
Towards Higher-Level Synthesis and Co-design with Python
Alexandre Quenon

alexandre.quenon@umons.ac.be
University of Mons
Mons, Belgium

Vitor Ramos Gomes da Silva
vitor.ramosgomesdasilva@umons.ac.be

University of Mons
Mons, Belgium

ABSTRACT
Several methods have arisen to fasten the hardware design process.
Among them, the high-level synthesis (HLS), i.e., the use of a higher-
level programming language than the usual Verilog or VHDL to
create an implementation of a register transfer level (RTL). In this
paper, the direction towards even higher-level synthesis is promoted
with the use of Python as a high-level language/interface. Existing
HLS frameworks and high-level hardware description languages
are reviewed, then strategies to use Python code directly on the
hardware are proposed. This brings the power of scientific high-
level computation libraries of Python to the hardware design, which
we believe is the ultimate goal of HLS.

KEYWORDS
FPGA, framework, hardware description language (HDL), high-
level synthesis (HLS), Python.

1 INTRODUCTION
Over the past decades, huge efforts have been deployed to increase
the speed and throughput, as well as to decrease the latency of
communications and data processing. This is particularly critical
for real-time applications, such as slow-motion full HD cameras or
autonomous vehicles.

One of the technological answers to this issue is the so-called
hardware acceleration, which consists of using circuits instead of
computations to speed up the processing. A well-known example is
the use of a Field Programmable Gate Array (FPGA) together with
a CPU or a GPU.

Unfortunately, hardware acceleration is not easily accessible
to software developers. Indeed, it requires skills in hardware de-
scription languages (HDLs), which have a design flow and design
constraints quite different from other programming languages. In
addition, the development of digital circuits has a longer time-to-
market than pure software. Fortunately, two facts have started to
mitigate this issue: (1) the adoption of FPGAs, which have a far
shorter time-to-market than Application-Specific Integrated Cir-
cuits (ASICs), and (2) the rise of the so-called high-level synthesis
(HLS), which consists in coding in a more usual “high-level” pro-
gramming language that will be used to generate an HDL (Verilog
or VHDL, typically) or directly the RTL view. This assessment can
be generalized not only to hardware acceleration, but also to any
digital hardware development.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
LATTE ’21, April 15, 2021, Virtual, Earth
© 2021 Copyright held by the owner/author(s).

In this paper, we promote the idea to go further in the concept of
high-level synthesis and co-design thanks to the Python program-
ming language. We believe that making hardware and software
designers work closer will fasten production and generate inno-
vation. We start by reviewing shortly the existing frameworks for
HLS, as well as higher-level HDLs, in section 2. Then, in section 3,
we focus on Python and propose strategies of hardware accelera-
tion to use this high-level language directly on an FPGA. Section 4
summarizes the main ideas and draws the conclusions.

2 A SHORT OVERVIEW OF HIGH-LEVEL
SYNTHESIS FRAMEWORKS AND
HARDWARE DESCRIPTION LANGUAGES

On the one hand, many high-level hardware description languages
have been designed for more than twenty years. On the other
hand, a few frameworks dedicated to high-level synthesis have
been created since the well-known Vivado HLS from Xilinx was
released. Depending on the (self-) definition, the nature of the tool’s
or framework’s output can be either another HDL, such as Verilog or
VHDL, or a direct implementation of an RTL view. Nevertheless, in
the remaining text of this article, no more distinction between HLS
and HDL will be made, as the discussion focuses on the possibility
to design the hardware in a high-level language.

Here below follows a selection of such high-level frameworks,
sorted by first impacting publication, in chronological order:

1998 Lava [4], created in Haskell;
2008 Kiwi [10], written in C#;
2010 Clash [2], also in Haskell;
2011 FloPoCo [6], made in C++;
2012 Chisel [3], designed in Scala;
2012 Vivado HLS [14], enabling C and C++;
2013 LegUp [5], built in C;
2014 PyMTL [12, 13], written in Python;
2018 LeFlow [15], created in Python;
2021 PyLog [11], also in Python.

It is interesting to note that there is no correlation between the
date of the release of the framework and the date of creation of the
language used to design it.

All those frameworks have in common that they provide to the
user facilities to generate commonly used HDLs, i.e., Verilog and
VHDL, or even to create directly an implementation of the RTL
view of a digital circuit. Some of them specifically target FPGAs.

However, the most important feature is not the language itself,
but what it can enable and provide if used for high-level synthesis.
In this way, our opinion is that Python can play a major role in
the future because of the powerful scientific computation libraries,
such as NumPy, and the tools dedicated to artificial intelligence,
e.g., the application programming interface (API) with TensorFlow.



LATTE ’21, April 15, 2021, Virtual, Earth AlexandreQuenon and Vitor Ramos Gomes da Silva

Even though, in most cases, Python is a high-level wrapper to
C/C++ optimized libraries. These, and the rapid growth in artificial
intelligence applications, might explain that the three more recent
frameworks have been designed in Python.

To summarize, Python offers high-level programming capabili-
ties, as well as powerful APIs to scientific computation and artificial
intelligence libraries. By nature of the language, the software com-
munity is already organized in two teams working together: the
core developers, who write the low-level, optimized libraries, and
the application developers, whowrite the Pythonmodules and pack-
ages for dedicated applications or usages. Consequently, hardware
developers could find their legitimate position in the community, in
conjunction with the core developers, to offer high-level synthesis
and hardware acceleration to “pure” software users. In the end,
this would simplify and accelerate co-design of hybrid hardware-
software solutions.

3 STRATEGIES FOR PYTHON
IMPLEMENTATION ON FPGAS

To restrain the discussion, only the strategies to implement high-
level synthesis with Python on an FPGA will be discussed. In other
words, we are looking for the possibilities to “execute” a Python
code with an FPGA. To do so, three main strategies can be chosen:

(1) the direct execution of the Python bytecode [7, 8],
(2) writing hot functions in the FPGA, i.e., commonly executed

functions [9, 16], and
(3) writing a transpiler [1].

3.1 Direct execution of the Python bytecode
The first proposed strategy is the direct execution of the Python
bytecode, i.e., creating a CPU architecture capable of decoding
Python directly inside the FPGA.

Advantages—This could considerably reduce the execution time
even compared to JIT (just-in-time compiler) solutions since the
applicationwould run like a standalone binarywithout an operating
system, and there would be no need for an extra layer of translation
from Python to native binary code.

Drawbacks—All built-in functions have to be implemented in
the architecture. For the pure Python code, this is feasible. The
problem arrives when we try to include external libraries that use
c-bindings, which are considered built-in. Thus to execute external
libraries, the c-binding functions also have to be implemented in the
architecture. Finally, catching up with the software development
speed is a big challenge.

3.2 In-FPGA implementation of hot functions
Another option can be to implement hot functions in the FPGA.
This strategy is commonly used with GPU’s libraries that need
heavy computations, like TensorFlow and OpenCV, to implement
operations like convolution and matrix multiplication in the GPU.
The same could be done for the FPGA, picking a widely used library
like NumPy and implementing the hot functions inside the FPGA.

Advantages—We can expect a small speedup compared to the
GPU due to the specific architecture since GPU also has special
hardware for this but with the scalability mindset.

Drawbacks—Itwould be hard to competewith GPUs in scale since
implementing the same hardware would take a lot more space in the
FPGA, and generally cannot reach the same clock frequency. Also,
GPUs can switch kernels a lot faster than an FPGA can reprogram.

3.3 Transpiler
The last approach would be to write a transpiler for Python code
to some hardware description language like Verilog or VHDL to
identify patterns in the code that could be written in the FPGA.

Advantages—Reduction in the execution time for some parts of
the code.

Drawbacks—Writing a good transpiler is a challenger since we
need to identify patterns worth putting in the FPGA, considering
time wasted with data transmission. Also, creating the hooks to
the original to switch between CPU and FPGA can create some
overhead [9]. Another difficulty is to ensure that new bitstreams are
not needed to be created on the fly in circumstances that involve
recompilation (e.g., due to changing array shapes).

4 CONCLUSION
Python is a powerful high-level language with a rich ecosystem of
APIs to scientific computation and artificial intelligence libraries.
It offers then a “natural” way to gather software and hardware
developers in the design of the core, low-level, optimized libraries,
that would be used at high-level in pure Python. This would facil-
itate co-design of hybrid hardware-software architectures, going
to a higher-level synthesis than that is currently available on the
market.

There are several possibilities to implement Python function
on an FPGA to offer the high-level synthesis. Each strategy has
its advantages and disadvantages, and the choice depends on the
project’s restrictions. For instance, the strategy of implementing
a Python processor can yield speedups as high as 200× as shown
in the work of Fumero et al. [8] but can be very time-consuming
and complex. Hybrid strategies such as implementing only the hot
functions can be more straightforward and still have significant
speedups; in the work of Skalicky et al. [16] they achieved 39×
speedup besides showing that the overheads were minimal. Finally,
the transpiler strategy is probably the one that can provide the
highest speedups in theory since it is specialized hardware for the
entire application. However, writing the transpiler is a big challenge.

REFERENCES
[1] Truls Asheim, Kenneth Skovhede, and Brian Vinter. 2016. VHDL Generation

From Python Synchronous Message Exchange Networks. In Proceedings of Com-
municating Process Architectures 2016, Vol. 38. Open Channel Publishing Ltd,
Copenhagen, Denmark.

[2] Christiaan Baaij, Matthijs Kooijman, Jan Kuper, Arjan Boeijink, and Marco
Gerards. 2010. ClaSH: Structural descriptions of synchronous hardware us-
ing Haskell. In Proceedings of the 13th Euromicro Conference on Digital System
Design: Architectures, Methods and Tools. IEEE, Lille, France, 714–721. https:
//doi.org/10.1109/DSD.2010.21

[3] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman,
Rimas Avižienis, John Wawrzynek, and Krste Asanović. 2012. Chisel: Construct-
ing hardware in a Scala embedded language. In Proceedings of the 49th Design
Automation Conference, 49th DAC. IEEE, San Francisco, CA, USA, 1216–1225.
https://doi.org/10.1145/2228360.2228584

[4] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. 1998. Lava:
hardware design in Haskell. In Proceedings of the third ACM SIGPLAN in-
ternational conference on Functional programming, ICFP ’98. Association for

https://doi.org/10.1109/DSD.2010.21
https://doi.org/10.1109/DSD.2010.21
https://doi.org/10.1145/2228360.2228584


Towards Higher-Level Synthesis and Co-design with Python LATTE ’21, April 15, 2021, Virtual, Earth

Computing Machinery (ACM), New York, New York, USA, 174–184. https:
//doi.org/10.1145/289423.289440

[5] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona,
Tomasz Czajkowski, Stephen D. Brown, and Jason H. Anderson. 2013. LegUp:
An open-source high-level synthesis tool for FPGA-based processor/accelerator
systems. Transactions on Embedded Computing Systems 13 (9 2013), 1–27. Issue 2.
https://doi.org/10.1145/2514740

[6] Florent De Dinechin and Bogdan Pasca. 2011. Designing Custom Arithmetic
Data Paths with FloPoCo. IEEE Design and Test of Computers 28 (7 2011), 18–27.
Issue 4. https://doi.org/10.1109/MDT.2011.44

[7] Norbert Feurle. 2012. Python Hardware Processor [MyHDL]. http://old.myhdl.
org/doku.php/projects:python_hardware_processor

[8] Juan Fumero, Athanasios Stratikopoulos, and Christos Kotselidis. 2020. Run-
ning Parallel Bytecode Interpreters on Heterogeneous Hardware. In Conference
Companion of the 4th International Conference on Art, Science, and Engineering
of Programming (Porto, Portugal) (’20). Association for Computing Machinery,
New York, NY, USA, 31–35. https://doi.org/10.1145/3397537.3397563

[9] Daniel Granhão and João Canas Ferreira. 2021. Transparent Control FlowTransfer
between CPU and Accelerators for HPC. Electronics 10, 4 (2021), 406. https:
//doi.org/10.3390/electronics10040406

[10] David Greaves and Satnam Singh. 2008. Kiwi: Synthesis of FPGA circuits
from parallel programs. In Proceedings of the 16th IEEE Symposium on Field-
Programmable Custom Computing Machines, FCCM’08. IEEE, Stanford, CA, USA,
3–12. https://doi.org/10.1109/FCCM.2008.46

[11] Sitao Huang, KunWu, Hyunmin Jeong, ChengyueWang, Deming Chen, andWen
mei Hwu. 2021. PyLog: An Algorithm-Centric Python-Based FPGA Programming

and Synthesis Flow. In Proceedings of FPGA ’21, the 2021 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. ACM, New York, NY, USA, 227–
228. https://doi.org/10.1145/3431920.3439478

[12] Shunning Jiang, Peitian Pan, Yanghui Ou, and Christopher Batten. 2020. PyMTL3:
A Python Framework for Open-Source Hardware Modeling, Generation, Sim-
ulation, and Verification. IEEE Micro 40 (7 2020), 58–66. Issue 4. https:
//doi.org/10.1109/MM.2020.2997638

[13] Derek Lockhart, Gary Zibrat, and Christopher Batten. 2014. PyMTL: A Unified
Framework for Vertically Integrated Computer Architecture Research. In Proceed-
ings of the 47th Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO-47. IEEE, Cambridge, UK, 280–292. https://doi.org/10.1109/MICRO.2014.
50

[14] Denis Navarro, Oscar Lucia, Luis A. Barragan, Isidro Urriza, and Oscar Jimenez.
2013. High-level synthesis for accelerating the fpga implementation of computa-
tionally demanding control algorithms for power converters. IEEE Transactions
on Industrial Informatics 9 (2013), 1371–1379. Issue 3. https://doi.org/10.1109/TII.
2013.2239302

[15] Daniel H. Noronha, Bahar Salehpour, and Steven J. E. Wilton. 2018. LeFlow: En-
abling Flexible FPGA High-Level Synthesis of Tensorflow Deep Neural Networks.
ArXiv e-prints (7 2018), 46–53. http://arxiv.org/abs/1807.05317

[16] S. Skalicky, J. Monson, A. Schmidt, and M. French. 2018. Hot Spicy: Improving
Productivity with Python and HLS for FPGAs. In 2018 IEEE 26th Annual Interna-
tional Symposium on Field-Programmable Custom Computing Machines (FCCM).
IEEE, Boulder, CO, USA, 85–92. https://doi.org/10.1109/FCCM.2018.00022

https://doi.org/10.1145/289423.289440
https://doi.org/10.1145/289423.289440
https://doi.org/10.1145/2514740
https://doi.org/10.1109/MDT.2011.44
http://old.myhdl.org/doku.php/projects:python_hardware_processor
http://old.myhdl.org/doku.php/projects:python_hardware_processor
https://doi.org/10.1145/3397537.3397563
https://doi.org/10.3390/electronics10040406
https://doi.org/10.3390/electronics10040406
https://doi.org/10.1109/FCCM.2008.46
https://doi.org/10.1145/3431920.3439478
https://doi.org/10.1109/MM.2020.2997638
https://doi.org/10.1109/MM.2020.2997638
https://doi.org/10.1109/MICRO.2014.50
https://doi.org/10.1109/MICRO.2014.50
https://doi.org/10.1109/TII.2013.2239302
https://doi.org/10.1109/TII.2013.2239302
http://arxiv.org/abs/1807.05317
https://doi.org/10.1109/FCCM.2018.00022

	Abstract
	1 Introduction
	2 A short overview of high-level synthesis frameworks and hardware description languages
	3 Strategies for Python implementation on FPGAs
	3.1 Direct execution of the Python bytecode
	3.2 In-FPGA implementation of hot functions
	3.3 Transpiler

	4 Conclusion
	References

