity as a criterion for estimating W).
This would be another way to fine tune the parameters of GFPI.
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Figure 10. SSMF algorithms applied on the Jasper ridge hyperspectral image.

7. Conclusion. In this paper, we have presented a new framework for simplex-structured
matrix factorization (SSMF). The high level idea is to identify the facets of the convex hull
of the basis matrix W by looking for facets of the convex hull of the data matrix X = WH
containing the largest number of points. We first proved that under our facet-based conditions
(FBC, see Assumption 3.1), SSMF is identifiable, that is, it has a unique solution W, up to
permutation of the columns (Theorem 3.4). Then, we proposed and analyzed brute-force facet-
based polytope identification (BFPI) which converts the problem of searching for the facets
to the problem of identifying the vertices in the dual space. BFPI recovers the ground truth
W under the FBC (Theorem 4.4). We also proposed GFPI (greedy FPI) which sequentially
identifies the facets (instead of identifying them all) using MIPs, and comes with identifiabiliy
guarantees (Theorem 5.5). In order to handle noise and outliers, we have proposed a very
effective MIP to tackle the subproblem for identifying a facet. We have also proposed an
effective postprocessing step to improve the recovery of W by reestimating the facets using
the data points associated to them. We illustrated the effectiveness of GFPI compared to
state-of-the-art SSMF algorithms. GFPI is able to handle highly mixed data points for which
the conditions under which the other algorithm work are highly violated (namely, separability
and the SSC). It is also able to handle many outliers, and rank-deficient matrices W. We
also provided encouraging numerical experiments on real-world hyperspectral images. GFPI
is applicable to large data sets because the MIPs do not need to be solved up to global
optimality: any solution returned by the solver can be used by GFPI to construct a facet.

Directions of further research include the identifiability of GFPI in presence of noise and
outliers, the design of more effective MIP formulations to identify the facets, the improve-
ment of the scalability of GFPI for large-scale data sets (for example by designing dedicated
algorithms to solve the MIPs), and the use of GFPI for other applications.
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