
Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxxRESEARCH ARTICLE

Accelerating Block Coordinate Descent for Nonnegative
Tensor Factorization

Andersen Man Shun Ang*1 | Jeremy E. Cohen2 | Nicolas Gillis1 | Le Thi Khanh Hien1

1Department of Mathematics and
Operational Research, Faculté
Polytechnique, Université de Mons, Mons,
Belgium

2INRIA, CNRS, Rennes, France

Correspondence
*Andersen Man Shun Ang, Department of
Mathematics and Operational Research,
Faculté Polytechnique, Université de Mons,
7000 Mons, Belgium Email:
manshun.ang@umons.ac.be

Summary

This paper is concerned with improving the empirical convergence speed of block-
coordinate descent algorithms for approximate nonnegative tensor factorization
(NTF). We propose an extrapolation strategy in-between block updates, referred
to as heuristic extrapolation with restarts (HER). HER significantly accelerates the
empirical convergence speed of most existing block-coordinate algorithms for NTF,
in particular for challenging computational scenarios, while requiring a negligible
additional computational budget.
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1 INTRODUCTION

In this paper, we consider the approximate nonnegative tensor canonical polyadic decomposition (CPD) problem,
which we refer to as nonnegative tensor factorization (NTF). A N-way array or N-th order tensor  is a mul-
tidimensional array in the product ℝI1×…×IN of the vector spaces ℝIi for i = 1, 2,… , N . A vector x ∈ ℝI1

is a first-order tensor, and a matrix M ∈ ℝI1×I2 is a second-order tensor. The goal of NTF is to approxi-
mate a tensor  by a structured tensor  . Using the squared Frobenius norm as a distance metric, defined as
‖‖

2
F =

∑

j1,j2,…jN
2
j1j2…jN

, NTF is the following optimization problem:

min
a(i)p ≥0, 1≤i≤N, 1≤p≤r

‖

‖

‖

‖

‖

‖

 −
r
∑

p=1

N
⨂

i=1
a(i)p

‖

‖

‖

‖

‖

‖

2

F

, (1)

where
⨂

is a tensor product overN real vector spaces ℝI1 ,…, ℝIN defined as follows:
[ N
⨂

i=1
a(i)p

]

j1,j2,…,jN

∶=
N
∏

i=1
a(i)p (ji), where a(i)p ∈ ℝIi for i = 1, 2,… , N and p = 1, 2,… , r.

1



In other words, NTF is a low1 nonnegative rank approximation problem, since by definition any nonnegative rank
r tensor  of orderN can be parameterized as

 =
r
∑

p=1

N
⨂

i=1
a(i)p where a(i)p ∈ ℝIi

+ for i = 1, 2,… , N and p = 1, 2,… , r.

Intuitively, using NTF to approximate a tensor means using a part-based decomposition to summarize its content
with a few “simple” rank-one tensors a(1)p ⊗a(2)p ⊗…⊗a(N)p where the components a(i)p are entrywise nonnegative,
with 1 ≤ p ≤ r and 1 ≤ i ≤ N . This idea finds numerous applications in diverse areas, among which chemometrics
or psychometrics are historical examples, see3–5.
In this paper, we use the Frobenius norm to measure the error of approximation. It is arguably the most widely

used measure, mostly because it has some nice properties (in particular, the subproblems in each block of variables
is a convex quadratic problem; see below) and it corresponds to the maximum likelihood estimator in the presence
of i.i.d. Gaussian noise. NTF is a non-convex optimization problem.Moreover, no closed-form solution is known to
solve NTF; in fact, the problem is NP-hard already for the matrix case, that is, forN = 2; see6. Therefore, there has
been a large amount of works dedicated to solving NTF using various optimization heuristics; see § 2 for a review
of the state-of-the-art algorithms. However, note that unlike unconstrained approximate tensor factorization, NTF
is well-posed in the sense that there always exists an optimal solution; see7. Moreover, a solution ∗ to NTF is
almost always 2 unique forN > 2, and the solution to (1) also has exactly rank r; see8.

Outline and contribution
This paper focuses on computing solutions to NTF as fast as possible. We derive new Block-Coordinate Descent
(BCD) algorithms for NTF, that aim at being faster than existing BCD algorithms. To achieve this empirical speed-
up in convergence speed, an extrapolation scheme “à la Nesterov” is used every time a block has been optimized,
before switching to another block. The proposed Heuristic Extrapolation with Restarts (HER) algorithm consists
of the following steps:

1. Initialize A(i) = [a(i)1 ,… , a(i)r ] and pairing variables Â
(i) for 1 ≤ i ≤ N .

2. Loop over the blocks A(i) (1 ≤ i ≤ N):

(a) Update A(i) by minimizing (1) where the other blocks are fixed and take the value of the pairing vari-
ables Â(j) (j ≠ i). For example, one can take a gradient step (see § 2.1 for more sophisticated strategies).
Keep the previous value of A(i) in memory as A(i)old .

(b) Update the pairing variable using extrapolation:

Â(i) = max
(

0, A(i) + �(A(i) − A(i)old)
)

.

3. If the reconstruction error F has increased, reject the extrapolation and reset pairing variables Â(i) = A(i)

for 1 ≤ i ≤ N ; otherwise, update A(i) = Â(i) for 1 ≤ i ≤ N .

4. Update the parameter �; see § 3.1.4 for the details.

5. If convergence criterion is not met, go back to 2.

This approach has been scarcely studied9–11, while extrapolation is a rather well understoodmethod to accelerate
both convex and non-convex single-block descent algorithms; see for instance12, 13. The main novelty of this paper

1Low means much smaller than the generic rank of tensors in the considered tensor space 1, 2.
2The set of “bad”  form an hypersurface.
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is to tackle a non-convex optimization problem using BCDwith extrapolation between the block update, as opposed
to inside each block update such as in14 or after each outer loop as in10. This in-between extrapolation comes at
almost no additional computational cost.
Extrapolated BCD algorithms are shown to be considerably faster than their standard counterparts in various dif-

ficult cases. These algorithms were observed to be slower than existing BCD algorithms only for extremely sparse
tensors. Therefore, a contribution of this work is to experimentally show that using in-between block extrapolation
allows to accelerate any BCD algorithm for dense NTF. This opens interesting questions for other optimization
problems usually solved by BCD, for which such an extrapolation scheme may be applicable.

Context
Let us provide a brief historical note about tensor decomposition. The origin of tensor decomposition can be
traced back to the work of Hitchcock15, 16, whereas the idea of using multiway analysis is credited to the work
of17, 18. Since then, especially after the work of Tucker in the field of psychometrics19, 20, tensor decomposition
has spread and become more and more popular in other fields such as chemometrics21, signal processing22, 23,
data mining24, 25, and many more. We refer the readers to26–30 and references therein for comprehensive reviews
of the applications of tensor decomposition. It is important to note that NTF is just one of many tensor decom-
position models. Some other types of tensor decomposition or format include PARAFAC (that is, unconstrained
approximate tensor factorization), Tucker/HOSVD20, 31, and Tensor Train32, to name a few. We focus on NTF in
this paper.
Nonnegative matrix factorization (NMF), a key problem in machine learning and data analysis, is a special

case of NTF when N = 2. First introduced in33, it started becoming widely used after the seminal work of34,
and NMF has since then been deeply studied and well documented with variety of applications such as document
classification, image processing, audio source separation and hyperspectral unmixing; see35–37 and the references
therein for more details. On the other hand, there are classes of data for which being represented by tensors is
more natural. For example, a third-order tensor is preferably used to connect excitation-emission spectroscopy
matrices in chemometrics21, and RGB color images or 3D light field displays are generated as tensors38; see35
for more examples. NTF was first introduced in39 for fitting the latent class model in statistics. It has also been
applied in model selection problem, sparse image coding in computer version40, sound source separation41, image
decomposition42, text mining43, among others; see7, 35, 44–46 and reference therein for more applications of NTF.

Notation
Below we recall some important notations in tensor algebra. First of all, the Kronecker product47 of two matrices
A ∈ RI1×J1 and B ∈ RI2×J2 is defined as follows:

A⊠B =
⎡

⎢

⎢

⎣

[A]11B ⋯ [A]1J1B
⋮ ⋱ ⋮

[A]I11B ⋯ [A]I1J1B

⎤

⎥

⎥

⎦

. (2)

Moreover, the Kronecker product of several matrices can be deduced from the above definition by associativity. The
Khatri-Rao productA⊙B is the columns-wise Kronecker product. SettingA = [a1,… , aJ1] andB = [b1,… , bJ1],

A ⊙ B =
[

a1⊠ b1,… , aJ1 ⊠ bJ1
]

. (3)

The Hadamard product (element-wise product) is denoted A⊛ B.
Compact decomposition notations: There exist several complementary notations to parameterize a low-rank tensor.
In particular, grouping components a(i)p as columns of factor matrices A(i) = [a(i)1 ,… , a(i)r ], the following notations
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are equivalent:

 =
r
∑

p=1

N
⨂

i=1
a(i)p (4)

=
[

A(1),… , A(N)
]

(5)
= r ×1 A(1) ×2…×N A(N) (6)

∶=
def

( N
⨂

a
i=1

A(i)
)

r. (7)

where
⨂

a is a tensor product of linear maps induced by the tensor product⊗ of vectors.
Equation (5) is the so-called Kruskal notation, equation (6) makes use of the n-mode product ×p (see26), and

equation (7) uses the fact that linear applications on tensor spaces of finite dimensions also form a tensor space
with tensor product

(

A⊗a B
)

(x ⊗ y) ∶= Ax ⊗ By. Because (7) exhibits this tensor product structure, we will
make use of this compact formulation rather than the others.

Tensor unfoldings and useful formula: To derive partial derivatives of the NTF cost with respect to factors matri-
ces, it is convenient to switch from a tensor formulation to a matrix description of the problem. More precisely,
the following relationships hold:

 =

( N
⨂

a
i=1

A(i)
)

r ≡ ∀i ∈ [1, N], X[i] = A(i)
⎛

⎜

⎜

⎜

⎝

1
⨀

l≠i
l=N

A(l)
⎞

⎟

⎟

⎟

⎠

T

, (8)

where unfoldings X[i] of a rank-one tensor  are defined as follows:

X[i] ∶= a(i) ⊗

⎛

⎜

⎜

⎜

⎝

1

⊠
l≠i
l=N

a(l)
⎞

⎟

⎟

⎟

⎠

∈ ℝ,  = Ii ×
∏

l≠i
Il. (9)

Unfoldings of a general tensor are obtained by linearity of the unfolding maps. Note that several non-equivalent
definitions are used in the tensor signal processing community; see26 and48.

2 THE STATE-OF-THE-ART ALGORITHMS FOR SOLVING NTF

Below, we provide an overview of various techniques to solve NTF, which can be reformulated as follows

min
A(i)≥0,1≤i≤N

F (A(1),… , A(N)),

where

F (A(1),… , A(N)) = 1
2

‖

‖

‖

‖

‖

‖

 −

( N
⨂

a
i=1

A(i)
)

r
‖

‖

‖

‖

‖

‖

2

F

. (10)

As a foreword, let us mention that there exist a wide range of algorithmic solutions for NTF (as for most of the
tensor decomposition problems), that show different performances depending on the task at hand.

Algorithms for exact PARAFAC
First of all, although the focus of this paper is approximate decompositions, it is interesting to point out that several
algebraic techniques based on eigendecompositions have been proposed to deal with exact unconstrained tensor
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factorizations49–51 whenever such a factorization exists. However, by design, these algorithms are typically not
robust to noise, or may even be numerically unstable; see52. These techniques are sometimes used for initialization.
Moreover, to the best of our knowledge, there does not exist an algorithm that computes NTF exactly for any rank
using algebraic techniques. In fact, even in the matrix case, that is, for nonnegative matrix factorization (NMF),
such techniques do not exist. Therefore, in this paper, we do not discuss exact NTF algorithms; this is a direction
for further research.

Algorithms for approximate unconstrained tensor decomposition
Because the Tensor Factorization (TF) model (that is, without nonnegativity constraints) has some interesting
identifiability properties, it may occur that for well-conditioned tensors53, approximate NTF can be computed
with high precision by using a TF solver. Solving the TF problem is however harder in theory (the tensor low-
rank unconstrained approximation problem is ill-posed, see54) and not really easier in practice than solving NTF.
Actually, many algorithms that solve NTF are inspired from TF solvers and have similar complexity. Therefore
we do not discuss TF solvers in what follows, and assume the reader is interested in solving NTF with specific
algorithms that make use of the properties of the NTF problem.

All-at-once optimization
A first class of widely used methods to solve NTF are all-at-once gradient-based methods. Indeed, it is quite
straightforward to compute the gradients of F with respect to each matrix A(i). Let us denote

B(i) = A(N) ⊙⋯⊙ A(i+1) ⊙ A(i−1) ⊙⋯⊙ A(1). (11)

Then the gradient of F with respect to A(i) is

∇A(i)F =
(

A(i)
(

B(i)
)T − [i]

)

B(i). (12)

Therefore, there is no obstacle to using any constrained gradient-based algorithm to (try to) find a stationary
point of the non-convex NTF problem. To the best of our knowledge, the oldest all-at-once algorithm for NTF is
a Gauss-Newton approach55, but many approaches have been tested, including:

• Second-order optimization: using the fact that surrogates of the Hessian of F are heavily structured, second-
order information can be used to solve NTF at a reasonable cost56. Limited-memory BFGS has also been
employed when scalability is required57. To enforce the nonnegativity constraints, one can for instance
square the variables, or use a variational approach (such a log-barrier).

• Primal-Dual optimization: the alternating direction method of multipliers has been tested for NTF, with
however less promising results than its block-coordinate counterpart discussed below, see58.

• Conjugate gradient: it has been reported that conjugate gradient can be used to solve NTF by squaring the
variables; see59.

Block Coordinate Descent (BCD) Methods
Other than the above mentioned algorithms, BCD has become a standard and efficient scheme for solving NTF,
mainly because (1) it essentially has cheap computation cost in each block update (BCD fixes all blocks except for
one), (2) BCD can make use of recent developments in convex constrained optimization to efficiently solve NTF
with respect to each block, and (3) under some suitable assumptions, many first-order BCDs and their accelerated
versions have convergence guarantee in the context of general block-separable non-convex composite optimization
problem that subsumes NTF as a special case, see for example60 and61 and the references therein. Below, we
review several block coordinate methods for solving NTF; we list these algorithms in Table 1.
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Algorithms AO-AS27 AO-ADMM58 AO-Nesterov62 A-HALS36 APG60 iBPG61

Section § 2.1.1 § 2.1.2 § 2.1.3 § 2.1.4 § 2.2.1 § 2.2.2

TABLE 1 Several block coordinate methods for solving NTF

2.1 Alternating optimization (AO) framework
When solving NTF using BCDs, the blocks of variables that are alternatively updated must be chosen. It turns out
that F is a quadratic function with respect to each matrix A(i) and therefore the optimization problem

min
A(i)≥0

F (A(1),… , A(N)) (13)

is a linearly constrained quadratic programming problem referred to as Nonnegative Least Squares (NNLS). In
particular, it is strictly convex if and only if B(p) is full column-rank. Therefore, it is quite natural to consider A(i)
as the blocks in a BCD. The AO framework, which is a standard procedure to solve NTF, alternatively (exact-
ly/inexactly) solves (13) for each block. We describe the AO framework in Algorithm 1. Note that the objective
function of AO methods decreases after each block update. Depending on how the matrix-form NNLS problem
(14) is solved, various implementations of AO algorithms can be obtained. Some of them are very efficient for
solving NTF, they are surveyed below.

Algorithm 1 Alternating optimization framework
1: Input: a nonnegativeN-way tensor
2: Output: nonnegative factors A(1), A(2),… , A(N).
3: Initialization:

(

A(1)0 ,… , A(N)0

)

.
4: for k = 1,… until some criteria is satisfied do
5: for i = 1,… , N do
6: Update A(i)k as an exact/inexact solution of

min
A(i)≥0

F
(

A(1)k ,… , A(i−1)k , A(i), A(i+1)k−1 ,… , A(N)k−1

)

. (14)
(A(i)k−1 can be used as the initial point for the algorithm used to solve (14).)

7: end for
8: end for

2.1.1 AO-AS – solving NNLS with Active Set
When A(i)k is updated by an exact solution of the NNLS problem (14), we obtain an alternating nonnegative least
squares algorithm, usually referred to as ANLS in the literature. To solve exactly the NNLS subproblem (14), active
set (AS) methods are usually rather effective and popular; see27. We will refer to AO-AS as the ANLS algorithm
where the NNLS subproblems are solved with AS.

2.1.2 AO-ADMM – solving NNLS with ADMM
Designed to tackle a wide range of constrained tensor decomposition problems and various loss functions, AO-
ADMM58 applied to NTF boils down to using several steps of a primal-dual algorithm, the Alternating Direction
Method ofMultipliers (ADMM), to solve the cascaded nonnegative least squares problems. Therefore, AO-ADMM
for NTF problem (1) is a variant of the AO framework that solves (14) inexactly.

6



2.1.3 AO-Nesterov
When Nesterov’s accelerated gradient method is applied to solve the NNLS problem in (14), we obtain AO-
Nesterov; see62, 63.

2.1.4 A-HALS
The hierarchical alternating least square (HALS) algorithm was introduced for solving the nonnegative matrix
factorization (NMF) problem min

W ≥0,H≥0
‖

‖

M −WHT
‖

‖

2
F (that is, NTF whenN = 2), and has been widely used for

solving NMF as it performs extremely well in practice; see for example35, 36.
HALS cyclically updates each column of the factor matrix A(i) by solving an NNLS problem with respect to

that column while fixing the others. The optimal solution of this NNLS subproblem can be written in closed form.
A-HALS, which is short for accelerated HALS, was proposed in64 to accelerate HALS. A-HALS repeats updating
each factor matrix several times before updating the other ones. Hence A-HALS can be considered as a variant of
the AO framework where each NNLS is inexactly solved itself by a BCD with closed-form updates. Let us briefly
describe A-HALS for solving NTF. The NNLS problem (14) of A-HALS is inexactly solved by repeating cyclically
updating the columns ofA(i)k−1. In particular, letM = X(i),W = A(i)k−1, andH = A(N)k−1⊙…A(i+1)k−1 ⊙A

(i−1)
k …⊙A(1)k .

The j-th column of A(i)k−1 is updated by

W∶,j =
max

(

0 , MHT
j,∶ −

∑

l≠jW∶,lHl,∶HT
j,∶

)

‖

‖

‖

Hj,∶
‖

‖

‖

2
.

It is worth noting that A-HALS for NTF has subsequential convergence guarantee (that is, every limit point is a
stationary point of the objective function), see65, Section 7.

2.2 Block proximal gradient type methods
The NNLS problem (14) does not have a closed-form solution. From Equation (12), we see that F , when
restricted to A(i), is a L(i)-smooth function, that is, the gradient ∇A(i)F is Lipschitz continuous with the constant
L(i) = ‖

‖

‖

(

B(i)
)TB(i)‖‖

‖

, where B(i) is defined in (11). This property can be employed to replace the objective func-
tion in the NNLS problem (14) by its quadratic majorization function, that leads to a new minimization problem
which has a closed-form solution. This minimization-majorization approach, in the literature of block-separable
composite optimization problem with the block-wise L-smooth property, is known as proximal gradient block
coordinate descent method (see e.g.,61). Considering the NTF problem, the closed-form solution of minimizing
the majorization function is a projected gradient step. Applying Nesterov-type acceleration for the proximal gra-
dient step improves the convergence of the BCD algorithm. Below we review the two recent accelerated proximal
gradient BCD methods that were proposed for solving the general composite optimization problem.

2.2.1 APG – An Alternating Proximal Gradient method for solving NTF
APG was proposed by Xu and Yin60; see the Appendix of66 and60, Section 3.2 for the algorithm pseudocode. APG
cyclically update each block (a.k.a each factor matrix) A(i) by calculating an extrapolation point Â(i)k−1 = A(i)k−1 +
w(i)
k−1

(

A(i)k−1−A
(i)
k−2

)

(herew(i)
k−1 is some extrapolation parameter) and embedding this point in a projected gradient

step

A(i)k = max

(

0, Â(i)k−1 −
1

L(i)k−1

(

Â(i)k−1
(

B(i)k−1
)T − [i]

)

B(i)k−1

)

.
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After all blocks are updated, APG needs a restarting step, that is, if the objective function has increased then the pro-
jected gradient step would be re-done by using the previous values of all blocks instead of using the extrapolation
points.

2.2.2 iBPG – An inertial Block Proximal Gradient Method
Recently proposed in61, iBPG computes two different extrapolation points Â(i,1)k−1 and Â

(i,2)
k−1: one is for evaluating the

gradient and the other one for adding inertial force. iBPG updates one matrix factor using a projected gradient step

A(i)k = max

(

0, Â(i,2)k−1 −
1

L(i)k−1

(

Â(i,1)k−1

(

B(i)k−1
)T − [i]

)

B(i)k−1

)

,

see the Appendix of66 for the algorithm pseudocode. Furthermore, similarly to A-HALS, iBPG allows updating
each matrix factor some times before updating another one – this feature would help save some computational
costs since some common expressions can be re-used when repeating updating the same block. iBPG does not
require a restarting stepwhichmake it suitable for solving large-scale NTF problemswhere evaluating the objective
functions is costly.

3 MAKING BCD SIGNIFICANTLY FASTERWITH HER

With modern machine learning applications of NTF in mind, for which input tensor sizes can be extremely large
and NTF should be provided as a low-level routine, there would be a definite economical and scientific gain to
speeding up NTF algorithms. Radically different approaches exist in the literature to speed up existing algorithms
for solving NTF, such as parallel computing67, 68, compression and sketching69, 70. The combinations and rela-
tionships between these methods is poorly understood. In this paper, we focus on the acceleration of BCD using
extrapolation.
Extrapolation inside BCD algorithms such as the workhorse ALS algorithm has been studied in the tensor

decomposition literature as an empirical trick to speed up computations and avoid swamps, see Section 3.3. How-
ever, in a recent work on rank-one approximations of rank-two tensors, Gong, Mohlenkamp and Young71 used
gradient flow to study transverse stability, and provided a deeper analysis of the optimization landscape of tensor
low-rank approximation which further supports the use of extrapolation.
As reviewed in §2.2, we have seen that APG and iBPG accelerate block proximal gradient methods by using

extrapolation points in the projected gradient step to update each factor matrix. In another line of works, AO
(Algorithm 1) was accelerated by using extrapolation between each block update (rather than inside the block
update as in APG and iBPG); in other words, each factor matrix is updated by the extrapolation between previ-
ous updated factors. In the literature of tensor decomposition, the second type of extrapolation has been used to
accelerate alternating least squares algorithms for solving CPD. Those works will be reviewed in § 3.3. In the fol-
lowing, we introduce HER - a novel extrapolation scheme that can be categorized into the class of accelerated AO
algorithms using extrapolation between block update.

3.1 Heuristic Extrapolation with Restarts (HER)
HERwas first proposed for solving NMF in11, and found to be extremely effective on NTF in a preliminary work72.
The sketch of HER was given in the introduction and its pseudo-code is given in Algorithm 2. In the following,
we elaborate on HER with more details.
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Algorithm 2 HER
1: Input: a nonnegativeN-way tensor
2: Output: nonnegative factors A(1), A(2),… , A(N).
3: Initialization: Choose �0 ∈ (0, 1), � ≥ ̄ ≥  ≥ 1 and 2 sets of initial factor matrices

(

A(1)0 ,… , A(N)0

)

and
(

Â(1)0 ,… , Â(N)0

)

. Set �̄0 = 1 and k = 1.
4: for k = 1,… until some criteria is satisfied do
5: for i = 1,… , N do
6: Update step Let A(i)k be an exact/inexact solution of

min
A(i)≥0

F
(

Â(1)k ,… , Â(i−1)k , A(i), Â(i+1)k−1 ,… , Â(N)k−1

)

. (15)

7: Extrapolation step
Â(i)k = max

(

0, A(i)k + �k−1(A
(i)
k − A

(i)
k−1)

)

. (16)
8: end for
9: Compute F̂k ∶= F

(

Â(1)k , Â
(2)
k ,… , Â(N−1)k , A(N)k

)

.
10: if F̂k > F̂k−1 then
11: Set Â(i)k = A(i)k , i = 1, ..., N % abandon the sequence Â(i)k
12: Set �̄k = �k−1, �k = �k−1∕�. % Update �̄, decrease �
13: else
14: Set A(i)k = Â(i)k , i = 1, ..., N . % keep the sequence Â(i)k
15: Set �̄k = min{1, �̄k−1̄}, �k = min{�̄k−1, �k−1}. % Increase �̄ and �
16: end if
17: end for

3.1.1 Update step – line 6
It is clear that Algorithm 2 has the form of an alternating optimization framework in which the key optimization
sub-problem (15) is a NNLS problem. As reviewed in § 2, some efficient algorithms for the NNLS problem (15)
include AS, ADMM, Nesterov’s accelerated gradient, or A-HALS. The main difference between AO and HER
is that HER does not use the latest values of the other blocks A(j) (j ≠ i) but employs the latest values of their
extrapolation Â(j) (j ≠ i). For convenience, we refer to

{

Â(i)k , i = 1,… , N
}

k≥0
as the extrapolation sequence.

3.1.2 Extrapolation step – line 7
After the update of A(i)k , the same block of the extrapolation sequence Â(i)k is updated by extrapolating A(i)k along
the direction A(i)k − A

(i)
k−1, see (16). Note that Â

(i)
k produced by (16) is always feasible. It is possible to remove the

projection in (16), but we do not consider such approach in this work. Note that, regarding feasibility,A(i)k produced
by line 6 of Algorithm 2 is always feasible regardless of the feasibility of Â(i)k .

3.1.3 The restart mechanism – lines 9-16
After the update-extrapolate process on all the blocks, a restart procedure is carried out to decide whether or not
we replaceA(i) (1 ≤ i ≤ N) with the extrapolation sequence. The command in line 14 of Algorithm 2 has the same
spirit with the update in (24) where the factor matrices are updated by the extrapolation between block update.
It may raise a question why F

(

A(1)k−1,… , A(N)k−1

)

does not appear in the restarting condition – line 10. The answer
is due to the practicality of the algorithm. As stated in11, using F as the restart criterion is computationally much
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more expensive than using the approximate F̂ . When computing F̂ , no explicit computation is required; instead,
one may reuse already computed components from the updates of A(N) and Â(N). This creates an important reduc-
tion of computational complexity. For example, let us consider an order-N NTF problem with factor matrices
{

A(i)
}

i=1,2,…,N with size I1×r, I2×r,… up to IN ×r. Reusing already computed components (such as gradient) in
the update of the last block (A(N), Â(N)), we can compute F̂ (Â1,… , ÂN−1, AN ) under INrN−1 flops. However, if
we compute F (A1,… , AN ), it takes

∏N
i=1 Ii flops. If r

N ≪
∏

i Ii, then such reduction in complexity from
∏N

i=1 Ii
to INrN−1 is significant even whenN is low. Furthermore, we can even rotate the tensor such that IN is the mode
with the smallest size among all the modes. In fact, computing the cost function naively can be as costly as one
block update, and thus using F̂ instead of F as the restart criterion is important, since restart using F requires
computing the cost function at each iteration, while restart using F̂ is much cheaper.
Moreover, note that if the iterates sequence is converging, then the extrapolated sequence also converges to

the same limit point. Therefore, since F is a continuous map, if convergence of the iterates is observed then the
surrogate cost F̂ will asymptotically converge to the same final value as F . Although we did not characterize how
fast this convergence happens, this justifies to use F̂ as a surrogate at least near a stationary point.

3.1.4 The extrapolation parameters in lines 9-16
The extrapolation weight �k is computed within the restart mechanism of lines 9-16 of Algorithm 2, and it is
updated using four parameters; see Table 2.

Symbol Name Setting Range Requires tuning?
�k Extrapolation weight update as (17) [0, 1] Yes for �0
 Growth rate of � constant [̄ , �] Yes
� Decay rate of � constant [,∞) Yes
̄ Growth rate of �̄ constant [1, ] Yes
�̄k Upper bound for � update as (18) [�k, 1] No, �̄0 = 1

TABLE 2 Parameters in the HER scheme

In the initialization stage, we set the upper bound for � as �̄0 = 1, pick �0 ∈ (0, 1), and select �,  and ̄ such
that 1 < ̄ ≤  ≤ �. The parameter �̄, which is initialized as 1, is called the upper bound parameter for �. This
parameter is used to limit the growth of �; see below for more details. The parameter  is called the (multiplicative)
growth rate of �: when the error decreases, � is updated with �. Similarly ̄ is the (multiplicative) growth rate of
�̄. Finally, � is called the decay rate of �. This value is used to update � with �∕� when the error increases. The
parameters (, ̄ , �) are fixed constants, while � and �̄ are updated depending on the restart condition.

The update of �
HER updates �k as

�k+1 =
{

�k∕� if F̂k+1 > F̂k
min{�k, �̄k} if F̂k+1 ≤ F̂k

, (17)

which is explained as follows :

• If restart occurs, that is, if F̂k+1 > F̂k, we assume it is caused by an over-sized �k (recall that, for �k = 0,
decrease is guaranteed by the update in line 6) and we shrink the value of � for the next iteration using the
decay parameter � as in (17).

10



• Otherwise, F̂k+1 ≤ F̂k, and we assume �k can safely be increased. We grow � for the next iteration as �.
To prevent � grow indefinitely, we use an upper bound �̄ as in (17).

The update of �̄
HER updates �̄k as follows

�̄k+1 =
{

�k if F̂k+1 > F̂k
min{̄ �̄k, 1} if F̂k+1 ≤ F̂k

. (18)

The explanations are as follows :

• If there is no restart, that is, if F̂k+1 ≤ F̂k, �̄ is increased if �̄ is smaller than 1.

• Otherwise F̂k+1 > F̂k and �̄k+1 is set to �k to prevent �k+1 growing larger than �k too fast in the future. In
fact, �k indicates a too large value for � since the error has increased.

Let us make a few remarks:

• The relationships between the parameters in HER is as follows:

0 < �k ≤ �̄k ≤ 1 < ̄ ≤  ≤ � <∞. (19)

By construction, �k ≤ �̄k ≤ 1, while ̄ ≤  ensures that �̄ increases slower than �, while  ≤ � ensures that
� is decreased faster.

• We have observed that HER is more effective if the NNLS subproblems (15) are solved with relatively high
precision. Empirically Fig. 6 suggests to use HER with repeated projected gradient steps rather than just
a single step. The suffix 50 after the algorithms’ name in Fig. 6 means that we run 50 iterations for the
algorithms to solve (15).

• Adrawback of the HER approach is the parameter tuning. There are 4 parameters to tune: �0, , ̄ , �. However
HER is not too sensitive for reasonable values of the parameters; see Fig. 1 for an illustration. Therefore, all
the experiments in this paper are executed with no parameter tuning, even in difficult cases when data are
ill-conditioned or rank is very high; namely we will use �0 = 0.5,  = 1.05, ̄ = 1.01 and � = 1.5.

• In the implementation, we initialize Â(i)0 = A(i)0 , i = 1,… , N .

3.2 Discussion on convergence
Unfortunately, the HER framework to accelerate BCD methods for NTF cannot be guaranteed to converge using
current existing proofs in the literature. The main distinction of HER that makes it very efficient but difficult to
prove convergence is its dynamic and flexibility in the update of extrapolation parameters. Specifically, HER per-
forms a very aggressive extrapolation strategy: it extrapolates after each update of a block variable and uses that
extrapolated point for the evaluation of the next block. Moreover, as long as the objective function decreases, it
increases the extrapolation parameter � (as discussed in the previous section). The accelerated block proximal
gradient methods using extrapolation inside the block update such as APG and iBPG do not have such strategy.
Hence, although these methods have strong convergence guarantee, the way they choose extrapolation parameters
is more conservative. Our extensive experiments strongly confirm the efficacy of dynamic and flexibility in choos-
ing extrapolation parameters of HER when extrapolation between each block update is used and monotonicity of
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FIGURE 1 Comparison of HER with different parameters on the same NTF problems: a rank-10 factorization
on noiseless tensors generated by random with size 50 × 50 × 50. For each set of parameters, the decomposition
is repeated 10 times over 10 different data tensors and initializations; see § 4.1 for more details. The top plots
representing f display the error of the approximation, and the bottom plots representing e display the distance
to the ground truth factors; see (26) and (27). The default set of hyper-parameters are [�0 = 0.5,  = 1.05, ̄ =
1.01, � = 1.5]. The results here showed that HER is not very sensitive to its parameters as all the curves are not
deviating away from each other, except for the case � = 1.1, suggesting that � should not be too small.

the objective function is taken into account. Studying convergence guarantees for the HER framework would be
very challenging and is an important direction of further research.

3.3 Related works
Extrapolated AO algorithms can be traced back to a seminal work by Harshman4, in which extrapolation was
seen as a way to speed up the convergence of ALS. In this subsection we review two works on extrapolated AO
algorithm: an older one9 and a recent one10. To differentiate the extrapolation parameter used in HER (denoted as
�k), we denote the extrapolation parameter used in these works as !k.

General description
Before we provide the details about the algorithms, let us point out a very important observation: unlike
Algorithm 3.1, these algorithms use a global extrapolation parameter shared among all the blocks, and the extrap-
olation is conducted after all the blocks have been updated. That is, they first update all the blocks variables, then
stack all the blocks together to form a vector x, and extrapolate it as

xk+1 = xk+ 1
2
+ !k(xk+ 1

2
− xk), (20)

where xk+ 1
2
is the vector obtained by stacking all the blocks A(1)k ,… , A(N)k after all of them have been updated.

The algorithms9, 10 follow (20), and they differ in the way !k is computed, which we discuss below.
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Extrapolated AO algorithms with Bro’s sequence
Bro revisited and optimized the seminal work by Harshman4, and came up with an extrapolation scheme with
convincing empirical speed-ups for computing CPD: the extrapolation parameter is tuned as

!k = k
1
ℎ(k) − 1,

where ℎ(k) is a recursive function so that ℎ(k+1) = ℎ(k) if the error has not increased for more than four iterations,
ℎ(k + 1) = 1 + ℎ(k) otherwise, and ℎ(1) = 3. Moreover, no extrapolation is performed in the first few iterations
because of stability issues. Furthermore, when the error increases, the extrapolation is not performed, that is, the
extrapolated sequence is abandoned, as for HER.
Note that there is no particular modification of the Bro extrapolation scheme for aNCPD. In this paper we

implement Bro-AHALS, Bro-ADMMandBro-Nesterov – the three versions of Bro’s acceleratedmethods in which
we respectively use the same strategy using A-HALS (see § 2.1.4), ADMM and Nesterov’s accelerated gradient
method for solving the NNLS problem (14) inexactly.

Extrapolated AO algorithms with gradient ratio and line search
Recently two heuristic approaches similar to Bro’s have been proposed10, and compute !k as follows

Gradient ratio (GR): !k = ∇xFk(x)
|

|

|x=x
k+ 12

/

∇xFk−1(x)
|

|

|x=xk−1
, (21)

Linear search (LS): !k = argmin
!

F
(

xk+ 1
2
+ !(xk+ 1

2
− xk−1)

)

, (22)

where ∇xF is the gradient of F with respect to x. As for Bro’s accelerated algorithms, we implement in this paper
GR-AHALS, GR-ADMM, GR-Nesterov, LS-AHALS, LS-ADMM and LS-Nesterov where we correspondingly
use the same strategy as for A-HALS (see § 2.1.4), ADMM and Nesterov’s accelerated gradient method for (14).
Note that GR and LS are designed for aCPD but not aNCPD, and similar to Bro’s approach9, there is no

modification of the GR and LS schemes for the nonnegative decomposition case.

The modified implementation of Bro, GR and LS
The algorithmsBro, GR and LS use a global extrapolation parameter shared among all the blocks, which is different
from the extrapolation parameter �k used in HER that is tuned independently for each block. Preliminary tests have
showed that HER is always speeding up BCD algorithms much faster than Bro, GR and LS (see Fig. 7 in the next
section). Such superiority can be explained in part by the fact that the block-wise tuning of �k in HER gives HER
much more degrees of freedom than Bro, GR and LS. Hence, to make a fair comparison between the different
extrapolation strategies, we make the following modifications so that Bro , GR and LS have the same algorithmic
structure as HER.
First, the update of xk is performed block wise, that is, one A(i) at a time. Next, we extrapolate the blocks right

after they have been updated, using the same extrapolation coefficients as described in Bro, GR and LS. It is
important to note that, in the original algorithms, all the block variables are extrapolated with the same “global"
extrapolation coefficient. That is, the extrapolation coefficients for every block A(i) in the original algorithm are
the same. In the modification here, we “split" the global extrapolation coefficient into block-specific extrapolation
coefficient. For example, in GR, the update-then-extrapolate step is performed for all i as

Update: A(i)
k+ 1

2

using (14), (23)

Extrapolate: A(i)
k+ 1

2

+
‖∇A(i)Fk‖
‖∇A(i)Fk−1‖

(A(i)
k+ 1

2

− A(i)k ), (24)
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where ∇A(i)Fk is the gradient of F with respect to block A(i) at iteration k (see (12)), and A(i)
k+ 1

2

is the block A(i)

at iteration k just after the update, that is, we extrapolate the block right after it has been updated, as in HER.
Moreover, (24) uses the ratio between the norm of the gradient of the current block A and the norm of the gradient
of the same block in the last iteration. We use the same strategy on splitting the global extrapolation coefficient into
block-specific extrapolation coefficient in Bro and LS. That is, the term ‖∇A(i)Fk‖

‖∇A(i)Fk−1‖
in equation (24) is replaced by

(

k
1
ℎ(k) −1

)

in Bro, and for LS, the extrapolation parameter !k is computed by solving a minimization subproblem:
consider the update of the ith block at iteration k, we have

!k = argmin
!

F
(

A(1)k ,… , A(i−1)k , Aik + !(A
i
k − A

i
k−1), A

(i+1)
k−1 ,… , A(N)k−1

)

. (25)

By expanding F in terms of !, (25) can be expressed as a second-order polynomial in !, and hence a closed-form
solution for ! exists.

Computational cost on Bro, GR and LS compared with HER
The per-iteration cost in both GR and LS schemes is much larger than that of Bro. Both Bro, GR and LS have
restart, but Bro’s extrapolation parameter is basically a scalar computation, while GR has multiple matrix-matrix
multiplications and LS even has to solve a minimization sub-problem:

• Here we solve (25), which is a second-order polynomial in !, exactly.

• For (22), for a 3rd-order NCPD problem, we need to minimize a sixth-order polynomial in !.

• In general, for a N-order NCPD problem, we need to minimize a 2N-order polynomial in !. Let x =
[A(1),… , A(N)] denotes the stacking of the block into vector3, then

�k = argmin
!

F
(

xk+ 1
2
+ !(xk+ 1

2
− xk−1)

)

= argmin
!

F

(

[

A(1)
k+ 1

2

,… , A(N)
k+ 1

2

] + !
(

[

A(1)
k+ 1

2

,… , A(N)
k+ 1

2

]

− [A(1)k−1,… , A(N)k−1]
)

)

(7)
= argmin

!

1
2

‖

‖

‖

‖

‖

 −

( N
⨂

a
i=1

(

A(i)
k+ 1

2

+ !
(

A(i)
k+ 1

2

− A(i)k−1
)

)

)

r
‖

‖

‖

‖

‖

2

F

.

We can see the cost of computing the coefficients for the polynomial can potentially be very high. Due to
such reason, in the original paper, the !k in (22) is solved approximately using cubic line search in the
Poblano toolbox.

• As pointed out in11, exact line search has bad performance in NMF, so we believe this is the same for LS,
for both the original form and the modified form.

In general, the per-iteration cost of the extrapolation step in Bro’s extrapolation is negligible, while for GR is higher
than one ALS, and for LS it is much higher than one ALS. For this reason, we only run the modified LS in the
numerical tests, i.e., (25), and we will see that, often LS performs the worst in the experiments, see for example
Fig. 7.

Remarks on Bro, GR and LS compared with HER
In the numerical experiments, we will compare the original form of Bro, GR, LS, as well as the modified version.
There are several remarks on Bro, GR and LS.

3Here it is not the Kruskal notation (5).
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Algorithms Reference
HER-AS, HER-ADMM, HER-Nesterov, HER-AHALS § 3.1
AO-AS, AO-ADMM, AO-Nesterov, AHALS § 2.1
Bro-ADMM, Bro-Nesterov, Bro-AHALS § 3.3
GR-ADMM, GR-Nesterov, GR-AHALS § 3.3
LS-ADMM, LS-Nesterov, LS-AHALS § 3.3
APG, iBPG § 2.2

TABLE 3 Algorithms for solving NTF

• There are two sequences A(i) and Â(i) used in HER, while there is no auxiliary sequence in Bro, GR and LS:
that is, the extrapolation in these approaches is conducted on the same block A(i).

• By splitting of the extrapolation coefficient into block extrapolation coefficients, the original GR and LS are
improved as the !k in the new GR and LS are more adapted to each block variable.

• As Bro, GR and LS are designed for aCPD but not aNCPD, and similar to Bro’s approach9, there is no
modification of the GR and LS schemes for aNCPD. This means that there is no guarantee on feasibility of
the iterates produced by these methods for aNCPD.

4 EXPERIMENTS

In this section, we empirically prove the efficacy of HER by extensively test its performance on a rich set of
synthetic data sets as well as real data sets. As presented in § 3.1, HER is a scheme to accelerate AO algorithms by
using extrapolation between block update; and as such, by using HER, we can derive several different algorithms
corresponding to the solver we use for the NNLS problem (15). We stress out that HER can be used in combination
with any BCD algorithm to make it faster. In this section, we combined it with the most well-known algorithms
to tackle NTF, namely AS, ADMM, Nesterov accelerated gradient and AHALS for solving (15), which we denote
by HER-AS, HER-ADMM, HER-Nesterov and HER-AHALS, respectively. We call HER-AO the set of these
algorithms. Table 3 lists the algorithms that we implement and test in our experiments. Note that our goal is not
to compare these various algorithms, but to show that HER can accelerate all of them significantly.
All experiments are run with MATLAB (v.2015a) on a laptop with 2.4GHz CPU and 16GB RAM. The code is

available from https://angms.science/research.html.

Remark 1. In this paper, we focus on dense NTF problems, for which the input tensor has mostly positive entries.
However, the HER framework can also be applied to sparse tensors. This was in fact done for NMF in11 with
similar conclusions, that is, HER can accelerate algorithms significantly for sparse data sets as well. The problem
with sparse data is not the algorithm itself, but rather its implementation. Handling sparse data also means dealing
with extremely large dataset, which we cannot deal with our current implementation in Matlab. This could be fixed
by integrating the proposed HER framework within a toolbox which features efficient sparse tensor manipulations
and contractions, see for instance73 and the references therein. We leave an efficient implementation of the HER
framework for very sparse and large tensors for future works.
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4.1 Set up
Performance measurement
Two important factors in the evaluation of the performance of an algorithm are the data fitting error and the factor
fitting error that are computed as follows. We use the value of the objective function

fk ∶= F
(

A(1)k , A
(2)
k ,… , A(N−1)k , A(N)k

)

(26)

to represent the data fitting error. Supposing the ground truth factor matrices A(i)true, i = 1… , N are available, then
we compute the factor fitting error ek as

ek ∶=
1
N

N
∑

i=1

‖

‖

‖

normalize(A(i)true) − normalize(A(i)k )Π
‖

‖

‖F
‖

‖

‖

normalize(A(i)true)
‖

‖

‖F

. (27)

Here normalize(⋅) is the column-wise normalization step (i.e., the i-th column of normalize(A) is set to A(∶,j)
‖A(∶,j)‖2

),
and Π is the permutation matrix computed through the Hungarian algorithm. The use of Π is to remove the per-
mutation degree of freedom for matching the columns of A(i) to the column of A(i)true, and the use of normalization
is to remove the scaling degree of freedom for matching the columns of A(i) to the column of A(i)true.

Generate a synthetic data
To generate a synthetic tensor, we first generate ground truth factor matrices A(i)true ∈ ℝIi×r

+ , i = 1,…N whose
entries are sampled from i.i.d. uniform distributions in the interval [0, 1]. The tensor  clean ∈ ℝI1×⋯×IN

+ is then
constructed from A(i)true, i = 1,…N . Finally, we form a synthetic data  by adding some noise to  clean,  =
max(0,  clean + �), where � ≥ 0 is the noise level, and  ∈ ℝI1×⋯×IN is a tensor whose entries are sampled from
a unitary centered normal distribution.

Initialization, number of runs and plots
For each run of an algorithm, we use a random initialization, i.e., the initial factor matrices A(i)0 , i = 1,… , N ,
are generated by sampling uniform distributions in [0,1]. Note that, testing a specific data tensor, we use the same
initialization in one run of all algorithms. We run all the algorithms 20 times with 20 different initializations. We
stop one run of an algorithm when the maximum time (which is chosen before running the algorithms) is reached.
In presenting the results, we plot f −fmin; and if the ground truth is known, we also plot e− emin. Here fmin and

emin are respectively the minimal value of all the data fitting errors and the factor fitting errors obtained across all
algorithms on all runs. In noiseless settings (� = 0), exact factorization is possible, so we set fmin = 0. In order to
have a better observation of the performance of the algorithms, we plot the curves with respect to both time and
iterations 4. We remark that, “an iteration” for AO algorithms means the counter k of the outer loop after all blocks
being updated. Regarding the time evaluation, we record the time stamp for each iteration, and then perform a
linear interpolation to synchronize the time curves. Note that such linear interpolation does not reflect 100% truly
the real convergence behaviour as it is just an linear estimate, but we consider such estimate to be accurate enough.
In our experiment, we emphasize on plotting the median curves of the 20 runs (which are the thick curves in

the upcoming figures), because there may be large deviations between different runs.

4We do not report the number of MTTKRP (Matricized tensor times Khatri-Rao product) as all the algorithms in the experiments (except for AS)
share the same number of MTTKRP (which isN for an tensor with orderN), so the performance in terms of number of MTTKRP is contained implicitly
in the plot with respect to the iterations.
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Solving the NNLS problem (14) and (15)
When using AS, ADMM, Nesterov’s accelerated gradient descent algorithm or AHALS to solve (14) or (15), in
our implementation, we terminate the solver when the number of iterations reaches 50 or when ‖A(i)s − A

(i)
s−1‖ ≤

10−2‖A(i)0 − A
(i)
1 ‖, where s is the iteration counter of the solver.

Parameter set up for HER
We use the following set of parameters for HER-AO (unless otherwise specified): �0 = 0.5,  = 1.05, ̄ = 1.01, � =
1.5, and (16) is used for the extrapolation point.

List of experiments
Table 4 lists the figures that report our diverse experiments on synthetic data and real data sets. All the experiments
haveN = 3 and the input tensor is dense.

Complete numerical experimental results
We refer the interested reader to the appendix of the arXiv version of the current paper66 for all the numerical
experiments as reported in Table 4. The conclusions remain the same: HER significantly accelerate the convergence
of BCD algorithms, while the HER-BCD outperforms both iBPG and APG.

Fig. Test description [I1, I2, I3, r, �]
Synthetic data

2 Cube size, low rank, noiseless [50, 50, 50, 10, 0]
2 Unbalanced size, low rank, noiseless [150, 103, 50, 12, 0]
3 Unbalanced size, larger rank, noiseless [150, 103, 50, 25, 0]
4 Large cube size, low rank, noisy [500, 500, 500, 10, 0.01]
5 Unbalanced size, low rank, noisy, ill-condition [150, 103, 50, 12, 0.001]
6 HER-AO-gradients compared with APG and iBPG [150, 103, 50, 10, 0.01]

7 Comparing {HER,Bro,GR,LS}-AHALS
[50, 50, 50, 10, 0]

[150, 103, 50, 12, 0.01]
[150, 103, 50, 25, 0.01]

Real data

8 Two HSI images : PaviaU and Indian Pine [610, 340, 103, 10]
[145, 145, 200, 15]

9 Big data : black-and-white video sequence [153, 238, 1.4 × 104, {10, 20, 30}]

TABLE 4 List of experiments on NTF.

4.2 Experiments on synthetic data sets
As listed in Table 4, the experiments on synthetic data sets are designed to simulate different kinds of situations
that may occur in real applications, which includes : low rank, larger rank, noiseless, noisy, tensor with balanced
size (cubic tensor), tensor with unbalanced size (rectangular tensor), and ill-conditioned tensor.
Figure 2, 3 4 and 5 illustrates that HER-ADMM and HER-AHALS significantly outperform their counterparts

AO-ADMM and AHALS in term of both fk and ek. We stress that the improvement is often of several orders of
magnitude (at least 104 in most cases). We observe the same result for HER-AS and HER-Nesterov vs AO-AS and
AO-Nesterov.
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Compared with APG and iBPG, we observe from Fig. 6 that HER-Nesterov outperforms both APG and iBPG
in term of f and significantly outperforms them in term of e. From extensive experiments, we observe that HER,
the scheme that makes use of the extrapolation between block update scheme, shows much better performance
than APG and iBPG, the accelerated block proximal gradient methods that use Nesterov-type extrapolation inside
each block update.
Compared with Bro-AHALS, GR-AHALS and LS-AHALS, Fig. 7 shows that our HER-AHALS performs the

best in the three experimental settings (only median is plotted here). Note that since the acceleration frameworks
Bro, GR and LS are not designed for NTF, it is possible the iterates produced by these frameworks are infeasible.
Here we only compare HER-AHALS with Bro- AHALS, GR- AHALS and LS- AHALS; the comparison of these
methods where AHALS is replaced with AO-ADMM and AO-ADMM are available in the Appendix of66, and
similar conclusions are drawn, namely that HER outperforms the other accelerations.
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FIGURE 2 Convergence of algorithms : A-HALS and AO-ADMM without HER (solid purple) and with HER
(dotted orange), on standard test case (top) : [I1, I2, I3, r] = [50, 50, 50, 10] and unbalanced sizes (bottom)
[I1, I2, I3, r] = [150, 103, 50, 12]. The results show that HER improves the convergence significantly, the con-
vergence in both f and e for HER-accelerated methods are already multiple-order of magnitude better than the
un-accelerated algorithms. Notice that due to a higher per-outer-iteration cost, ADMM-based algorithms (AO-
ADMM and HER-AO-ADMM) run fewer number of outer-iteration than the AHALS-based algorithms. See the
Appendix of66 for the results on other algorithms where we observe a similar behaviour.
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HER improves the convergence speed significantly. See Fig. 2 for the plot set up, and the Appendix of66 for the
results on other algorithms.
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algorithms.
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FIGURE 7 Comparing AHALS with different acceleration frameworks on synthetic datasets on 3 setting of
[I1, I2, I3, r, �]. The curves are the median in f (k) − fmin. The x-axis is the number of iteration, and all algorithm
run with same run time limited. These results show that that (1) HER-AHALS performs better than all other algo-
rithms, and (2) the modified Bro and GR algorithms perform better than their original counterpart; see subplot(a),
while we do not show the result by Bro and GR in their original form in other subplots because they performworse.
Note that LS and GR run less number of iterations due to their larger per-iteration cost. Bro’s approach has lower
per-iteration cost, but it is even slower than vanilla AHALS. See the Appendix of66 for more results.
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4.3 On real data
Two hyper-spectral images
We test the performance of the algorithms on two hyperspectral images (HSI) PaviaU and Indian Pines 5. They are
nonnegative 3rd-order tensor; PaviaU has size [610, 340, 103]with r = 10 and Indian Pines has size [145, 145, 200]
with r = 15. The r chosen are commonly used in practice.
We perform minimal pre-processing on the raw data : NaN or negative values (if any) are replaced by zero.

Hence, it is possible the pre-processed data contains many zeros and being ill-conditioned. Figure 8 reports the
performance of HER-AHALS, HER-ADMM and their counterparts AO-AHALS and AO-ADMM on the two data
sets. As there are no ground truth factors, we only show f in the results.
We observe that there are multiple swamps, which are common for real datasets as the data are highly

ill-conditioned (the condition numbers of the metricized pre-processed data tensor along all modes are
[593, 642, 1009] for Indian Pines and [944, 462, 8083] for PaviaU). Nevertheless, considering the “best case”
among the trials, HER-AHALS and HER-ADMM provide solutions with error 108 − 1010 times smaller than the
best case of their un-accelerated counterparts. To compare with other algorithms, the readers can view the results
in the Appendix of66. We observe that iBPG, APG and the AO (AO-AHALS and AO-ADMM) algorithms accel-
erated by GR, Bro and LS schemes are much slower than our AO (AO-AHALS and AO-ADMM) algorithms
accelerated by HER. GR-AO and Bro-AO (for AO being AO-AHALS or AO-ADMM) even sometimes diverge.

On big data : video sequences
We test HER-AHALS on the video data of the UCSDAnomaly Dataset74. Constructed by combining all the frame
images of 70 surveillance video in the dataset, we have a tensor with sizes 153 × 238 × 14000, where the first
two modes are the screen resolution and the third mode is the number of frame. No pre-processing is performed
on the raw data. Data of such size is too big to store in our computer memory, so we perform compression using
Tucker decomposition, based on the built-in function from the Tensor toolbox75. We compare AHALS and HER-
AHALS with r ∈ {10, 20, 30}. Results in Fig. 9 shows that HER-AHALS performs much better than AHALS. For
the details on how HER works with Tucker compression, see the Appendix of66.
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FIGURE 8 The results on HSI data. For the plot set up, see Fig. 2. Results show HER improve convergences. See
the Appendix of66 for more results.

5Data available from http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
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FIGURE 9 On video data [153, 238, 14000] for three values of r. Results show HER improve convergence and
works well with Tucker-based compression.

As a conclusion for this section, we give some remarks on HER-AO. From our extensive experiments, we observe
that HER-AS has inferior performance than others when the data is either big in size, high rank, or ill-conditioned.
When the data has small size, all HER-AO algorithms have similar performance, and they all outperform their
un-accelerated counterpart algorithms in term of both time and iteration. Among HER-AO algorithms, we highly
recommend HER-AHALS for NTF as it shows good performance in all experiments.

5 DISCUSSION AND CONCLUSION

In this paper, we have proposed an extrapolation strategy in-between block updates, referred to as heuristic extrapo-
lation with restarts (HER), for improving the empirical convergence speed of block-coordinate descent algorithms
for approximate nonnegative tensor factorization (NTF). HER significantly accelerates the empirical convergence
speed of most existing block-coordinate algorithms for dense NTF, in particular for challenging computational
scenarios, while requiring a negligible additional computational budget. The core of HER is to apply a special
extrapolation-restart mechanism that aims to reduce the computational cost of restart while making sure the restart
criterion follows the standard function restarts. The performance of HER was verified by the experiments reported
in this paper. In all scenarios, HER-AHALS provides among the best results hence we recommend its use in
practice.
Future works include deriving theoretical convergence for HER, and to apply it on other challenging applica-

tions.
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